CS2102 B2005 Exam #2 NAME _______________

[image: image1.png]A SPOKESPERSON
EXPLAINED “IF OUR
STOCKHOLDERS DON'T
MIND PAYING ONE CEO
450 TIMES THE
AVERAGE EMPLOYEE'S

AFTER THE MERGER,
WE'LL HAVE TWO CEOS
SHARING THE TOP JOB.

... THEY SHOULON'T
MIND DOING IT

SALARY.

wabert com s

T oo A e O P

© Scott Adams, Inc./Dist. by UFS, Inc.

 Q1. [10 pts.] Describe two things that are different between an interface and an abstract class.

a) An abstract base class can contain implemented methods whereas an interface can only contain method declarations (i.e., the signature)
b) An abstract base class can contain instance variables whereas an interface cannot.
[5 pts.] Can an abstract class have a static method? Yes
Or Can an abstract class extend an interface? No

Q2. [20 pts.] Fill in the blanks to produce meaningful statements about Java classes. Note that each word or phrase is used exactly once. [EXACTLY ONCE MEANS ONCE]
	
A class can define any number of instance variables s.
	
	
abstract class

base class

class

common

derived class

instance method

instantiated

polymorphism

private

instance variables

	
A abstract class cannot be instantiated
	
	

	
polymorphism is the ability to invoke at run-time an instance method that is defined within a derived class.
	
	

	
A base class defines what is common among a set of derived classes.
	
	

	
A private method of a class C cannot be accessed by any derived class of C.
	
	

Q3. [25 pts.] Given the following definitions (all classes belong to the default package)
The following five Java statements appear in the order shown below. Which of the below statements are legal? Which are illegal? For each answer, provide a brief explanation.
1. Animal a = new Animal();

2. Mammal m = new Bat();

3. Platypus p = new EggLayer();

4. Flyer f = new Bird();

5. EggLayer l = f;

1) ILLEGAL; you cannot instantiate an abstract class in this way.

2) LEGAL; variable m is of type Mammal; object of class Bat is a mammal.
3) ILLEGAL; you cannot instantiate an interface in this way.

4) LEGAL; variable f is of type Flyer; object of class Bird implement Flyer

5) ILLEGAL; variable l is of type EggLayer but f is of type Flyer; these two interfaces have nothing in common EVEN THOUGH the object that f points to is a Bird which actually is an egg layer.
Q4. [2 points] Fill in this Dilbert cartoon. Extra points if I fall out of my chair laughing.

[image: image2.png]

Q5. [15 points] This question addresses Exceptions. Modify the following classes so an Exception is thrown (“Invalid Request”) if an attempt is made to create a Patient with a null or empty (“”) name. Your main method must properly catch the Exception and output “Bad Input” if the name was empty or “Patient: name” for valid input.

Show the rewritten methods below. If you want to avoid rewriting the block of code selected above in your modified methods, just draw an arrow showing where it would go in your new methods.
(1) Modify the Patient class.

 /** Default constructor. */

 public Patient (String name) throws Exception {
 if (name == null || name.equals (“”)) {
 throw new Exception (“Invalid Request”);

 }

 this.name = name;

 }

(2) Modify the Test class

try {
 Patient p = new Patient (name);

 System.out.println ("Patient: " + p.getName());

 } catch (Exception e) {

System.out.println (“Bad Input”);
 }

Q6. [25 points] Design a class that represents a calendar Date with a Year, Month, and Date (such as 11/29/05).

· [5 pts] Write default constructor and copy constructor for Date
· [4 pts] Only valid Date objects should be created (Ignore leap years. Months should be in the range 1..12, year > 0, and day should be in the range 1..31)
· [4 pts] Date must have a proper toString method
· [4 pts] Date must have a proper equals method
· [4 pts] Date must implement the Comparable interface. As a reminder, the Comparable interface is shown below
· [4 pts] Describe in English the test cases you would use for Date

	public interface java.lang.Comparable {
 // @return a negative integer, zero, or a positive integer if this
 // object is <, =, or > than the specified object.
 // @throws ClassCastException if the specified object's type
 // prevents it from being compared to this Object.
 public int compareTo (Object o);
}

public class Date implements Comparable {
 int year, month, day;
public Date (int m, int d, int y) throws Exception {
 if (m < 1 || m > 12) { throw new Exception (“Invalid Month.”); }
 if (d < 1 || d > 31) { throw new Exception (“Invalid day.”); }
 if (y < 1) { throw new Exception (“invalid year.”); }

 this.month = m; this.day = d; this.year = y;
}

public Date (Date d) { this.month = d.month; this.day = d.day; this.year = d.year; }

public String toString () { return month + “/” + day + “/” + year; }

public int equals (Object o) {
 if (o == null) return false;
 if (o.getClass() != getClass()) return false;
 Date d = (Date) o;
 return (d.year == year) && (d.month == month) && (d.day == day);
}
public int compareTo (Object o) {
 Date d = (Date) o;
 if (year < d.year) return -1;
 if (year > d.year) return +1; // if we get further, then we are in the same year
 if (month < d.month) return -1;
 if (month > d.month) return +1; // if we get further, then we are in the same y/m
 if (day < d.day) return -1;
 if (day > d.day) return +1;
 return 0; // must be same.
}

Test Cases:
· Test for illegal Year, Month, and Date

· Test copy constructor with null argument

· Test whether two dates with same info are equal; test whether two dates with different info are ! equals()

· Test whether two equal dates compareTo == 0

· Test whether d1 earlier than d2 returns -1 when d1.compareTo(d2) and +1 when d2.compareTo(d1)
import java.util.Scanner;

public class Test {

 public static void main (String[] ar){

 Scanner in = new Scanner (System.in);

 System.out.println ("Enter name:");

 String name = in.nextLine();

	

 Patient p = new Patient (name);

	

 System.out.println ("Patient: " + � p.getName());

 }

}

/** Represents a patient. */

public class Patient {

 /** Patient's name. */

 String name;

	

 /** Default constructor. */

 public Patient (String name) {

 this.name = name;

 }

	

 /** Get the name. */

 public String getName() {

 return name;

 }

}

abstract class Animal { }

interface Flyer { }

interface EggLayer { }

class Mammal extends Animal { }

class Bird extends Animal implements Flyer, EggLayer { }

class Bat extends Mammal implements Flyer { }

class Platypus extends Mammal implements EggLayer { }

