
Experiences of Creating COTS Components when
Automating Medicinal Product Evaluations

Radmila Juric, Stephen Williams

Cavendish School of Computer Science, University of Westminster,
115 New Cavendish Street, London W1W 6UW, United Kingdom

juricr@wmin.ac.uk, williast@wmin.ac.uk

Abstract. The paper reports on experiences of designing and implementing
component based software architecture for automation of medicinal product
evaluations across different countries and their evaluation practices. Our ge-
neric architectural model renders a set of families of software components that
implement required functionality and are potential candidates for COTS com-
ponents. We identify which role such COTS components may play when popu-
lating our software architecture and outline our approach of generating them.
We discuss their main characteristics and advocate that such COTS components
are developed with a specific component platform in mind and adhere to con-
straints of our software architecture.

1 Introduction

There is a great interest in reusable software components, particularly commercial-of-
the-shelf (COTS) components…… Capitalising on third party expertise and synthe-
sising components technologies with COTS components might bring new answers to
problems of interoperability when building today’s software systems.

Section 2 details related background and outlines our previous work on automation
the medicinal product evaluations. In section 3 we raise the issue of deploying COTS
components with component technologies within our problem domain in order to ad-
dress the interoperation of evaluation practices. We summarise the aim of this paper
and comment on any related work in the field. Section 4 describes our process of cre-
ating, i.e. extracting COTS components when modelling the running example as an
EJB application. The creation of our own design patterns and design decisions dic-
tated by the choice of a component technology has created COTS components that
address the interoperability between evaluation practices across various regulatory au-
thorities. Section 5 lists characteristics of such COTS components. We conclude in
section 5 briefly discuss our future works.

2 Related Background

Medicinal product evaluation is one of the most important tasks undertaken by
government health departments and their regulatory authorities in every country in the
world. The independent evaluation of medicinal products is centered on regulations
and guidelines for reporting and evaluating data on medicinal products’ safety, quality
and efficacy. These procedures are strictly defined in order to ensure that all stan-
dards on testing, manufacturing and controlling medicinal products are achieved.
However, this complex task faces two major problems today. The first one is related
to the process of harmonization of different regulatory systems throughout the world
as defined in the International Conference of Harmonization (ICH) [1]. Each country
has its own system of evaluating medicinal products, which differ amongst them-
selves not only in vocabulary and definitions of medicinal products, but also in differ-
ent organizational structures and evaluation practices of individual regulatory authori-
ties. This represents a serious drawback for efficient local and worldwide registration
of medicinal products. The second problem is related to automation of such evalua-
tion procedures, i.e. software support in evaluation of medicinal products is a critical
task that can dramatically improve the efficiency of regulatory authorities. Further-
more, such software solutions that offer the interoperation of regulatory systems
across the world will immediately enhance the ICH harmonization efforts.

In our previous works [1,2] we have analyzed this complex task through local needs

of regulatory authorities and have extracted their common practices that exist across
the world, which is essential if any interoperation between regulatory systems and their
evaluation practices will take place. Any software solution that automates such evalua-
tion practices is a large-scale distributed application that requires sharing of data stored in
various databases and sharing of processes associated with evaluations [3]. Our starting
point was to create a software architectural model, which is layered and component
based, and which allows (a) a dynamic generation of applications for medicinal prod-
ucts evaluations and (b) carrying out any evaluation procedure on the application.
Such procedures must suit any regulatory authority, i.e. regulatory authorities may
apply their own evaluation procedure or any other available internationally [3, MI].

In Figure 1 we show the generic architectural model, which is layered and compo-

nent based. Each layer has different responsibilities. The application layer provides
a basic GUI functionality and controls interaction between users and any other layers
within the system. This includes the best pathway, i.e. the right choice of Ri and Ei
components involved in a particular application. The domain layer consists of two
families of components. The Ri family of components contains a set of rules that are
to be followed if we want to have an automated application submission within a par-
ticular regulatory authority. The Ri family may also include any future set of rules
originated within the ICH. The Ei family of components contains all available evalua-
tion procedures that originate in different regulatory authorities or can be found
within future harmonised activities from the ICH. Components from the domain
layer use various data repositories DB1,2,3,4,i,j,k,n stored within components of the per-
sistence layer.

Our persistence and domain layers can be seen as a common repository of data and
processes, where various applicants, regulatory authorities, hospitals, GPs, patients
etc., can share data and services defined in our component architecture.

To illustrate the proposed architecture we use a running example, whose function-
ality is divided into two workflows (see (a) and (b) in section2): (i) submitting an ap-
plication for evaluating a medicinal product under local regulatory authority rules (Ri)
(ii) applying an evaluation procedure (Ei) available internationally and creating a re-
port that results from it. A full-scale data model that supports the running example is
available from [RL]. The running example components placed within the software
architecture are modeled as an EJB application, and implemented within the J2EE,
which is available from [MI].

3 Problem Formulation and Related Work

In this paper we look at the problem of automation of medicinal products evalua-
tion from a different perspective. Our experiences from the implementation of the
running example have raised two issues:
(a) The deployment of components from our generic architectural model requires a

component technology, which in turn dictates the design and implementation of
the running example. In other words, the chosen component technology com-
munication infrastructure is embedded within our example components, which
compromises their independence.

Persistence Layer

Domain Layer

 Family of E-Components Family of R-Components

Submit
application for

evaluation
Analyse applicant’s request

Applicant requests evaluation and submits the application

R1 R2 Rn E1 E2 En

DB1 DB2 DB3 DB4 DBi DBj DBk DBl

Application Layer

Figure 1: Component based reference architecture for automated
evaluation of medicinal products

(b) The complexity of the problem domain should gear us towards acquiring
COTS components, which may alleviate the implementation of the proposed
software architectural model and address the issue (a) above. Could we claim
that some of the components we have generated in this problem domain can
become COTS component and if yes, which characteristics should they have?

The aim of this paper is to address the (b)

We are not aware of any other work involving both COTS components and the prob-
lem of automation of medicinal products evaluations. We can only point towards the
compatibility of our generic architecture with the existing distributed models in
healthcare IS. Bringing new applications such as Reporting on Adverse Drug Reac-
tions or Updating Electronic Medical Records will take our architectural model closer
to the Distributed Healthcare Environment (DHE) middleware solutions for common
health-care specific services, which has been formalised in European Health Informa-
tion Systems Architecture (HISA) (Blobel, 2000). Our components from the domain
layer (and some from the application layer) can find a place within the CEN middle-
ware (Ferrara, 1998) of common services. A Health Level Seven (HL7), found at
(http://www.hl7.org), an ANSI accredited US health industry communication (mes-
saging) has extended the protocol for exchange of health-care information towards
data from master files, clinical trials and adverse drugs. In version 3 they go beyond
messaging. The Clinical Context Management Specification, XML Encoding for Ver-
sion 2 and the Clinical Document Architecture are products that complements HL7's
messaging standards. It remains to be seen if we can view HL7 as realising our do-
main specific messages and interfaces for information interchange, which can support
communication between different component layers of our proposed architecture (be-
tween different applications and between applications and underlying infrastructure).

4 Creating COTS Components

The potential COTS components, which can be used when automating medicinal
product evaluations, have emerged from the final model of our application, i.e. after
the decision on component technology was made and after a few design patterns that
suited any similar application from the same problem domain were generated. There-
fore in this section we describe the whole procedure of modelling the application,
generating design patterns and extracting potential COTS components.

4.1 Designing the Application Components

When designing our application we adopted the four principles in the following order:

(I) Choosing an adequate component technology
(II) Adhering to the layering principle and constraints from the architectural model

(III) Applying the MVC design model as suggested by the J2EE framework

(IV) Generating our own design patterns dictated by the functionality of the prob-
lem domain and the MVC design model.

In this section we describe (I)-(III) and leave (IV) for section 4.2.

(I) Choosing an adequate component technology:

Our analysis of component platforms of frameworks has short-listed the following
three options suitable for the problem domain and the architectural model:

1. the EJB and the J2EE platform
2. a framework aligned within the CORBAmed standards from

(http://www.omg.org/corbamed/),
3. an Internet based n-tier architecture adopting a CORBA middleware layer such as

the Artemis architecture from (Jagannathan, 2001).

The complexity of the CORBAmed framework and experimental status of the Arte-
mis prototype lead us towards the J2EE platform. This does not mean that we will not
use Artemis or CORBAmed in future. . We have been geared towards J2EE because
of our previous positive experiences of designing an application for database interop-
erability as an EJB application [IASTED papers and ITI paper]. Our decision to use
EJBs has also been based on the fact that (a) EJBs are portable between various ven-
dor implementations of J2EE, (b) EJB standard has been adopted by a number of ven-
dors in order to provide EJB-compliant servers EJB and (c) EJB containers could
shield us from component implementation complexities. More discussion on the
topic is available at [xxxxx].

(II) Adhering to the layering principle and constraints from the architectural model

Our layered architecture conforms to [39] where layers are “allowed to use” public
facilities of the nearest lower level (the usage of layers flows downwards). Our layer-
ing principle aims to achieve a certain degree of flexibility, re-usability and extensi-
bility of the architectural solution:
• We separate components into layers according to their specificity within the ap-

plication. However, the core layer (domain specific) components push away ap-
plication specific requirements from generic functionality of data
sources/computing platforms, making systems more adaptable to changes.

• The content of a particular component may be decided upon which layer it is ap-
propriate to reside, i.e. knowing the layer in which the component resides, we
know which services it offers.

• We can extend families of domain specific components if functionality requires,
without affecting existing components in the same and adjacent layers. Further-
more, we may generate in advance domain specific components to suit new re-
quirements/applications.

Consequently, our design model should distinguish between components placed in
different layers, i.e. we should know at any time which ‘type’ of component is in-
cluded in which part of the design model.

(III) Applying the MVC design model as suggested by the J2EE framework

The components from the application specific layer are represented by JSP and serv-
lets in order to display and obtain information form the user. Srevlets also implement
workflow and session management. Components from the application layer accept a
user input, analyse it, make invocations to the EJB components, and issue a response
to a user. We use servlets as the common entry point into the application. It is sup-
ported by a controller role given to servlets in JSP/servlet/EJB scenarios of the MVC
[reference an adequate source for MVC] design model. This model enforces a separa-
tion of Model (EntityBenas or/and JavaBeans), View (any HTML file and/or JSP) and
Controller (servlets and SessionBeans) aspects.

WE give some examples of using the MVC model when accessing DB records and
when performing the functionality of evaluating medicinal product.

Example 1:

Our servlets allow access to DB elements either directly through EntityBeans or use
SessionBeans as intermediary to retrieve records. In our design we follow the view to:
• use EntityBeans if the result of retrieval is a single record
• use SessionBeans and EntitiBean when multiple records are to be retrieved. Such

a SessionBean is named as ‘Look-up’.

Figure 2 shows an example of “look-up” SessionBeans for viewing all reports associ-
ated with a given application: View.Servlet needs <<Look-
upGetReportHistory.SessionBean>> for retrieving all reports associated to a particu-
lar application;

Figure 2:

Example 2:

Our Servlets also control the application functionality. They control submission of
new applications and evaluation of submitted applications.

LoginServlet
EntityBean
Applicant Applicant

SessionBean
Lookup

allApplications

Login.jsp

Application DisplApp.jsp

In both cases we need an EntityBean such as <<EvaluationEntityBean>> or
<<RuleEntityBean>>, which retrieves a stored rule for checking the submission and a
chosen evaluation procedure for evaluating the application. These EntityBeans are
PLUGS-IN into SessionBeans that perform submission and evaluation, and they may
be available locally or at remote nodes.

Figure 3 shows the example of evaluating submitted application, controlled by
EvaluationServlet which delegates <<EvaluatingSessionBean>> to carry out the
evaluation. We need <<EvaluationEntityBean>>, which retrieves a chosen evaluation
procedure for evaluating the application and plugs it into <<EvaluatingSession-
Bean>>

Figure 3:

Example 3:

EntityBeans are also used when updating and entering records in the DB. Updat-
ing of DB records is a consequence of performing evaluations and conformity to
‘rules’ when doing submissions. In our prototype we assume that there is only ONE
‘rule-checking’ procedure, which is prescribed by a local evaluation body (see
wrkflow(a) in section 2). Consequently, there is no need to use a look-up Session-
Bean for retrieving rule-checking as opposed to retrieval of evaluation procedures
(<<Look-upEvaluations.SessionBean>>), where we can chose amongst all of them
available locally and globally. This is shown in Figure 4.

Plug

Yes/no

ApplyEvServ
EntityBean
Evaluation Evaluation

EntityBean
Report

Application
Report

SessionBean
Evaluating

Figure 4

4.2. Creating Design Patterns

The Strategy pattern from [Gamma] is used within the core layer of Figure 1 when
generating a family of components that implement the functionality of checking ad-
herence to submission rules and evaluating submitted applications. These families of
Ri and Ei components provide different implementations of the same behavior, where
the user’s request (and user’s understanding of the problem1) decides the most suit-
able implementation. This pattern helps us to vary one part of our architectural struc-
ture independently to some other parts, making our system more robust to change, ad-
dressing reusability and achieving extensibility. We argue that:
1) ‘submission rules’ and ‘evaluation’ procedures’ as parts of software that are

likely to change in future (e.g. to be extended, optimised or to be changed com-
pletely) are isolated from the rest of the system;

2) we may define as many different variants of the same ‘submission rules’ or
‘evaluation procedures’ as possible, i.e. a family of ‘rules’ and ‘evaluations’.
This also means that we may generate new ‘checking rules’ and ‘evaluation pro-
cedures’ through previous experiences, new legislations/ICH and similar;

3) the user of the system chooses the most suitable combination of submission rules’
and ‘evaluation procedure’, i.e. different tactics according to trade-offs when
evaluating applications (N.B. the user is aware of different rules/procedures – this
is a requirement of the Strategy pattern);

We also follow some J2EE patterns reference J2EE patterns book]. Figure 5 shows a
typical “front controller”: our ChoiceButton.Servlet controls the whole application by
allowing the user to click either Submission, View or Evaluation buttons!

1 This user decides on which submission rules and evaluation procedure are to be applied.

EvalServlet

DisplyEv.jsp

SessionBean
Lookup

allEvaluations

Plug

Yes/no

ApplyEvServ
EntityBean
Evaluation Evaluation

EntityBean
Report

Application
Report

SessionBean
Evaluating

Figure 5

Our design patterns 9 (I have to think about them!) are suited any similar applica-
tion from the same problem domain were generated. Therefore in this section we de-
scribe the whole procedure of modelling the application, generating design patterns
and extracting potential COTS components.

4.1 Candidates for COTS Components

To be done – short section

5 Characteristics of COTS Components

6 Conclusions

ChoiceButServ LoginServlet ViewServlet

EvalServlet

SubmissServlet

