
Extract: An Extensible Transformation and Compiler Technology

George T. Heineman and Paul Calnan
WPI Computer Science Department

heineman@cs.wpi.edu

Abstract

There is increasing interest and a need for code

transformations to help designers and programmers
modify source code “at a high level”. However, it is a
challenge to write effective software transformations
and make them available for use. We approached this
problem as software engineers and developed a
language and supporting infrastructure that helps
users specify, execute, and reuse transformation
modules; after all “Software code transformations are
software too”. We describe our approach, our design
decisions, and evaluate the resulting Extract
technology with two case studies. Our results show
promise in building transformation units that can be
composed together (according to a well-defined
semantic model) to form more complex ones.

1. Introduction and Motivation

Many design and coding tasks can be described as
code transformations, where a user selects a desired
code modification (the goal), and a sequence of
transformations is applied to the code base (the
process). Code transformation consists of four phases:

1. parse the source code file(s) into an internal model

of the code
2. search the model for targeted fragments that must

be modified to satisfy the goal
3. transform the internal code model as specified by

the process
4. output the source code file(s) to be compiled or

edited within a development environment

In this paper, we describe our Extensible
Transformation and Compiler Technology (Extract)
project, an infrastructure that makes novel
contributions to the search and transform phases while
using existing technology to parse the source code.
Two projects provided the direct inspiration to pursue

the Extract research effort. Each project required a
specific, narrow code transformation that was provided
either by ad hoc means (such as scripts and small hard-
coded programs) or by using existing tools that could
not be easily extended to investigate alternative
transformations.

1.1. Active Interface Design Environment

Active interfaces are a technology for creating
black-box adaptable software components [4]. An
active interface decides whether to take action when a
method is called; there are two phases to all interface
requests: the “before-phase” occurs before the
component performs any steps towards executing the
request; the “after-phase” occurs when the component
has completed the request. These phases are similar to
the Lisp advice facility [6].

The initial Active Interface Development
Environment (AIDE) used a shell script to parse the
Java source code (using JavaCC [10]) and then
injected small text fragments into method bodies to
create the desired functionality. The script, naturally,
was complex with many special cases [7].

1.2. Run-time Interface Checker

Run-time enforcement of behavioral contracts has
been studied extensively in procedural and object-
oriented languages. However, component-based
software engineering (CBSE) imposes additional
restrictions for integrating run-time enforcement of
behavioral contracts into the component model. We
developed a standardized service that could be added
to component model implementations to enable
application assemblers to enforce local properties as
specified by the components in the application as well
as global properties as specified by the application
[14]. Given an interface specification with @pre and
@post conditions specified for each method, the Run-
time Interface Specification Checker (RISC) compiler
converts these pre- and post-conditions into executable

checking units (ECUs). These units use assertions to
verify the stated conditions.

RISC supported specifications written using a
subset of OCL [8]; however the RISC system relied on
complicated hand-crafted code that parsed the
specifications and enforced the assertions.

2.4. Requirements

The determination to combine and generalize the
solutions as posed by AIDE and RISC presented an
opportunity to clearly define a code transformation
research agenda.

• Grammar independence – our early efforts were

limited to Java source code. We recognized the
need to design transformations in any language
regardless of the grammar of the source code. This
challenging task could only be accomplished by
reusing existing parsing and compiling techniques.

• Transformation specification – the AIDE
transformations were hard-coded; the contract
validation code for RISC quickly became a burden
for the programmers. We need to separate the
generic capabilities of searching through code from
the transformations and domain-specific
modifications required to change the code.

• Transformation reuse – Complex transformations
can be composed from other transformations. All
the lessons of software reuse apply, namely,
encapsulation, information hiding, and
extensibility. To borrow a phrase from Lee
Osterweil, “Transformations are software too” [5].

By applying the best practices of software reuse to

software transformation, we are building an
infrastructure where transformation modules can be
designed and used in “black box” fashion. Users of
these modules do not need to concern themselves with
the (often complex) logic that supports the
transformation; rather they can use the module
according to its specification and even extend it to
create new meaningful transformations of their own.

 2.4. Small example

We introduce the topic of transformation with a
small example. As the Java language evolved to JDK
1.5, the keyword enum was added; naturally, those
programs written prior to 1.5 may have used enum as a
variable. One example is the auto-generated code from
the JTB generator [15], which includes the following
snippet in all of its generated code:

 for (Enumeration enum = jj_expentries.elements();
 enum.hasMoreElements();)
{

int[] oldentry =(int[])(enum.nextElement());
 ...

}

 This Java code will fail to compile with the 1.5

javac compiler. A small converter program (shown in
Fig. 1) might be offered as an ad hoc solution to
rename this variable by updating the source to replace
certain "enum" strings with "e__m" (unlikely to be
used in the program). This approach is inadequate
since a StringBuffer object offers no high-level
support for code transformation. In addition, such
temporary (and throw-away) solutions inextricably
link search and transform operations, thus they can’t
be composed together easily, nor can they be extended.

// PARSE source file
File f = new File(args[0]);
FileInputStream fis = new FileInputStream (f);
byte allIn[] = new byte[(int) f.length()];
fis.read(allIn);
fis.close();

Figure 1. Ad hoc code transformation

This same effect can be achieved using the Extract

module, and supporting implementation, shown in Fig
2. The Patcher module processes the Abstract Syntax
Tree (AST) for the Java Grammar and searches for
those Variable and VariableDeclarator typed
nodes and applies a Rename transformation to change
variable names to "e__m" as needed; these node types
are derived from productions in the Java grammar.

StringBuffer sb = new StringBuffer(
 new String(allIn));

// SEARCH for 'enum' and TRANSFORM to 'e__m'
int idx;
while ((idx = sb.indexOf(" enum ")) != -1) {
 sb.replace(idx+2,idx+4,"__");
}
while ((idx = sb.indexOf(" enum.")) != -1) {
 sb.replace(idx+2,idx+4,"__");
}

le ((idx = sb.indexOf("(enum.whi ")) != -1) {
 sb.replace(idx+2,idx+4,"__");
}

// OUTPUT transformed file
FileOutputStream fos=new FileOutputStream (f);
fos.write(sb.toString().getBytes());
fos.close();

Figure 2. Sample Extract transformation.

We now present the core design decisions and

describe the semantic design and execution model for
Extract. We discuss two case studies in the use of
Extract and evaluate its performance and how well we
meet our requirements. We compare other approaches
in the field and conclude with a discussion on the
extensibility of Extract and some lessons learned.

3. Design Decisions

The design decisions for Extract can be broken
down by phase. The most important principle we
follow is the independence of Extract from the
underlying grammar of software being transformed.

3.1. Parse phase

We searched for technologies that would enable us
to both parse and modify code. OpenJava is a Meta
Object framework that lets one easily create and
manipulate representations of java code as Abstract
Syntax Tree (ASTs) [9]. For example, the code snippet
in Fig. 3 creates the canonical Java "HelloWorld"
program. Our early success in Extract is due to

OpenJava, since it helped parse, construct, and
manipulate ASTs representing Java classes.

module Patcher {
 // Execution Block (encodes SEARCH)
 Patcher () {
 FOREACH VariableDeclarator vd =
 "//VariableDeclarator[@Variable='enum']" {
 ApplyTransform (Rename("e__m"), vd);
 } { /** if no VariableDeclarators. **/ }

 FOREACH Variable v = "//Variable" {
 if (v.toString().equals ("enum")) {
 ApplyTransform (Rename("e__m"), v);
 }
 } { /** if no Variables. **/ }
 }

 // TRANSFORM Block
 transform Rename (String name) {
 (Variable v) {impl.rename(v, name);}
 (VariableDeclarator vd){vd.setVariable(name);}
 }
}

However, we did not want Extract to be directly
coupled with OpenJava. Also, constructing a Meta
Object protocols (MOP) for a grammar is expensive,
and one might not always exist for a desired grammar.
To configure Extract to use arbitrary grammars, we
turned to JavaCC the Java Compiler Compiler [10], an
extraordinarily useful tool that generates a lexical
analyzer and parser given a grammar.jj description
of a grammar. A companion tool JTB (the Java Tree
Builder) takes the grammar.jj file and generates
AST classes and supporting traversal classes [15]. The
grammar is fully integrated into Extract once key
specialized classes are written.

MethodCall mc = new MethodCall(
 "System.out.println",
 new ExpressionList(
 Literal.makeLiteral ("Hello World")));
MethodDeclaration md = new MethodDeclaration(
 new ModifierList (ModifierList.PUBLIC |
 ModifierList.STATIC),
 new TypeName("void"), "main",
 new ParameterList (new Parameter(
 new TypeName ("String", 1), "args")),
 null, new StatementList (
 new ExpressionStatement(mc)));
ClassDeclaration cd = new ClassDeclaration(
 new ModifierList(ModifierList.PUBLIC),
 "HelloWorld", null, null,
 new MemberDeclarationList(md));

public class Patcher_impl implements ModuleImpl {
 void rename (Variable v, String name)
 throws ModuleException {
 try {
 v.replace ((ParseTree)
 ExtractAPI.createElement(name,"Variable"));
} catch (ParseTreeException e) {
 throw new ModuleException (e);
}

 }
}

Figure 3. Construct HelloWorld Java class

Figure 4. Internal representation

The Extract run-time parses and loads input files as

a set of ASTs stored by a container. The AST structure
is shown in Fig. 4. Extract cares only that the ASTs are
associated with the relevant Grammar interface. For
grammars provided as JavaCC .jj files, one can
readily construct the appropriate Grammar subclasses.

3.2. Search phase

We decouple the search for nodes in the AST from
the transformations that affect them. We designed the
JPath language (inspired by XPath [1]) to traverse an

AST

#grammar: Grammar

+getRoot(): Object
+select(String jpathExpr): Selection
+select(NodeSet nodes, JPath jpath): Selection

Grammar

+getRoot(): Object
+createPathEvaluator(): PathEvaluator

JavaCCGrammar

#root: javacc_input

+createPathEvaluator()

OpenJavaGrammar

#root: CompilationUnit

+createPathEvaluator()

AST to locate desired nodes within it. For example,
given an AST representing a Java file, the query
"//ClassDeclaration[@Modifiers contains

'public']" returns node(s) of type ClassDeclaration
representing the public class within the file (if it
exists). The identifier ClassDeclaration is interpreted
as the type of a node in the AST. JPath has no
preconceived types and operates via reflection over the
specified input grammar of the source being
transformed.

A well-formed JPath query has the form
“Step1/Step2/…/Stepn” and is evaluated (step-by-step)
over an AST given a set of anchor nodes (most
frequently just the root node). Each step is typed to
locate suitable child node(s) of the anchor node(s) that
belong to the desired type; the resulting nodes found
become the anchor nodes for the next step. Wildcards
can be included in the first n-1 steps, such as * (select
all children) and // (select all descendants), but the nth
step must be fully typed. Each step may have an
additional filter (in [] brackets) based upon the
attributes of the selected node(s).

A JPath query either evaluates to a Selection
representing the empty set ∅ or a set of typed nodes as
determined by the nth step. The following example
shows how one can extract the raw call graph from a
set of nested JPath expressions over an AST object,
src, representing a Java source file.

Figure 5. Nested JPath expressions

While JPath provides the raw capability of

searching for desired nodes of interest within an AST,
we need additional support to effectively declare and
implement transformations. Towards this end, each
Extract module may have a single execution block that
contains embedded JPath queries. Much like the
enhanced for loop for JDK 1.5, we designed a
construct that hides the JPath details found in Fig. 5;

queries can be nested, in which case the optional
[(node)] entity serves as the anchor for the query.

FOREACH [(node)] Type t = "JPathQuery" {
 // code executed once for each node
} {

// code executed if none found
}

The ExtractC compiler compiles these code fragments
into Java code similar to Fig. 5.

The prime motivation behind Extract was to make it
possible to specify transformations separate from the
search queries. In the example from Fig. 2, the top
block contains the Patcher Extract module which
consists of an execution block with two queries and a
transform block with two cases. As we shall see in
Section 4, this separation makes it possible to extend
modules and create new modules easily.

3.3. Transform phase

The transform block contains a series of named

transformations, each with its own parameter list.
Related transformations are grouped together
according to the following syntax:

transform <name>(<args>) {
 (<case 1>) { /** logic. **/ }

(<case 2>) { /** logic. **/ }
 …

Selection s, s1, s2;
s = src.select("//ClassDeclaration");
Iterator i = s.iterator();
while (i.hasNext()) {
 ClassDeclaration d = (ClassDeclaration) i.next();
 s1 = src.select(d, "//MethodDeclaration");
 Iterator i2 = s1.iterator();
 while (i2.hasNext()) {
 MethodDeclaration m=(MethodDeclaration) i2.next();
 s2 = src.select(m, "//MethodCall");
 Iterator i3 = s2.iterator();
 while (i3.hasNext()) {
 MethodCall c = (MethodCall) i3.next();
 // report call graph on (d, m, c)
 }
 }
}

}

To ensure that transform logic is simple, the code of

the logic block cannot include methods that throw
Exceptions. In this way, the Extract module code
should be abstract enough to understand without
complications. Naturally, there must be some way to
include more complex code, and that specialized –
often domain-specific – code, is coded in the
Implementation class associated with the Module.
These implementation methods become abstract
concepts that can be used without exposing their
complex logic. Each module instance is instantiated
with a reference to its corresponding implementation
object impl, which is available within the execution or
transform blocks.

As an example, the transformation shown in Fig. 6
adds the interface pkg.iname to the implements
clause of a class declaration. Having described all
essential elements of Extract modules, we present the
semantic model that explains how Extract modules are
designed and executed.

transform AddInterface(ClassDeclaration c) {
(String pkg, String iname) {

 TypeName[] old=c.getInterfaces();
 TypeName[] mod=new TypeName[old.length+1];
 System.arraycopy(old,0,mod,0,old.length);
 mod[old.length] = (TypeName)
 ExtractAPI.createElement (pkg+"."+iname,
 "TypeName");
 c.setInterfaces (mod);
 }
}

Figure 6. Sample Transform

4 Extract semantic model

An Extract module represents an encapsulated unit
of transformation. It contains an execution block, E,
that processes a single AST and potentially transforms
that AST using a set of defined transformations, T;
these transformations ti(args) are the fundamental
granularity of source code transformation in Extract.
Complex helper computations are coded in an
implementation class, I, associated with each Extract
module. After the completion of the execution block, a
set of defined properties, P, is available for get/set
access to support the communication between
modules. Thus, an Extract module M is defined by the
tuple (P, E, T, I); each of these elements is optional.

In short, the execution block of an Extract module
contains embedded JPath queries over the AST to
locate specific nodes that are transformed by the
defined transformations whose logic is enhanced (or
customized) by implementation classes; state computed
by the module is retrieved via its properties.

An Extract main module provides an entry point for
complex transformations, and acts like the main
function in a C program. It receives as input the
Extract container which contains the set of pre-parsed
and loaded AST objects. A main module may
instantiate and invoke other Extract modules on the
AST trees. Once the main module completes, all ASTs
managed by the container are written to disk.

With the Extract capabilities described so far, users
would be able to define and use transformation
modules; they could be easily assembled together to
form more complex ones. However, the true power of
Extract becomes realized when designers use single
inheritance to create new modules from existing ones.

4.1. Module semantics

Module writers can use inheritance to create new
Extract modules by extending an Extract module. A
module Mspec can extend module Mgen to inherit (and
possibly override) the core module elements of Mgen, in
the same manner as a subclass extends an object-

oriented class. Each of the core module elements is
optional, resulting in different types of modules. The
implementation I contains a set of Java helper methods
to aid transformations.

There are three independent ways that a specialized
module can extend a module; (1) Override the existing
implementation class to change the underlying way in
which the module carries out the transformation
specified in Mgen; (2) Override the defined
transformations to change the fundamental building
blocks of transformations; (3) Override (or provide)
the execution Block to select different nodes to be
transformed.

When module Mspec = (Pspec, Espec, Tspec, Ispec)
extends module Mgen = (Pgen, Egen, Tgen, Igen), the
semantic structure of Mspec follows the standard
approach as found in Java inheritance, resulting in
Mspec = (Pgen ∪ Pspec, Espec • Egen, Tspec • Tgen, Ispec • Igen),
where properties are unioned together and the •
operator represents the replacement of the core
element(s) in the generic module Mgen with those in
Mspec that override them. The semantic model is
enforced by the way ExtractC compiles the Extract
Modules into Java code (as described in Section 4.3).

Finally, an interface module (P, ∅, ∅, ∅) declares
an interface by defining a set of properties P, each
accessible via get/set method calls. Because modules
are independent from each other, their only
communication should be through properties. To
enable this communication, Extract modules can
import any number of interface modules (this construct
is analogous to interfaces in Java).

4.2. Execution Semantics

The Extract run-time provides a command-line

interface to execute Extract Modules. To execute a
module, the run-time needs to be told (1) the set of
input source files to be transformed (these could be
found on disk, or in a JAR or ZIP archive file); (2) the
grammar to use while parsing the input files; (3) an
output directory; and (4) the name of the Extract
module to invoke. The run-time parses all appropriate
source files into ASTs using the specified grammar,
and instantiates an object representing the specified
module. If the module is a main Module, then it
receives the Extract container as input, otherwise the
module is iteratively fed each AST one at a time. Once
execution completes, all ASTs in the container are
written to the selected output directory.

The execution of two modules can be composed
together in sequential independence within a Main
module as follows:

module Main {
 main (String[] p, SourceContainer c) {
 INVOKE ModuleP p() FOREACH c;
 INVOKE ModuleQ q() FOREACH c;
 }
}

In the above example, Module p is invoked on each
AST, one at a time until all ASTs in the container have
been processed. Then Module q is similarly invoked
on each AST. Another alternative, which we call
sequential dependence occurs when, for each AST in
the container, the second modules is executed
immediately after the first one:

module Main {
main (String[] p, SourceContainer c) {
 for (Iterator it = c.iterator();
 it.hasNext();) {
 AST src = (AST) it.next();
 INVOKE ModuleP p() ON src;
 INVOKE ModuleQ q() ON src;
 }
}

4.3. Compilation Semantics

The ExtractC compiler converts an Extract module
source file Module.xm into a set of three 100% pure
Java files:

• Module_impl.java – this implementation

class is generated only once. Thereafter, the
module writer can implement special
functionality in this class as needed for
complex transformations

• Module_props.java – this interface
declares the set of properties supported by the
module

• Module.java – this class contains the
execution block that defines the logic of the
transformations defined by the module.
Transformations defined by the Extract
module appear as inner static classes for use
by the Execution Block.

To execute a module, one need only instantiate an

object of the generated Module class and invoke its
execute (AST) method. The ExtractC compiler
converts transform declarations into static classes
within the enclosing Extract Module class. When Mspec
extends Mgen, the implementation class Mspec_impl
extends Mgen_impl. Similarly, the inner static transform
classes abide by the same extension, to enable
substitutability.

5. Case Studies and Evaluation

We evaluated Extract with two considerable case
studies. We describe each and then evaluate their
strengths and weaknesses.

5.1. Code Obfuscation

Given a set of Java source files, we would like to
obfuscate all method names to make it impossible to
understand the original code. The resulting
transformed code must compile and execute the same
as the original. To solve this problem over a set of
ASTs, we must analyze the global set of package
definitions to determine the scope of the original
source. Method declarations within this scope cannot
be obfuscated if they (a) are the implementation of an
interface external to the scope; or (b) override a
method whose definition is external to the scope.

We designed three Extract modules to execute in
the following order:

• PackageRegistrator – identifies the
scope of the source ASTs by recording
their package names

• ClassInspector – builds up symbol
table information for all source code
blocks so that every method call is
properly typed; also identifies whether
method declarations meet the obfuscation
criteria above

• Obfuscation – Performs the requisite
modifications to both method declarations
as well as method invocations

packages

Figure 7. Obfuscation Logic

Fig. 7 contains a representation of the overall

control structure. The complex details regarding
symbol tables are safely encapsulated and hidden in

Main

Package
Registrator

Class
Inspector

Obfuscator

1
2

3

IPackage
Registrator

_impl

_impl

_impl

implementation files. The communication between the
PackageRegistrator and ClassInspector is
governed by means of properties – the ideal means of
interaction. In short, ClassInspector demands only
that someone provide it the set of packages. However,
note that Obfuscator makes a direct method call to
the implementation of another module. This interaction
is clearly not desirable because it tightly couples these
two Extract modules. The communication is simply to
static methods (i.e.,
ClassInspector_impl.isInScopeClassMethod(
className, name). We are currently working on
extending the ability of modules to export interfaces
more complex than simple get/set; this should resolve
the tight coupling evident here.

Given a small GUI editor of 9,748 lines of Java
code in 75 files, we ran the obfuscation process five
times on an Dell Computer with an Intel Pentium 4
CPU of 2.8 Ghz and 504 MB of RAM. We eliminated
the slowest and fastest execution times and the average
running time for the remaining three runs are 34.3
seconds to parse the input, and 6.0 seconds to complete
the obfuscation process. In total, 575 method
declarations were inspected and 449 of them (78.0%)
were obfuscated. A method declaration was obfuscated
if it was determined to be “in the scope” of the set of
input files. For example, the method
actionPerformed (ActionEvent ae) in a class
that implements ActionListener is considered “out
of scope” because the method is defined in a package
not provided in the input. Of the 3,253 method
invocations, 798 of them (24.5%) were altered. This
case study was an excellent “stress test” for Extract.

We also ran a side-by-side comparison with the
publicly available ProGuard system, which shrinks,
optimizes, and obfuscates source code [17]. On their
“JDepend” test, which required 8 seconds to obfuscate
a project with 22 files and 57K bytes of code, our
Extract tool performed the same task in 13.3 seconds
on comparable hardware (obfuscating 259/313 method
declarations and 602/2203 method invocations).

5.1. Condition Checker

Our second case study provides a solution to the
problem of checking the @pre and @post conditions
associated with method declarations in an interface.
The essential problem we solve was posed by Findler
et. al, namely, how to assign blame when the pre- or
post-condition for a method has been violated [16]. In
their paper, the authors state “An implementation of
our contract checker is in progress…. We plan to
release a prototype by the end of 2001.” When no such
prototype became available, we developed our own

case study to implement the extensive analysis
described in their paper.

As we focused on the problem, we realized that the
first two steps from the Obfuscation example could be
used as is. Thereafter, we needed to perform three
additional steps:

• HierarchyVisitor – captures all
‘extends’ and ‘implements’ relationships
between all classes and interfaces within
the input ASTs

• MethodCallTransformer – the solution
proposed by Findler [16] is to add
customized contract-checking methods
within the interfaces and the code invoking
the original methods. Thus some original
method invocations have to be changed

• ConditionAdder – to produce the
required set of contract checkers, we need
to add several new method declarations
(complete with the logic to validate the
conditions) and several new classes

package

Figure 8. Contract Checking Logic

As with the obfuscation example, the excessive
interaction with the implementation for
ClassInspector reveals that we need to improve
interface declarations for Extract modules. We
successfully implemented contract checking and
uncovered a special case not fully explored in [16].

Table 1. Statistics for Obfuscation

Obfuscation XM #Trans impl
ClassInspector 70 0 696
IPackageRegistry 21 0 69
Main 43 0 79
Obfuscator 123 2 166
PackageRegistrator 48 0 21
Helper Classes 2291
Total 305 3324

Main Package
Registrator

Class
Inspector

Hierarchy
Visitor

IPackage
Registrator

MethodCall
Transformer

_impl

_impl

_impl

_impl

Condition
Adder _impl

Table 2. Statistics for Contract Checking
Contract Checker XM #Trans impl

PackageRegistrator 48 0 21
ClassInspector 70 0 696
ConditionAdder 623 4 165
HierarchyVisitor 87 0 92
Main 48 0 89
MethodCallTransformer 66 1 111
Helper Classes 592
Total 942 1766

6. Related Work

There are families of approaches towards
transforming source code. While space does not permit
an exhaustive comparison, we try to provide sufficient
coverage of the related areas.

7.1. Scripts

There is a wealth of research in optimizing
programs (especially parallel ones) by means of
transformations over loops and other computationally
expensive operations. In many cases (i.e., [18]) after
analysis reveals poor performance, the desired
transformations are described by means of a script. In
reality, the complex analysis is simply another process
for performing a search over the input files (using
domain-specific and often run-time information), and
the results of the search instantiates specific instances
of our transform blocks. We believe that Extract is ill
suited for the fine-grained analysis and transformation
of source code for performance-optimization.

7.3. XML as common representation

A common solution to dealing with different input
formats is to agree on a common representation into
which input files can be converted (and de-converted)
without loss of information. In this way code
transformations over the common representation would
be made available to any grammar. Collard and
Maletic propose to use XML as the standard format,
and thereby enable any of the available XML
transformations (i.e., XSLT [2] or XQuery [3]). The
benefit of this approach is that it directly leverages the
numerous tools that are immediately available for
transforming documents. While it is tempting to view
code transformation as strictly an exercise in document
manipulation, software has complex semantic
relationships between its constituent elements that
doesn’t conform to the hierarchical structure of an
XML document. Also, from our perspective, Extract
modules can build state during the transformation

process and one can quickly augment the
transformations with domain-specific helper methods
written in the module implementations; these
capabilities are not available in XSLT. Also, while
XSLTs can be viewed as modules, it is very
challenging to compose them together into more
complex transformations.

7.4. Algebraic Transformation

Researchers have used relational algebras and
relational calculators (such as Grok [11]) to specify
both low- and high-level code transformations [12].
Fahmy et. al construct a graph-based model of a
system where nodes represent subsystems and modules
and edges represent relationships between the nodes
(such as contains, uses). With the help of a series of
relational calculations in Grok script, they perform
transformations to better understand the architecture
and its dependencies. Lin and Holt use Grok to extract
information about software [13]. For example, to
create the call graph for a program, one must: 1) find
each function definition; 2) find each function call; and
3) determine which function definition contains which
function call. Using Grok, this would be encoded as:

nd := $INSTANCE . function_decl
fd := nd o body
n2 := $INSTANCE . call_expr
fc := n2 o fn o op0
call := fd o (contain +) o fc

Here, fd is computed to be the set of the code
bodies of all function declarations. fc is computed to
be the set of all called functions. Starting from those
nodes representing call expressions, traverse the
function (fn) edge to find the node representing the
function, then traverse the op0 edge to locate the
actual function declaration. (Note the similarity in
structure to the example in Fig. 5, which, by the way,
contains the Extract implementation of this call graph
problem). The call graph is then computed as the
relation between a function declaration and a function
call via one or more edges from the contain relation.
Algebraic transformation specifications are concise
and unambiguous and eminently reusable, but their
weakness is the inability to augment the
transformations with meaningful helper methods.

7.5. IDE support

Modern integrated development environments help
support programmers in numerous ways. Most
recently, code editors have begun to provide options to

help programmers make source code modifications “at
a high level” rather than forcing the user to accomplish
all programming by simply text-based modification.

Eclipse has extensive support for refactoring using
an Application Programmer Interface (API) for
semantic preserving workspace transformations [20].
There is no space here to present the details of the
classes that manage the refactoring choices presented
to the user. However, Eclipse has classes for each
refactoring task (in the package
org.eclipse.jdt.internal.corext.refactori
ng.rename, for example). In each case, the
refactoring class responsible for the respective task
(i.e., rename a field, rename a method) contains the
search logic, the transformation logic, and all required
error checks. Such functional encapsulation fails to
adequately reuse code or enable transformations to be
effectively composed together without complex
wizards.

8. Lessons learned and future work

Our experience in developing Extract and the
corresponding cases studies has highlighted some
important lessons. First, there is a need for more
powerful ASTs. In our case studies, the most complex
(and tedious to write) modules were the ones that
initially traversed the Abstract Syntax Tree to build up
semantic information required by future
transformations. Ideally, most Extract users would not
have to design these, since once written for a grammar,
they could be reused as is to enhance productivity.
Second, while our focus has been (and will continue to
remain) code transformation, there are many
opportunities to use the Extract infrastructure for
analysis by mining the source code for relevant
information. Third, as Extract has grown and
expanded, we have witnessed a bootstrapping process,
which further solidifies the contributions of Extract.
Our earliest version relied solely on transformations
enabled by OpenJava [9]. As we re-engineered Extract
to be grammar-independent, we wrote several Extract
modules whose sole purpose was to “transform” code
generated by JTB [15] into the key configuration
classes hinted at in Section 3.1.

Extract version 2.0 is freely available [21], as both a
standalone infrastructure (built using the ant tool and
executable via command-line scripts) and an Eclipse
Project. Work on integrating Extract into Eclipse
continues; our goal is to add a menu item under the
Refactor menu to enable end-users to select pre-
designed Extract modules to transform their code, as
well as to enable users to select Extract modules of

their own to execute. We understand that it is
dangerous to allow users to write arbitrary
transformation scripts that may possible irreparably
damage their code, yet we must investigate the ways
that ordinary programming tasks can be converted into
module-based code transformations.

References

[1] W3C, “XML Path Language (XPath): Version 1.0”,
http://www.w3.org/TR/xpath, Nov. 1999.

[2] W3C, “XSL Transformations (XSLT): Version 1.0”,
http://www.w3.org/TR/xslt, Nov. 1999.

[3] W3C, “XQuery 1.0: An XML Query Language”,
http://www.w3.org/TR/xquery, Jun. 2006.

[4] G. Heineman, “A model for designing adaptable software
components”, Proceedings, 22nd International Conference on
Computer Software and Applications Conference
(COMPSAC), Vienna, Austria, Aug. 1998, pp. 121—127.

[5] L. Osterweil, “Software processes are software too”,
Proceedings, 9th International Conference on Software
Engineering, Mar. 1987, Monterey, California, p.2-13.

[6] GNU Emacs Lisp Reference Manual, Chapter 17:
Advising Emacs Lisp Functions, www.gnu.org/manual/elisp

[7] Paul Calnan, “Extract: Extensible Transformation and
Compiler Technology”, MS Thesis, WPI Computer Science
Department, April 2003.

[8] J. Warmer and A. Kleppe, The Object Constraint
language: Precise Modelling with UML, Object Technology
Series, Addison-Wesley, 1999.

[9] M. Tatsubori, S. Chiba, M. Killijian, K. Itano,
“OpenJava: A Class-Based Macro System for Java”, Lecture
Notes in Computer Science 1826, Reflection and Software
Engineering, Walter Cazzola, Robert J. Stroud, Francesco
Tisato (Eds.), Springer-Verlag, 2000, pp.117-133.

[10] “Java Compiler Compiler (JavaCC) - The Java Parser
Generator”, https://javacc.dev.java.net/

[11] R. Holt. “Structural Manipulations of Software
Architecture Using Tarski Relational Algebra,”, Proceedings
of the 5th Working Conference on Reverse Engineering 1998,
Honolulu, Hawaii, Oct. 1998.

[12] H. Fahmy, R. Holt, J. Cordy, "Wins and Losses of
Algebraic Transformations of Software Architectures", 16th
international Conference on Automated Software
Engineering, San Diego, California, Nov. 2001

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery/
http://www.gnu.org/manual/elisp
https://javacc.dev.java.net/

[13] Y. Lin and R. Holt, “Software Factbase Extraction as
Algebraic Transformations: FEAT”, 1st International
Workshop on Software Evolution Transformations, Nov.
2004, pp. 21–24.

[14] G. T. Heineman, “Integrating Interface Assertion
Checkers into Component Models”, Proceedings, 6th
International Component-Based Software Engineering
(CBSE) Workshop, Electronic proceedings, Portland,
Oregon, May 2003.

[15] Jens Palsberg, Java Tree Builder,
http://compilers.cs.ucla.edu/jtb.

[16] R. Findler, M. Latendresse, and M. Felleisen,
“Behavioral Contracts and Behavioral Subtyping”,
Proceedings, Joint 8th European Software Engineering
Conference and 9th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Vienna,
Austria, Sep. 2001, pp. 229–236.

[17] ProGuard, http://proguard.sourceforge.net

[18] A. Cohen, S. Girbal, D. Parello, M. Sigler, O.
Temam et N. Vasilache, “Facilitating the search for
compositions of program transformations”, ACM
International Conference on Supercomputing (ICS).
Boston, MA, June 2005.

[19] M. Collard and J. Maletic, “Document-Oriented
Source Code Transformation Using XML”, 1st
International Workshop on Software Evolution
Transformations, Nov. 2004, pp. 21–24.

[20] The Eclipse Foundation, http://www.eclipse.org

[21] Extract Project Home Page,
https://sourceforge.wpi.edu/sf/projects/extract

http://compilers.cs.ucla.edu/jtb
http://proguard.sourceforge.net/
http://www.eclipse.org/
https://sourceforge.wpi.edu/sf/projects/extract

	1. Introduction and Motivation
	1.1. Active Interface Design Environment
	1.2. Run-time Interface Checker
	2.4. Requirements
	2.4. Small example

	3. Design Decisions
	3.1. Parse phase
	3.2. Search phase
	3.3. Transform phase

	4 Extract semantic model
	4.1. Module semantics
	4.2. Execution Semantics
	4.3. Compilation Semantics

	5. Case Studies and Evaluation
	5.1. Code Obfuscation
	5.1. Condition Checker

	6. Related Work
	7.1. Scripts
	7.3. XML as common representation
	7.4. Algebraic Transformation
	7.5. IDE support

	8. Lessons learned and future work
	References

