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Abstract 

 
There is increasing interest and a need for code 

transformations to help designers and programmers 
modify source code “at a high level”. However, it is a 
challenge to write effective software transformations 
and make them available for use. We approached this 
problem as software engineers and developed a 
language and supporting infrastructure that helps 
users specify, execute, and reuse transformation 
modules; after all “Software code transformations are 
software too”. We describe our approach, our design 
decisions, and evaluate the resulting Extract 
technology with two case studies. Our results show 
promise in building transformation units that can be 
composed together (according to a well-defined 
semantic model) to form more complex ones.  
 
1. Introduction and Motivation 
 

Many design and coding tasks can be described as 
code transformations, where a user selects a desired 
code modification (the goal), and a sequence of 
transformations is applied to the code base (the 
process). Code transformation consists of four phases: 

 
1. parse the source code file(s) into an internal model 

of the code 
2. search the model for targeted fragments that must 

be modified to satisfy the goal 
3. transform the internal code model as specified by 

the process 
4. output the source code file(s) to be compiled or 

edited within a development environment 
 
In this paper, we describe our Extensible 
Transformation and Compiler Technology (Extract) 
project, an infrastructure that makes novel 
contributions to the search and transform phases while 
using existing technology to parse the source code. 
Two projects provided the direct inspiration to pursue 

the Extract research effort. Each project required a 
specific, narrow code transformation that was provided 
either by ad hoc means (such as scripts and small hard-
coded programs) or by using existing tools that could 
not be easily extended to investigate alternative 
transformations. 

 
1.1. Active Interface Design Environment  
 

Active interfaces are a technology for creating 
black-box adaptable software components [4]. An 
active interface decides whether to take action when a 
method is called; there are two phases to all interface 
requests: the “before-phase” occurs before the 
component performs any steps towards executing the 
request; the “after-phase” occurs when the component 
has completed the request. These phases are similar to 
the Lisp advice facility [6]. 

The initial Active Interface Development 
Environment (AIDE) used a shell script to parse the 
Java source code (using JavaCC [10]) and then 
injected small text fragments into method bodies to 
create the desired functionality. The script, naturally, 
was complex with many special cases [7]. 

 
1.2. Run-time Interface Checker 
  

Run-time enforcement of behavioral contracts has 
been studied extensively in procedural and object-
oriented languages. However, component-based 
software engineering (CBSE) imposes additional 
restrictions for integrating run-time enforcement of 
behavioral contracts into the component model. We 
developed a standardized service that could be added 
to component model implementations to enable 
application assemblers to enforce local properties as 
specified by the components in the application as well 
as global properties as specified by the application 
[14]. Given an interface specification with @pre and 
@post conditions specified for each method, the Run-
time Interface Specification Checker (RISC) compiler 
converts these pre- and post-conditions into executable 



checking units (ECUs). These units use assertions to 
verify the stated conditions. 

RISC supported specifications written using a 
subset of OCL [8]; however the RISC system relied on 
complicated hand-crafted code that parsed the 
specifications and enforced the assertions. 

 
2.4. Requirements 
 

The determination to combine and generalize the 
solutions as posed by AIDE and RISC presented an 
opportunity to clearly define a code transformation 
research agenda. 

 
• Grammar independence – our early efforts were 

limited to Java source code. We recognized the 
need to design transformations in any language 
regardless of the grammar of the source code. This 
challenging task could only be accomplished by 
reusing existing parsing and compiling techniques. 

• Transformation specification – the AIDE 
transformations were hard-coded; the contract 
validation code for RISC quickly became a burden 
for the programmers. We need to separate the 
generic capabilities of searching through code from 
the transformations and domain-specific 
modifications required to change the code.  

• Transformation reuse – Complex transformations 
can be composed from other transformations. All 
the lessons of software reuse apply, namely, 
encapsulation, information hiding, and 
extensibility. To borrow a phrase from Lee 
Osterweil, “Transformations are software too” [5]. 
 
By applying the best practices of software reuse to 

software transformation, we are building an 
infrastructure where transformation modules can be 
designed and used in “black box” fashion. Users of 
these modules do not need to concern themselves with 
the (often complex) logic that supports the 
transformation; rather they can use the module 
according to its specification and even extend it to 
create new meaningful transformations of their own. 
 
  2.4. Small example 
 

We introduce the topic of transformation with a 
small example. As the Java language evolved to JDK 
1.5, the keyword enum was added; naturally, those 
programs written prior to 1.5 may have used enum as a 
variable. One example is the auto-generated code from 
the JTB generator [15], which includes the following 
snippet in all of its generated code: 

 for (Enumeration enum = jj_expentries.elements(); 
     enum.hasMoreElements();) 
{ 

int[] oldentry =(int[])(enum.nextElement()); 
   ... 

}

 
  This Java code will fail to compile with the 1.5 

javac compiler. A small converter program (shown in 
Fig. 1) might be offered as an ad hoc solution to 
rename this variable by updating the source to replace 
certain "enum" strings with "e__m" (unlikely to be 
used in the program). This approach is inadequate 
since a StringBuffer object offers no high-level 
support for code transformation. In addition, such 
temporary (and throw-away) solutions inextricably 
link search and transform operations, thus they can’t 
be composed together easily, nor can they be extended. 
 
// PARSE source file 
File f = new File(args[0]); 
FileInputStream fis = new FileInputStream (f);
byte allIn[] = new byte[(int) f.length()]; 
fis.read(allIn); 
fis.close(); 

   

 
Figure 1. Ad hoc code transformation 

 
This same effect can be achieved using the Extract 

module, and supporting implementation, shown in Fig 
2. The Patcher module processes the Abstract Syntax 
Tree (AST) for the Java Grammar and searches for 
those Variable and VariableDeclarator typed 
nodes and applies a Rename transformation to change 
variable names to "e__m" as needed; these node types 
are derived from productions in the Java grammar. 

 

 
StringBuffer sb = new StringBuffer( 
                     new String(allIn)); 
    
// SEARCH for 'enum' and TRANSFORM to 'e__m' 
int idx; 
while ((idx = sb.indexOf(" enum ")) != -1) { 
  sb.replace(idx+2,idx+4,"__"); 
} 
while ((idx = sb.indexOf(" enum.")) != -1) { 
  sb.replace(idx+2,idx+4,"__"); 
} 

le ((idx = sb.indexOf("(enum.whi ")) != -1) { 
  sb.replace(idx+2,idx+4,"__"); 
} 
   
// OUTPUT transformed file  
FileOutputStream fos=new FileOutputStream (f);
fos.write(sb.toString().getBytes()); 
fos.close();  



 
Figure 2. Sample Extract transformation. 

   
We now present the core design decisions and 

describe the semantic design and execution model for 
Extract. We discuss two case studies in the use of 
Extract and evaluate its performance and how well we 
meet our requirements. We compare other approaches 
in the field and conclude with a discussion on the 
extensibility of Extract and some lessons learned. 

 
3. Design Decisions 
 

The design decisions for Extract can be broken 
down by phase. The most important principle we 
follow is the independence of Extract from the 
underlying grammar of software being transformed. 

 
3.1. Parse phase 
 

We searched for technologies that would enable us 
to both parse and modify code. OpenJava is a Meta 
Object framework that lets one easily create and 
manipulate representations of java code as Abstract 
Syntax Tree (ASTs) [9]. For example, the code snippet 
in Fig. 3 creates the canonical Java "HelloWorld" 
program. Our early success in Extract is due to 

OpenJava, since it helped parse, construct, and 
manipulate ASTs representing Java classes. 

module Patcher { 
 // Execution Block (encodes SEARCH) 
 Patcher () { 
  FOREACH VariableDeclarator vd =  
    "//VariableDeclarator[@Variable='enum']" { 
   ApplyTransform (Rename("e__m"), vd); 
  } { /** if no VariableDeclarators. **/ } 
  
 FOREACH Variable v = "//Variable" { 
   if (v.toString().equals ("enum")) { 
     ApplyTransform (Rename("e__m"), v); 
   } 
  } { /** if no Variables. **/ } 
 } 
 
 // TRANSFORM Block 
 transform Rename (String name) { 
  (Variable v) {impl.rename(v, name);} 
  (VariableDeclarator vd){vd.setVariable(name);} 
 } 
} 

However, we did not want Extract to be directly 
coupled with OpenJava. Also, constructing a Meta 
Object protocols (MOP) for a grammar is expensive, 
and one might not always exist for a desired grammar. 
To configure Extract to use arbitrary grammars, we 
turned to JavaCC the Java Compiler Compiler [10], an 
extraordinarily useful tool that generates a lexical 
analyzer and parser given a grammar.jj description 
of a grammar. A companion tool JTB (the Java Tree 
Builder) takes the grammar.jj file and generates 
AST classes and supporting traversal classes [15]. The 
grammar is fully integrated into Extract once key 
specialized classes are written. 

 
MethodCall mc = new MethodCall(   
   "System.out.println", 
   new ExpressionList( 
     Literal.makeLiteral ("Hello World"))); 
MethodDeclaration md = new MethodDeclaration( 
   new ModifierList (ModifierList.PUBLIC |  
                     ModifierList.STATIC), 
   new TypeName("void"), "main",  
   new ParameterList (new Parameter( 
     new TypeName ("String", 1), "args")), 
   null, new StatementList (  
      new ExpressionStatement(mc))); 
ClassDeclaration cd = new ClassDeclaration( 
   new ModifierList(ModifierList.PUBLIC), 
   "HelloWorld", null, null,  
  new MemberDeclarationList(md));

public class Patcher_impl implements ModuleImpl { 
 void rename (Variable v, String name) 
   throws ModuleException { 
  try { 
    v.replace ((ParseTree) 
      ExtractAPI.createElement(name,"Variable")); 
} catch (ParseTreeException e) { 
  throw new ModuleException (e); 
} 

 } 
} 

 
Figure 3. Construct HelloWorld Java class 

 

           
Figure 4. Internal representation 

 
The Extract run-time parses and loads input files as 

a set of ASTs stored by a container. The AST structure 
is shown in Fig. 4. Extract cares only that the ASTs are 
associated with the relevant Grammar interface. For 
grammars provided as JavaCC .jj files, one can 
readily construct the appropriate Grammar subclasses.  

 
3.2. Search phase 
 

We decouple the search for nodes in the AST from 
the transformations that affect them. We designed the 
JPath language (inspired by XPath [1]) to traverse an 

AST

#grammar: Grammar

+getRoot(): Object
+select(String jpathExpr): Selection
+select(NodeSet nodes, JPath jpath): Selection

Grammar

+getRoot(): Object
+createPathEvaluator(): PathEvaluator

JavaCCGrammar

#root: javacc_input

+createPathEvaluator()

OpenJavaGrammar

#root: CompilationUnit

+createPathEvaluator()



AST to locate desired nodes within it. For example, 
given an AST representing a Java file, the query 
"//ClassDeclaration[@Modifiers contains 

'public']" returns node(s) of type ClassDeclaration 
representing the public class within the file (if it 
exists). The identifier ClassDeclaration is interpreted 
as the type of a node in the AST.  JPath has no 
preconceived types and operates via reflection over the 
specified input grammar of the source being 
transformed. 

A well-formed JPath query has the form 
“Step1/Step2/…/Stepn” and is evaluated (step-by-step) 
over an AST given a set of anchor nodes (most 
frequently just the root node). Each step is typed to 
locate suitable child node(s) of the anchor node(s) that 
belong to the desired type; the resulting nodes found 
become the anchor nodes for the next step. Wildcards 
can be included in the first n-1 steps, such as * (select 
all children) and // (select all descendants), but the nth 
step must be fully typed. Each step may have an 
additional filter (in [] brackets) based upon the 
attributes of the selected node(s). 

A JPath query either evaluates to a Selection 
representing the empty set ∅ or a set of typed nodes as 
determined by the nth step. The following example 
shows how one can extract the raw call graph from a 
set of nested JPath expressions over an AST object,  
src, representing a Java source file. 

 
Figure 5. Nested JPath expressions 

 
While JPath provides the raw capability of 

searching for desired nodes of interest within an AST, 
we need additional support to effectively declare and 
implement transformations. Towards this end, each 
Extract module may have a single execution block that 
contains embedded JPath queries. Much like the 
enhanced for loop for JDK 1.5, we designed a 
construct that hides the JPath details found in Fig. 5; 

queries can be nested, in which case the optional 
[(node)] entity serves as the anchor for the query. 

 
FOREACH [(node)] Type t = "JPathQuery" { 
  // code executed once for each node 
} { 

// code executed if none found 
} 

 
The ExtractC compiler compiles these code fragments 
into Java code similar to Fig. 5.  

The prime motivation behind Extract was to make it 
possible to specify transformations separate from the 
search queries. In the example from Fig. 2, the top 
block contains the Patcher Extract module which 
consists of an execution block with two queries and a 
transform block with two cases. As we shall see in 
Section 4, this separation makes it possible to extend 
modules and create new modules easily. 

 
3.3. Transform phase 

 
The transform block contains a series of named 

transformations, each with its own parameter list. 
Related transformations are grouped together 
according to the following syntax: 

 
transform <name>(<args>) { 
  (<case 1>) { /** logic. **/ } 

(<case 2>) { /** logic. **/ } 
   … 

Selection s, s1, s2; 
s = src.select("//ClassDeclaration"); 
Iterator i = s.iterator(); 
while (i.hasNext()) { 
 ClassDeclaration d = (ClassDeclaration) i.next(); 
 s1 = src.select(d, "//MethodDeclaration"); 
 Iterator i2 = s1.iterator(); 
 while (i2.hasNext()) { 
  MethodDeclaration m=(MethodDeclaration) i2.next();
  s2 = src.select(m, "//MethodCall"); 
  Iterator i3 = s2.iterator(); 
  while (i3.hasNext()) { 
   MethodCall c = (MethodCall) i3.next(); 
   // report call graph on (d, m, c) 
  } 
 } 
} 

} 

 
To ensure that transform logic is simple, the code of 

the logic block cannot include methods that throw 
Exceptions. In this way, the Extract module code 
should be abstract enough to understand without 
complications. Naturally, there must be some way to 
include more complex code, and that specialized –
often domain-specific – code, is coded in the 
Implementation class associated with the Module. 
These implementation methods become abstract 
concepts that can be used without exposing their 
complex logic. Each module instance is instantiated 
with a reference to its corresponding implementation 
object impl, which is available within the execution or 
transform blocks. 

As an example, the transformation shown in Fig. 6 
adds the interface pkg.iname to the implements 
clause of a class declaration. Having described all 
essential elements of Extract modules, we present the 
semantic model that explains how Extract modules are 
designed and executed. 

 
 
 



transform AddInterface(ClassDeclaration c) { 
(String pkg, String iname) { 

 TypeName[] old=c.getInterfaces(); 
 TypeName[] mod=new TypeName[old.length+1]; 
 System.arraycopy(old,0,mod,0,old.length); 
 mod[old.length] = (TypeName) 
   ExtractAPI.createElement (pkg+"."+iname, 
                             "TypeName"); 
 c.setInterfaces (mod); 
 } 
} 

Figure 6. Sample Transform 
 

4 Extract semantic model 
 

An Extract module represents an encapsulated unit 
of transformation. It contains an execution block, E, 
that processes a single AST and potentially transforms 
that AST using a set of defined transformations, T; 
these transformations ti(args) are the fundamental 
granularity of source code transformation in Extract. 
Complex helper computations are coded in an 
implementation class, I, associated with each Extract 
module. After the completion of the execution block, a 
set of defined properties, P, is available for get/set 
access to support the communication between 
modules. Thus, an Extract module M is defined by the 
tuple (P, E, T, I); each of these elements is optional. 

In short, the execution block of an Extract module 
contains embedded JPath queries over the AST to 
locate specific nodes that are transformed by the 
defined transformations whose logic is enhanced (or 
customized) by implementation classes; state computed 
by the module is retrieved via its properties.  

An Extract main module provides an entry point for 
complex transformations, and acts like the main 
function in a C program. It receives as input the 
Extract container which contains the set of pre-parsed 
and loaded AST objects. A main module may 
instantiate and invoke other Extract modules on the 
AST trees. Once the main module completes, all ASTs 
managed by the container are written to disk. 

With the Extract capabilities described so far, users 
would be able to define and use transformation 
modules; they could be easily assembled together to 
form more complex ones. However, the true power of 
Extract becomes realized when designers use single 
inheritance to create new modules from existing ones. 

 
4.1. Module semantics 
 

Module writers can use inheritance to create new 
Extract modules by extending an Extract module. A 
module Mspec can extend module Mgen to inherit (and 
possibly override) the core module elements of Mgen, in 
the same manner as a subclass extends an object-

oriented class.  Each of the core module elements is 
optional, resulting in different types of modules. The 
implementation I contains a set of Java helper methods 
to aid transformations.  

There are three independent ways that a specialized 
module can extend a module; (1) Override the existing 
implementation class to change the underlying way in 
which the module carries out the transformation 
specified in Mgen; (2) Override the defined 
transformations to change the fundamental building 
blocks of transformations; (3) Override (or provide) 
the execution Block to select different nodes to be 
transformed.  

When module Mspec = (Pspec, Espec, Tspec, Ispec) 
extends module Mgen = (Pgen, Egen, Tgen, Igen), the 
semantic structure of Mspec follows the standard 
approach as found in Java inheritance, resulting in 
Mspec = (Pgen ∪ Pspec, Espec • Egen, Tspec • Tgen, Ispec • Igen), 
where properties are unioned together and the • 
operator represents the replacement of the core 
element(s) in the generic module Mgen with those in 
Mspec that override them. The semantic model is 
enforced by the way ExtractC compiles the Extract 
Modules into Java code (as described in Section 4.3). 

Finally, an interface module (P, ∅, ∅, ∅) declares 
an interface by defining a set of properties P, each 
accessible via get/set method calls. Because modules 
are independent from each other, their only 
communication should be through properties. To 
enable this communication, Extract modules can 
import any number of interface modules (this construct 
is analogous to interfaces in Java). 

 
4.2. Execution Semantics 

 
The Extract run-time provides a command-line 

interface to execute Extract Modules. To execute a 
module, the run-time needs to be told (1) the set of 
input source files to be transformed (these could be 
found on disk, or in a JAR or ZIP archive file); (2) the 
grammar to use while parsing the input files; (3) an 
output directory; and (4) the name of the Extract 
module to invoke. The run-time parses all appropriate 
source files into ASTs using the specified grammar, 
and instantiates an object representing the specified 
module. If the module is a main Module, then it 
receives the Extract container as input, otherwise the 
module is iteratively fed each AST one at a time. Once 
execution completes, all ASTs in the container are 
written to the selected output directory. 

The execution of two modules can be composed 
together in sequential independence within a Main 
module as follows: 



 
module Main { 
  main (String[] p, SourceContainer c) { 
    INVOKE ModuleP p() FOREACH c; 
    INVOKE ModuleQ q() FOREACH c; 
  } 
} 

 
In the above example, Module p is invoked on each 
AST, one at a time until all ASTs in the container have 
been processed. Then Module q is similarly invoked 
on each AST. Another alternative, which we call 
sequential dependence occurs when, for each AST in 
the container, the second modules is executed 
immediately after the first one: 
 
module Main { 
main (String[] p, SourceContainer c) { 
  for (Iterator it = c.iterator();  
       it.hasNext(); ) { 
    AST src = (AST) it.next(); 
  INVOKE ModuleP p() ON src; 
   INVOKE ModuleQ q() ON src; 
     } 
} 

 
4.3. Compilation Semantics 
 

The ExtractC compiler converts an Extract module 
source file Module.xm into a set of three 100% pure 
Java files:  

 
• Module_impl.java – this implementation 

class is generated only once. Thereafter, the 
module writer can implement special 
functionality in this class as needed for 
complex transformations  

• Module_props.java – this interface 
declares the set of properties supported by the 
module 

• Module.java – this class contains the 
execution block that defines the logic of the 
transformations defined by the module. 
Transformations defined by the Extract 
module appear as inner static classes for use 
by the Execution Block. 

 
To execute a module, one need only instantiate an 

object of the generated Module class and invoke its 
execute (AST) method. The ExtractC compiler 
converts transform declarations into static classes 
within the enclosing Extract Module class. When Mspec 
extends Mgen, the implementation class Mspec_impl 
extends Mgen_impl. Similarly, the inner static transform 
classes abide by the same extension, to enable 
substitutability. 
 

5. Case Studies and Evaluation 
 

We evaluated Extract with two considerable case 
studies. We describe each and then evaluate their 
strengths and weaknesses. 

 
5.1. Code Obfuscation 
 

Given a set of Java source files, we would like to 
obfuscate all method names to make it impossible to 
understand the original code. The resulting 
transformed code must compile and execute the same 
as the original. To solve this problem over a set of 
ASTs, we must analyze the global set of package 
definitions to determine the scope of the original 
source. Method declarations within this scope cannot 
be obfuscated if they (a) are the implementation of an 
interface external to the scope; or (b) override a 
method whose definition is external to the scope.  

We designed three Extract modules to execute in 
the following order: 

• PackageRegistrator – identifies the 
scope of the source ASTs by recording 
their package names 

• ClassInspector – builds up symbol 
table information for all source code 
blocks so that every method call is 
properly typed; also identifies whether 
method declarations meet the obfuscation 
criteria above 

• Obfuscation – Performs the requisite 
modifications to both method declarations 
as well as method invocations 

 
 

packages

 
Figure 7. Obfuscation Logic 

 
Fig. 7 contains a representation of the overall 

control structure. The complex details regarding 
symbol tables are safely encapsulated and hidden in 
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_impl
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implementation files. The communication between the 
PackageRegistrator and ClassInspector is 
governed by means of properties – the ideal means of 
interaction. In short, ClassInspector demands only 
that someone provide it the set of packages. However, 
note that Obfuscator makes a direct method call to 
the implementation of another module. This interaction 
is clearly not desirable because it tightly couples these 
two Extract modules. The communication is simply to 
static methods (i.e., 
ClassInspector_impl.isInScopeClassMethod( 
className, name). We are currently working on 
extending the ability of modules to export interfaces 
more complex than simple get/set; this should resolve 
the tight coupling evident here. 

Given a small GUI editor of 9,748 lines of Java 
code in 75 files, we ran the obfuscation process five 
times on an Dell Computer with an Intel Pentium 4 
CPU of 2.8 Ghz and 504 MB of RAM. We eliminated 
the slowest and fastest execution times and the average 
running time for the remaining three runs are 34.3 
seconds to parse the input, and 6.0 seconds to complete 
the obfuscation process. In total, 575 method 
declarations were inspected and 449 of them (78.0%) 
were obfuscated. A method declaration was obfuscated 
if it was determined to be “in the scope” of the set of 
input files. For example, the method 
actionPerformed (ActionEvent ae) in a class 
that implements ActionListener is considered “out 
of scope” because the method is defined in a package 
not provided in the input. Of the 3,253 method 
invocations, 798 of them (24.5%) were altered. This 
case study was an excellent “stress test” for Extract. 

We also ran a side-by-side comparison with the 
publicly available ProGuard system, which shrinks, 
optimizes, and obfuscates source code [17]. On their 
“JDepend” test, which required 8 seconds to obfuscate 
a project with 22 files and 57K bytes of code, our 
Extract tool performed the same task in 13.3 seconds 
on comparable hardware (obfuscating 259/313 method 
declarations and 602/2203 method invocations). 

 
5.1. Condition Checker 
 

Our second case study provides a solution to the 
problem of checking the @pre and @post conditions 
associated with method declarations in an interface. 
The essential problem we solve was posed by Findler 
et. al, namely, how to assign blame when the pre- or 
post-condition for a method has been violated [16]. In 
their paper, the authors state “An implementation of 
our contract checker is in progress…. We plan to 
release a prototype by the end of 2001.” When no such 
prototype became available, we developed our own 

case study to implement the extensive analysis 
described in their paper. 

As we focused on the problem, we realized that the 
first two steps from the Obfuscation example could be 
used as is. Thereafter, we needed to perform three 
additional steps: 

• HierarchyVisitor – captures all 
‘extends’ and ‘implements’ relationships 
between all classes and interfaces within 
the input ASTs 

• MethodCallTransformer – the solution 
proposed by Findler [16] is to add 
customized contract-checking methods 
within the interfaces and the code invoking 
the original methods. Thus some original 
method invocations have to be changed 

• ConditionAdder – to produce the 
required set of contract checkers, we need 
to add several new method declarations 
(complete with the logic to validate the 
conditions) and several new classes 

 
package

 
 

Figure 8. Contract Checking Logic 
 
As with the obfuscation example, the excessive 
interaction with the implementation for 
ClassInspector reveals that we need to improve 
interface declarations for Extract modules. We 
successfully implemented contract checking and 
uncovered a special case not fully explored in [16]. 

 
Table 1. Statistics for Obfuscation 

Obfuscation XM #Trans impl 
ClassInspector 70 0 696 
IPackageRegistry 21 0 69 
Main 43 0 79 
Obfuscator 123 2 166 
PackageRegistrator 48 0 21 
Helper Classes   2291 
Total 305  3324 
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Table 2. Statistics for Contract Checking 
Contract Checker XM #Trans impl 

PackageRegistrator 48 0 21 
ClassInspector 70 0 696 
ConditionAdder 623 4 165 
HierarchyVisitor 87 0 92 
Main 48 0 89 
MethodCallTransformer 66 1 111 
Helper Classes   592 
Total 942  1766 

 
6. Related Work 
 

There are families of approaches towards 
transforming source code. While space does not permit 
an exhaustive comparison, we try to provide sufficient 
coverage of the related areas. 

 
7.1. Scripts 
 

There is a wealth of research in optimizing 
programs (especially parallel ones) by means of 
transformations over loops and other computationally 
expensive operations. In many cases (i.e., [18]) after 
analysis reveals poor performance, the desired 
transformations are described by means of a script. In 
reality, the complex analysis is simply another process 
for performing a search over the input files (using 
domain-specific and often run-time information), and 
the results of the search instantiates specific instances 
of our transform blocks. We believe that Extract is ill 
suited for the fine-grained analysis and transformation 
of source code for performance-optimization. 
 
7.3. XML as common representation 
 

A common solution to dealing with different input 
formats is to agree on a common representation into 
which input files can be converted (and de-converted) 
without loss of information. In this way code 
transformations over the common representation would 
be made available to any grammar. Collard and 
Maletic propose to use XML as the standard format, 
and thereby enable any of the available XML 
transformations (i.e., XSLT [2] or XQuery [3]). The 
benefit of this approach is that it directly leverages the 
numerous tools that are immediately available for 
transforming documents. While it is tempting to view 
code transformation as strictly an exercise in document 
manipulation, software has complex semantic 
relationships between its constituent elements that 
doesn’t conform to the hierarchical structure of an 
XML document. Also, from our perspective, Extract 
modules can build state during the transformation 

process and one can quickly augment the 
transformations with domain-specific helper methods 
written in the module implementations; these 
capabilities are not available in XSLT. Also, while 
XSLTs can be viewed as modules, it is very 
challenging to compose them together into more 
complex transformations. 
 
7.4. Algebraic Transformation 
 

Researchers have used relational algebras and 
relational calculators (such as Grok [11]) to specify 
both low- and high-level code transformations [12]. 
Fahmy et. al construct a graph-based model of a 
system where nodes represent subsystems and modules 
and edges represent relationships between the nodes 
(such as contains, uses). With the help of a series of 
relational calculations in Grok script, they perform 
transformations to better understand the architecture 
and its dependencies. Lin and Holt use Grok to extract 
information about software [13]. For example, to 
create the call graph for a program, one must: 1) find 
each function definition; 2) find each function call; and 
3) determine which function definition contains which 
function call. Using Grok, this would be encoded as: 
 
nd := $INSTANCE . function_decl 
fd := nd o body 
n2 := $INSTANCE . call_expr 
fc := n2 o fn o op0 
call := fd o (contain +) o fc 
 

Here, fd is computed to be the set of the code 
bodies of all function declarations. fc is computed to 
be the set of all called functions. Starting from those 
nodes representing call expressions, traverse the 
function (fn) edge to find the node representing the 
function, then traverse the op0 edge to locate the 
actual function declaration. (Note the similarity in 
structure to the example in Fig. 5, which, by the way, 
contains the Extract implementation of this call graph 
problem). The call graph is then computed as the 
relation between a function declaration and a function 
call via one or more edges from the contain relation. 
Algebraic transformation specifications are concise 
and unambiguous and eminently reusable, but their 
weakness is the inability to augment the 
transformations with meaningful helper methods. 
 
7.5. IDE support 
 

Modern integrated development environments help 
support programmers in numerous ways. Most 
recently, code editors have begun to provide options to 



help programmers make source code modifications “at 
a high level” rather than forcing the user to accomplish 
all programming by simply text-based modification. 

Eclipse has extensive support for refactoring using 
an Application Programmer Interface (API) for 
semantic preserving workspace transformations [20]. 
There is no space here to present the details of the 
classes that manage the refactoring choices presented 
to the user. However, Eclipse has classes for each 
refactoring task (in the package 
org.eclipse.jdt.internal.corext.refactori
ng.rename, for example). In each case, the 
refactoring class responsible for the respective task 
(i.e., rename a field, rename a method) contains the 
search logic, the transformation logic, and all required 
error checks. Such functional encapsulation fails to 
adequately reuse code or enable transformations to be 
effectively composed together without complex 
wizards.  
 
8. Lessons learned and future work 
 

Our experience in developing Extract and the 
corresponding cases studies has highlighted some 
important lessons. First, there is a need for more 
powerful ASTs. In our case studies, the most complex 
(and tedious to write) modules were the ones that 
initially traversed the Abstract Syntax Tree to build up 
semantic information required by future 
transformations. Ideally, most Extract users would not 
have to design these, since once written for a grammar, 
they could be reused as is to enhance productivity. 
Second, while our focus has been (and will continue to 
remain) code transformation, there are many 
opportunities to use the Extract infrastructure for 
analysis by mining the source code for relevant 
information. Third, as Extract has grown and 
expanded, we have witnessed a bootstrapping process, 
which further solidifies the contributions of Extract. 
Our earliest version relied solely on transformations 
enabled by OpenJava [9]. As we re-engineered Extract 
to be grammar-independent, we wrote several Extract 
modules whose sole purpose was to “transform” code 
generated by JTB [15] into the key configuration 
classes hinted at in Section 3.1. 

Extract version 2.0 is freely available [21], as both a 
standalone infrastructure (built using the ant tool and 
executable via command-line scripts) and an Eclipse 
Project. Work on integrating Extract into Eclipse 
continues; our goal is to add a menu item under the 
Refactor menu to enable end-users to select pre-
designed Extract modules to transform their code, as 
well as to enable users to select Extract modules of 

their own to execute. We understand that it is 
dangerous to allow users to write arbitrary 
transformation scripts that may possible irreparably 
damage their code, yet we must investigate the ways 
that ordinary programming tasks can be converted into 
module-based code transformations. 
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