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ABSTRACT 
There is a constant need for practical, efficient and cost-effective 
software evolution techniques. We propose a novel evolution 
methodology that integrates the concepts of features, regression 
tests, and component-based software engineering (CBSE). 
Regression test cases are untapped resources, full of information 
about system features. By exercising each feature with their 
associated test cases using code profilers and similar tools, code 
can be located and refactored to create components. These 
components are then inserted back into the legacy system, 
ensuring a working system structure. This methodology is divided 
into three parts. Part one identifies the source code associated 
with features that need evolution. Part two deals with creating 
components and part three measures results. By applying this 
methodology, AFS has successfully restructured its enterprise 
legacy system and reduced the costs of future maintenance. 
Additionally, the components that were refactored from the legacy 
system are currently being used within a web-enabled application. 

1. INTRODUCTION 
Increasingly, organizations view their software assets as 
investments that grow in value rather than liabilities whose value 
depreciates over time [30]. At the same time, organizations are 
under tremendous pressure to evolve their existing systems to 
better respond to marketplace needs and rapidly changing 
technologies. This constant pressure to evolve is driven by 
escalating expectations of the customer for new enterprise 
standards, new products and system features, and improved 
performance. Evolution is also necessary to cope with endless 
new software releases and manage hardware and software 
obsolescence. 

To effectively evolve legacy systems in this fast-paced 
environment, organizations must answer two questions [25]: What 
are the critical success factors of system evolution? How do we 
evolve the system without adversely affecting operations? 
American Financial Systems (AFS) developed their strategy by 
pursuing the following two goals: (G1) Identify system features 
that have already exhibited disproportionate maintenance costs 
and are likely to change; (G2) Extract fine-grained components 

from these features within the legacy system to share between the 
original desktop platform and a planned web application.  

Our results show an innovative use of existing regression test 
suites and give extra incentives for designing such test suites. In 
addition to verifying the integrity of the system, regression test 
suites can be used to guide refactoring efforts during software 
evolution to create reusable software assets within the enterprise. 

2. EVOLUTION MODEL 
The repeated modification of a legacy system has a cumulative 
effect that increases system complexity. Eventually, existing 
information systems become too fragile to modify and too 
important to discard; organizations must consider modernizing 
these legacy systems so that they remain viable. Reengineering 
offers an approach to transforming a legacy system into one that 
can evolve in a disciplined manner. To be successful, 
reengineering requires insights from software, managerial, and 
economic perspectives [26][27].  

Many software maintenance initiatives do not sufficiently 
incorporate the user’s point of reference [4]; such lack of 
consideration can leave users unsatisfied and frustrated because 
users may not see the benefit of these initiatives. Researchers 
[28][22][11][5] have identified the two domains around which the 
entire field of software engineering revolves: the problem domain 
and the solution domain. End-users interact with the system by 
inputting their requirements in the form of input files (or the 
database) that the system uses. Because these users are directly 
concerned with system functionality, their perspective is always in 
the problem domain. Composed from input files, regression test 
cases are used to check the stability from one version of the 
system to another. In reviewing test cases, developers are 
primarily concerned with creating and maintaining software 
development life cycle artifacts such as components; their 
perspective is therefore firmly rooted in the solution domain. A 
major source of difficulty in developing, delivering, and evolving 
successful software is the complexity gap that exists between the 
problem and the solution domains (as termed by Raccoon [22]). 
To view evolution from a single domain upsets the delicate 
balance between the two domains.  

Evolution focused solely on the problem domain may lead to 
changes that degrade the structure of the original code; similarly, 
evolution based solely on technical merits could create changes 
unacceptable to end-users. External evolutionary pressures drive 
the implementation of new enhancements and functionality by 
causing developers to focus on implementing the business logic 
that is directly visible to end users, such as a menu item that spell 
checks the document in a word processing application. While 
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responding to external pressures, developers often bypass 
standard processes to meet project deadlines; this results in 
inferior coding, such as adding a global variable when one is not 
required. The internal evolutionary pressures force the developers 
to either restructure or refactor their code so the future 
enhancement or maintenance becomes manageable and cost-
effective. During such evolution, the code is refactored, and 
protocols and standards are reestablished. The end-user may or 
may not see the changes made to the system but the goal of such 
refactoring is to reduce future maintenance costs. Our research 
provides a methodology for handling both external and internal 
evolutionary pressures. 

Researchers have long identified features as a natural organization 
of the problem domain [5][6]. Surprisingly, few approaches in the 
research literature concentrate on feature-based organization of a 
system’s functionality. In contrast, the solution domain is full of 
research that incorporates software artifact management activities 
such as design, component construction, and testing. Regression 
test suites are an untapped resource for software evolution 
because they tell a legacy system’s story in a way that can be used 
to identify features of interest to end-users. We show how to 
identify the code associated with features, extract that code, and 
create fine-grained components. These components are inserted 
back into the legacy system to validate results in two ways. First, 
we match the output of the regression tests after the insertion with 
original output. Second, we measure the cost of adding a new 
feature and compare that to the prior costs. The outline of our 
methodology as shown in Figure 1 is: 

• Step 1: Select test cases by considering features.  
• Step 2: Execute selected test cases using code profilers to 

locate source code that implements features. Analyze and 
refactor source code to create components. 

• Step 3: Compare pre- and post-evolution maintenance costs. 

Our methodology has three basic assumptions. First, we assume 
that the legacy system to be evolved is written using a modern 
programming language such as Visual Basic, C++, Java, or 
COBOL; this allows us to employ existing code-profiling tools to 
trace the source code implementing a specific feature. Second, we 
assume that the legacy system has regression test suites. Third, we 
assume domain knowledge and expertise are available, although 
this is not a binding constraint as discussed in Section 6. 

3. FEATURE MODEL 
End-users often view a system in terms of its provided features. 
They exercise the system features through user input (stored in 
files or databases) that is often used for system maintenance as 
part of regression testing. Intuitively, a feature is an identifiable 
unit of system functionality from the user’s perspective. Examples 
of features include the ability of a word processor to spell check 
or ability of an accounting system to generate a balance sheet 
statement for a given fiscal year. Software developers are expected 
to translate such feature-oriented requests into system design. 
Feature Engineering addresses the understanding of features in 
software systems and defines mechanisms for carrying a feature 
from the problem domain into the solution domain [29]. We 
developed the following definition by integrating and extending 
existing definitions [22][29]: 

A feature is a group of individual requirements that describes a 
unit of functionality with respect to a specific point of view 
relative to a software development life cycle. 

This definition is rooted in the problem domain but shows how a 
feature can be used in software evolution. For example, a system 
might support a feature that performs complex calculations in 
batch mode without user interaction. To an end-user this feature is 
a time saver because input can be stored in a file or a database to 
be used at a later time. At the same time, testers might employ this 
feature to enable regression testing between two versions of the 
system; developers might design a specific set of modules to 
process user input without user interaction to analyze code 
coverage. A code-profiling tool executing regression test cases 
exercising that feature can locate the feature implementation, and 
evolution of that feature can commence. 

Table 1: Feature/Functions Relationship 

Feature Functions Critical Evolution Viewpoint 

1 Many Solution domain 

Many 1 Problem domain 

1 1 None exists 

Many Many N/A – Must be decomposed 

3.1 Features and Functions 
End-users comprehend a system through its features but are 
unaware of the specific way in which these features are 
implemented. Software developers view the same system in terms 
of data types, local and global control, reusable functions, and 
units of testing and maintenance. Table 1 outlines how a feature 
might be implemented within function(s). In this paper we are 
concerned only with the first two relationships. When a single 
feature implementation is contained within many functions then 
the critical viewpoint regarding evolution is the solution domain 
because the feature “cross-cuts” the software [9]. Such code is 
often highly coupled and deeply embedded within the legacy 
system. When many related features are implemented by a single 
function then understanding the problem domain is critical for 
successful evolution. When a feature is implemented by a single 
function, evolution can be straightforward; a many-to-many 
relationship must be decomposed further for evolution.  

Many researchers have studied regression testing from a 
theoretical point of view [3][14][19][23][24]. A testing 
organization accumulates regression test cases for a legacy system 

Figure 1: Evolution Methodology. 
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to ensure the stability of the system over multiple evolutions. 
Often companies develop proprietary regression testing tools to 
automate these tests or reduce the total number of tests to execute. 
We propose a novel use of dynamic slicing [13] during regression 
testing to identify where a feature is implemented in the legacy 
system and to incrementally refactor the code base to create fine-
grained components that can be individually evolved and reused. 

3.2 Feature/Function Interaction 
In Figure 2 functions are represented as rectangles, variables (both 
local and global) as circles, and features as pentagons. A feature 
implementation (FI) is the set of statements within all functions 
that execute when that feature is exercised. FIs are shaded using 
the same pattern as their corresponding feature. When two or 
more feature implementations share common data or functions, 
there are four key interactions. 

SS - Shared Stateless Function: A stateless function [7] can be 
shared between two FIs. For example, all statements in function f3 
are executed when both FE1 and FE2 are exercised and f3 does not 
access any local or global data. 

SSF - Shared State-Full Function: A state-full function [7] can 
be shared between two features. Refactoring may be complex, 
involving analyzing global variable access and control structures. 
Function f2 accesses global variable g1 and since f2 is part of FI1 
and FI2 there is an implicit interaction. 

DD – Dependent Data: An FI may be dependent on the data 
accessed by another FI. For example, f1 and f2 access the local 
variable v1 leading to an interaction between FE1 and FE2. 

DF – Dependent Function: An FI may be dependent on a 
function that is part of another FI. Function f2 calls function f1 
(shown by the arrow in Figure 2) when FE1 is exercised but not 
when FE2 is exercised (note the consistent shading). The 
remaining statements in f1 (shaded white) are associated with 
another feature not shown and FE1 interacts with that feature. 

When a feature is fully contained in a single function, the 
implementation could be equally complex. Such a function may 
be stateless or it could depend on global data (as is the case with 
f4 in Figure 2). As each feature is exercised, code-profiling (or 
similar) tools identify the code slices associated with each feature, 
providing the details necessary to identify interactions between 
features. Code can then be refactored during evolution. 

4. FINE-GRAINED COMPONENT MODEL 
An FI is often scattered across many system functions and may 
access local or global data. FIs can be identified and encapsulated 
into fine-grained components using the component model shown 
in Figure 3. Once we identify FI using regression tests cases, code 
profilers, and similar tools such as χSuds [1] and NuMega’s 
TrueCoverage™[34], we refactor FI into a fine-grained 
component. As defined in [21]: 

A component is a software element that conforms to a component 
model and can be independently deployed and composed without 
modification according to a composition standard. A component 
model defines specific interaction and composition standards. 

In the fine-grained components developed in this paper, the 
interaction between components is clearly specified by the 
interfaces provided by each feature interface. Components can 
also access functionality using stateless interfaces. The FI is 
shielded from specific variable implementations (shaded box) by 
using the interface for external access; over time, the variable 
implementation will be replaced with explicit linkages to external 
interfaces.  

The first step is to isolate each function that contains code 
belonging to the target FI. The analysis is often complex because 
local variables, global variables, and dependent functions can be 
shared between FIs. Our component model attempts to “share” the 
functions as well as the data that is scattered across various 
functions through explicit interfaces. 

The left part of Figure 4 shows a single function fx whose code is 
shared between implementations FI1 and FI2. This simple example 
highlights all characteristics of our model. Common code and 
variables include: calls to SS f1, global variable g1, and local 
variables v3 and v4. Extracting FI2 into comp2 involves several 
artifacts. Function f1 can easily be extracted because it is stateless. 
Double arrowheads on the arrow to g1 show that it is both read 
and updated by FI2. Local variables v3 and v4 are used by both FIs 
but FI2 only reads v4 (as shown by arrowhead), while v3 is both 
updated and read by FI2; it is clear that v4 is set by FE1. FI2 also 
accesses global variable g2, SS function f2, and SSF f3. 

Comp2 in Figure 4 encapsulates FI2 and has several public 
interfaces, represented by circles attached by lines to Comp2 to 
enable original code to access the moved artifacts. Comp2 
maintains data previously local to fx, replaces global variable 
references with an interface for accessing data, and contains 

Figure 3: Fine-Grained Component Model. 
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stateless and state-full functions. Public interface I2 is the primary 
interface for Comp2. Stateless functions f1 and f2 are also 
encapsulated into Comp2 and they can be accessed via the public 
interfaces IF1 and IF2. Local and global variables used by FI2 can 
be accessed via GetValue/SetValue methods. Additionally, 
the get method provides a way to share local and global 
variables with other feature implementations. As related features 
are evolved, the interaction between fine-grained components will 
become increasingly specified and all implicit communication will 
vanish. Thus, we separate accessing variables from their 
implementation. When multiple features are extracted at the same 
time, many stateless functions will be common to several feature 
implementations; these will be encapsulated within a core 
component, rather than a fine-grained component, and will be 
treated as a shared library (as shown in Figure 12). 

5. CASE STUDY 
We applied the three-step methodology outlined in Section 2 to 
the Master System (AMS), a product of American Financial 
Systems (AFS). AFS is a 60-person software firm that develops 
software for the corporate-owned life insurance market. AFS has 
developed AMS over the past 14 years to integrate life insurance 
and executive benefits using mathematical and financial 
modeling. AMS was first developed using Microsoft BASIC. 
Over the years, Microsoft has evolved BASIC into the more 
modern programming language, Visual Basic (VB). AFS ensured 
that the latest Microsoft compiler technology was used with each 
successive version of AMS. AMS is typical of long-lived software 
systems in that it has evolved from its original DOS version to a 
more modern Windows version.  

To illustrate the results of our methodology, we focused on the 
Input Processing functionality of AMS. Input Processing 
validates and prepares data from user inputs (also called items) so 
AMS can perform complex calculations to generate various 
reports. To an end-user, Input Processing has two purposes. 
Suppression is a feature that either shows or hides an item in the 
user interface based upon the input for another item. Error 
Processing is a feature that validates item values. There are 400+ 
items and many of them are interdependent. Upon closer 
examination of Input Processing, we found that AMS also makes 
several Assignments (user input is stored as strings and is later 
assigned to types such as Integer, Float, or Array). While 
Assignments are a hidden feature to the end-user, developers must 

naturally consider all three features when evolving the Input 
Processing of AMS. 

The AMS data model for Input Processing is a hierarchy of plan, 
employee, and policy level information. A plan can have many 
employees and an employee can have many life insurance 
policies. A database stores a Master File Table that contains the 
400+ plan items that constitute a plan. Individual employee items 
are stored in a Census File Table and can vary for each employee 
in the plan. The Census File Table is associated with the Master 
File Table. For example, a plan with 3 employees might store all 
common information in the Master File Table, while storing each 
employee’s age in the Census File Table. About 75% of the plan 
items can vary from employee to employee. An AMS test case is 
created from the combination of Master File and Census File 
data. AFS maintains a regression test suite of nearly 250 test cases 
with an average size of 10 employees per test case. Running all 
regression tests executes AMS nearly 2,500 times. AMS provides 
a batch facility for executing regression tests and storing output to 
a text file. 

The interdependencies among plan items are quite complex. For 
example, the value of the retirement age item for an 
individual cannot be less than the policy issue age item; 
Input processing must enforce this constraint when either value 
changes. In addition, if the policy issue age item is greater 
than 45 then other items should be suppressed because certain 
policies may not be issued to persons older than 45 in some states. 
There are numerous, more complicated interdependencies within 
AMS items too detailed to discuss here. When a user input 
invalidates a constraint, AMS must display a message indicating 
the specific problem (note that suppressed items are not involved 
in error processing).  

After a series of discussions with AMS project managers, 
marketers, testers, and key developers, we found three reasons to 
evolve Input Processing. 

nItem = 16 
call Process_Items 
nItem=9  
If nError_F = 1 then  
  Set Up Error Variables 
End if  

Figure 5: Fragment for Validating Values for Item 9. 

1. AMS occasionally freezes during Input Processing. Many 
plan items are interdependent and so is their shared error-
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processing code. For example, Item 9 assigns certain key 
variables whose value will determine whether Item 16 is valid. In 
the code fragment validating values for Item 9, shown in Figure 5, 
global variable nItem is set to 16 and Process_Items is called 
to check for errors in the assignment of the item identified by 
nItem (Item 16). Item 16’s code section (not shown) sets a 
global error flag, nError_F, to indicate whether Item 16 has a 
problem, which in turn means Item 9 is not ready. It is easy for 
developers to forget to reset the value of nItem back to the value 
of the calling Item number (in this case Item 9) resulting in an 
unbounded recursion that freezes the system during user input. 

2. The cost of adding a new item into Input Processing is high. 
AFS developers required an average of three days to add just a 
single item because of implicit communication via global 
variables and the spaghetti-like calling process of the dependent 
items. Developers adding a new plan item must add a field to the 
database tables and update the data dictionary. Then it is 
necessary to code the complex logic of item dependence across 
the three features, namely, Assignments, Error Processing, and 
Suppression. Developers must identify the list of items that need 
to be suppressed based upon the input value of the new item and 
any errors must be generated. When adding an item, the 
processing of key global variables would often change, causing 
unexpected side effects. For example, incorrectly setting the value 
of nItem brought back errors that were previously fixed. Adding 
new items would often require unrelated items to be suppressed 
since the Suppression and Error Processing features are 
dependent on the Assignments feature. 

3. The lack of code reuse between the desktop and web version 
of AMS. Since the web-based version of AMS required similar 
logical processing of plan items, AFS wanted to extract a reusable 
component from the legacy system to use within both systems. 
AFS wanted to avoid the costs of maintaining two divergent code 
bases, so solving this problem proved to be the greatest 
motivation for this evolution effort. 

5.1 Step 1: Map Test Cases to Features 
Not every feature is evolved during system evolution, nor should 
each feature be encapsulated in a fine-grained component. We 
follow a heuristic we call “The law of two”: if a feature can be 
used in another system, its implementation becomes a candidate 
for reuse. From this candidate set, the organization must still 
select specific features to evolve. Step 1 of our methodology 
provides heuristics on how to logically arrange features (using test 
cases) that need evolution. Once the features are associated with 
their test cases, we group the features to be evolved with the 
related test cases for code coverage. The test cases used in this 
step can be viewed as the representation of the AMS data model. 
We have identified three means of grouping related test cases to 
identify feature implementation. 

Domain Knowledge: There is no substitute for domain 
knowledge in legacy systems. Through using domain knowledge, 
it is possible to identify test cases that represent a particular 
feature or a group of features. It is also possible to construct test 
cases from scratch to exercise a feature.  

Documentation: Legacy systems also have rich regression test 
suites that consist of hundreds of test cases. In some cases, test 
suites are well documented and are already grouped by the 
functionality that needs to be tested. 

Clustering and textual pattern analysis: We find that related 
test cases (based on input data) exercise closely related features. A 
simple technique can be used to cluster these related test cases, 
and there are several clustering techniques described in the the 
software engineering literature. According to Jain and Flynn [10]: 

Clustering analysis is the organization of a collection of patterns 
(usually represented as a vector of measurements or a point in 
multidimensional space) into clusters based on similarity.  

The purpose of our research is not to explore the clustering 
techniques but to use them creatively. Jain and Flynn [10] provide 
a survey of existing clustering techniques that can be used to 
group related test cases. We created a matrix of test cases and 
Items as shown in Figure 6 and calculated statistical measures 
(regression and standard deviation) to identify clusters of related 
test cases. We assigned an ordinal value to each valid plan item 
value. For example, item 5 had ten valid user inputs, so its 
column contains values ranging from 1 to 10. Test cases T4, T6, 
T8 and T2 can be grouped together; these exercise feature FE1. 
Similarly, test cases T1, T3, T5, T7, T9 and T10 can be grouped 
together because they vary by item 1 and item 5; these exercise 
feature FE2. Pattern analysis of item values could also be used to 
group related test cases by textual input. We found that grouping 
test cases into broad categories simplified the evolution process.  
Test Cases Item 1 Item 2 Item 3 Item 4 Item 5 Regression Std Dev 

T4 1 1 1 9 9 2.40 4.38 

T6 1 1 1 8 9 2.30 4.12 

T8 1 1 1 9 8 2.20 4.12 

T2 1 1 1 8 8 2.10 3.83 

T1 1 3 3 3 4 0.60 1.10 

T5 2 3 3 3 3 0.20 0.45 

T3 2 3 3 3 1 -0.20 0.89 

T7 3 3 3 3 2 -0.20 0.45 

T9 3 3 3 3 1 -0.40 0.89 

T10 4 3 3 3 1 -0.60 1.10 

5.2 Step 2: Refactor and Create Components 
Besides validating marginal changes in regression testing, the test 
cases for a legacy system can be viewed as one of the primary 
sources of information about the features that are most important 
to the end users. This is particularly true for AMS because end-
users input their requirements using the same format as these test 
cases. These test cases are a repository of inputs that exercise the 
system’s features. Step 2 of our methodology mines the data in 
this repository and develops the heuristics for evolution. As the 
regression test suite increases in size, more and more test cases are 
used to exercise the stability of system features from one version 
to another. The goal of this step is to identify test cases that are 
correlated to the features we want to evolve. A single test case 
may exercise multiple features, so we must take care to identify 
appropriate test cases. 

5.2.1 Map Features to Functions  
To locate a feature implementation, we instrumented the source 
code of AMS (only need to do this once) using code-coverage 
software and ran all regression tests. We then analyzed the 

Figure 6: Test Case vs. Items. 



coverage results and grouped related test cases together that 
exercised specific features. 

We used the code-coverage tool TrueCoverage™ from NuMega® 
which works with many programming languages such as VB, 
Java, C++, and some scripting languages. Since AMS uses batch 
processing for its regression testing, it was easy to produce 
instrumented output against all the 250 regression test cases. 
However, these instrumented images were stored using 
TrueCoverage’s proprietary file format, so we had to manually 
export each file into Excel for further analysis. The TrueCoverage 
tool has a merge utility that aggregated the results of all 250 test 
cases that were instrumented. This merge utility revealed that 95% 
of AMS was covered using the 250 test cases. We are currently 
identifying whether the rest of the code is either unused or if there 
are hidden features within the system that are not being exercised. 
For each test case, we used TrueCoverage to identify the 
functions executed, the percentage of lines covered within each of 
these functions, and the variables used. We calculated the 
standard deviation on the entire matrix for all 250 test cases. 
Figure 7 partially shows the matrix sorted by function and 
standard deviation. Each numeric column represents the 
percentage of coverage for a function in that particular test case. A 
standard deviation of zero (not shown for space reasons) means 
that either a function was executed for all test cases or the 
function was not executed at all. This analysis helped to identify 
unused code within the system and possible hidden features. 

We use these numbers to develop heuristics. For example, if we 
consider evolving Feature 1 and Feature 2, each represented by 
test cases {T1, T3, T5, T7, T9 and T10} and {T2, T4, T6 and T8} 
respectively, we deduce the following results from the data. 

Function 1 totally belongs to Feature 1 and likewise function 3 
belongs to Feature 2. Functions 4, 5 and 6 appear to be 100% 
common to the two features that we identify for evolution. These 
functions are potentially part of the core. Functions 2 and 7 have a 
potential feature interaction problem (see Section 3.2) because 
parts of function 2 are exercised by Feature 1 (test cases 7 and 9). 
Likewise, all of Feature 1’s test cases and some of Feature 2’s test 
cases exercise function 7. 

We identified the following problems in the Input Processing 
feature of AMS: 

Circular dependencies: As Table 2 shows, item 9 is dependent 
on item 119 and item 119 is dependent on item 13, which in fact 
is dependent on item 9. We found eight such circular 
dependencies that were the ultimate cause of system freezes as 
verified by the bug tracking system for AMS. 

Table 2: Example of Circular Dependencies 

Item Dependencies (in order) 

5 9, 56, 119 
9 16, 119 

13 5, 9, 22 
19 158 

119 13 
Readiness of dependent items: To solve the circular 
dependencies and determine an item’s state during assignment, we 
found that the original developers used an array called UNREADY: 
when an item is dependent on another item that still needs to be 
evaluated, the original item is identified as being in the UNREADY 
state. Each item had a ready and unready state. The code fragment 
in Figure 8 illustrates that: Item 5 is assumed to be ready by 
setting UNREADY(5) to 1. The item’s value is then evaluated and 
the global nError_F is set to be greater than 1 in case of invalid 
input. The UNREADY state for item 5 will be set to the error flag’s 
value indicating that the item is not ready. Items are processed 
sequentially so if another item dependent upon item 5 needs its 
value then the calling item will use UNREADY(5). The implicit 
setting of item state resulted in bad patches to solve circular 
dependencies. 

nUnready(5) = 1       ‘ 1 = ready 
call Fix_Date(nItem) 
if nError_F > 0 Then 
  nUnready(5) = nError_F 
end If 

Figure 8: Dependent Items. 

Assignments and Suppression intermingled with Error 
Processing: As items were evaluated for dependencies and error 
conditions the original code also set the values of internal 
program variables. AMS often uses a time series in most plan 
items. An example of a time series is “100,1,200,5” which means 
that from years 1 through 5, the value is 100 and from year 5 
onwards it is 200. Time series presents complicated problems 
because the data needs to be evaluated over a period of time (or 
processed via the Input Processing) and errors can be present in 
any year. We found that internal assignments were often used 
inconsistently and intermingled with Error Processing and 
Suppression. 

5.2.2 Refactor Code and Identify Core 
Once we identify feature implementations, we refactor the code as 
outlined in Section 4. Refactoring removes global variables and 
converts implicit communication to explicit. Refactoring may 
require extensive analysis, especially if two or more features 
interact or interfere within a given source function. We have 
found that the refactoring results in fine-grained components with 
low coupling and high cohesion. 

For Error Processing, Suppression, and Assignments we 
refactored the code as follows: 

Removed UNREADY array: The UNREADY array forced the 
Assignments and Suppression code to be highly coupled. We 
replaced this global array with a component that accepted a 
collection of errors. Then we developed routines (add, display, 
and delete) to access the collection for one individual or the entire 
census data. 

Replaced recursive calls with sequential calls to evaluate items: 
In the original system, Error Processing, Suppression and 

 

Figure 7: Function vs. Test Case Matrix. 
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Assignments were largely recursive. Essentially, a single large 
routine inspected each item using a lengthy case statement; 
when an item needed to check dependencies for another item, a 
recursive call was made. After some analysis, we replaced this 
function with a simpler, more sequential control flow 

Separated Assignments, Suppression, and Error Processing 
code: After analyzing Input Processing, we were able to remove 
circular dependencies by first executing Assignments for certain 
core items. We found this was consistent with all three features.  

5.2.3 Create Fine-Grained Components 
To determine which code artifacts to encapsulate, we analyzed 
variable usage for all three features: Error Processing (EP), 
Suppression (S), and Assignments (A). The result is shown in 
Table 3. (EP/S means variables involved both in EP and S). 

 Table 3: Variable Analysis (Pre/Post Evolution) 

Var.→→ 

Comp. 

↓↓ 

 

G 

 

L 

 

SS 

 

SSF 

 

Get 

Value 

 

Set 

Value 

 

L 

AFS 

Core 

EP 35 5 4 2 25 10 5 6 

A 14 8 6 4 10 12 6 4 

S 50 5 8 5 55 5 4 4 

EP/A 11 3 3 3 8 6 2 4 

EP/S 20 5 4 3 17 8 3 4 

A/S 25 6 3 2 18 12 4 2 

EP/A/S 8 9 2 2 6 7 4 4 

 

When creating fine-grained components, these variables and 
functions become properties of a component. The first two 
columns in Table 3 count the global (G) and local (L) variables 
involved in a particular feature implementation when related test 
cases are executed. Columns three and four show how many 
functions, both stateless (SS) and state-full (SSF), are covered. 
The component makes output values available using GetValue 
(Parameter). Conversely, SetValue (Parameter) will 
set the property inside the component. Because we are refactoring, 
the sum of the first four columns for each row must equal the sum 
of the last four columns.  

To define the interface for the fine-grained components, we must 
identify the possible relationships between features. 

Feature Composition and Relationships: Turner identified 
several relationships among interacting features [29]. We expand 
this concept into direct and indirect relationships among 
interacting features, and also add a dependent relationship as a 
part of a direct relationship. Within the indirect relationship a 
feature may be a composed, generalized or specialized part of 
another feature. This is typically an end-user’s view. For example, 
Input Processing is composed of Error Processing, Suppression 
and Assignments sub-features. Within the direct feature 
relationships, a feature relationship with another feature may be 
that of dependent, altered, required, conflicting, and competitive. 
In Input Processing we find the examples of the following types 
of direct relationships among features. 

Dependent: In AMS all features share key item values. The code 
fragment in Figure 9 shows how key items are evaluated first and 

used in Suppression and Assignments. The variable 
QMarkInBPFA is set to true if item 16 has a “?”. We convert 
this variable into a read-only property of the Assignments 
component that can be read by other components. 

Dim QMarkInBPFA As Boolean 
Dim QmarkInUlPremType As Boolean 
Dim XInBPFA As Boolean 
Dim ISBEN As Boolean 
 
QMarkInBPFA = isfloated(Values(16), False)  
QmarkInUlPremType = isfloated(Values(174), False)   
XInBPFA = XInItem(Values(16)) 
ISBEN = InStr(Values(26), ",BEN,") > 0 or 
        InStr(Values(26), ",A/T.BEN,") > 0) 

Figure 9: Dependent Feature Example. 

Required: The function in Figure 10 implements the relationship 
between Suppression and Error Processing. If an item is 
suppressed, then errors associated with it are unnecessary and can 
be removed. Because two features can directly interact with each 
other, the extracted fine-grained components will have clearly 
defined interfaces that declare this interaction. 

public sub RemoveErrorsForSuppressedItems ( 
  suppressarray() as Integer, Errors as Collection)        
 dim x, itemNum as Integer 
 dim s as String 
 for x = Errors.count to 1 step -1 
   itemNum = AFSCore.FVAL(Mid$(Errors.Item(x), 
               InStr(Errors.Item(x), ">") + 1)) 
   if suppressarray(ItemNum) <> 0 then 
     Errors.Remove (x) 
   end if 
 next x 

Figure 10: Required Feature Example. 

Altered: The state of suppression of a given item is altered by the 
entries in another item. For example the suppression state of item 
98 in Figure 11 can be modified with the right condition. Note 
that the Assignments component’s properties are used to alter the 
suppression state. If the UI changes the value for any field that 
can alter item 98, the suppression state is also altered. The global 
array nSuppress() is transformed into a read/write property of 
the Suppression component. 

if Assignments.QMarkInBPFA or (Assignments.XInBPFA 
and Assignments.SipFloat) or Assignments.ISBEN then   
  nSuppress(98) = UnSuppressTheItem(nSuppress(98)) 
else 
  nSuppress(98) = SuppressTheItem(nSuppress(98)) 
end if 

Figure 11: Altered Feature Example. 

Once feature relationships and properties are determined we can 
create the component’s interface. This is shown in Table 4.  

Input Processing was refactored into six components: 
Assignments, Error Processing, Suppression, Error Processing 
Core, Suppression Core, and AFS Core. While Assignments, 
Error Processing, and Suppression perform specific duties of the 
three specified features, the core components manage data 
structures and contain stateless functions. In implementing these 
features, core items were evaluated first and each item was called 
sequentially instead of recursively. Feature relationships were 
identified and coded as shown earlier. The last and final part of 
creating the component was to integrate all six components into 
one unit that performed Input Processing in an integrated 
environment. 



Table 4: Component Interface (Partial Listing) 

Component Interface Methods 

Assignments clsAssignment Assignments 

Error 
Processing 
(EP) 

clsErrorProcessing ErrorChecking 

EP Core clsEProcessingCore AddError 
ClearError 
RemoveError 
RemoveErrorForSuppressedItem 
ClearAllErrors 

Suppression 
(S) 

clsSuppression Suppression 

S Core clsSuppressionCore SuppressTheItem 
UnSuppressTheItem 
SetTheSuppressCodes 

AFS Core clsAFSCore Too many to list (42 in all) 

 

5.2.4 Integrate Fine-Grained Components into AMS 
Using standard configuration management and compiler 
directives, old code in AMS was disabled to integrate the new 
components. Since the code profiler provides all the relevant 
functions it was rather simple to insert the Input Processing 
component. The integrated component is shown in the Figure 12.  

5.3 Step 3: Measure Results 
The changes we made to the system were validated in two ways: 
First, a regression test of Input Processing was performed to 
compare data after the evolution of these three features. Using the 
batch facility of AMS, we verified that the text file was identical 
to the one generated before evolution. Second, our initial 
evolution reasons, as listed earlier, were validated. 

1. The system-locking problem: The component-based 
implementation is a linear solution. In all three features, core 
items are evaluated first and then each item is individually 
evaluated. Previous communication through global variables 
was replaced with interactions between component interfaces.  

2. Cost of adding a new item: The average time to add a new 
item and code all the relevant Assignments, Error Processing 
and Suppression logic took 3 days prior to applying the 
evolution methodology. After the system was evolved, we 
collected data on adding 4 new items and the average time 
spent was about 1.25 days.  

3. Reusability between AMS and the web version of AMS: 
There were six resulting components from this evolution 
exercise: Assignments, Error Processing, Suppression, Error 
Processing Core, Suppression Core and AFS Core. While AFS 
Core is being used in all AFS product lines (a total of 4 
different projects), the other five components are used in both 
the desktop and Internet platform of AMS.  

6. Lessons Learned 
In this section, based on our case study, we evaluate the benefits 
and limitations of our methodology.  

Selecting Evolvable Features: Not all features are an ideal 
candidate for this methodology. Using domain knowledge and 
enterprise initiatives, it is possible to identify features that either 
are a good candidate for reuse or have maintenance problems. If 
an evolvable feature is spread out across many functions, and if 
the code execution is below 50% using selected test cases within 
each of the functions, the feature is not a good candidate. For 
example, the primary function of AMS is to integrate executive 
benefits and life insurance using complex non-linear algorithms. 
Typically, life insurance acts as an asset to fund the executive 
benefits. There are many legal-, accounting-, insurance- and 
benefits-related constraints that play a very important role in the 
asset/liability match within AMS. Such constraints are scattered 
throughout AMS and make up less than 20-25% in any given 
function. Our experience and heuristics tell us that the constraints 
themselves will certainly not be good candidates for evolution 
because they do not change frequently, and they probably cannot 
be reused in other AFS product lines. Good candidates are those 
features that change often, are concentrated in fewer functions, or 
depend on or share global variables as a means of communication.  

Our methodology provides several heuristics to avoid feature 
interaction issues by identifying closely related features. If two 
feature implementations are highly correlated then it is certain that 
these features are intertwined, and a rewrite is probably warranted.  

Availability of Regression Tests: While we have no empirical 
studies to show that most systems have regression test suites to 
measure stability between releases, such test suites are very 
important from a business perspective. An informal survey of 7 
legacy systems revealed that all of them had adequate regression 
test suites. We therefore believe it is reasonable to assume that 
most businesses either have these test suites (although they may 
not refer to them as such) or are generating these test suites 
manually each time a new release is scheduled.  

Automating Tasks: To instrument the source code we compiled 
the source code image with TrueCoverage™. Since the regression 
testing is already being done in batch mode, it was easy to get the 
instrumented output to compare against all 250 regression test 
cases. However, these instrumented images were in a 
TrueCoverage™ specific file format. TrueCoverage™ does 
provide an automated way to export the specific file format. We 
had to manually export each file into a standard file format 
(comma-separated values) just to import into a spreadsheet tool 
for further analysis. This process needs to be better automated.  

Features and Code Coverage: We assume that a comprehensive 
set of regression tests is available for identifying code associated 
with the given feature(s). In our case study we found that even 
after executing all test cases, not all of the code associated with 
Input Processing was executed. We believe that the unexecuted 
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code contained either hidden features or is dead code. For 
example, 12 routines were never called at all. Also, nearly 17% of 
the code was not executed in the original code. We put all the 
unused code in a separate file and documented it. Incremental 
feature evolution gives us the implementation of core (AFS Core).  

Core and Reducing Dependence on Variables: After refactoring 
the AFS Core component, we manually identified the parameters 
for each of the 42 stateless functions. Since AFS Core is being 
used in 4 AFS projects, this effort was worthwhile because these 
42 functions do not create any side effects and use no global 
variables. In addition to AFS Core, there are two additional 
supporting core components: Suppression Core and Error 
Processing Core. These supporting core components encapsulate 
the worker functions and states (i.e., business logic) used by 
Suppression and Error Processing components. The supporting 
core components are created to provide flexibility in future 
evolution if any underlying data structure is changed for 
managing suppression or error processing. For example, Error 
Processing Core contains functions to add, remove, and edit 
errors to a collection object. In the future, if the collection object 
is replaced by an array or another structure, such encapsulation 
will allow AFS to change only the working functions and the 
interface for the business logic will remain the same. Therefore, 
each of the six components has well-defined interfaces with no 
side effects. Their properties and methods are categorized 
explicitly using GetValue/SetValue.  

Performance and Security: In refactoring the recursion into 
linear functions, the performance of AMS was unaffected. We 
observed a 4% decrease in execution time once AFS Core was 
introduced. We attribute this improvement to the removal of 
global variables and in-line code. Because the global variables 
were reduced by 6% (AMS has over 150 global variables), the 
system is more secure in terms of memory consumption since 
COM+ offers better security and performance when components 
use fewer global variables. Although COM+ is not being used in 
the desktop version of AMS, there is significant benefit for using 
components under COM+ for the web-based version. 

Component Interface Issues: Our methodology initially created 
components with too many interfaces. To resolve this issue, we 
used a Collection Object provided in the VB programming 
language to hide the list of these variables. Different programming 
languages may require a different implementation of methods and 
properties. Furthermore, the collection object was divided into 
two basic types, GetValue/SetValue with the parameter of 
the variable name as an index key.  

Measuring Success: The true measure of a successful evolution 
methodology is in reduced future maintenance costs. We have 
only just begun the long-term task of collecting maintenance data 
on the refactored system. We found that the features we evolved 
for AMS as components can be reused in two platforms, both 
desktop and Internet. Although reuse involves integration, 
configuration management, and testing costs, the savings on 
development costs made this exercise highly successful. As briefly 
shown in Table 5, the net estimated cost of this project is one 
month’s salary for the AFS development team. Once long-term 
cost reductions are factored in, the resulting savings will be 
favorable. The performance of the refactored system is acceptable 
and it no longer freezes during input. Also, AFS is now using 
AFS Core in all 4 of its product lines (an unexpected side effect). 

Table 5: Budget Analysis 

Effort Cost (+)/ Savings (-) in 
Months 

Map Features and Test-Cases  +1 

Identify code and Refactor +3 

Component Creation (EP, S, A, Cores) +4 

Testing, Training, Documentation, 
Configuration and Project Management 

+3 

Savings from solving specific problems Data being gathered 

Reuse (AFS Core in 4 projects and other 
components in dual-platform) 

-10 

Net (Cost (+)/Savings (-)) +1 

7. RELATED WORK AND CONCLUSION  
Our work is closely related to the following areas of software 
engineering: CBSE, Feature Engineering, Separation of Concerns 
and AOP. 

Although CBSE provides viable techniques to develop 
modularized software systems, the components are often designed 
and implemented from scratch rather than reengineering them 
from within a legacy system. Recent approaches to evolution 
within CBSE, such as ArchStudio [20], focus on evolving systems 
that are already designed and constructed from well-defined 
components and connectors. The emerging discipline of Software 
Architecture as defined by Garlan and Shaw is concerned with a 
level of design that addresses structural issues of a software 
system, such as global control structure, synchronization and 
protocols of communication between components [8]. Software 
Architecture is thus able to address many issues in the 
development of large-scale distributed applications by using off-
the-shelf components. In particular, it is a useful vehicle for 
managing coarse-grained software evolution, as observed by 
Medvidovic and Taylor[16]. However, Software Architecture 
does not provide an efficient solution for legacy system evolution. 
In addition, we are encouraged by results from our prior work 
[17][18], where we converted a standalone AMS executable into a 
component that evolved overall system architecture resulting in a 
better maintenance platform for AMS, the feature-rich legacy 
system that we used for our case study. 

While there are techniques[2][13][15][31][32] to locate program 
features using execution slices, they are predominantly used for 
system debugging rather than evolution. A contribution of this 
paper is to provide a practical model for features that can be used 
in conjunction with slicing. Our methodology suggests using any 
available code-profiling tool. The most closely related technology 
is the χSuds [1] tool that can identify program feature in a C 
program. Our innovative contribution is showing how to construct 
a reusable fine-grained component from the feature. 

The SEI FODA feature model ties business models together by 
structuring and relating feature sets [9]. FODA framework 
explores how this structured information can be leveraged across 
the software development effort. Griss [9] extended the FODA 
methodology to create an explicit feature model of functionality to 
facilitate reuse-driven software engineering. We agree with Griss 
that a feature model integrates the viewpoint of both the user and 
the developer; in this paper we show the practical application of 
this integrated perspective. 



The feature interaction literature is primarily focused on 
telecommunications networks [28]. Telecommunications networks 
are massive, complex, distributed systems that incorporate a 
variety of hardware and software elements. In this domain, 
features represent capabilities that are incrementally added to a 
telephony network. The presence of multiple independent 
component providers makes the feature interaction problem even 
more difficult. Telecommunication networks provide many 
examples of features, such as call waiting, call forwarding, and 
voice mail; the primary focus is on understanding how features 
interact, rather than how the features will be evolved. Our feature 
model is intuitive and easily applicable for evolution purposes.  

Two theories related to our work are the separation of concerns  
and Aspect-Oriented Programming (AOP). There are a number of 
dimensions of concern that might be of importance for different 
purposes (such as comprehension, traceability, reusability, and 
evolution potential), for different systems, and at different phases 
of the life cycle. There is an increasing focus on ways to 
encapsulate multiple overlapping and interacting concerns. Tarr et 
al. admit that a large part of their theory is unproven with an 
industrial size example [26] and we believe their approach will 
encounter great difficulties when applied to an existing legacy 
system. The AOP community has focused on identifying cross-
cutting concerns that appear throughout numerous modules of a 
system implementation[12][33]. These aspects are treated as first-
class entities that are “woven” together into the primary 
modularization to create a final working system. We have found it 
possible to encapsulate features that are like to change into fine-
grained components, thus avoiding the code-weaving phase of 
AOP. Also, our fine-grained components are truly reusable 
whereas aspects appear to only be usable in the context of the 
original modular decomposition. 

In conclusion, there are several benefits to our methodology. First, 
it addresses the important issue of legacy system evolution in an 
incremental manner. Over time, an increasing collection of fine-
grained components are extracted from the legacy system. Second, 
we bridge the complexity gap by mapping problem-domain 
features using regression test cases and the solution-domain 
functions in the source code. Third, we use existing code-profiling 
and similar tools to refactor code related to features. Fourth, by 
clearly defining a fine-grained component model, we are able to 
develop software assets with clearly defined interfaces that can be 
used throughout the enterprise.  

7.1 Future Work 
American Financial Systems, Inc. has nearly ten years of 
longitudinal data on their legacy system. We are currently 
expanding our evaluation to model the development costs in 
adding, modifying, or removing system features. Now that AFS 
has refactored their legacy system, we will carefully monitor their 
development and maintenance teams to determine the impact of 
the software evolution methodology. We hope that other 
organizations will be inspired by the success of AFS to carefully 
evaluate their regression test suites to determine the feasibility of 
creating their own reusable fine-grained components. We will also 
investigate the challenges in applying our methodology when the 
underlying system is programmed in an object-oriented language 
such as C++ or Java.  
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