
Evolving Legacy System Features into Fine-Grained

Alok Mehta
American Financial Systems, Inc.

9 Riverside Office Park
Weston, MA 02493

1 781 893 3393

amehta@afs-link.com

Components

George T. Heineman

WPI Computer Science Department
100 Institute Road

Worcester, MA 01609
1 508 831 5502

heineman@cs.wpi.edu

ABSTRACT
There is a constant need for practical, efficient and cost-effective
software evolution techniques. We propose a novel evolution
methodology that integrates the concepts of features, regression
tests, and component-based software engineering (CBSE).
Regression test cases are untapped resources, full of information
about system features. By exercising each feature with their
associated test cases using code profilers and similar tools, code
can be located and refactored to create components. These
components are then inserted back into the legacy system,
ensuring a working system structure. This methodology is divided
into three parts. Part one identifies the source code associated
with features that need evolution. Part two deals with creating
components and part three measures results. By applying this
methodology, AFS has successfully restructured its enterprise
legacy system and reduced the costs of future maintenance.
Additionally, the components that were refactored from the legacy
system are currently being used within a web-enabled application.

1. INTRODUCTION
Increasingly, organizations view their software assets as
investments that grow in value rather than liabilities whose value
depreciates over time [30]. At the same time, organizations are
under tremendous pressure to evolve their existing systems to
better respond to marketplace needs and rapidly changing
technologies. This constant pressure to evolve is driven by
escalating expectations of the customer for new enterprise
standards, new products and system features, and improved
performance. Evolution is also necessary to cope with endless
new software releases and manage hardware and software
obsolescence.

To effectively evolve legacy systems in this fast-paced
environment, organizations must answer two questions [25]: What
are the critical success factors of system evolution? How do we
evolve the system without adversely affecting operations?
American Financial Systems (AFS) developed their strategy by
pursuing the following two goals: (G1) Identify system features
that have already exhibited disproportionate maintenance costs
and are likely to change; (G2) Extract fine-grained components

from these features within the legacy system to share between the
original desktop platform and a planned web application.

Our results show an innovative use of existing regression test
suites and give extra incentives for designing such test suites. In
addition to verifying the integrity of the system, regression test
suites can be used to guide refactoring efforts during software
evolution to create reusable software assets within the enterprise.

2. EVOLUTION MODEL
The repeated modification of a legacy system has a cumulative
effect that increases system complexity. Eventually, existing
information systems become too fragile to modify and too
important to discard; organizations must consider modernizing
these legacy systems so that they remain viable. Reengineering
offers an approach to transforming a legacy system into one that
can evolve in a disciplined manner. To be successful,
reengineering requires insights from software, managerial, and
economic perspectives [26][27].

Many software maintenance initiatives do not sufficiently
incorporate the user’s point of reference [4]; such lack of
consideration can leave users unsatisfied and frustrated because
users may not see the benefit of these initiatives. Researchers
[28][22][11][5] have identified the two domains around which the
entire field of software engineering revolves: the problem domain
and the solution domain. End-users interact with the system by
inputting their requirements in the form of input files (or the
database) that the system uses. Because these users are directly
concerned with system functionality, their perspective is always in
the problem domain. Composed from input files, regression test
cases are used to check the stability from one version of the
system to another. In reviewing test cases, developers are
primarily concerned with creating and maintaining software
development life cycle artifacts such as components; their
perspective is therefore firmly rooted in the solution domain. A
major source of difficulty in developing, delivering, and evolving
successful software is the complexity gap that exists between the
problem and the solution domains (as termed by Raccoon [22]).
To view evolution from a single domain upsets the delicate
balance between the two domains.

Evolution focused solely on the problem domain may lead to
changes that degrade the structure of the original code; similarly,
evolution based solely on technical merits could create changes
unacceptable to end-users. External evolutionary pressures drive
the implementation of new enhancements and functionality by
causing developers to focus on implementing the business logic
that is directly visible to end users, such as a menu item that spell
checks the document in a word processing application. While

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’02, May 25-28, 2002, Buenos-Aires, Argentina.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

responding to external pressures, developers often bypass
standard processes to meet project deadlines; this results in
inferior coding, such as adding a global variable when one is not
required. The internal evolutionary pressures force the developers
to either restructure or refactor their code so the future
enhancement or maintenance becomes manageable and cost-
effective. During such evolution, the code is refactored, and
protocols and standards are reestablished. The end-user may or
may not see the changes made to the system but the goal of such
refactoring is to reduce future maintenance costs. Our research
provides a methodology for handling both external and internal
evolutionary pressures.

Researchers have long identified features as a natural organization
of the problem domain [5][6]. Surprisingly, few approaches in the
research literature concentrate on feature-based organization of a
system’s functionality. In contrast, the solution domain is full of
research that incorporates software artifact management activities
such as design, component construction, and testing. Regression
test suites are an untapped resource for software evolution
because they tell a legacy system’s story in a way that can be used
to identify features of interest to end-users. We show how to
identify the code associated with features, extract that code, and
create fine-grained components. These components are inserted
back into the legacy system to validate results in two ways. First,
we match the output of the regression tests after the insertion with
original output. Second, we measure the cost of adding a new
feature and compare that to the prior costs. The outline of our
methodology as shown in Figure 1 is:

• Step 1: Select test cases by considering features.
• Step 2: Execute selected test cases using code profilers to

locate source code that implements features. Analyze and
refactor source code to create components.

• Step 3: Compare pre- and post-evolution maintenance costs.

Our methodology has three basic assumptions. First, we assume
that the legacy system to be evolved is written using a modern
programming language such as Visual Basic, C++, Java, or
COBOL; this allows us to employ existing code-profiling tools to
trace the source code implementing a specific feature. Second, we
assume that the legacy system has regression test suites. Third, we
assume domain knowledge and expertise are available, although
this is not a binding constraint as discussed in Section 6.

3. FEATURE MODEL
End-users often view a system in terms of its provided features.
They exercise the system features through user input (stored in
files or databases) that is often used for system maintenance as
part of regression testing. Intuitively, a feature is an identifiable
unit of system functionality from the user’s perspective. Examples
of features include the ability of a word processor to spell check
or ability of an accounting system to generate a balance sheet
statement for a given fiscal year. Software developers are expected
to translate such feature-oriented requests into system design.
Feature Engineering addresses the understanding of features in
software systems and defines mechanisms for carrying a feature
from the problem domain into the solution domain [29]. We
developed the following definition by integrating and extending
existing definitions [22][29]:

A feature is a group of individual requirements that describes a
unit of functionality with respect to a specific point of view
relative to a software development life cycle.

This definition is rooted in the problem domain but shows how a
feature can be used in software evolution. For example, a system
might support a feature that performs complex calculations in
batch mode without user interaction. To an end-user this feature is
a time saver because input can be stored in a file or a database to
be used at a later time. At the same time, testers might employ this
feature to enable regression testing between two versions of the
system; developers might design a specific set of modules to
process user input without user interaction to analyze code
coverage. A code-profiling tool executing regression test cases
exercising that feature can locate the feature implementation, and
evolution of that feature can commence.

Table 1: Feature/Functions Relationship

Feature Functions Critical Evolution Viewpoint

1 Many Solution domain

Many 1 Problem domain

1 1 None exists

Many Many N/A – Must be decomposed

3.1 Features and Functions
End-users comprehend a system through its features but are
unaware of the specific way in which these features are
implemented. Software developers view the same system in terms
of data types, local and global control, reusable functions, and
units of testing and maintenance. Table 1 outlines how a feature
might be implemented within function(s). In this paper we are
concerned only with the first two relationships. When a single
feature implementation is contained within many functions then
the critical viewpoint regarding evolution is the solution domain
because the feature “cross-cuts” the software [9]. Such code is
often highly coupled and deeply embedded within the legacy
system. When many related features are implemented by a single
function then understanding the problem domain is critical for
successful evolution. When a feature is implemented by a single
function, evolution can be straightforward; a many-to-many
relationship must be decomposed further for evolution.

Many researchers have studied regression testing from a
theoretical point of view [3][14][19][23][24]. A testing
organization accumulates regression test cases for a legacy system

Figure 1: Evolution Methodology.

Legacy system to be evolved

Step 1
Map test cases to features

Step 2a
Map features to functionality

Step
Step Create fine-grained component

Step 2d: Integrate component into legacy system
Step 3: Verify results

Cost
Regression

Problem
Domain

Solution
Domain

Domain Knowledge

Code Profiler
Re-factor code, identify core

External Evolutionary Pressures

to ensure the stability of the system over multiple evolutions.
Often companies develop proprietary regression testing tools to
automate these tests or reduce the total number of tests to execute.
We propose a novel use of dynamic slicing [13] during regression
testing to identify where a feature is implemented in the legacy
system and to incrementally refactor the code base to create fine-
grained components that can be individually evolved and reused.

3.2 Feature/Function Interaction
In Figure 2 functions are represented as rectangles, variables (both
local and global) as circles, and features as pentagons. A feature
implementation (FI) is the set of statements within all functions
that execute when that feature is exercised. FIs are shaded using
the same pattern as their corresponding feature. When two or
more feature implementations share common data or functions,
there are four key interactions.

SS - Shared Stateless Function: A stateless function [7] can be
shared between two FIs. For example, all statements in function f3
are executed when both FE1 and FE2 are exercised and f3 does not
access any local or global data.

SSF - Shared State-Full Function: A state-full function [7] can
be shared between two features. Refactoring may be complex,
involving analyzing global variable access and control structures.
Function f2 accesses global variable g1 and since f2 is part of FI1
and FI2 there is an implicit interaction.

DD – Dependent Data: An FI may be dependent on the data
accessed by another FI. For example, f1 and f2 access the local
variable v1 leading to an interaction between FE1 and FE2.

DF – Dependent Function: An FI may be dependent on a
function that is part of another FI. Function f2 calls function f1
(shown by the arrow in Figure 2) when FE1 is exercised but not
when FE2 is exercised (note the consistent shading). The
remaining statements in f1 (shaded white) are associated with
another feature not shown and FE1 interacts with that feature.

When a feature is fully contained in a single function, the
implementation could be equally complex. Such a function may
be stateless or it could depend on global data (as is the case with
f4 in Figure 2). As each feature is exercised, code-profiling (or
similar) tools identify the code slices associated with each feature,
providing the details necessary to identify interactions between
features. Code can then be refactored during evolution.

4. FINE-GRAINED COMPONENT MODEL
An FI is often scattered across many system functions and may
access local or global data. FIs can be identified and encapsulated
into fine-grained components using the component model shown
in Figure 3. Once we identify FI using regression tests cases, code
profilers, and similar tools such as χSuds [1] and NuMega’s
TrueCoverage™[34], we refactor FI into a fine-grained
component. As defined in [21]:

A component is a software element that conforms to a component
model and can be independently deployed and composed without
modification according to a composition standard. A component
model defines specific interaction and composition standards.

In the fine-grained components developed in this paper, the
interaction between components is clearly specified by the
interfaces provided by each feature interface. Components can
also access functionality using stateless interfaces. The FI is
shielded from specific variable implementations (shaded box) by
using the interface for external access; over time, the variable
implementation will be replaced with explicit linkages to external
interfaces.

The first step is to isolate each function that contains code
belonging to the target FI. The analysis is often complex because
local variables, global variables, and dependent functions can be
shared between FIs. Our component model attempts to “share” the
functions as well as the data that is scattered across various
functions through explicit interfaces.

The left part of Figure 4 shows a single function fx whose code is
shared between implementations FI1 and FI2. This simple example
highlights all characteristics of our model. Common code and
variables include: calls to SS f1, global variable g1, and local
variables v3 and v4. Extracting FI2 into comp2 involves several
artifacts. Function f1 can easily be extracted because it is stateless.
Double arrowheads on the arrow to g1 show that it is both read
and updated by FI2. Local variables v3 and v4 are used by both FIs
but FI2 only reads v4 (as shown by arrowhead), while v3 is both
updated and read by FI2; it is clear that v4 is set by FE1. FI2 also
accesses global variable g2, SS function f2, and SSF f3.

Comp2 in Figure 4 encapsulates FI2 and has several public
interfaces, represented by circles attached by lines to Comp2 to
enable original code to access the moved artifacts. Comp2
maintains data previously local to fx, replaces global variable
references with an interface for accessing data, and contains

Figure 3: Fine-Grained Component Model.

Figure 2: Feature Implementation Interactions.

Variable Implementation

Feature
Interface

External Variable Access

Stateless
Interface(s)

Encapsulated
State

Feature
Implementation

Stateless
Function(s)

1
1

1
*

*

g1

*
1

Feature
FE3

f1

Feature
FE1

v1

f2 f3 f4

Feature
FE2

stateless and state-full functions. Public interface I2 is the primary
interface for Comp2. Stateless functions f1 and f2 are also
encapsulated into Comp2 and they can be accessed via the public
interfaces IF1 and IF2. Local and global variables used by FI2 can
be accessed via GetValue/SetValue methods. Additionally,
the get method provides a way to share local and global
variables with other feature implementations. As related features
are evolved, the interaction between fine-grained components will
become increasingly specified and all implicit communication will
vanish. Thus, we separate accessing variables from their
implementation. When multiple features are extracted at the same
time, many stateless functions will be common to several feature
implementations; these will be encapsulated within a core
component, rather than a fine-grained component, and will be
treated as a shared library (as shown in Figure 12).

5. CASE STUDY
We applied the three-step methodology outlined in Section 2 to
the Master System (AMS), a product of American Financial
Systems (AFS). AFS is a 60-person software firm that develops
software for the corporate-owned life insurance market. AFS has
developed AMS over the past 14 years to integrate life insurance
and executive benefits using mathematical and financial
modeling. AMS was first developed using Microsoft BASIC.
Over the years, Microsoft has evolved BASIC into the more
modern programming language, Visual Basic (VB). AFS ensured
that the latest Microsoft compiler technology was used with each
successive version of AMS. AMS is typical of long-lived software
systems in that it has evolved from its original DOS version to a
more modern Windows version.

To illustrate the results of our methodology, we focused on the
Input Processing functionality of AMS. Input Processing
validates and prepares data from user inputs (also called items) so
AMS can perform complex calculations to generate various
reports. To an end-user, Input Processing has two purposes.
Suppression is a feature that either shows or hides an item in the
user interface based upon the input for another item. Error
Processing is a feature that validates item values. There are 400+
items and many of them are interdependent. Upon closer
examination of Input Processing, we found that AMS also makes
several Assignments (user input is stored as strings and is later
assigned to types such as Integer, Float, or Array). While
Assignments are a hidden feature to the end-user, developers must

naturally consider all three features when evolving the Input
Processing of AMS.

The AMS data model for Input Processing is a hierarchy of plan,
employee, and policy level information. A plan can have many
employees and an employee can have many life insurance
policies. A database stores a Master File Table that contains the
400+ plan items that constitute a plan. Individual employee items
are stored in a Census File Table and can vary for each employee
in the plan. The Census File Table is associated with the Master
File Table. For example, a plan with 3 employees might store all
common information in the Master File Table, while storing each
employee’s age in the Census File Table. About 75% of the plan
items can vary from employee to employee. An AMS test case is
created from the combination of Master File and Census File
data. AFS maintains a regression test suite of nearly 250 test cases
with an average size of 10 employees per test case. Running all
regression tests executes AMS nearly 2,500 times. AMS provides
a batch facility for executing regression tests and storing output to
a text file.

The interdependencies among plan items are quite complex. For
example, the value of the retirement age item for an
individual cannot be less than the policy issue age item;
Input processing must enforce this constraint when either value
changes. In addition, if the policy issue age item is greater
than 45 then other items should be suppressed because certain
policies may not be issued to persons older than 45 in some states.
There are numerous, more complicated interdependencies within
AMS items too detailed to discuss here. When a user input
invalidates a constraint, AMS must display a message indicating
the specific problem (note that suppressed items are not involved
in error processing).

After a series of discussions with AMS project managers,
marketers, testers, and key developers, we found three reasons to
evolve Input Processing.

nItem = 16
call Process_Items
nItem=9
If nError_F = 1 then
 Set Up Error Variables
End if

Figure 5: Fragment for Validating Values for Item 9.

1. AMS occasionally freezes during Input Processing. Many
plan items are interdependent and so is their shared error-

Figure 4: Evolving FI2 into Comp2.

Feature
Implementation Feature

Implementation

Stateless
Function f1

Stateless

Stateless Function f1

g2

Function fx involved in the implementation
of both FE1 and FE2

FE2

Function f2

State-full

Function f3

Component Comp2

g1

FE1

v1

v4

v3
v2

I2

IF2

IF1

getg2()
getv4()

getg1()
setg1()

getv3()
setv3()

v2

 external variable access

FE2 Implementation

Stateless Function f2

variable implementation

processing code. For example, Item 9 assigns certain key
variables whose value will determine whether Item 16 is valid. In
the code fragment validating values for Item 9, shown in Figure 5,
global variable nItem is set to 16 and Process_Items is called
to check for errors in the assignment of the item identified by
nItem (Item 16). Item 16’s code section (not shown) sets a
global error flag, nError_F, to indicate whether Item 16 has a
problem, which in turn means Item 9 is not ready. It is easy for
developers to forget to reset the value of nItem back to the value
of the calling Item number (in this case Item 9) resulting in an
unbounded recursion that freezes the system during user input.

2. The cost of adding a new item into Input Processing is high.
AFS developers required an average of three days to add just a
single item because of implicit communication via global
variables and the spaghetti-like calling process of the dependent
items. Developers adding a new plan item must add a field to the
database tables and update the data dictionary. Then it is
necessary to code the complex logic of item dependence across
the three features, namely, Assignments, Error Processing, and
Suppression. Developers must identify the list of items that need
to be suppressed based upon the input value of the new item and
any errors must be generated. When adding an item, the
processing of key global variables would often change, causing
unexpected side effects. For example, incorrectly setting the value
of nItem brought back errors that were previously fixed. Adding
new items would often require unrelated items to be suppressed
since the Suppression and Error Processing features are
dependent on the Assignments feature.

3. The lack of code reuse between the desktop and web version
of AMS. Since the web-based version of AMS required similar
logical processing of plan items, AFS wanted to extract a reusable
component from the legacy system to use within both systems.
AFS wanted to avoid the costs of maintaining two divergent code
bases, so solving this problem proved to be the greatest
motivation for this evolution effort.

5.1 Step 1: Map Test Cases to Features
Not every feature is evolved during system evolution, nor should
each feature be encapsulated in a fine-grained component. We
follow a heuristic we call “The law of two”: if a feature can be
used in another system, its implementation becomes a candidate
for reuse. From this candidate set, the organization must still
select specific features to evolve. Step 1 of our methodology
provides heuristics on how to logically arrange features (using test
cases) that need evolution. Once the features are associated with
their test cases, we group the features to be evolved with the
related test cases for code coverage. The test cases used in this
step can be viewed as the representation of the AMS data model.
We have identified three means of grouping related test cases to
identify feature implementation.

Domain Knowledge: There is no substitute for domain
knowledge in legacy systems. Through using domain knowledge,
it is possible to identify test cases that represent a particular
feature or a group of features. It is also possible to construct test
cases from scratch to exercise a feature.

Documentation: Legacy systems also have rich regression test
suites that consist of hundreds of test cases. In some cases, test
suites are well documented and are already grouped by the
functionality that needs to be tested.

Clustering and textual pattern analysis: We find that related
test cases (based on input data) exercise closely related features. A
simple technique can be used to cluster these related test cases,
and there are several clustering techniques described in the the
software engineering literature. According to Jain and Flynn [10]:

Clustering analysis is the organization of a collection of patterns
(usually represented as a vector of measurements or a point in
multidimensional space) into clusters based on similarity.

The purpose of our research is not to explore the clustering
techniques but to use them creatively. Jain and Flynn [10] provide
a survey of existing clustering techniques that can be used to
group related test cases. We created a matrix of test cases and
Items as shown in Figure 6 and calculated statistical measures
(regression and standard deviation) to identify clusters of related
test cases. We assigned an ordinal value to each valid plan item
value. For example, item 5 had ten valid user inputs, so its
column contains values ranging from 1 to 10. Test cases T4, T6,
T8 and T2 can be grouped together; these exercise feature FE1.
Similarly, test cases T1, T3, T5, T7, T9 and T10 can be grouped
together because they vary by item 1 and item 5; these exercise
feature FE2. Pattern analysis of item values could also be used to
group related test cases by textual input. We found that grouping
test cases into broad categories simplified the evolution process.
Test Cases Item 1 Item 2 Item 3 Item 4 Item 5 Regression Std Dev

T4 1 1 1 9 9 2.40 4.38

T6 1 1 1 8 9 2.30 4.12

T8 1 1 1 9 8 2.20 4.12

T2 1 1 1 8 8 2.10 3.83

T1 1 3 3 3 4 0.60 1.10

T5 2 3 3 3 3 0.20 0.45

T3 2 3 3 3 1 -0.20 0.89

T7 3 3 3 3 2 -0.20 0.45

T9 3 3 3 3 1 -0.40 0.89

T10 4 3 3 3 1 -0.60 1.10

5.2 Step 2: Refactor and Create Components
Besides validating marginal changes in regression testing, the test
cases for a legacy system can be viewed as one of the primary
sources of information about the features that are most important
to the end users. This is particularly true for AMS because end-
users input their requirements using the same format as these test
cases. These test cases are a repository of inputs that exercise the
system’s features. Step 2 of our methodology mines the data in
this repository and develops the heuristics for evolution. As the
regression test suite increases in size, more and more test cases are
used to exercise the stability of system features from one version
to another. The goal of this step is to identify test cases that are
correlated to the features we want to evolve. A single test case
may exercise multiple features, so we must take care to identify
appropriate test cases.

5.2.1 Map Features to Functions
To locate a feature implementation, we instrumented the source
code of AMS (only need to do this once) using code-coverage
software and ran all regression tests. We then analyzed the

Figure 6: Test Case vs. Items.

coverage results and grouped related test cases together that
exercised specific features.

We used the code-coverage tool TrueCoverage™ from NuMega®
which works with many programming languages such as VB,
Java, C++, and some scripting languages. Since AMS uses batch
processing for its regression testing, it was easy to produce
instrumented output against all the 250 regression test cases.
However, these instrumented images were stored using
TrueCoverage’s proprietary file format, so we had to manually
export each file into Excel for further analysis. The TrueCoverage
tool has a merge utility that aggregated the results of all 250 test
cases that were instrumented. This merge utility revealed that 95%
of AMS was covered using the 250 test cases. We are currently
identifying whether the rest of the code is either unused or if there
are hidden features within the system that are not being exercised.
For each test case, we used TrueCoverage to identify the
functions executed, the percentage of lines covered within each of
these functions, and the variables used. We calculated the
standard deviation on the entire matrix for all 250 test cases.
Figure 7 partially shows the matrix sorted by function and
standard deviation. Each numeric column represents the
percentage of coverage for a function in that particular test case. A
standard deviation of zero (not shown for space reasons) means
that either a function was executed for all test cases or the
function was not executed at all. This analysis helped to identify
unused code within the system and possible hidden features.

We use these numbers to develop heuristics. For example, if we
consider evolving Feature 1 and Feature 2, each represented by
test cases {T1, T3, T5, T7, T9 and T10} and {T2, T4, T6 and T8}
respectively, we deduce the following results from the data.

Function 1 totally belongs to Feature 1 and likewise function 3
belongs to Feature 2. Functions 4, 5 and 6 appear to be 100%
common to the two features that we identify for evolution. These
functions are potentially part of the core. Functions 2 and 7 have a
potential feature interaction problem (see Section 3.2) because
parts of function 2 are exercised by Feature 1 (test cases 7 and 9).
Likewise, all of Feature 1’s test cases and some of Feature 2’s test
cases exercise function 7.

We identified the following problems in the Input Processing
feature of AMS:

Circular dependencies: As Table 2 shows, item 9 is dependent
on item 119 and item 119 is dependent on item 13, which in fact
is dependent on item 9. We found eight such circular
dependencies that were the ultimate cause of system freezes as
verified by the bug tracking system for AMS.

Table 2: Example of Circular Dependencies

Item Dependencies (in order)

5 9, 56, 119
9 16, 119

13 5, 9, 22
19 158

119 13
Readiness of dependent items: To solve the circular
dependencies and determine an item’s state during assignment, we
found that the original developers used an array called UNREADY:
when an item is dependent on another item that still needs to be
evaluated, the original item is identified as being in the UNREADY
state. Each item had a ready and unready state. The code fragment
in Figure 8 illustrates that: Item 5 is assumed to be ready by
setting UNREADY(5) to 1. The item’s value is then evaluated and
the global nError_F is set to be greater than 1 in case of invalid
input. The UNREADY state for item 5 will be set to the error flag’s
value indicating that the item is not ready. Items are processed
sequentially so if another item dependent upon item 5 needs its
value then the calling item will use UNREADY(5). The implicit
setting of item state resulted in bad patches to solve circular
dependencies.

nUnready(5) = 1 ‘ 1 = ready
call Fix_Date(nItem)
if nError_F > 0 Then
 nUnready(5) = nError_F
end If

Figure 8: Dependent Items.

Assignments and Suppression intermingled with Error
Processing: As items were evaluated for dependencies and error
conditions the original code also set the values of internal
program variables. AMS often uses a time series in most plan
items. An example of a time series is “100,1,200,5” which means
that from years 1 through 5, the value is 100 and from year 5
onwards it is 200. Time series presents complicated problems
because the data needs to be evaluated over a period of time (or
processed via the Input Processing) and errors can be present in
any year. We found that internal assignments were often used
inconsistently and intermingled with Error Processing and
Suppression.

5.2.2 Refactor Code and Identify Core
Once we identify feature implementations, we refactor the code as
outlined in Section 4. Refactoring removes global variables and
converts implicit communication to explicit. Refactoring may
require extensive analysis, especially if two or more features
interact or interfere within a given source function. We have
found that the refactoring results in fine-grained components with
low coupling and high cohesion.

For Error Processing, Suppression, and Assignments we
refactored the code as follows:

Removed UNREADY array: The UNREADY array forced the
Assignments and Suppression code to be highly coupled. We
replaced this global array with a component that accepted a
collection of errors. Then we developed routines (add, display,
and delete) to access the collection for one individual or the entire
census data.

Replaced recursive calls with sequential calls to evaluate items:
In the original system, Error Processing, Suppression and

Figure 7: Function vs. Test Case Matrix.

 Test Cases

T1
 T3

 T5
 T7

 T9
 T10

 T2
 T4

 T6
 T8

 Function Name
 Feature 1

 Feature 2
 Function 1

 60
 60

 50
 80

 100
 0 0

 0
 0

 0
 Function 2

 0
 0

 0
 20

 25
 60

 80
 90

 80
 100

 Function 3
 0

 0
 0

 0
 0

 0
 40

 40
 40

 40
 Function 4

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 Function 5
 100

 100
 100

 100
 100

 100
 100

 100 100 100
Function 6

 100 100 100 100 100 100 100 100 100 100
Function 7

 80 80 80 80 80 80 60 60 0 0
Function 8

 0 0 0 0 0 0 0 0 0 0
Function 9

 50 50 50 0 0 0 0 0 70 70
Function 10 0 0 80 0 0 0 0 0 40 0

Assignments were largely recursive. Essentially, a single large
routine inspected each item using a lengthy case statement;
when an item needed to check dependencies for another item, a
recursive call was made. After some analysis, we replaced this
function with a simpler, more sequential control flow

Separated Assignments, Suppression, and Error Processing
code: After analyzing Input Processing, we were able to remove
circular dependencies by first executing Assignments for certain
core items. We found this was consistent with all three features.

5.2.3 Create Fine-Grained Components
To determine which code artifacts to encapsulate, we analyzed
variable usage for all three features: Error Processing (EP),
Suppression (S), and Assignments (A). The result is shown in
Table 3. (EP/S means variables involved both in EP and S).

 Table 3: Variable Analysis (Pre/Post Evolution)

Var.→→

Comp.

↓↓

G

L

SS

SSF

Get

Value

Set

Value

L

AFS

Core

EP 35 5 4 2 25 10 5 6

A 14 8 6 4 10 12 6 4

S 50 5 8 5 55 5 4 4

EP/A 11 3 3 3 8 6 2 4

EP/S 20 5 4 3 17 8 3 4

A/S 25 6 3 2 18 12 4 2

EP/A/S 8 9 2 2 6 7 4 4

When creating fine-grained components, these variables and
functions become properties of a component. The first two
columns in Table 3 count the global (G) and local (L) variables
involved in a particular feature implementation when related test
cases are executed. Columns three and four show how many
functions, both stateless (SS) and state-full (SSF), are covered.
The component makes output values available using GetValue
(Parameter). Conversely, SetValue (Parameter) will
set the property inside the component. Because we are refactoring,
the sum of the first four columns for each row must equal the sum
of the last four columns.

To define the interface for the fine-grained components, we must
identify the possible relationships between features.

Feature Composition and Relationships: Turner identified
several relationships among interacting features [29]. We expand
this concept into direct and indirect relationships among
interacting features, and also add a dependent relationship as a
part of a direct relationship. Within the indirect relationship a
feature may be a composed, generalized or specialized part of
another feature. This is typically an end-user’s view. For example,
Input Processing is composed of Error Processing, Suppression
and Assignments sub-features. Within the direct feature
relationships, a feature relationship with another feature may be
that of dependent, altered, required, conflicting, and competitive.
In Input Processing we find the examples of the following types
of direct relationships among features.

Dependent: In AMS all features share key item values. The code
fragment in Figure 9 shows how key items are evaluated first and

used in Suppression and Assignments. The variable
QMarkInBPFA is set to true if item 16 has a “?”. We convert
this variable into a read-only property of the Assignments
component that can be read by other components.

Dim QMarkInBPFA As Boolean
Dim QmarkInUlPremType As Boolean
Dim XInBPFA As Boolean
Dim ISBEN As Boolean

QMarkInBPFA = isfloated(Values(16), False)
QmarkInUlPremType = isfloated(Values(174), False)
XInBPFA = XInItem(Values(16))
ISBEN = InStr(Values(26), ",BEN,") > 0 or
 InStr(Values(26), ",A/T.BEN,") > 0)

Figure 9: Dependent Feature Example.

Required: The function in Figure 10 implements the relationship
between Suppression and Error Processing. If an item is
suppressed, then errors associated with it are unnecessary and can
be removed. Because two features can directly interact with each
other, the extracted fine-grained components will have clearly
defined interfaces that declare this interaction.

public sub RemoveErrorsForSuppressedItems (
 suppressarray() as Integer, Errors as Collection)
 dim x, itemNum as Integer
 dim s as String
 for x = Errors.count to 1 step -1
 itemNum = AFSCore.FVAL(Mid$(Errors.Item(x),
 InStr(Errors.Item(x), ">") + 1))
 if suppressarray(ItemNum) <> 0 then
 Errors.Remove (x)
 end if
 next x

Figure 10: Required Feature Example.

Altered: The state of suppression of a given item is altered by the
entries in another item. For example the suppression state of item
98 in Figure 11 can be modified with the right condition. Note
that the Assignments component’s properties are used to alter the
suppression state. If the UI changes the value for any field that
can alter item 98, the suppression state is also altered. The global
array nSuppress() is transformed into a read/write property of
the Suppression component.

if Assignments.QMarkInBPFA or (Assignments.XInBPFA
and Assignments.SipFloat) or Assignments.ISBEN then
 nSuppress(98) = UnSuppressTheItem(nSuppress(98))
else
 nSuppress(98) = SuppressTheItem(nSuppress(98))
end if

Figure 11: Altered Feature Example.

Once feature relationships and properties are determined we can
create the component’s interface. This is shown in Table 4.

Input Processing was refactored into six components:
Assignments, Error Processing, Suppression, Error Processing
Core, Suppression Core, and AFS Core. While Assignments,
Error Processing, and Suppression perform specific duties of the
three specified features, the core components manage data
structures and contain stateless functions. In implementing these
features, core items were evaluated first and each item was called
sequentially instead of recursively. Feature relationships were
identified and coded as shown earlier. The last and final part of
creating the component was to integrate all six components into
one unit that performed Input Processing in an integrated
environment.

Table 4: Component Interface (Partial Listing)

Component Interface Methods

Assignments clsAssignment Assignments

Error
Processing
(EP)

clsErrorProcessing ErrorChecking

EP Core clsEProcessingCore AddError
ClearError
RemoveError
RemoveErrorForSuppressedItem
ClearAllErrors

Suppression
(S)

clsSuppression Suppression

S Core clsSuppressionCore SuppressTheItem
UnSuppressTheItem
SetTheSuppressCodes

AFS Core clsAFSCore Too many to list (42 in all)

5.2.4 Integrate Fine-Grained Components into AMS
Using standard configuration management and compiler
directives, old code in AMS was disabled to integrate the new
components. Since the code profiler provides all the relevant
functions it was rather simple to insert the Input Processing
component. The integrated component is shown in the Figure 12.

5.3 Step 3: Measure Results
The changes we made to the system were validated in two ways:
First, a regression test of Input Processing was performed to
compare data after the evolution of these three features. Using the
batch facility of AMS, we verified that the text file was identical
to the one generated before evolution. Second, our initial
evolution reasons, as listed earlier, were validated.

1. The system-locking problem: The component-based
implementation is a linear solution. In all three features, core
items are evaluated first and then each item is individually
evaluated. Previous communication through global variables
was replaced with interactions between component interfaces.

2. Cost of adding a new item: The average time to add a new
item and code all the relevant Assignments, Error Processing
and Suppression logic took 3 days prior to applying the
evolution methodology. After the system was evolved, we
collected data on adding 4 new items and the average time
spent was about 1.25 days.

3. Reusability between AMS and the web version of AMS:
There were six resulting components from this evolution
exercise: Assignments, Error Processing, Suppression, Error
Processing Core, Suppression Core and AFS Core. While AFS
Core is being used in all AFS product lines (a total of 4
different projects), the other five components are used in both
the desktop and Internet platform of AMS.

6. Lessons Learned
In this section, based on our case study, we evaluate the benefits
and limitations of our methodology.

Selecting Evolvable Features: Not all features are an ideal
candidate for this methodology. Using domain knowledge and
enterprise initiatives, it is possible to identify features that either
are a good candidate for reuse or have maintenance problems. If
an evolvable feature is spread out across many functions, and if
the code execution is below 50% using selected test cases within
each of the functions, the feature is not a good candidate. For
example, the primary function of AMS is to integrate executive
benefits and life insurance using complex non-linear algorithms.
Typically, life insurance acts as an asset to fund the executive
benefits. There are many legal-, accounting-, insurance- and
benefits-related constraints that play a very important role in the
asset/liability match within AMS. Such constraints are scattered
throughout AMS and make up less than 20-25% in any given
function. Our experience and heuristics tell us that the constraints
themselves will certainly not be good candidates for evolution
because they do not change frequently, and they probably cannot
be reused in other AFS product lines. Good candidates are those
features that change often, are concentrated in fewer functions, or
depend on or share global variables as a means of communication.

Our methodology provides several heuristics to avoid feature
interaction issues by identifying closely related features. If two
feature implementations are highly correlated then it is certain that
these features are intertwined, and a rewrite is probably warranted.

Availability of Regression Tests: While we have no empirical
studies to show that most systems have regression test suites to
measure stability between releases, such test suites are very
important from a business perspective. An informal survey of 7
legacy systems revealed that all of them had adequate regression
test suites. We therefore believe it is reasonable to assume that
most businesses either have these test suites (although they may
not refer to them as such) or are generating these test suites
manually each time a new release is scheduled.

Automating Tasks: To instrument the source code we compiled
the source code image with TrueCoverage™. Since the regression
testing is already being done in batch mode, it was easy to get the
instrumented output to compare against all 250 regression test
cases. However, these instrumented images were in a
TrueCoverage™ specific file format. TrueCoverage™ does
provide an automated way to export the specific file format. We
had to manually export each file into a standard file format
(comma-separated values) just to import into a spreadsheet tool
for further analysis. This process needs to be better automated.

Features and Code Coverage: We assume that a comprehensive
set of regression tests is available for identifying code associated
with the given feature(s). In our case study we found that even
after executing all test cases, not all of the code associated with
Input Processing was executed. We believe that the unexecuted

Input Processing

A

MasterFile
Census File
Policy File

Read

clsErrorProcessingGUI

clsSuppressionCore

clsAssignment
Save

clsAFSCore
EP

clsErrorProcessing

Show UI
Save GUI

S

clsSuppression
EP Core

clsErrorProcessingCore
S Core

EP GUI

AFS Core

Figure 12: Input Processing Component Infrastructure.

code contained either hidden features or is dead code. For
example, 12 routines were never called at all. Also, nearly 17% of
the code was not executed in the original code. We put all the
unused code in a separate file and documented it. Incremental
feature evolution gives us the implementation of core (AFS Core).

Core and Reducing Dependence on Variables: After refactoring
the AFS Core component, we manually identified the parameters
for each of the 42 stateless functions. Since AFS Core is being
used in 4 AFS projects, this effort was worthwhile because these
42 functions do not create any side effects and use no global
variables. In addition to AFS Core, there are two additional
supporting core components: Suppression Core and Error
Processing Core. These supporting core components encapsulate
the worker functions and states (i.e., business logic) used by
Suppression and Error Processing components. The supporting
core components are created to provide flexibility in future
evolution if any underlying data structure is changed for
managing suppression or error processing. For example, Error
Processing Core contains functions to add, remove, and edit
errors to a collection object. In the future, if the collection object
is replaced by an array or another structure, such encapsulation
will allow AFS to change only the working functions and the
interface for the business logic will remain the same. Therefore,
each of the six components has well-defined interfaces with no
side effects. Their properties and methods are categorized
explicitly using GetValue/SetValue.

Performance and Security: In refactoring the recursion into
linear functions, the performance of AMS was unaffected. We
observed a 4% decrease in execution time once AFS Core was
introduced. We attribute this improvement to the removal of
global variables and in-line code. Because the global variables
were reduced by 6% (AMS has over 150 global variables), the
system is more secure in terms of memory consumption since
COM+ offers better security and performance when components
use fewer global variables. Although COM+ is not being used in
the desktop version of AMS, there is significant benefit for using
components under COM+ for the web-based version.

Component Interface Issues: Our methodology initially created
components with too many interfaces. To resolve this issue, we
used a Collection Object provided in the VB programming
language to hide the list of these variables. Different programming
languages may require a different implementation of methods and
properties. Furthermore, the collection object was divided into
two basic types, GetValue/SetValue with the parameter of
the variable name as an index key.

Measuring Success: The true measure of a successful evolution
methodology is in reduced future maintenance costs. We have
only just begun the long-term task of collecting maintenance data
on the refactored system. We found that the features we evolved
for AMS as components can be reused in two platforms, both
desktop and Internet. Although reuse involves integration,
configuration management, and testing costs, the savings on
development costs made this exercise highly successful. As briefly
shown in Table 5, the net estimated cost of this project is one
month’s salary for the AFS development team. Once long-term
cost reductions are factored in, the resulting savings will be
favorable. The performance of the refactored system is acceptable
and it no longer freezes during input. Also, AFS is now using
AFS Core in all 4 of its product lines (an unexpected side effect).

Table 5: Budget Analysis

Effort Cost (+)/ Savings (-) in
Months

Map Features and Test-Cases +1

Identify code and Refactor +3

Component Creation (EP, S, A, Cores) +4

Testing, Training, Documentation,
Configuration and Project Management

+3

Savings from solving specific problems Data being gathered

Reuse (AFS Core in 4 projects and other
components in dual-platform)

-10

Net (Cost (+)/Savings (-)) +1

7. RELATED WORK AND CONCLUSION
Our work is closely related to the following areas of software
engineering: CBSE, Feature Engineering, Separation of Concerns
and AOP.

Although CBSE provides viable techniques to develop
modularized software systems, the components are often designed
and implemented from scratch rather than reengineering them
from within a legacy system. Recent approaches to evolution
within CBSE, such as ArchStudio [20], focus on evolving systems
that are already designed and constructed from well-defined
components and connectors. The emerging discipline of Software
Architecture as defined by Garlan and Shaw is concerned with a
level of design that addresses structural issues of a software
system, such as global control structure, synchronization and
protocols of communication between components [8]. Software
Architecture is thus able to address many issues in the
development of large-scale distributed applications by using off-
the-shelf components. In particular, it is a useful vehicle for
managing coarse-grained software evolution, as observed by
Medvidovic and Taylor[16]. However, Software Architecture
does not provide an efficient solution for legacy system evolution.
In addition, we are encouraged by results from our prior work
[17][18], where we converted a standalone AMS executable into a
component that evolved overall system architecture resulting in a
better maintenance platform for AMS, the feature-rich legacy
system that we used for our case study.

While there are techniques[2][13][15][31][32] to locate program
features using execution slices, they are predominantly used for
system debugging rather than evolution. A contribution of this
paper is to provide a practical model for features that can be used
in conjunction with slicing. Our methodology suggests using any
available code-profiling tool. The most closely related technology
is the χSuds [1] tool that can identify program feature in a C
program. Our innovative contribution is showing how to construct
a reusable fine-grained component from the feature.

The SEI FODA feature model ties business models together by
structuring and relating feature sets [9]. FODA framework
explores how this structured information can be leveraged across
the software development effort. Griss [9] extended the FODA
methodology to create an explicit feature model of functionality to
facilitate reuse-driven software engineering. We agree with Griss
that a feature model integrates the viewpoint of both the user and
the developer; in this paper we show the practical application of
this integrated perspective.

The feature interaction literature is primarily focused on
telecommunications networks [28]. Telecommunications networks
are massive, complex, distributed systems that incorporate a
variety of hardware and software elements. In this domain,
features represent capabilities that are incrementally added to a
telephony network. The presence of multiple independent
component providers makes the feature interaction problem even
more difficult. Telecommunication networks provide many
examples of features, such as call waiting, call forwarding, and
voice mail; the primary focus is on understanding how features
interact, rather than how the features will be evolved. Our feature
model is intuitive and easily applicable for evolution purposes.

Two theories related to our work are the separation of concerns
and Aspect-Oriented Programming (AOP). There are a number of
dimensions of concern that might be of importance for different
purposes (such as comprehension, traceability, reusability, and
evolution potential), for different systems, and at different phases
of the life cycle. There is an increasing focus on ways to
encapsulate multiple overlapping and interacting concerns. Tarr et
al. admit that a large part of their theory is unproven with an
industrial size example [26] and we believe their approach will
encounter great difficulties when applied to an existing legacy
system. The AOP community has focused on identifying cross-
cutting concerns that appear throughout numerous modules of a
system implementation[12][33]. These aspects are treated as first-
class entities that are “woven” together into the primary
modularization to create a final working system. We have found it
possible to encapsulate features that are like to change into fine-
grained components, thus avoiding the code-weaving phase of
AOP. Also, our fine-grained components are truly reusable
whereas aspects appear to only be usable in the context of the
original modular decomposition.

In conclusion, there are several benefits to our methodology. First,
it addresses the important issue of legacy system evolution in an
incremental manner. Over time, an increasing collection of fine-
grained components are extracted from the legacy system. Second,
we bridge the complexity gap by mapping problem-domain
features using regression test cases and the solution-domain
functions in the source code. Third, we use existing code-profiling
and similar tools to refactor code related to features. Fourth, by
clearly defining a fine-grained component model, we are able to
develop software assets with clearly defined interfaces that can be
used throughout the enterprise.

7.1 Future Work
American Financial Systems, Inc. has nearly ten years of
longitudinal data on their legacy system. We are currently
expanding our evaluation to model the development costs in
adding, modifying, or removing system features. Now that AFS
has refactored their legacy system, we will carefully monitor their
development and maintenance teams to determine the impact of
the software evolution methodology. We hope that other
organizations will be inspired by the success of AFS to carefully
evaluate their regression test suites to determine the feasibility of
creating their own reusable fine-grained components. We will also
investigate the challenges in applying our methodology when the
underlying system is programmed in an object-oriented language
such as C++ or Java.

8. ACKNOWLEDGMENTS
We would like to thank Eric Wong of Telecordia Technologies
and Lisa Amaya Price of AFS for providing feedback on an early
draft of this paper.

9. REFERENCES
[1] χSuds User’s Manual, Telecordia Technologies, 1998.

[2] T. Ball, “Software visualization in the large”, IEEE
Computer, VOL 29 NO 4, Apr. 1996, pp. 33-43.

[3] Y. Chen, D. Rosenblum, and K. Vo, “Test Tube: A System
for Selective Regression Testing”, Proceedings, 16th
International Conference on Software Engineering, IEEE
Computer Society, May 1994, pp. 211-220.

[4] S. Comella-Dorda, K Wallnau, R. Seacord, and J. Robert, “A
Survey of Legacy System Modernization Approaches”,
Technical Note CMU/SEI-00-TN-003, SEI, Carnegie Mellon
University, Apr. 2000.

[5] A. Davis and R. Rauscher, “Formal Techniques and
Automatic Processing to Ensure Correctness in
Requirements Specifications”, Proceedings, Conference on
Specifications of Reliable Software, IEEE Computer Society,
1979, pp. 15-35.

[6] A. Davis, “The Design of a Family of Application-Oriented
Requirements Languages”, IEEE Computer, Vol. 15, No. 5,
May 1982, pp. 21-28.

[7] J. Field, G. Ramalingam, and F. Tip, “Parametric Program
22nd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, 1995, pp. 379 – 392.

[8] D. Garlan and M. Shaw, “An Introduction to Software
Architecture”, Advances in Software Engineering and
Knowledge Engineering, Volume I. World Scientific
Publishing, 1993.

[9] M. Griss, “Implementing Product-Line Features with
Component Reuse”, Proceedings, 6th International
Conference on Software Reuse, Springer-Verlag, Vienna,
Austria, June 2000.

[10] M. Jain, M. Murty and P. J. Flynn, ACM Computing
Surveys, Vol. 31, No. 3, Sep. 1999, pp. 264-323.

[11] H. Kaindl, S. Kramer, and R. Kacsich. “A Case Study of
Decomposing Functional Requirements Using Scenarios”,
Proceedings, 3rd International Conference on Requirements
Engineering, IEEE Computer Society, Apr. 1998, pp. 82-89.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J-M Loingtier, and J. Irwin, “Aspect-Oriented
Programming”, Proceedings, 11th European Conference on
Object-Oriented Programming (ECOOP), June 1997, pp.
220-242.

[13] B. Korel and J. Laski, “Dynamic program slicing”,
Information Processing Letters, Vol. 29, No. 3, 1998, pp.
155-163.

[14] H. Leung and L. White, “Insights into Regression Testing”,
Proceedings, IEEE Software Maintenance Conference, 1989,
pp. 60–69.

[15] A. Malony, D. Hammerslag, and D. Jabalonski, “Traceview:
A Trace visualization tool”, IEEE Software, Sept. 1991, pp.
19-28.

[16] N. Medvidovic and R. Taylor, “Separating Fact from Fiction
in Software Architecture”, Proceedings, 3rd International
Workshop on Software Architecture, J. Magee and D. Perry,
Eds., Orlando, Florida, Nov. 1998, pp. 105-108.

[17] A. Mehta and G. Heineman, “Architectural Evolution of
Legacy System”, Proceedings, 23rd Annual International
Computer Software and Applications Conference, Phoenix,
Arizona, Aug. 1999, pp. 110-119.

[18] A. Mehta and G. Heineman, “COTS Integration and
Extension”, Continuing Collaborations for Successful COTS
Development, Workshop held in conjunction with ICSE
2000 Limerick, Ireland, May 2000, pp. 67-72.

[19] A. Onoma, W. Tsai, M. Poonawala, and H. Suganuma,
“Regression Testing in an Industrial Environment”, ACM
Communications, Vol. 41, May 1998, pp. 81-86.

[20] P. Oreizy, N. Medvidovic, and R. Taylor, “Architecture-
based runtime software evolution”, Proceedings, 20th
International Conference on Software Engineering, Kyoto,
Japan, Apr. 1998, pp. 62-70.

[21] G. Heineman and W. Councill, Component-Based Software
Engineering: Putting The Pieces Together, Addison-Wesley,
Boston, MA, 2001.

[22] L. Raccoon, “The Complexity Gap”, SIGSOFT Software
Engineering Notes, Vol. 20, No. 3, July 1995, pp. 37-44.

[23] G. Rothermel and M. Harrold, “A safe, efficient algorithm
for regression test selection”, Proceedings, IEEE Software
Maintenance Conference, 1993, pp. 358–367.

[24] G. Rothermel and M. Harrold. “A Comparison of Regression
Test Selection Techniques”, Technical Report, Dept. of
Computer Science, Clemson University, Oct. 1994.

[25] D. Smith, H. Muller, and S. Tilley, “The Year 2000 Problem:
Issues and Implications”, Technical Report CMU/SEI-97-
TR-002, SEI, 1997.

[26] P. Tarr, H. Ossher, W. Harrison and S. M. Sutton, “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns”, Proceedings, International Conference on
Software Engineering, 1999, pp. 107-119.

[27] S. Tilley and D Smith, “Legacy System Reengineering”,
Presented at the International Conference on Software
Maintenance, SEI, Carnegie Mellon University, Nov. 1996.

[28] S. Tsang and E. Magill. “Learning to Detect and Avoid Run-
Time Feature Interactions in Intelligent Networks”, IEEE
Transactions on Software Engineering, Vol. 24, No. 10, Oct.
1998, pp. 818-830.

[29] C. Turner C., A. Fuggetta, and A. Wolf. “Toward Feature
Engineering of Software Systems”, Technical Report CU-
CS-830-97, Department of Computer Science, University of
Colorado, Boulder, Colorado, Feb. 1997.

[30] N. Weiderman, J. Bergey, D. Smith, B. Dennis, and S. Tilley,
“Approaches to Legacy System Evolution”, Technical Report
CMU/SEI-97-TR-014, Software Engineering Institute,
Carnegie Mellon University, 1997.

[31] M. Weiser, “Program Slicing”, IEEE Transactions on
Software Engineering, Vol. 10, No. 4, July 1984, pp. 352-
357.

[32] N. Wilde N. and M. Scully, “Software Reconnaissance:
Mapping Program Features to Code”, Journal of Software
Maintenance: Research & Practice, Vol. 7, 1995, pp. 49-62.

[33] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn, “Using
AspectC to Improve the Modularity of Path-Specific
Customization in Operating System Code”, Joint 8th
European Software Engineering Conference (ESEC) and 9th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), Vienna, Austria, 2001, p. 88-98.

[34] www.numega.com

