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Abstract. The shapes of a protocol are its minimal, essentially different
executions. Naturally occurring protocols have only finitely many, indeed
very few shapes. Authentication and secrecy properties are easy to de-
termine from the shapes, as are attacks and anomalies. In this paper, we
define the idea of shape, and we also provide some operations that can
be used to construct shapes.

These operations are versions of the two authentication tests, funda-
mental patterns for protocol analysis and heuristics for protocol design.
The authentication tests were originally presented as theorems about all
complete executions. We have strengthened those results here. We also
use them to infer construction operations for shapes. These construc-
tion operations work on partial descriptions of executions, and serve as
information-increasing transformations on the descriptions.

1 The Idea of Shapes

In this paper, we study how to construct the shapes of a protocol, where by
shapes we mean the minimal, essentially different executions of a protocol. From
the shapes, one can read off what exactly secrecy and authentication properties
a protocol satisfies, as well as observe other anomalies in possible executions. In
this, our approach differs from much work in protocol analysis, which aims at
safe approximations (e.g. [5, 1]). We also differ from work using bounded protocol
analysis (e.g. [2,10]); the shapes describe protocol executions of all sizes.

In practice, protocols have remarkably few shapes. The Needham-Schoeder-
Lowe [11, 9] protocol has only one. This holds whether we take the point of view
of a responder B, asking what global behavior must have occurred if B has had
a local run of the protocol, or whether we start from a local run of an originator
A. In either case, the other party must have had a matching run. A, however,
can never be sure that the last message it sends was received by B, as A is no
longer expecting to receive any further messages. Uniqueness of shape is perhaps
not surprising for as strong a protocol as Needham-Schroeder-Lowe.

However, even a flawed protocol such as the original Needham-Schroeder
protocol may have a unique shape, shown in Fig. 1.
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Fig. 1. Needham-Schroeder Shape for B (privk(A) uncompromised, N, fresh)

Terminology. Newly introduced terminology is in boldface.

B’s local behavior is represented by the right-hand column in Fig. 1, consist-
ing of nodes connected by double arrows e = e. A’s local behavior is represented
by the left-hand column. We call such a column a strand. The nodes represent
message transmission or reception events, and the double arrows represent suc-
cession within a single linearly ordered local activity. The message transmitted
or received on a node n is written msg(n). A regular strand is a strand that
represents a principal executing a single local session of a protocol; it is called a
regular strand because the behavior follows the protocol rules. A local behavior
as used so far refers to a regular strand. (See Section 2.2.)

In the messages, we use {|t[} x to refer to the encryption of ¢t with key K, and
t "¢’ means the pair of the messages ¢ and t’. Messages are constructed freely via
these two operations from atomic values such as principal names A, nonces N,
keys K, etc. (See Section 2.1.)

The subterm relation is the least reflexive, transitive relation such that ¢ is
a subterm of {|t[} k, t is a subterm of ¢ "¢/, and ¢ is a subterm of ¢’ "¢ (for all K,t’).
We write ¢ C ¢ if ¢ is a subterm of ¢'. Thus, K Z {t[}x unless (anomalously)
K C t. Instead, K contributed to how {|t[} x was produced. This terminology has
an advantage: Uncompromised long-term keys are never subterms of messages
transmitted in a protocol; they are used by regular principals to encrypt, decrypt,
or sign messages, but are never transmitted. A value a originates at a node n
if (1) n is a transmission node; (2) a C msg(n); and (3) if m is any earlier node
on the same strand, then a IZ msg(m). (Section 2.2, Example 3.)

Adversary behavior is represented by strands too. These penetrator strands
codify the basic abilities that make up the Dolev-Yao model. They include trans-
mitting a basic value such as a nonce or a key; transmitting an encrypted message
after receiving its plaintext and the key; and transmitting a plaintext after re-
ceiving ciphertext and decryption key. The adversary can also pair two messages,
or separate the pieces of a paired message. Since a penetrator strand that en-
crypts or decrypts must receive the key as one of its inputs, keys used by the
adversary—compromised keys—have always been transmitted by some partici-
pant. These penetrator strands are independent of the protocol under analysis.
(See Definition 3.)

Suppose that B is a finite, directed acyclic graph whose nodes lie on regular
and penetrator strands, and whose edges are either (a) strand succession edges



ng = ny, or else (b) message transmission edges n — m where msg(n) = msg(m),
n is a transmission node, and m is a reception node.

B is a bundle if (1) if ng = n; and ny € B, then ng € B, and (2) for every
reception node m € B, there is a unique transmission node n € B such that
the edge n — m is in B. The conditions (1,2) ensure that B is causally well
founded. A global behavior or execution, as used so far, refers to a bundle. (See
Definition 5.)

The NS Shape. In the Needham-Schroeder protocol, let us suppose that B’s
nonce N has been freshly chosen and A’s private key privk(A) is uncompromised,
and that B has executed the strand shown at the right in Fig. 1. In protocols
using asymmetric encryption, the private keys are used only by recipients to de-
structure incoming messages. Given that—on a particular occasion—B received
and sent these messages, what must have occurred elsewhere in the network?

A must have had a partially matching strand, with the messages sent and
received in the order indicated by the arrows of both kinds and the connecting
symbols <. These symbols mean that the endpoints are ordered, but that other
behavior may intervene, whether adversary strands or regular strands. A’s strand
is only partially matching, because the principal A meant to contact is some C
which may or may not equal B. There is no alternative: Any diagram containing
the responder strand of Fig. 1 must contain at least an instance of the initiator
strand, with the events ordered as shown, or it cannot have happened.

Such a diagram is a shape. A shape consists of the regular strands of some
execution, forming a minimal set containing the initial regular strands (in this
case, just the right-hand column). Possible executions may freely add adversary
behavior. Each shape is relative to assumptions about keys and freshness, in this
case that privk(A) is uncompromised and N, freshly chosen.

Although there is a single shape, there are two ways that this shape may be
realized in executions. Either (1) C’s private key may be compromised, in which
case we may complete this diagram with adversary activity to obtain the Lowe
attack [9]; or else (2) C' = B, leading to the intended run.

Some protocols have more than one shape, Otway-Rees, e.g., having four. In
searching for shapes, one starts from some initial set of strands. Typically, the
initial set is a singleton, which we refer to as the “point of view” of the analysis.

Skeletons, Homomorphisms, Shapes. A skeleton represents regular (non-
penetrator) behavior that might make up part of an execution, and a homo-
morphism is an information-preserving map between skeletons. Skeletons are
partially-ordered structures, like fragments of Lamport diagrams [8] or fragments
of message sequence charts [7].

A skeleton A is (1) a finite set of regular nodes, equipped with additional
information. The additional information consists of (2) a partial order <4 on
the nodes indicating causal precedence; (3) a set of keys nony; and (4) a set



of atomic values unique,. Values in nony must originate nowhere in A, whereas
those in unique, originate at most once in A.! (See Def. 7.)

A is realized if it has precisely the regular behavior of some execution. Every
message received by a regular participant either should have been sent previously,
or should be constructable by the adversary using messages sent previously. (See
Def. 9.)

Example 1. Fig. 1 shows skeleton A, with nony = = {privk(A)} and unique, =
{Np}. A,s is a realized skeleton.

The right-hand strand of Fig. 1, B’s responder strand, also forms a skeleton
Ay with the same choice of non, unique. A is not realized.

The first two nodes on Fig. 1 also form a skeleton A;,. This skeleton is
realized, as the adversary can prepare the incoming message of its first node,
and discard the outgoing message of its second node.

The result of replacing C' by B throughout A, ;—hence replacing pubk(C') by
pubk(B)—yields a realized skeleton A,;, the Needham-Schroeder intended run.

A homomorphism is a map H from Ay to Ay, written H: Ag — A;. We
represent it as a pair of maps (¢, a), where ¢ maps the nodes of Ay into those
of A1, and « is a replacement mapping atomic values into atomic values. We
write ¢ -« for the result of applying a replacement « to a message t. H = (¢, «) is
a homomorphism iff: (1) ¢ respects strand structure, and msg(n)-« = msg(¢(n))
for all n € Ag; (2) m <, n implies ¢(m) <4, ¢(n); (3) nony, - & C nony,; and
(4) unique, -« C uniquey . (Defs. 1, 11.)

Homomorphisms are information-preserving transformations. Each skeleton
Ag describes the realized skeletons reachable from Ay by homomorphisms. Since
homomorphisms compose, if H: Ag — A; then any realized skeleton accessible
from A; is accessible from Ay. Thus, A; preserves the information in Ag: A
describes a subset of the realized skeletons described by Ag.

A homomorphism may supplement the strands of Ay with additional behavior
in Aq; it may affect atomic parameter values; and it may identify different nodes
together, if their strands are compatible in messages sent and positions in the
partial ordering.

Example 2. The map H,s: Ay — A, embedding the responder strand of Fig. 1
into A, is a homomorphism. Likewise if we embed the first two nodes of B’s
strand (rather than all of Ap) into A,s. Another homomorphism H;: A, — A,
rewrites each occurrence of C in A, to B, hence each occurrence of pubk(C)
to pubk(B). It exhibits the Needham-Schroeder intended run as an instance of
Fig. 1. The composition H,s; = H; o H,s embeds the responder strand into the
intended run.

A homomorphism H = (¢, «) is nodewise injective if the function ¢ on
nodes is injective. The nodewise injective homomorphisms determine a useful
partial order on homomorphisms: When for some nodewise injective Hy, HioH =
H', we write H <, H'.If H<,, H <,, H, then H and H’ are isomorphic.

! When n =* n’ and n’ € A, we require n € A and n <4 n'.



A homomorphism H: Ag — A, is a shape iff (a) A; is realized and (b) H
is <,-minimal among homomorphisms from A, to realized skeletons. If H is a
shape, and we can factor H into Ag Ao pr 1 Ay, where A’ is realized, then
A’ cannot contain fewer nodes than A;, or identify fewer atomic values. A; is as
small and as general as possible. (Def. 13.)

We call a skeleton A; a shape when the homomorphism H (usually an em-
bedding) is understood. In this looser sense, Fig. 1 shows the shape A,. Strictly,
the embedding H,s: Ay — A, is the shape. The embedding H,g;: Ay — A,
with target the Needham-Schroeder intended run A,;, is not a shape. A,; iden-
tifies fewer atoms, and the map replacing C' with B is a nodewise injective
H;: Ay — Ansia so Hy, <n H; o Hyps = Hys;.

Shapes exist below realized skeletons: If H: Ay — A; with A; realized, then
the set of shapes Hy with Hy <,, H is finite and non-empty. (Prop. 7.)

2 Terms, Strands, and Bundles

In this section and Section 4 we give precise definitions, which include a number
of fine points which seemed an unnecessary distraction in Section 1. In this
section, the definitions of replacement and protocol (Defs. 1, 4) are new versus [6].

2.1 Algebra of Terms

Terms (or messages) form a free algebra A, built from atomic terms via construc-
tors. The atoms are partitioned into the types principals, texts, keys, and nonces.
An inverse operator is defined on keys. There may be additional functions on
atoms, such as an injective public key of function pubk(a) mapping principals
to keys, or an injective long term shared key of function ltk(a) mapping pairs
of principals to keys. These functions are not constructors, and their results are
atoms. pubk(a) " is a’s private key, where pubk(a) ™" # pubk(a). We often write
the public key pair as K,, K, !. By contrast, ltk(a) ™" = Itk(a).

Atoms, written in italics (e.g. a, N,, K~'), serve as indeterminates (vari-
ables). We assume A contains infinitely many atoms of each type. Terms in A are
freely built from atoms using tagged concatenation and encryption. The tagged
concatenation using tag of tg and t¢; is written tag "t " ¢;. Tagged concatenation
using the distinguished tag null of ¢y and ¢; is written ¢y " ¢;. Encryption takes a
term ¢ and an atomic key K, and yields a term as result written {¢[} k.

Replacements have only atoms in their range:

Definition 1 (Replacement, Application). A replacement is a function «
mapping atoms to atoms, such that (1) for every atom a, a(a) is an atom of the
same type as a, and (2) « is a homomorphism with respect to the operations on
atoms, i.c., (K1) = (a(K))™" and a(pubk(a)) = pubk(a(a)).

The application of « to t, written ¢ - o, homomorphically extends «’s action
on atoms. More explicitly, if ¢ = a is an atom, then a - « = a(a); and:

(tagAtOAtl) cQ :tagA(to 'OZ)A(tl 'Oé)

{thx) - a=A{t-alka



Application distributes through larger objects such as pairing and sets. Thus,
(z,y) - a=(z-a,y-a),and S-a={z-a:z € S}. If x A is a simple value
such as an integer or a symbol, then x - a = x.

2.2 Strands and Origination

Since replacements map atoms to atoms, not to compound terms, unification
is very simple. Two terms are unifiable if and only if they have the same ab-
stract syntax tree structure, with the same tags associated with corresponding
concatenations, and the same type for atoms at corresponding leaves. To unify
t1,t2 means to partition the atoms at the leaves; a most general unifier is a finest
partition that maps a, b to the same ¢ whenever a appears at the end of a path
in t; and b appears at the end of the same path in to. If two terms t¢1,to are
unifiable, then t1 - o and ¢ - 8 are still unifiable.
The direction + means transmission, and the direction — means reception:

Definition 2 (Strand Spaces). A direction is one of the symbols +, —. A di-
rected term is a pair (d,t) with ¢ € A and d a direction, normally written +¢, —t.
(£A)* is the set of finite sequences of directed terms.

A strand space over A is a structure containing a set X' and two mappings: a
trace mapping tr : X' — (£A)* and a replacement application operator (s, a) —
s -« such that (1) tr(s-«a) = (tr(s)) - @, and (2) s-a = s’ -« implies s = 5.

By (2), X has infinitely many copies of each s, i.e. strands s’ with tr(s") = tr(s).

Definition 3. A penetrator strand has trace of one of the following forms:

M;: (+t) where t €text, principal,nonce Ki: (+K)
Cg,h: <797 7ha +gAh> ngh: <7gAha +gv +h>
Enk: (=K, —h, +{hltk) Di.rc: (K", —{hlix, +h).

If s is a penetrator strand, then s - « is a penetrator strand of the same kind.

The subterm relation, written C, is the least reflexive, transitive relation
such that (1) to C tag”to " t1; (2) t1 C tag to "t1; and (3) ¢ C {|t[tx. Notice,
however, K IZ {|t[}x unless (anomalously) K C t. We say that a key K is used
for encryption in a term t if for some tg, {|to}x C t.

A node is a pair n = (s,4) where ¢ < length(tr(s)); strand(s, ) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s | 4 for the
node n = (s,4). A term t originates at node n if n is positive, t C msg(n), and
t IZ msg(m) whenever m =7 n. Thus, ¢ originates on n if ¢ is part of a message
transmitted on n, and ¢t was neither sent nor received previously on this strand.
If a originates on strand s, we write O(s,a) to refer to the node on which it
originates.

Example 3. N, originates on the first node of the Needham-Schroeder initiator
strand s;, so we write O(s;, N,) = s; | 1. N, originates on the second node of the
responder strand s, i.e. O(s;, Np) = s, | 2. More precisely, O(s,, Np) = s | 2
unless N, = N, because if the two nonces were the same, then N, would not



originate on the responder strand at all. Instead, it would have been received
before being re-transmitted. Thus, the replacement 5 = [N, — N,| destroys the
point of origination. Even if we have O(s,., Ny) = s, | 2, we have O(s,.- 3, Ny - 3)
undefined. In this sense, applying 0 to s, is a kind of degeneracy that destroys a
point of origination. When we have assumed that a value such as N, originates
uniquely, we will avoid applying replacements that would destroy its point of
origination. (See Def. 4, regular strands, and Def. 11, homomorphism.)

A listener role is a regular strand Lsn[a] with trace (—a). It documents that
a is available on its own to the adversary, unprotected by encryption. Since
replacements respect type, atoms of different type must be overheard by different
roles. We assume each protocol I has listener roles Lsn[N] and Lsn[K] for nonces
and keys respectively, with traces (—N) and (—K).

2.3 Protocols and Bundles

Definition 4 (Protocols). A candidate (II,strand_non, strand_unique) consists
of: (1) a finite set IT of strands—containing the listener strands Lsn[N], Lsn[K]—
called the roles of the protocol; (2) a function strand_non mapping each role r
to a finite set of keys strand_non,., called the non-originating keys of r; and (3) a
function strand_unique mapping each role r to a finite set of atoms strand_unique,.
called the uniquely originating atoms of r.

A candidate (I1, strand_non, strand_unique) is a protocol if (1) K € strand_non,
implies that K does not occur in any node of 7, but either K or K~! is used
for encryption on some term of tr(r); and (2) a € strand_unique, implies that a
originates on r, i.e. O(r,a) is well defined.

The regular strands of (II,strand_non, strand_unique) form the set X =

{r-a:r €Il and Va € strand_unique,., (O(r,a)) -a = O(r - a,a- «a)}.

The non-originating keys strand_non,. and uniquely originating atoms strand_unique,.
are used in Defs. 8 and 14, Clauses 1c¢,d. The condition that constrains r -« based
on O(r,a) is a non-degeneracy condition. It says that replacement o determines
an instance of r only if it does not cause a value a, assumed uniquely originat-
ing, to collide with another value already encountered in executing r. Since for

a € strand_unique,, the left hand side of (O(r,a)) - a = O(r - aya - o) is well-
defined, we interpret the equation as meaning that the right hand side is also
well-defined, and has the same value.

Example 4. The Needham-Schroeder protocol has a set I1,,s of roles containing
the two roles shown in Fig. 1 and two listener roles, to hear nonces and keys.
For each r € II,, strand_non,. = () = strand_unique,..

Setting strand_non;,;; = {privk(B)}, strand_non,.s, = {privk(A4)} reproduces
the original Needham-Schroeder [11] assumption that each peer chosen is un-
compromised. The protocol achieves its goals relative to this assumption.

Setting strand_unique,,;; = {N,} would express the assumption that every
initiator uses a strong random number generator to select nonces, so that the
probability of a collision or of an adversary guessing a nonce is negligible.



The set A of all nodes forms a directed graph G = (N, (— U =)) with edges
ny — ng for communication (with the same term, directed from positive to
negative node) and n; = ny for succession on the same strand.

Definition 5 (Bundle). A finite acyclic subgraph B = (Ng, (—p U =g)) of G
is a bundle if (1) if ny € Np is negative, then there is a unique n; € Ng with
ny —p ng; and (2) if ny € N and n; = ng, then n; =p ny. When B is a
bundle, <p is the reflexive, transitive closure of (—g U =5).

A bundle B is over (II,strand_non, strand_unique) if for every s | i € B, (1)
either s € X7 or s is a penetrator strand; (2) if s = 7+« and a € strand_non,. - ¢,
then a does not occur in B; and (3) if s = r -« and a € strand_unique,. - «, then
a originates at most once in B.

Example 5. Fig. 1is a bundle if we replace C' with B and then connect arrows
with matching labels. Alternatively, it becomes a bundle by adding penetrator
strands to unpack values encrypted with K¢ and repackage them encrypted with
Kp.

We say that a strand s is in B if s has at least one node in B. Henceforth, assume
fixed some arbitrary protocol (I, strand_non, strand_unique).

Proposition 1. Let B be a bundle. <p is a well-founded partial order. Every
non-empty set of nodes of B has <g-minimal members.

B -« is a bundle if, for every regular strand s = r - 3 in B, and for every
a € strand_unique,. - 8, we have (O(s,a)) - a=0(s-a,a- ).

3 Strengthened Authentication Tests in Bundles

To direct the process of searching for realized skeletons, we use the authentication
tests [6] in a strengthened and simplified form.

3.1 “Occurs Only Within”

An outgoing test node receives a uniquely originating atom in a new form, while
an incoming test node receives an encryption in a new form. A message ¢t occurs
in a new form in msg(n) if it occurs outside a set S of encryptions, whereas
previously ¢ occurred only within members of S:

Definition 6 (Occurs only within/outside). A term ty occurs only within
S in t, where S is a set of encryptions, if:

1. to [Z t; or

2. te S;or

3. t # to and either (3a) t = {|t;[} x and ¢y occurs only within S in ¢1; or (3b)
t =tag " t; “te and tg occurs only within S in each t; (i = 1,2).



It occurs outside S in t if ty does not occur only within S in ¢.

We say that t exits S passing from ty to t1 if t occurs only within S in ¢
but t occurs outside S in t1. Term ¢ exits S at a node n if ¢t occurs outside S in
msg(n) but occurs only within S in every msg(m) for m < n.

So to occurs only within S in ¢ if in the abstract syntax tree, every path from
the root t to an occurrence of ¢y as a subterm of ¢ traverses some t; € S before
reaching to.2 If it occurs outside S, this means that ¢y C ¢ and there is a path
from the root to an occurrence of ¢y as a subterm of ¢ that traverses no t; € S.

Example 6 (Needham-Schroeder Occurrences). N, occurs only within the
singleton set S, = {{{Na" Np[}pubk(a)} in the term {{Ny " Np[}pubk(a). However,
Ny occurs outside S, in the term {|Np[}pubk(p), S0 Np exits S, passing from
{INa” Noltpubk(ay to {Nol}pubk(B) -

3.2 The Tests in Bundles

We say that a is protected in B iff msg(n) # a for all n € B. By the definitions
of the penetrator strands for encryption and decryption (Definition 3), if the
adversary uses K for encryption or decryption anywhere in B, then K is not
protected in B. Thus, the adversary cannot create any encrypted term with a
protected key K. If K1 is protected, it cannot decrypt any term encrypted with
K.

We say that a is protected up to m in B, written a € Prot,,(B), iff, for all
n € B, if msg(n) = a then m <z n. If a key is protected up to a negative node
m, then the adversary cannot use that key to prepare the term received on m.

Proposition 2 (Outgoing Authentication Test). Suppose an atom a orig-
inates uniquely at a regular node ng in bundle B, and suppose

S C {{thr: K~ € Prot,, (B)}.

If, for some ny € B, a exits S passing from msg(ng) to msg(ni), then a exits
from S at some positive regular my =g ni. If ng and mq lie on different strands,
then for some negative my € B with a C msg(my),

ng <B Mo =T my <XB nj.

In the outgoing test, we call mg =T my an outgoing transforming edge for a, S. It
transforms the occurrence of a, causing a to exit S. We call (ng,n1) an outgoing
test pair for a,S when a originates uniquely at ny and a exits S passing from
msg(ng) to msg(ny). We also sometimes call m; an outgoing transforming node
and nq an outgoing test node.

2 In our terminology (Section 2), the K in {|t[}x is not an occurrence as a subterm.



Example 7. In the Needham-Schroeder protocol, with responder role s,., the
nodes (s, | 2),(s, | 3) form an outgoing test pair for Ny, S,, where S, is as
given in Example 6. If the initiator role is s;, then the edge s; | 2 =-s; | 3is a
outgoing transforming edge for Ny, S;..

Also, the nodes (s; | 1),(s; | 2) form an outgoing test pair for N,,S;,
where S; is the singleton set {{{No " A} pubk(c) }- Letting s;. = s,. - [B +— C], then
sl | 1= s | 2 forms an outgoing transforming edge for N,, S;.

Proposition 3 (Incoming Authentication Test). Let t = {|to[}x with K €
Prot,,, (B), and let S C {{|{t'}k,: K5 * € Prot,, (B)}. Ift occurs outside S in any
ny € B, then t exits S at some positive reqular my; < nq.

We call m; an incoming transforming node for t, S, and n; an incoming test node
for ¢,.5. In our experience with existing protocols, Prop. 3 is always used with
S =0, i.e. t does not occur at all before m;. However, one can invent protocols
requiring non-empty S, and completeness requires the stronger form.

4 Preskeletons, Skeletons, and Homomorphisms

The notion of a skeleton is intended to extract parts of the regular behavior of
bundles, so that we can focus our inferences on what regular behavior must also
be present.

4.1 Skeletons

A preskeleton is potentially the regular (non-penetrator) part of a bundle or of
some portion of a bundle, and skeletons are the subset that are well-behaved, in
that atoms intended to originate uniquely do so.

A preskeleton consists of nodes annotated with additional information, in-
dicating order relations among the nodes, uniquely originating atoms, and non-
originating atoms. We say that an atom a occurs in a set nodes of nodes if for
some n € nodes, a C msg(n). A key K is used in nodes if for some n € nodes,
{t} x C msg(n). We say that a key K is mentioned in nodes if K or K1 either
occurs or is used in nodes. For a non-key a, a is mentioned if it occurs.

Definition 7. A four-tuple A = (nodes, <, non, unique) is a preskeleton if:

1. nodes is a finite set of regular nodes; n; € nodes and ny =1 m; implies
ng € nodes;

2. = is a partial ordering on nodes such that ng = n; implies ng < nq;

3. non is a set of keys, and for all K € non, either K or K~! is used in nodes;

3'. for all K € non, K does not occur in nodes;

4. unique is a set of atoms, and for all a € unique, a occurs in nodes.

A preskeleton A is a skeleton if in addition:

4'. a € unique implies a originates at no more than one node in nodes.



We select components of a preskeleton using subscripts, so, in A = (N, R, S, 5),
<a means R and unique, means S’. A need not contain all of the nodes of a
strand, just some initial subsequence. We write n € A to mean n € nodesy, and
we say that a strand s is in A when at least one node of s is in A. The A-height
of s is the largest ¢ with s | ¢ € A. By Clauses 3, 4, unique, N nony = (.

Example 8. A, shown in Fig 1, is a skeleton with non = {privk(A)}, unique =
{Np}. Its ordering is generated from the double arrows =, single arrows —, and
precedence signs. Ay, containing only the responder strand s, on the right side
of Fig 1, is also a skeleton (equipped with non = {privk(A)}, unique = {N,}).
However, if we adjoin a copy s,. = s, - [B +— C] to A, then the result is not a
skeleton, but only a preskeleton A,.. N, originates both at s, | 2 and at s}, | 2.
If instead we adjoin )/ = s, - [B + C, N = N;], we obtain a skeleton A .

The skeletons for a protocol (I7,strand_non,strand_unique) are defined like
the bundles for that protocol.

Definition 8. A is a preskeleton for protocol (II,strand_non,strand_unique) iff
for every n € nodesy with n = s | 4, (1) s € Xp; (2) if s = r -« and
a € strand_non, - «, then a does not occur in A; and (3) if s = r - « and
a € strand_unique, - o, then a € unique,. A is a skeleton for a protocol if A
is a skeleton, and A is a preskeleton for that protocol.

4.2 Skeletons and Bundles
Bundles correspond to certain skeletons:
Definition 9. Bundle B realizes skeleton A if:

1. The nodes of A are the regular nodes n € B.

2. n =4 n just in case n,n’ € nodes, and n <z n'.

3. K € nony iff case K or K~ ! is used in nodes, but K occurs nowhere in B.
4. a € unique, iff a originates uniquely in B.

The skeleton of B is the skeleton that it realizes. The skeleton of B, written
skeleton(B), is uniquely determined. A is realized if some B realizes it.

By condition (4), B does not realize A if A is a preskeleton but not a skeleton.
Given a skeleton A, methods derived from [6] determine whether A is realized.
Skeleton A, from Example 8 is realized, but N; is not.

Definition 10. A term t is derivable before n in A if there is a penetrator web
G with t € Rg such that:

1. S¢ C {msg(m): m positive and m < n};
2. If K € nony, K does not originate in G,,; and
3. If a € unique, and a originates in A, then a does not originate in G,,.

Proposition 4. A skeleton A is realized iff, for every negative n € A, msg(n)
is derivable before n in A.



4.3 Homomorphisms

When A is a preskeleton, we may apply a substitution « to it, subject to the
same condition as in Prop. 1. Namely, suppose « is a replacement, and suppose
that for each regular strand s = r - 0 such that s has nodes in A, and for each
atom b € u, - 3,

(O(s,0)) - a=0(s-a,b-a).

Then A-« is a well defined object. However, it is not a preskeleton when z-a = y-«
where = € nony while y occurs in A. In this case, no further identifications can
restore the preskeleton property. So we are interested only in replacements with
the property that -« = y - @ and « € nony implies y does not occur in A. On
this condition, A - « is a preskeleton.

However, A may be a skeleton, while objects built from it are preskeletons but

not skeletons. In a preskeleton, we can sometimes, though, restore the skeleton
unique origination property (4') by a mapping ¢ that carries the two points of
origination to a common node. This will be possible only if the terms on them are
the same, and likewise for the other nodes in A on the same strands. We regard
¢, as an information-preserving, or more specifically information-increasing,
map. It has added the information that ai,as, which could have been distinct,
are in fact the same, and thus the nodes ni, no, which could have been distinct,
must also be identified.
Example 9. A;,m is a skeleton, but the result of applying the replacement
[N] — Ny| yields the preskeleton Ap,. which is not a skeleton. If the map
¢: nodesy ,, +— nodesy  maps the successive nodes of the strand s/, to the nodes
of the strand s,, then it will identify s | 2 with s, | 2, and thus restore the
unique point of origination for V.

Definition 11. Let Ay, A; be preskeletons, o a replacement, ¢: nodesy, —
nodesy,. H = [¢, o] is a homomorphism if

la. For all n € Ay, msg(¢(n)) = msg(n) - o, with the same direction;

1b. For all s,4, if s | ¢ € A then there is an s’ s.t. for all j <, ¢(s | j) = (s',7);
2. n =4, m implies ¢(n) <4, d(m);

3. nony, - & C nony,;

4. unique,, -a C unique, ; and ¢(O(s,a)) = O(s’,a-a) whenever a € unique, ,

O(s,a) € Ag, and (s | j) = s | j.

We write H: Ag — A; when H is a homomorphism from Ay to A;. When
a-a =a-da for every a that occurs or is used for encryption in dom(¢), then
[p, @] = [¢,d]; i.e., [¢,a] is the equivalence class of pairs under this relation.

The condition for [¢,a] = [p,a’] implies that the action of o on atoms not
mentioned in the Ay is irrelevant. The condition on O in Clause 4 avoids the de-
generacy in which a point of origination is destroyed for some atom a € unique, .
We stipulate that such degenerate maps are not homomorphisms. For instance,



a replacement « that sends both N, and N, to the same value would not fur-
nish homomorphisms on A,. A responder, expecting to choose a fresh nonce,
inadvertently selecting the same nonce N, he has just received, would be an
event of negligible probability. Thus, we may discard this degenerate set. Some
homomorphisms are given in Example 2.

A homomorphism I = [¢, a]: Ag — A; is an isomorphism iff ¢ is a bijection
and there is an injective o’ such that [¢,a] = [¢,a’]. Two homomorphisms
Hy, Hy are isomorphic if they differ by an isomorphism [; i.e. H; = I o Hs.

When transforming a preskeleton A into a skeleton, one identifies nodes n, n’
if some a € unique, originates on both; to do so, one may need to unify additional
atoms that appear in both msg(n), msg(n’). This process could cascade. However,
when success is possible, and the cascading produces no incompatible constraints,
there is a canonical (universal) way to succeed:

Proposition 5. Suppose Hy: A — A" with A a preskeleton and A’ a skeleton.

There exists a homomorphism G and a skeleton Ag such that Ga: A — Ay
and, for every skeleton Ay and every homomorphism Hy: A — Ay, for some H,
Hi = HoGy. Gy and Ay are unique to within isomorphism.

Definition 12. The hull of A, written hull(A), is the universal map G4 given
in Prop. 5, when it exists. We write hull,(-) for the partial map that carries any
skeleton A to hull(A - ).

We sometimes use the word hull to refer also to the target Ay of Gy.
We say that a skeleton Ag is live if for some H, A, H: Ag — Ay and A, is
realized. Otherwise, it is dead. There are two basic facts about dead skeletons:

Proposition 6 (Dead Skeletons). (1) If a € nony and (Lsn[a]) | 1 € A, then
A is dead. (2) If A is dead and H: A — A’ then A’ is dead.

4.4 Shapes

Shapes are minimal realizable skeletons, or more precisely, minimal homomor-
phisms with realizable targets.

Definition 13 (Shape). [¢,a]: Ag — A, is nodewise injective if ¢ is an injec-
tive function on the nodes of Ag.

A homomorphism Hy is nodewise less than or equal to Hy, written Hy <,, Hy,
if for some nodewise injective J, J o Hy = Hi. Hy is nodewise minimal in a set
S if Hy € S and for all H, € S, Hy <,, Hy implies H; is isomorphic to Hy.

H: Ay — A is a shape for Ag if H is nodewise minimal among the set of
homomorphisms H': Ay — A} where A] is realized.

The composition of two nodewise injective homomorphisms is nodewise injec-
tive, and a nodewise injective H: A — A is an isomorphism. Thus, Hy, H; are
isomorphic if each is nodewise less than or equal to the other. Hence, the relation
<,, is a partial order on homomorphisms, to within isomorphism.

When we say that A; is a shape, we mean that it is the target of some shape
H: Ay — Ay, where a particular Ag is understood from the context.



Proposition 7. Let H: Ag— Ay. The set S = {H': H' <,, H} is finite (up to
isomorphism). If Ay is realized, then at least one H' € S is a shape for Ay.

Example 10. The process described in this proof, applied to the embedding
H,s: Ap — A, (see Example 2), discovers that the multiple occurrences of
pubk(B) can be partitioned into those on the responder strand and those on the
initiator strand. These can be distinguished, preserving being realized. Applied
to the embedding of Ay, (containing the first two responder node, see Example 1)
into A, it discards all the nodes outside Ay, , since the latter is already realized.

5 The Tests in Skeletons

To adapt the authentication tests of Section 3 to skeletons and homomorphisms,
there are essentially two steps. First, we must “pull back” from bundles or re-
alized skeletons to the skeletons that reach them via homomorphisms. Second,
we can no longer read off the safe atoms from Prot(8). We have only partial
information about which atoms will turn out to be safe or compromised. Thus,
we speculatively consider both possibilities, i.e. both the possibility that a key
will turn out to be compromised, and also the possibility that the transformed
nodes need to be explained with a transforming edge.

Definition 14 (Augmentations, Contractions). 1. An augmentation is an

inclusion [id, id]: Ag — A; such that:

(a) nodesy, \ nodesy, = {s | j: j < i} for some s =r -

(b) =<4, is the transitive closure of (i) <4,; (ii) the strand ordering of s up
to 4; (iii) pairs (n,m) or (n,m) with n € nodesy,, m = s | j, and j < i;
and (iv) the pair (nq, mq), when a originates on a node n, € Ay and a
is mentioned in m, = s | j, for any a € unique, .

(¢) nona, = nony, U (strand_non, - «); and

(d) unique,, = unique, U (strand_unique, - @).

2. An augmentation H: Ay — A; is an outgoing augmentation if there exists
an outgoing test edge ng,n; € Ay with no outgoing transforming edge in Ay,
and s | 1 =* mg =71 s | i, where mg =1 s | i is the earliest transforming
edge for this test on s. The additional pairs in the ordering (clause 1b(iii))
are the pairs (ng, mg) and ((s | i), n1).

3. It is an incoming augmentation if it adds an incoming transforming edge for
an incoming test node in Ag. The pair (mq,n1) in the notation of Prop. 3 is
the additional pair in the ordering.

4. Tt is a listener augmentation for a if it adds a listener strand Lsn[a], with no
pairs added to the ordering.

5. A replacement « is a contraction for A if there are two distinct atoms a,b
mentioned in A such that a -« = b- a. We write hull,(A) for the canonical
homomorphism from A to hull(A-«), when the latter is defined. (See Prop. 5.)

Example 11. The embeddings H,s, H,s; (Example 2) are outgoing augmenta-
tions; the test edge lies between the second and third nodes of the responder
strand. H,, is more general, as H,,; factors through it.



We use a listener strand Lsn[K], having the form X o tomark a key K as a target
for compromise. Lsn[K] records a commitment, the commitment to somehow
compromise the value K before reaching a realized skeleton, if a transforming
edge has not been chosen. The listener strand thus tests compromise for K.
If K cannot be compromised, the skeleton containing the listener strand will
be dead, and no homomorphism leads from it to a realized skeleton. Listener
strands, lacking transmission nodes, never precede anything else; they are always
maximal in <y.

Since in a realized skeleton listener strands may be freely omitted, or freely
added as long as the skeleton remains realized, we regard realized skeletons as
similar if they differ only in what listener strands they contain. We write A;~ Ay
for skeletons that are similar in this sense. Shapes, being minimal, contain no
listener strands; a homomorphism that simply embeds A; into a As having more
listener strands is nodewise injective.

We write H; ~| Hs if by adding listener strands we can equalize the homo-
morphisms Hy, Hy. That is, Hy ~ Hy iff each H; (for i = 1,2) is of the form
H;: A — A, and there are embeddings E;: A; — A’ such that A; ~ A" ~| Ay
and El OH1 = EQ OHQ.

The search-oriented version of Prop. 2 states that when a skeleton Ag with an
unsolved outgoing transformed pair leads to a realized skeleton A, we can reach
it starting with one of three kinds of steps: (1) a contraction, (2) an outgoing
augmentation, or (3) adding a listener strand witnessing that one of the relevant
keys is in fact not properly protected by the time we reach A;.

Theorem 1 (Outgoing Augmentation). Let H: Ag — Ay, where A; is re-
alized. Let ng,n1 € Ay be an outgoing test pair for a,S, for which Ay contains
no transforming edge. Then there exist H', H" such that either:

1. H=H"oH', and H' = hull,(Ag) for some contraction «; or

2. H=H" o H', and H' is some outgoing augmentation for a,S; or

3. H~_ H'" o H', and H' is a listener augmentation H': Ay — A} adding
Lsn[K 1], for some K € used(S).

Proof. Assuming H = [¢,a]: Ag — Ay with A; realized, say with skeleton(B) =
Ay, we have the following possibilities. If o contracts any atoms, then we may
factor H into a contraction followed by some remainder H” (clause 1).

If o does not contract any atoms, then (¢(ng), ¢(n1)) is an outgoing test pair
for a-«, S-a. There are now two cases. First, suppose used(S)-a C Proty,,)(B).
Then we may apply Prop. 2 to infer that B and thus also A; contains an outgoing
transforming edge mg =1 my for a - a,S - a. Since « is injective on atoms
mentioned in Ay, we may augment Ay with an edge m{ =71 m] such that
msg(mg) - a« = msg(myp) and msg(m}) - o = msg(my).

Second, if there is some K € used(S) such that K~! -« ¢ Protyn,)B, then
there is A}~ A; such that A} contains Lsn[K ~1-a], and ¢(n1) A (Lsn[K 1 - a]) |
1. Hence, clause 3 is satisfied.

Incoming augmentations are similar to outgoing ones, except that the key
used for encryption in the test node is also relevant. The proof is similar.



Theorem 2 (Incoming Augmentation). Let H: Ag — Ay, where Ay is re-
alized. Let ny € Ay be an incoming test node for t, S with t = {to} . If there is
no incoming transforming node for t, S in Ag, then there exist H', H" such that
either:

1. H=H" o H', and H' = hull,(Ag) for some contraction a; or

2. H=H"oH', for H an incoming augmentation emitting {to[}x occurring
outside S; or

3. H~_ H" o H', for H a listener augmentation H': Ag — A{, adding K or
some K;', for Ko € used(S).

Evidently, Thms. 1-2 are useful for constructing shapes. They say in effect
that any shape H,: Ay — A, may be factored into a composition H"” o H', where
H’ is dictated by Thm. 1 or Thm. 2, and H” can be determined by repeating this
process. Since A; is a finite structure, presumably this process must terminate
in each case, although one cannot predict in advance how many steps might be
needed [4]. In related work, we have in fact proved that every shape may in fact
be obtained through this process [3, ext.vers.]
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