
Principles of Remote Attestation ?

George Coker1, Joshua Guttman2, Peter Loscocco1, Amy Herzog2,
Jonathan Millen2, Brian O’Hanlon2, John Ramsdell2,

Ariel Segall2, Justin Sheehy2, and Brian Sniffen2

1National Security Agency
2The MITRE Corporation

Abstract. Remote attestation is the activity of making a claim about
properties of a target by supplying evidence to an appraiser over a net-
work. We identify five central principles to guide development of attes-
tation systems. We argue that (i) attestation must be able to deliver
temporally fresh evidence; (ii) comprehensive information about the tar-
get should be accessible; (iii) the target, or its owner, should be able
to constrain disclosure of information about the target; (iv) attestation
claims should have explicit semantics to allow decisions to be derived
from several claims; and (v) the underlying attestation mechanism must
be trustworthy. We illustrate how to acquire evidence from a running
system, and how to transport it via protocols to remote appraisers.
We propose an architecture for attestation guided by these principles.
Virtualized platforms, which are increasingly well supported on stock
hardware, provide a natural basis for our attestation architecture.

1 Introduction

Much economic activity takes place on heterogeneous networks of computers,
involving interactions among autonomous principals, including individuals, retail
companies, credit card firms, banks, and stock brokerages. Because the amount
of money in these activities is large and increasing, the networks are attractive
targets for criminals.

In many attacks, the adversary inserts software remotely, without physical
access to the devices, and this software compromises secrets. For instance, in
March 2008, an attack was announced against the large American grocery store
chain Hannaford Brothers. Unauthorized code had been inserted on the servers
in each of the company’s 300 stores. This code retained the credit card informa-
tion for each transaction occurring at a store and periodically transmitted the
information to a third party. As a consequence, over 4,200,000 credit and debit
cards were compromised. At least 2,000 fraudulent transactions have been iden-
tified as results. Even though Hannaford’s systems were designed not to store
customer payment details and to adhere to compliance standards of the credit
card companies, changes to their application software led to large disclosures [20].

? MITRE’s work on this paper was supported by the National Security Agency through
US Army CE-COM contract W15P7T-05-C-F600.

An even larger case led to indictments in August 2008. Over 40 million card
numbers were stolen from US companies such as TJX, a clothing distributor
and retailer, and other large firms. According to the indictment papers, eleven
criminals collaborated in this group of attacks. Members were located in the US,
Estonia, Ukraine, Belarus, and China. In these attacks, wireless access points
were the initial entry point. Newspapers described the inserted software as snif-
fers. However, the indictments mention that an insecure wireless access point at
a Marshall’s retail store in Florida allowed the defendants to compromise data
stored in servers at TJX, located in Massachusetts [36].

There are several characteristics of these attacks.

1. The attacks are executed remotely, apparently without physical access to
the computers attacked;

2. The computers are often standard, general purpose systems, rather than
specialized devices such as automated teller machines;

3. The networks involve transactions among independent entities, such as a
retailer, a distributor, a customer, and the credit card firms. No one organi-
zation controls the software configurations on all the relevant systems.

The ubiquitous attacks that insert malware onto individually owned computers,
to sniff for bank account and password information, share these characteristics.
The bank cannot control the configurations of its customers’ computers. Nev-
ertheless, there would be benefits shared by the bank and its customers if the
bank could ascertain that the customer’s computer was free of malware before
allowing the customer to enter the account number and password. The client
software on a customer’s computer could also check software on the bank or
retailer computer to which it was connected.

To limit the success of attacks with these three characteristics, one needs
a way to provide reliable evidence about the state of software executing on a
system, so as to determine whether (1) has occurred, while preserving great flex-
ibility, so that the strategy can succeed despite the potential lack of specialized
hardware capability (2). Moreover, the diversity of trust relations reported in
point (3) offers improved resilience, since remote appraisal of the evidence can
be incorporated into the distributed architecture. However, it also means that
the evidence delivered must be tailored—not every participant will allow other
participants to know all about the strengths and weaknesses of their configura-
tion.

A principal goal of trusted computing is to provide reliable evidence about the
state of software executing on a system. This evidence is intended to ensure that
targets will not engage in some class of misbehaviors. To this end, the Trusted
Computing Group (TCG) introduced the Trusted Platform Module (TPM) and
the associated concept of remote attestation [3].

Remote attestation may be used to address a number of trust problems
including guaranteed invocation of software, delivery of premium content to
trusted clients, assuaging mutual suspicion between clients, and more. The range
of applicability is clearly much broader than just the financial area featured
above. As the requirements of all such applications cannot be known a priori,

2

attestation systems and measurement systems alike must be flexible, providing
for privacy, completeness of measurement, and trust in the basic collection and
reporting mechanisms.

Many existing attestation proposals, including those put forth by the TCG,
are aimed at specific use-cases. They therefore lack the flexibility to address many
attestation problems, including the cross-organization challenges for general pur-
pose devices that we have just described. Indeed, many existing definitions of
attestation primarily focus on describing the particular properties [29] desirable
in those use-cases. For example, in [11], the author uses the term attestation
to specifically mean the process of transmitting a sequence of hashes of cer-
tain system components and a digital signature of that sequence; in Microsoft’s
“NGSCB” [7] it refers to identification and authentication of known code via
digital signatures; Copilot [18] makes use of direct hashes of kernel memory, and
so on. We prefer a general definition of platform attestation that abstracts from
specific desired properties, an approach that matches a promising line of work
on “property-based attestation” [4].

In this paper, we describe a flexible attestation architecture, based on a few
guiding principles. Systems built according to this architecture can be configured
to carry out a variety of attestation scenarios. We believe that this attestation
architecture provides the mechanisms needed for systems to interrogate each
other before sensitive interactions, so as to ensure that those interactions will be
safe.

In Section 2, we introduce some fundamental attestation notions, and codify
terminology for them. Section 3 stipulates five principles to which, we will ar-
gue, attestation architectures should adhere. In Section 4, we enumerate some
architectural ingredients needed to satisfy the principles, which suggest the type
of platform presented in Section 5, the section describing the main mechanisms
that can be used to satisfy our principles. Sections 6 and 7 discuss open problems
and related work.

2 Terminology

In this section we define the process of attestation and provide context for the
understanding of security properties achievable via that process.

Our approach to system attestation departs significantly from the notion
put forth by the TCG, in great part due to increased flexibility. Emphasis is
placed on attestation based upon properties of the target, useful in a variety of
scenarios, rather than solely on attestation based upon identity.

Terminology. An appraiser is a party, generally a computer on a network,
making a decision about some other party or parties. A target is a party about
which an appraiser needs to make such a decision.

We refer to the decision-making party as an appraiser rather than a verifier
to emphasize that the decision-making process is a matter of evaluating the
target against the appraiser’s internal standards, rather than proving the target’s

3

correctness. The trust decision made by an appraiser often supports an access
request made on behalf of the target, and is usually a decision about the expected
behavior of that target. To make a decision on this basis, a diligent appraiser
needs a significant amount of information about the target’s hardware, software,
and/or configuration—essentially, the knowledge that the state of the target is
such that it will not transition into an unacceptable state while the appraiser
still continues to trust it. There is some inevitable tension between the human
organizations behind the appraiser and target, as the appraiser’s owner wishes to
have complete and correct information about any given target while the target’s
owner wishes to give up no more than the minimal information necessary for the
success of its request (and perhaps even less).

Terminology. Attestation is the activity of making a claim to an appraiser
about the properties of a target by supplying evidence which supports that claim.
An attester is a party performing this activity. An appraiser’s decision-making
process based on attested information is appraisal.

Our definition of attestation encompasses the wide variety of definitions found
in the related literature. In the most commonly addressed class of attestations,
each attestation provides a means for appraisers to infer that the target of the
attestation will not engage in a class of misbehaviors. For example, if the target
reports its kernel is unmodified, the attester has reason to trust reports from
the target, and some appraiser trusts information provided by the attester, then
that appraiser can infer that the target will not engage in misbehaviors that
might have occurred had the target’s kernel been corrupted at the time of its
measurement. Not all attestations are about lack of misbehaviors, even though
most of the commonly discussed use cases are in that class. For example, an
attestation could also be used to assist in the selection and use of settings or
software for future interactions, or as a means of proving prior authorization for
some purpose.

This broader point of view makes a rich understanding of the related concepts
of system measurement, attestation protocols, and system separation vital to
successful attestation. Here there is a distinction between the measurement of a
target system (the evidence) and the attestation itself.

Terminology. To measure a target means to collect evidence about it through
direct and local observation of it.

Attestation about a target system will report measurements, or will report con-
clusions inferred using measurements and possibly also other attestations. Mea-
surements can be as simple as a SHA-1 hash of code on the target, but can
also be more complex. In this paper, measurement is discussed only as necessary
to support our architecture for attestation, but cf. [23, 37, 22, 27] for more on
measurement strategies.

Terminology. An attestation protocol is a cryptographic protocol involving
a target, an attester, an appraiser, and possibly other principals serving as trust
proxies. The purpose of an attestation protocol is to supply evidence that will be

4

considered authoritative by the appraiser, while respecting privacy goals of the
target (or its owner).

Evidence may be attested to in a number of equivalent but semantically different
forms depending on the attestation protocol. For example, the attestation may
report raw evidence as directly observed, as reduced evidence (e.g. a hash of the
raw evidence), or by substitution with a credential provided by a third party
evaluator of the raw evidence. For example, an SSL certificate authority may
consume many attestations as to the identity and practices of a target before
producing one certificate attesting to the quality of a target [4].

A given target may wish to provide different information to different ap-
praisers depending on the current trust relationships it has with those parties.
A worthwhile desire in developing an attestation system is to resolve the mutual
tension between the appraiser’s desire for disclosure and the target’s desire for
privacy as well as possible given the contradictory nature of the parties’ interests.
One approach to defusing this tension is for the appraiser to demand frequent
repeated (but perhaps less detailed) attestations, re-evaluating its trust decisions
often. It may be possible to determine that a party will be sufficiently trustwor-
thy for the 15 minutes after performing a given attestation, but not feasible to
determine that it will be so for a day.

The word trust is used many ways in English, and in many ways even within
this paper. However, one special usage is important enough to define here:

Terminology. Principal B trusts principal A with regard to the statement
φ if and only if, from the fact that A has said φ, B infers that φ was true at a
given time.

In many cases, the result of an attestation protocol depends on a complicated
mixture of facts that the appraiser can check directly, such as cryptographic
signatures, and those he cannot. B must decide to trust A (or not) with respect
to uncheckable facts.

Indeed, the importance of Trusted Platform Modules lies exactly here. Trusted
Platform Modules (TPMs) are chips on a platform’s motherboard. Information,
such as measurements of the platform’s software state, may be placed into the
TPM’s Platform Configuration Registers (PCRs). A quote is a digitally signed
report of PCR contents. When B finds that a TPM quote is a valid digital sig-
nature over particular PCR values, B may decide to trust that platform with
regard to certain statements. A TPM thus provides cryptographically signed ev-
idence of facts about the state of the platform to which it is attached. The TPM
residing on the target may be considered a principal in an attestation protocol.

This notion of trust differs from the Trusted Computing Group’s usage. They
emphasize the predictable behavior of a device or component [41]. In our termi-
nology, this is the purpose of measurement. Measurement is useful when the
direct evidence it collects supports behavioral predictions about the target of
measurement. Trust in our sense is what motivates one principal to accept con-
clusions, based on the observations and assertions of another.

5

Terminology. A root of trust is a hardware device with known behavior, which
a certificate asserts to be present on a particular platform.

A root of trust for measurement is a hardware device (or some functional-
ity provided by hardware) that can reliably prepare certain measurements on the
software state of a device. A root of trust for reporting is a hardware device (or
some functionality provided by hardware) that can reliably attest to the result of a
measurement. A root of trust for storage is a hardware device (or some function-
ality provided by hardware) that ensures that certain data such as cryptographic
keys will be stored in a way that will always preserve their secrecy.

Originally, the Trusted Computing Group proposed that the Basic I/O Sys-
tem (BIOS) should perform the earliest measurement of the software obtaining
control of the CPU at the beginning of the boot process. This had significant
limitations, because the BIOS is complex and frequently imperfectly reliable. In
recent architectures, a CPU instruction provides an independent root of trust
for measurement.

The Trusted Platform Module provides a root of trust for reporting, since
the hardware architecture ensures that only the roots of trust for measurement
can write to certain platform configuration registers. Moreover, digital signatures
supported by a certificate infrastructure allow a third party to treat messages
prepared by the TPM as attestations about these values. The TPM also uses
encryption to serve as a root of trust for storage for keys including the private
Attestation Identity Keys used to sign attestations.

The hardware TPM on a platform may also provide a root of trust for be-
lieving that certain software entities on the system behave like TPMs. In this
case we refer to those entities as virtual TPMs or vTPMs.

Terminology. A platform provides measured boot if hashes of the code con-
trolling successive stages of its boot process are deposited in PCRs in its TPM.

A platform offers secure late launch if its CPU has an instruction that atom-
ically (1) constructs a hash of the contents of a stipulated region of memory, (2)
deposits the hash into a PCR, and then (3) transfers control to the instruction
at the start of the stipulated region.

Secure late launch (also simply called late launch) is late in the sense that
it occurs after the normal boot sequence completes, and possibly long after it.
It is desirable because it allows the system to transfer control to known code
after hardware specific activities—such as device drivers—have initialized. In
particular, the code that gains control from late launch may be a hypervisor
that places the code of device drivers and also their memory buffers into non-
privileged memory. Both Intel and AMD have developed products offering late
launch. When combined with memory management controls on device Direct
Memory Access, secure late launch provides excellent protection against some of
the least well controlled code running in traditional OS kernels.

6

3 Principles for Attestation Architectures

Five principles are crucial for attestation architectures. While an ideal attesta-
tion architecture would satisfy all five, in real systems, only an approximation
of the ideals is possible. Thus, attestation mechanisms may provide better im-
plementations of some features than others. The five principles motivate the
architecture presented in Section 4.

Principle 1 (Fresh information) Assertions about the target should reflect
the running system, rather than just disk images. Some measurement tools pro-
vide only start-up time information about the target in the expectation that its
security-relevant properties still hold. Other tools can inspect the current state
of an active target, as discussed in Section 5.1. ut

The architecture cannot predict the uses to which appraisers will put the infor-
mation it delivers. Appraisers may need to make very different decisions, and—to
justify them—need to make different predictions about the future behavior of
the target. This suggests the next principle.

Principle 2 (Comprehensive information) Attestation mechanisms should
be capable of delivering comprehensive information about the target, and its full
internal state should be accessible to local measurement tools. ut

With comprehensive information come worries about the consequences of disclo-
sure. Disclosure may cause loss of privacy for a person using the target platform.
It can also subject the platform to attack, for instance if the attestation discloses
an unpatched vulnerability to an adversary.

Principle 3 (Constrained disclosure) A target should be able to enforce
policies governing which measurements are sent to each appraiser.

Hence, an attestation architecture must allow the appraiser to be identified
to the target. Policies may distinguish kinds of information to be delivered to
different appraisers. The policy may be dynamic, relying on current run-time
information for individual disclosure decisions. For instance, a target may require
that the appraiser provide an attestation of its own state, before the target
discloses its own. ut

Attestations make assertions about a piece of the real world, i.e. the state of
the target at a particular time. The appraiser can make decisions because there
are conventions about what different attestations mean, which is to say that the
attestations have semantics. The appraiser’s work depends essentially on this
semantics, since the resulting appraisals are intended to be true summaries of
the degree of reliability of the target’s future behavior. This semantics must be
compositional, so that the appraiser can combine the meanings of a number of
attestations in order to provide more comprehensive summaries.

Principle 4 (Semantic explicitness) The semantic content of attestations
should be explicitly presented in logical form.

7

The identity of the target should be determined by this semantics, so an
appraiser can collect attestations about it. The appraiser should be able to infer
consequences from several attestations, e.g. when different measurements of the
target jointly imply a prediction about its behavior. Hence, attestations should
have uniform semantics, and be composable using valid logical inferences. ut

Principle 5 (Trustworthy mechanism) Appraisers should receive evidence
of the trustworthiness of the attestation mechanisms on which they rely. In par-
ticular, the attestation architecture in use should be identified to both appraiser
and target. ut

There will be a good deal of natural variation in how different systems meet
these principles, and in the choices they make when some principles are only
partially satisfied. In specific situations, it may be sufficient to satisfy these
principles only partly. For instance, limited forms of evidence about the target
may suffice for an appraiser, or evidence that has aged to an extent may be
accepted. When different degrees of adherence to the principles are designed
into a system, then the variation is static. When the system adjusts at runtime
to provide different degrees of evidence in different situations, or when different
peers are the appraiser, then the variation is dynamic.

4 An Attestation Architecture

There are five main constraints, imposed by the principles of Section 3, that
provide the content for the proposed architecture. In this section, each constraint
is briefly described in the context of how it is motivated by the principles. A
system designed according to this architecture must have the following abilities:

1. To measure diverse aspects of the target of attestation;

2. To separate domains to ensure that the measurement tools can prepare their
results without interference from the (possibly unreliable) target of attesta-
tion;

3. To protect itself, or at least a core trust base that can set up the domain
separation mechanism, ensuring that it cannot be weakened without this
fact being evident from the content of attestations;

4. To delegate attestation so that attestation proxies can collect detailed mea-
surements and convincing evidence, and summarize them to selected peers,
when the target would not permit the full facts to be widely shared;

5. To manage attestation to handle attestation queries by invoking suitable
measurement tools, delivering the results to the appraiser or a proxy as
constrained by policies.

These constraints are discussed in turn. One might envision the constraints as
suggesting an architecture of the form shown in Fig. 1. The relationships among
components in the figure are discussed in the subsections below.

8

Fig. 1. Attestation Architecture

4.1 Measurement Tools

Providing comprehensive information about a system (satisfying Principle 2)
requires the ability to provide a collection of tools that (jointly) comprehensively
measure the target.

Comprehensive measurement of a system requires more than simply the abil-
ity to read all of the data contained in that system. It also means that some
measurement tools must understand the structure of what they are measuring.
For example, just being able to scan and hash the memory used by an operating
system kernel may not suffice to provide useful measurements of it. Usefulness,
here, is in the eye of the appraiser, and typically involves evidence about the
past or future behavior of the target. A hash of the memory of a program is
not sufficient to provide a prediction about its future behavior, since its states
during execution may yield an unbounded set of hashes. Rather, predictions
may be based on the hashes of some portions of memory (which take only a
limited number of values) together with other information about the remaining
parts of memory. Measuring complex system components requires knowing the
structure of the targets. Some trust decisions require these structure-sensitive
measurements; ideas about how to provide such measurements are included in
Section 5.1.

As a result of this, there cannot be a “one size fits all” measurement capability
for attestation. Different measurement tools must be produced for measuring
components with different structure. Further, no complete set of tools can be
known ahead of time without restricting the target systems from ever adding
new applications. Thus, our architecture must support a collection of specialized
measurement tools, and in order to be able to provide evidence for arbitrary

9

future attestations it must also support adding new tools to that collection over
time.

In addition to measurement capacity being comprehensive, freshness is also
a goal. (Principle 1) This means that our measurements cannot always be per-
formed a priori – one must be able to measure various parts of a system on
demand. These demands are made from the point of view of an appraiser. A
remote party must be able to trigger measurement; it is insufficient to only have
runtime measurement occur via periodic automatic remeasurement triggered by
the measurement system or tools.

4.2 Domain Separation

For a measurement tool to provide information about a target of attestation, the
measurement tool must be able to deliver accurate results even when the target
is corrupted. This is an important consequence of Principle 5.

There are two parts to this. First, it must have access to the target’s state
so as to be able to distinguish whether that target is corrupted or uncorrupted.
This state includes both the target’s executable code and also modifiable data
structures that determine its future behavior. Second, the measurement tool’s
state must be inaccessible to the target, so that even if the target is corrupted,
it cannot interfere with the results of the measurement.

There are different ways that this separation can be achieved. One is to
virtualize the target, so that the measurement tool runs in a separate virtual
machine (VM) from the target [17]. The virtual machine monitor must then
be able to control cross-VM visibility so that the measurement tool has read
access to the target. It must also ensure that the target does not have any
control over the measurement tool. There may be a message-passing channel
established between them, but the hypervisor/VMM must be able to ensure
transparent visibility of the measurement tool into the target and protection of
those tools from the target.

Alternatives are possible. For instance, CoPilot (Section 7) uses a form of
hardware separation in which the measurement tool runs on a coprocessor and
the visibility constraints are expressed via hardware instead of being based on
the configuration of a hypervisor.

Given the improved virtualization facilities that new processors from Intel
and AMD provide, the VM approach is very attractive: it makes minimal re-
quirements beyond standard commodity hardware.

4.3 Self-Protecting Trust Base

We have established that domain separation is necessary in order to have trust in
attestations and specifically in the integrity of our measurement tools. This raises
a question: how to produce assurance for the integrity of the domain separation
itself?

The core of our system’s trust must come from components which are simple
enough or sufficiently evaluated that one can be convinced that they do not

10

require remeasurement after they have been running. Part of this core must
obviously include the hardware used as our Trusted Computing Base. Any other
component must either be measurable from a place that it cannot control or
must be sufficiently measured via a static startup measurement taken before it
begins operating.

Note that what is needed here is more than just a trusted static subset of our
system. The difficulty here is that our trust base must be sufficiently simple and
static to not require remeasurement, but also sufficiently rich to bootstrap our
measurements and attestations. Anything performing measurement and attes-
tation on the platform will in turn require measurement and attestation about
itself in order to convince an appraiser of its trustworthiness. It must be ensured
that this chain “bottoms out” at something sufficient to perform certain essential
measurements and attestations to support the chain above it while being simple
enough that static startup-time measurements are sufficient to determine trust.

It is not trivial to determine the content of this static trust base. One of the
difficulties arises around the element of domain separation. It is preferable for
the domain separation mechanism to be simple and secure enough to belong in
this element, but no hypervisor exists today that satisfies those properties and
is also rich enough to provide the services desired. We return to this difficulty
in Section 6. One possible alternative is that a hardware component provides
runtime measurements of the domain separation mechanism.

4.4 Attestation Delegation

In practice, the appraiser will need to delegate many aspects of determining
the quality of the target to specialists called attestation proxies. There are two
essential reasons for this.

First, Principle 2 contains an intrinsic conflict with Principle 3. The former
states that comprehensive insight into the state of the target must be available.
The latter says that the target should be able to choose and enforce a policy on
the disclosure of information about its state.

A natural way to reconcile these two principles is to allow appraiser and
target to agree on an attestation proxy that is partially trusted by each [4]. The
target trusts the proxy to disclose only information about its state which is of
limited sensitivity. The appraiser trusts the proxy to make statements only when
they are warranted by appropriately fresh and comprehensive information about
the target.

The second reason why attestation proxies are important is that they can
function as specialists. Enormous expertise is needed to interpret detailed mea-
surements, such as those needed to predict behavioral properties about an oper-
ating system. An appraiser may get more reliable information and more usable
information from an attestation proxy than it would be able to extract on its
own from the comprehensive data. The maintainers of an attestation proxy can
ensure that it has up-to-date information about the strengths and weaknesses of
specific system versions or configurations.

11

Naturally, these delegations require protocols that allow the principals to
ensure they are communicating with appropriate proxies. These protocols must
supply the principals with messages that unambiguously answer the principals’
questions. The design of such attestation protocols may follow the methods of
the strand space theory [14], and may use the strand space/trust management
connection from [16, 15]. An attestation protocol that we call CAVES developed
these ideas, and is discussed in Section 5.4.

These delegations, combined with attestations satisfying Principle 4, enable
a powerful new capability: an appraiser may compose separate layered or or-
thogonal attestations, involving different proxies, in order to make a judgment.
Another approach, “Layering Negotiations [19],” has been proposed for flexible
and composable attestation. We have used many of the same tools as this work,
such as Xen and SELinux. The layered negotiations have a fixed two-level struc-
ture and are intended to enable distributed coalitions. Our approach is intended
to enable general, arbitrarily flexible composability regardless of application us-
age model.

4.5 Attestation Management

A central goal of our architecture is flexibility. It is essential that our system
be able to respond meaningfully to different requests from different appraisers
without having pre-arranged what every possible combination of attestations
might be.

One way to support this notion is with an architectural element referred to
as the Attestation Manager. A component realizing this idea contains a registry
of all of the measurement and attestation tools currently on the platform, and
a description of the semantic content produced by each. As a consequence of
Principle 4, this component can select at runtime the appropriate services needed
to answer any query which could be answered by some subset of the measurement
and attestation capabilities currently on the system. The attester in the CAVES
protocol (see Section 5.4) is implemented by the attestation manager together
with the components that provide services to it, including measurement tools
and the TPM itself.

As an Attestation Manager will clearly be involved in nearly every remote
attestation, it is also a natural place to enforce some of the constrained disclosure
called for by Principle 3. It can restrict the services it selects based on the
identity of the party the information would be released to, according to locally-
stored access policies. In order to defend this capability from both the untrusted
target of attestations and also from potentially-vulnerable measurement tools,
the Attestation Manager must be protected via domain separation.

Our attestations will have to use cryptography in order to protect commu-
nications from adversaries. This same protection, taken together with domain
separation, means that the target can be safely used as an intermediary for com-
munication with appraisers or proxies. This leads to the very beneficial result
that an Attestation Manager can be a purely local service; it does not need to
be directly accessible by any remote parties.

12

4.6 The Principles and this Attestation Architecture

We regard these architectural elements as a consequence of the principles, in
the sense that—we believe—any system that meets the principles will contain
elements much like these components. They do not ensure that the principles
will be met. For instance, none of these architectural elements ensures that
the semantics of attestations are well-defined and composable (Principle 4). For
instance, an attestation manager is effectively required if comprehensive infor-
mation about the target (Principle 2) is to be prepared freshly (Principle 1) in
response to a query. Attestation delegation is the key to reconciling Principle 2
with Principle 3. Domain separation and a self-protecting trust base are required
to achieve a trustworthy mechanism (Principle 5) that can provide comprehen-
sive information (Principle 2) about the target.

5 A Composable Attestation Platform

In this section, we illustrate how a platform could be instantiated to achieve our
attestation principles and mechanisms. Through our descriptions, we highlight
how the techniques described here could be used to prevent future attacks similar
to those carried out against Hannaford Brothers (as described in the introduc-
tion). Detection and prevention of such attacks requires work on the part of the
enterprise: One way to integrate attestations is to add additional capabilities to
existing configuration management activities. Another is to add them to existing
transactions within the enterprise: Suppose that each Hannaford store transmits
all transactions to a central server at the end of the day. If the server required an
attestation from the machines at individual stores, and the store clients required
the same from the server, rogue software could be detected before any credit
card numbers were transmitted.

Constructing such a system is challenging on several levels. In describing
a candidate system in this section, we focus on the five constraints listed in
Section 4. Our candidate platform must be capable of:

1. Measuring diverse aspects of the target of attestation;
2. Separating domains to ensure that the measurement tools can prepare their

results without interference from the (possibly unreliable) target of attesta-
tion;

3. Protecting itself, or at least a core trust base that can set up the domain
separation mechanism, ensuring that it cannot be weakened without this
fact being evident from the content of attestations;

4. Delegating attestation so that attestation proxies can collect detailed mea-
surements and convincing evidence, and summarize them to selected peers,
when the target would not permit the full facts to be widely shared;

5. Managing attestation to handle attestation queries by invoking suitable mea-
surement tools, delivering the results to the appraiser or a proxy as con-
strained by policies.

13

We explore a possible implementation supporting these five constraints through
the grocery store server example. In the following sections, imagine an architec-
ture like that pictured in Figure 2.

S Guest

M&A

vTPM

M&A

vTPM

U Guest

hypervisor

TPM/CPU

Fig. 2. A Generic Composable Attestation Platform

The self-protecting trust base here is composed of the hypervisor1, CPU,
and TPM. This representation is abstract–the implementation is not tied to a
specific virtual machine monitor or microprocessor. The hypervisor does play a
crucial role by providing domain separation and sharing services.

The supervisory virtual platform (S guest) contains support functionality for
the system: For example, TPM virtualization services, specialized measurement
tools, and so forth. The “User” platform (U guest) runs the server’s “normal”
operating system and data collection processing software.

TPM virtualization allows parties interacting with the User platform to seam-
lessly make use of TPM facilities without requiring knowledge of the full system
architecture. The measurement and attestation functionality included in the
platforms provide specialized measurement functions and attestation capabili-
ties for varied target environments. They form the externally-visible face of the
increased capabilities for the server.

We first turn our attention to the measurement capabilities of this system.

5.1 System Measurement

As mentioned in Section 4.1, providing comprehensive information about a sys-
tem (satisfying Principle 2) requires the ability to provide a collection of tools
that (jointly) comprehensively measure the target.

In our example, a conscientious customer will desire an attestation containing
multiple kinds of evidence to gain assurance that the theoretical grocery chain
central server will not store or re-transmit credit card data to a third party. A

1 We hope that over time, hypervisors will be built to far stricter standards than has
happened yet today. A hopeful sign from this point of view is the recent work of
NICTA on a verified L4 variant [21].

14

measurement of the data processing software must be included in the attesta-
tion at a minimum. Since the underlying operating system is often the target
of network-based attacks, a measurement of the OS kernel would also be appro-
priate. Finally, a certificate describing the hypervisor and S guest configuration
may be important as well.

To continue with our example, assume that the client expects an enterprise-
signed configuration certificate, an OS-measurement report, a hash of the data
processing software, and a vTPM quote from the U guest vTPM containing
hashes of the two measurement reports in the PCR mask. This need for ev-
idence connected across different virtual machines can only be satisfied with
semantically explicit attestations as described by Principle 4.

Note in Figure 2 that both the S and U environments possess specialized
measurement and attestation services, running in dedicated virtual machines
called M&A domains. This separation provides isolation between the measure-
ment target and the measurement tool. Upon receiving an attestation request,
the server’s software directs the incoming request to its M&A domain and proxies
responses from that M&A back out to the client. The M&A domain is broken out
into components that can satisfy the different portions of an attestation request
(see Fig 3).

SelectorAM

ASP2ASP1 ASP3

SelectorAM

ASP2ASP1 ASP3

Supervisor M&A User M&A

Attestation Request/Response

Fig. 3. Generic Measurement and Attestation (M&A) Architecture

There are three main enabling technologies for an attestation: The appropri-
ate evidence collector must be selected; the evidence must be collected; and the
data must be moved between all relevant parties in a trustworthy manner. We
explore each of them in more detail as we break down a single attestation.

An attestation manager (AM) manages the attestation session. Attestation
Service Providers (ASPs) provide specialized attestation services and are called
by the AM. All measurement tools on the system fall into this category.

Our grocery store server chains an attestation across the platform by the use
of ASPs that make attestation requests to other M&A domains and relay the
attestation responses. Fig. 3 shows a possible set of components that might be
used in an attestation, including an ASP in the User M&A domain (perhaps
a certificate handling program) which makes an attestation request to the Su-

15

pervisor M&A domain for the underlying system certificate. This enables the
grocery store server to make an attestation satisfying Principle 5 (Trustworthy
Mechanism).

By abstracting key attestation services into ASPs, and abstracting over ASPs
using the AM, we gain an extensible system with the ability to add new services
and protocols without the need to redesign or re-evaluate the entire system for
each addition. Should new data processing software be installed on the server, a
new measurement tool could also be installed without requiring any change to
the client attestation request. Procedures for adding and removing ASPs raise
infrastructure issues that are not addressed in this paper.

This extensible system offers the opportunity for extremely sophisticated
measurement capabilities. New capabilities are primarily focused on VM-to-VM
inspection within a virtualized system.

Evidence of Security State Fresh and comprehensive information about a
particular component (Principles 1 and 2) may be prepared in a virtualized
environment if another component can inspect its memory, delivering evidence
about its current state. This current state evidence is intended to establish some
desired property of its future behavior.

Clearly, there are different cases, depending on the complexity of the behavior
that the VM needs to engage in. We discuss two main groups, but regard this
as an area where much future work will be needed.

Essentially finite state components. Some virtual machines are essentially finite
state devices, in the sense that they engage in some transaction, and then return
to a predictable state. This property makes them easy to measure, since they
need to be inspected only when they have returned to one of the known stable
states. An appraiser can check the hash of the state (or the memory that it
occupies) against a practicably short list. A small VM supplying a trusted system
service can be designed to satisfy this property.

A VM that has been implemented in a garbage-collected language can be
essentially finite state. A garbage collection should occur at the end of each
transaction. Then the measurement activity should hash the VM’s code and also
the live memory accessible from registers and pointers in the code. The result
should be a hash in a small known set. This measurement activity may visit
live memory using the same algorithm that the garbage collection itself would,
because the hashing activity is like the garbage collection. However, instead of
copying live memory to a fresh heap (as a stop-and-copy GC would do), it simply
accumulates the contents of memory via hashing. Other variants of this idea are
possible.

Components with crucial invariants. Most components are not essentially finite
state. For instance, the Linux kernel maintains linked lists of data structures rep-
resenting the inodes for files that are currently open. The Linux Kernel Integrity
Monitor, a research prototype measurement mechanism for Linux [23], walks this

16

linear list, asking certain questions about each entry. For instance, depending on
the filesystem type on which an inode resides, its pointers should reference par-
ticular groups of functions implementing the fundamental file system operations.
Although inodes for files on different filesystem will have pointers with different
values, there is a limited set of possibilities. Thus, a procedure that walks the
list and for each inode structure checks its filesystem type and the targets of its
pointers is reasonable. In fact, various attacks would be thwarted or detected by
this procedure. In some cases, two data structures should be inspected together
to check their consistency, for instance, the process list should contain all pro-
cesses on the list to be scheduled. Hackers often prefer to make the processes
they run not appear in the process list.

Much of this evidence-gathering can be viewed as algorithmically akin to
garbage collection [37]. The measurement process needs to traverse pointers re-
peatedly, starting from pointers that reside in static program variables or on the
stack. As each data structure is encountered, some checking procedure should
determine whether it contains an invariant-respecting value, or whether it has
reached a state that the code can never legitimately produce. However, some
aspects—e.g. correlating multiple representations of the collection of processes
within a kernel—have a different structure.

Naturally, the code itself will probably need to be checked via some opaque
process like comparing its hash to a list of permissible values. Some data struc-
tures like the Linux system call table—which translates numeric operations codes
to pointers to functions—will simply be checked to make sure that they have
not altered since start time.

5.2 Domain Separation: A Trustworthy Base

As mentioned above, suppose that before forwarding the day’s transactions to a
central server, a grocery store client system requires and evaluates an attestation.
If that attestation included evidence constructed in an appropriate way, the client
could be confident that the server will not transmit its credit card numbers to a
third party, before transmitting any information.

Recall that we envision the central server having an architecture like that
pictured in Fig. 2. The hypervisor is the most crucial part of the trust base of
the system. It is responsible for providing domain separation and sharing access
(for measurement tools).

TPM virtualization allows parties interacting with the User platform to seam-
lessly make use of TPM facilities without requiring knowledge of the full system
architecture. The measurement and attestation functionality included in the
platforms provide specialized measurement functions and attestation capabili-
ties for varied target environments. They form the externally-visible face of the
increased capabilities for the server.

Of course, booting such a system in a trustworthy fashion requires both care
and planning, to enable later attestations about the system support structure.
Attesting to a correct boot process relies heavily on the TPM quote.

17

5.3 Self-Protection: The Boot Process

A central source of evidence about a platform is the array of Platform Configu-
ration Register (PCR) values stored in the TPM. An attestation protocol may
deliver a requested subset of those values to an appraiser. But what conclusions
may the appraiser draw from inspecting those values?

The TCG vision for proper use of a TPM is based on a chain of trust rooted
in the TPM hardware and some firmware. The firmware, referred to as the “root
of trust for measurement” (RTM) kicks off a series of measurements at boot
time.

The chain of trust is simple in principle but complex in fact. The simple
view is that the boot process traverses a sequence of firmware or software system
components, each of which measures the next component in the sequence before
transferring control to it. At boot time, the measurements are just hashes of the
code in each component, and each hash value is stored in a designated PCR.
If there is an unbroken series of measurements that match the expected values,
each measured software component should be correct.

This conclusion depends on a belief that if the system software has not been
corrupted, it performs its measurement duties as specified. There may be bugs in
the original software, of course, but at least the threat of malicious modification
or other alteration has been reduced.

The chain of trust also depends significantly on details of the TPM design.
For example, it is not possible, in a single command, to simply rewrite a PCR to
a given value. PCRs may be either reset or extended, where an extend operation
combines the existing and input values by hashing their concatenation. In earlier
versions of the TPM, PCRs could be reset only on a hardware reboot. Thus, a
maliciously modified component could be prevented from rewriting the PCR
containing its measurement, and thus replacing a telltale bad hash with the
expected good value.

In the more recent version 1.2 of the TPM [40], some of the responsibility for
trusted operations is delegated to external firmware in the associated chipset,
as provided by the CPU manufacturers. New “dynamic” PCRs were added,
which could be reset at any time. However, reset and extension operations on
these PCRs are subject to access control based on localities. The locality of a
command may be determined by which system component originated it. This
permits some flexibility, such as a partial reboot with new system software, called
a “late launch”. It also complicates the argument supporting the integrity of the
stored measurements.

The more complex TPM version 1.2 design led us to ask if we could check
the argument for validity of measurements formally, using an abstract model of
the TPM and associated chipset features. A particular concern was to model the
possibly malicious misbehavior of contaminated system software. We assumed
a measurement architecture that is consistent with the Intel view in [11], in
which the CPU has an SENTER instruction that loads and measures an initial-
ization routine SINIT, which in turn measures previously loaded images of the
hypervisor and a few basic supervisory VMs, before launching the hypervisor.

18

Our model [26] of this architecture was written first in SMV [24], and then
rewritten in SAL [8]. The SAL version of the model is not yet publicly available.
These languages support automatic model checking of system properties. We
checked invariants stating that if certain PCR values were as expected, then
they were in fact the correct measurements of system components nominally
assigned to them. This way, we could confirm exactly which subset of the PCRs
had to be reported to confirm measurements of various components, including
all measured supervisory VMs. Other verified properties included an expected
property of late launch, namely, that even if the BIOS is compromised, the late
launch process still permits trusted system software to be loaded and confirmed;
and the inference that if a certain good PCR value is observed, then SENTER
has been executed.

5.4 Attestation Transport

Principles 3 and 5 require that the target be able to control the propagation of
information about its state, and that a verifier be able to trust the underlying
attestation mechanisms. It is especially challenging to satisfy these principles in
a distributed setting where evidence is transported over a public network. The
natural approach to addressing these challenges is with the use of cryptographic
protocols.

A cryptographic protocol is a mechanism to produce controlled agreement
among principals in a distributed system. The particular goals of a cryptographic
protocol determine which parameters participants should agree on as well as ad-
ditional constraints on those parameters. For instance, a key agreement protocol
is intended to produce agreement on a shared session key, and possibly additional
parameters such as the identities of the peers receiving the key. Furthermore,
communication is controlled—via the use of cryptography or randomly chosen
nonces—to ensure, for instance, that no other principal can learn the session
key, or that certain responses were freshly generated. A cryptographic protocol
achieves its goals when all executions, even in the presence of malicious parties,
lead to the desired controlled agreement.

In order to implement remote appraisal it is not enough for a principal V ,
making a decision about some evidence, to trust a principal A—in the sense
of trust stipulated in Section 2, page 5—with regard to the correctness of the
evidence A provides. V should apply the trust inference only if V knows that
A has made the statement. That requires agreement on A’s identity and on
the parameters embedded in the message in which A reported the evidence.
Similarly, in order for A to assess properly whether or not it is safe to send
the evidence, it should know the correct identity of the V that can interpret its
message. It must rely on the transport mechanism to prevent any other principals
from learning the content of the evidence. In other words, sound decisions by
both A and V require controlled agreement of certain relevant parameters. Thus
a well-designed protocol which is known to achieve its goals will allow both A
and V to make well-informed decisions.

19

A Two-Party Attestation Protocol. A simple protocol for attestation using a
TPM is given by Sailer, et. al. [31], as shown in Fig. 4, using terminology adapted
to our conventions. At boot time, measurements of OS code are deposited into
some PCRs. Subsequently, the system makes measurements M , typically when
loading code into processes, and deposits the hashes h(M) of these measurements
into other PCRs. They do not work in a virtualized framework.

In a protocol run, a Verifier V sends a challenge containing a nonce NV to
a client’s Attestation Service.2 The Attester responds with the measurement
list M and a TPM quote result containing PCR values from the target. The
quote result has a PCR vector P , with a hash that binds NV to it, signed with
an identity key I. Confidentiality and authentication for the exchange is provided
via an underlying SSL session.

Attester Verifier

•

•

•

•

NV

P, {|#(NV , P)|}I−1

Fig. 4. Sailer Protocol

The ideas behind this protocol are reasonable. However, finer trust analysis
is desirable in a virtualized framework. Moreover, a client C may want to in-
teract with a server S, but would not permit S to view all its measurements
(Principle 3). Thus, we must define how S asks an acceptable V to perform the
appraisal, and how S receives the answer from V . We also think it important to
separate the actions of the client C from those of its Attester A. Given this mul-
tiparty structure, it is important to make the cryptographic protection on the
protocol explicit, rather than relying on SSL. For these reasons, we have designed
a new protocol involving four main parties and a certificate authority E.

CAVES, a Multiparty Attestation Protocol. CAVES is designed to support attes-
tation in a context in which measurements are of the sort described in Section 5.1,
and evidence evaluation is delegated to another principal V , a specialist used
to reconcile the comprehensiveness proposed in Principle 2 with the constrained
disclosure of Principle 3.

The CAVES protocol was named after its five participants (see Fig. 5). The
additional principals are a client C, a server S, and the enterprise Privacy Cer-
tification Authority E responsible for the certificate covering the Attestation
Identity Key I.

2 We call the latter the Attester A, and we retain the term “Verifier” V rather than
“Appraiser” to avoid a collision in using the letter A.

20

The protocol begins with a request by C to receive some resource R, which
includes a session key K to use to deliver the challenge from the verifier V .
Server S delegates to some acceptable specialist appraiser or “verifier” V the
task of appraising C. V uses information in R to select an appropriate query J
and a PCR selection mask M , and delivers that, forwarded through S and C,
to C’s local measurement and attestation agent A. In our platform architecture,
the attestation manager in the M&A domain selects and launches an ASP as
introduced in Section 5.1 and as described in more detail in Section 5.5. That
ASP may invoke other ASPs to perform specialized measurements in accordance
with the query J , and to access a TPM.

A retrieves the evidence requested in J in the form of J ’s output JO, e.g. using
the methods described in Section 5.1. It packages this output together with the
current PCR values P for the registers selected by V in the PCR mask M . This
information is guaranteed using a TPM quote. The TPM quote uses the hash
#(A, V,R,NV , J, JO) of some parameters as a nonce-like seed to be included in
a digital signature. The digital signature is prepared using I−1, a TPM-resident
Attestation Identity private key.

This information is returned to V in a blob B encrypted with V ’s public
encryption key, to ensure that C and S cannot read it. V selects an Attestation
Identity Key I, certified by an Enterprise Privacy Certification Authority E, to
validate the quote. V obtains the attestation identity key I to validate the quote
by looking in a credential (shown in message 3) for the attester A specified in
message 2.

The keys KS and KV are public (asymmetric) encryption keys, for which
the participants may have PKI certificates. We assume that participants use
these PKI certificates to decide whether to regard the matching private parts
as uncompromised. The key K is a symmetric session key created by C for this
interaction with S. NS , NV are randomly chosen nonces that S, V generate for
this session. The key K ′ is a symmetric key created by the attester, and used to
protect the delivery of the data.

The channel between the attester and the client is protected by the hypervisor
and is not encrypted. Our method for modeling the channel protection is by
regarding the messages between the attester and the client as encrypted with an
artificial long term symmetric key ltk(A,A).

We have analyzed this protocol in detail using CPSA. CPSA is a Crypto-
graphic Protocol Shapes Analyzer [9], and it was extremely useful in the process
of refining CAVES. In particular, CPSA allowed us to develop this version of the
protocol in which C is essentially anonymous: No other participant has a name
for C, and no PKI certificates refer to it by any name. Thus, all that V and S
know about C comes from the evidence provided by A. This evidence consists
of the measurement output JO together with the PCR values that are signed in
the quote. Verifier V must decide whether this evidence is adequate to justify
a positive appraisal, and indeed this is exactly the specialized expertise that A
and S had in mind, when taking V as a mutually acceptable verifier.

21

Attester Client Server Verifier EPCA

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

2

3

4

5

6

7

8

9

10

ll

C → S : {|R,A,K|}KS (1)

S → V : {|S,R,A,NS |}KV (2)

E → V : {|cert, A, I, E|}
K−1

E
(3)

V → S : {|NV , J, V,NS ,M |}KS (4)

S → C : {|NV , J, V,M |}K (5)

C → A : {|S,NV , J, V,M,R|}ltk(A,A) (6)

A→ C : {|K′, NV , B|}ltk(A,A) (7)

C → S : B (8)

S → V : B (9)

V → S : {|valid, NS ,K
′|}KS (10)

S → C : {|data, D|}K′ (11)

B = {|K′, S, JO,M, P, {|#(#(A, V,R,NV , J, JO),M, P)|}I−1 |}KV

C: Client
A: Attester
V : Verifier
E: EPCA
S: Server

R: Request
D: Data
M : PCR Mask
P : PCR Vector
J : Query

JO: Measurement

NS : Server Nonce
NV : Verifier Nonce
K: Client Key
K′: Attester Key
I: Identity Key
B: Blob

Fig. 5. CAVES Protocol

22

A strength of analysis with CPSA is that it helps to clarify the interplay
between trust assumptions and protocol structure. In particular, the CAVES
analysis relies on one central trust assumption. This is:

Appraisal and behavior. If verifier V approves a run with attester A, and
receives acceptable values JO, P , then the underlying platform of A protects
communication between A and its local target, a client C. Moreover, this
C’s behavior in runs of CAVES will be in accordance with the requirements
of the protocol.
The implication of this inference for CPSA usage is to declare the virtual
channel key ltk(A,A) to be uncompromised.

With this principle in mind, we analyzed CAVES in the following steps.

1. Under reasonable assumptions, CPSA tells us that a complete run of the
server S role is possible only if the verifier V and attester A have also had
complete runs; moreover, the parties agree on all the parameters they should
share.

2. Since V will send its last message only if it approves the values from the
attester A, this justifies the additional assumption that ltk(A,A) is uncom-
promised.

3. With this assumption added, CPSA determines that no adversary can simu-
late the behavior of a client C. Hence, if S sends the requested data D, then
D goes only to an approved C.

4. We also check that an adversary can never receive the platform’s sensitive
data JO and P .

CPSA Results for CAVES. Expanding this outline slightly, we analyze CAVES
from the point of view of the server S. We will make two steps. First, we will
use CPSA to discover what can have happened, given that S has had a full
local session of the protocol. In this first step, we will assume that the private
decryption key K−1V of the selected verifier V is uncompromised. We will also
assume that S’s own private decryption key K−1S is uncompromised.

We will assume that each regular, compliant principal, when selecting a nonce
or session key, will choose one that is fresh and unguessable. By “fresh,” we
mean that no other regular participant will have chosen this same value for any
purpose. By “unguessable,” we mean that the adversary, if trying to create useful
values, will never be lucky enough to select this same one.

Subject to these assumptions, CPSA tells us that in CAVES, every execution
in which a server S has a local run has at least the behavior shown in Fig. 6.

The dotted arrows n
≺ //m indicated that some message ingredients sent at

node n must be available in order to deliver the message received at node m.
In this run, the participants agree on all of their parameters, meaning that the
protocol has forced a sufficient amount of agreement among them. However, the
client C is absent. Nothing in our current assumptions forces the involvement of
a run of a regular, compliant C.

23

S E V A

•
��
•

��

≺ // •
��

• ≺ // •
��

•
��

•

��

�oo

•
��

≺ // •
��

•
��

•
��

•�oo

•
��

•
�

oo•
��
•

Fig. 6. Behavior Required if Server S Completes

However, our principle on appraisal and behavior justifies adding another
assumption, namely that the key ltk(A,A), representing the channel between
appraiser A and the client (target of attestation) C is used only in accordance
with the protocol. In part, this represents a conclusion about the platform un-
derlying C. Because V can appraise the PCR values P , V can ascertain that
the underlying platform implements a safe channel between A and its target of
attestation. Moreover, the measurement output JO provides evidence allowing
V to infer that the behavior of the target of attestation will meet expectations.
Our principle allows us to put these two conclusions together, to justify the
additional assumption that ltk(A,A) will be used only in accordance with the
CAVES protocol.

If we restart the analysis with the behavior shown in Fig. 6, augmented by
this new assumption, CPSA reports that every possible execution contains also
a client session, as shown in Fig. 7. Again, the participants agree on all expected
parameters.

One other key fact is a limitation on the agreement of principals on a pa-
rameter. In particular, it is a goal of the attester A that no party other than V
should learn the values P, JO. This means that no other participant will learn
its internal state. It is evident from the protocol that C, S do not learn them.
However, could an adversary? To test this, we ask CPSA two questions. The
first, shown in Fig. 8, shows a run of A and a disclosure of JO, indicated by the
node at the top right that receives the values JO unprotected by any encryption.
Subject to the assumptions that K−1V is uncompromised, and that JO and K ′

are fresh and unguessable, CPSA reports that this diagram is incompatible with
any possible execution. The same remains true if JO is replaced with P .

24

S E V A C

•
��

•

��

�oo

•

��

≺ // •
��

• ≺ // •
��

•
��

•

��

�oo

•

��

≺ // •
��

•
��

•
��

�oo

•
��

• ≺ // •
��

•
��

•
��

•�oo

•
��

•�oo

•

Fig. 7. Behavior Required if Server S Completes, and the Channel between C and A
is used only in Accordance with CAVES

A Recv JO

•
��

•
��

• •

Fig. 8. Unsatisfiable Query, Disclosing JO

5.5 Managing Attestation

Recall that in Figure 2 both the S and U environments possess specialized mea-
surement and attestation services, running in dedicated virtual machines called
M&A domains. This separation provides isolation between the measurement tar-
get and the measurement tool.

Upon receiving an attestation request, the server’s software directs the in-
coming request to its M&A domain and proxies responses from that M&A back
out to the requester. The M&A domain is broken out into components that can
satisfy the different portions of an attestation request (see Fig 3).

As mentioned above, there are three main enabling technologies for an attes-
tation: The appropriate evidence collector must be selected; the evidence must
be collected; and the data must be moved between all relevant parties in a trust-
worthy manner. We explore each of them in more detail as we break down a
single attestation.

25

An attestation manager (AM) manages the attestation session. This includes
listening for requests, breaking them into calls for evidence, and implementing
any privacy policies the server might have, as specified in Principle 3. (For ex-
ample, the server may only be willing to share configuration information with a
small subset of peers.)

Attestation Service Providers (ASPs) provide specialized attestation services
and are called by the AM. In the case of our grocery store server, there are four
components to the request: A certificate, an OS measurement report, a software
measurement report, and a vTPM quote. One AM implementation currently
in existence uses the call by contract [25] method; each ASP provides a set of
contracts describing what actions it will take and what input it requires. Again
following our running example, the vTPM may offer a quote given a PCR mask
and nonce as input.

The ASP and AM concepts are intentionally general, so as to allow for the
widest possible field of attestation scenarios. Internal ASP structure will depend
on function. We expect most ASPs to fall into one or more of the following
categories:

– Computation of attestation-relevant information, such as specialized OS
measurement,

– Calls to other system resources, such as the vTPM, and
– Calls to its parent AM, requesting the use of another ASP

A particular M&A domain will likely include several ASPs covering all of our
functional categories in order to support our Principles 1–5 for the platform. The
grocery store server might include specialized OS and data collection software
measurement agents, the vTPM for the U guest, the hardware TPM, and perhaps
a hash computation/checking function used by both the Attestation Manager
directly and the OS measurement agent.

The choice of one or more ASPs for measurement may be informed by all
of our principles; different ASPs may provide information that is fresh, com-
prehensive, and/or semantically explicit to varying degrees, and the attestation
manager may choose not to call the most comprehensive or semantically explicit
service providers in order to constrain the disclosure of system information.
Different ASPs may also be more or less trustworthy; a simple measurement
provider might provide less useful information but allow easier verification of
correct measurement behavior. The mechanism that matches a request to the
right ASP is called the Selector.

Contracts and Selection As explained in [25], the AM will interpret its re-
quest as a contract expressible in a logical form. A contract has a precondition, a
postcondition, and a confidentiality requirement called a nondisclosure agreement
(NDA).

Preconditions and postconditions are logical formulas. In the request con-
tract, these formulas are expressed using logical terms formed from predicate

26

symbols and formal parameters. For example, a request for a TPM quote might
have a precondition

nonce(n) ∧mask(m) ∧ idkey(k)

(where “∧” is a logical “and”) and a postcondition

tpmQuote(n,m, k, p, q).

The request contract also has a mapping of input parameters (the ones in the
precondition) to values specified by the caller. The semantics of most of the pred-
icate symbols used is application-specific; we will say more about this shortly.

A possible form for the NDA is a mapping of formal parameters to conditions
under which the corresponding parameter may be released. A simple instance of
this scheme is to assign either a condition of true, meaning that the parameter
is not confidential, or false, meaning that the parameter value is shared only
by the service and the caller. More complex instances could specify particular
principals who may see certain parameter values.

Given a request contract, the Selector must find an ASP that can satisfy it.
To do this, it uses a registry, which is a table of entries corresponding to the
available ASPs. Each entry expresses a service contract and also contains a link
to the code implementing the service. The form of a registry entry is shown in
Fig. 9.

Precondition Postcondition NDA Link

Fig. 9. Attestation Service Registry Entry

Although the conditions in the service contracts have the same form as those
in request contracts, the conditions in an acceptable service contract do not have
to match the request conditions exactly. It is enough if the request precondition
implies the service precondition, though the former may be stronger; and the
service postcondition implies the request postcondition, though the former may
be stronger; and the NDA conditions also relate in such a way that the con-
fidentiality commitments of the service imply the confidentiality requirements
of the request. Obviously, this means that ASPs must be trusted to keep their
promises. It is the responsibility of the administrator who fills in registry entries
to do whatever is prudent about checking ASP claims.

In order to find an acceptable ASP, the Selector must map formal parameters
properly, and also recognize relationships between predicate symbols. For exam-
ple, if a request guarantees a precondition positive(x) and an ASP relies upon
a precondition nonnegative(x), a well-informed Selector would invoke a built-in
rule that positive implies nonnegative, and would consider that ASP as a candi-
date. A good Selector should have an extensible knowledge base with rules like
this. Some caution is needed here, because the caller and ASP must agree on

27

any such rules, otherwise spurious selections might be made. An implementation
intended for wide usage would have to set up naming and definition standards
for condition predicates to prevent misuse.

All but the simplest ASPs may be expected to require some communication
outside the VM in which the ASP was entered. An ASP may be a protocol
that uses a network connection to exchange messages with an external principal,
or it may make requests involving inter-VM communication. An ASP may also
request a service by sending a contract to the AM and asking it to handle the
selection, invoking any other ASP that provides the service. We would expect,
for example, that an ASP designed to implement the CAVES protocol would ask
the AM to find ASPs providing kernel measurement and TPM commands. A call
on a TPM command might be either to a vTPM or the hardware TPM, and the
requested postcondition should be able to distinguish between those services.

We have implemented a prototype Selector, which has been used with exper-
imental attestation protocols in which TPM commands and other computations
are invoked as services. The algorithm it uses is specified in [25]. We use a
lightweight Datalog runtime engine to handle the logical manipulation of con-
dition formulas and rules necessary for fully flexible and application-dependent
selection.

Had Hannaford customers been able to support attestation as described in
this paper, perhaps the problems that were experienced might have been avoided.
Client software would have been able to determine that either the server OS
or data processing software had been compromised before sending credit card
transactions.

6 Open Problems

Even with our architectural constraints and system design, some aspects of the
attestation problem remain difficult to solve. The most difficult principles to
satisfy with today’s technology are establishing Trustworthy Mechanisms
and gathering Comprehensive Information.

The Trusted Platform Module and related technology from Intel (TXT) [6]
and AMD (SVM) [5] are useful means for bootstrapping certain aspects of a
self-protecting trust base, but a richer trust base is needed than can be provided
by this sort of hardware alone. The emergent hardware technologies provide a
known origin for any evaluation, the core root of trust for measurement. But
ultimately, the integrity of the trust base depends on the assurance of the “hy-
pervisor” implementation. Specifically required is a means to establish domain
separation in order to support a trustworthy mechanism for attestation. Our
current implementation uses an off-the-shelf virtualization system—but none of
those available today offer the desired balance between flexibility and security.
Solutions to this problem might be found either by extending traditional separa-
tion kernels or possibly by producing a small, assurance-focused virtual machine
hypervisor.

28

The major problem in gathering comprehensive information is that in order
to establish trust in application-level software one first needs to establish trust
in the operating system on which the software depends. Today’s mainstream
operating systems were not designed with assurance or measurement in mind.
They are large and complex, containing many dynamic features that make them
very difficult to analyze even in the absence of a hostile party. It seems unlikely
that this situation will improve until there is either a major shift in the structure
of mainstream operating systems or the widespread adoption of a new operating
system designed from the beginning with measurement and assurance as a design
goal.

Another problem in achieving comprehensive information is that, although
many researchers are developing specialized tools for measurement and attesta-
tion, including [23, 32, 42, 10, 2], these tools have not been integrated into a uni-
fying, multi-purpose attestation architecture. Connecting these disparate view-
points on a single system into a single comprehensive attestation platform will
be a significant challenge.

7 Existing approaches to attestation

Since the introduction of the TPM, research efforts in the area of system attes-
tation have widely expanded. It is a major component and focus of work being
done within the Trusted Computing Group [40] [38] [12], Microsoft [7], and mul-
tiple independent researchers [18] [33]. Many of these proposals are aimed at
specific use cases and thus lack the flexibility to address the more general at-
testation problems discussed in this paper. Taken in total, however, the efforts
aimed at these specific use cases highlight the need for both a broader notion of
attestation and a flexible architecture capable of supporting that broader notion.

Trusted Network Connect. Trusted Network Connect (TNC) is a specification
from the Trusted Computing Group [38] intended to enable the enforcement
of security policy for endpoints connecting to a corporate network [38], and is
generally seen as supporting activity at network layers 2 or 3. For this reason,
the TNC architecture makes some assumptions about the relationships between
parties that make it of limited value for application-level attestations. Once
a party has network access, it moves outside the scope of TNC. It should be
noted that TNC is not itself a networking or messaging protocol, but rather is
intended to be tunneled in existing protocols for managing network access, such
as EAP [1].

When considered in light of the principles for attestation outlined in this
paper, TNC is most naturally comparable to a specialized attestation manager.
Much of the purpose of the TNC Client (TNCC) is to select the appropriate
Integrity Measurement Collectors (IMCs) based on requests from Integrity Mea-
surement Verifiers. However, in a TNC-compliant system, no separation exists
between measurement tools and either the attestation management function or
other measurement tools [39].

29

TNC allows limited attestation delegation and identification. In particular,
before the integrity measurements are taken, “mutual platform credential au-
thentication” [38] can occur. In the TCG context, this means that the two par-
ties can each verify that the other has a valid, unrevoked TPM AIK. However,
truly mutual authentication cannot occur in TNC due to its nature as a net-
work access protocol; no attestations from the server to the client other than the
initial credential exchange are possible.

Pioneer and BIND. Pioneer and BIND are attestation primitives developed at
CMU with very specific design constraints, and could be naturally viewed as
particular ASP instantiations.

BIND [34] is a runtime code attestation service for use in securing distributed
systems. It centers around a specific measurement capability which binds a proof
of process integrity to data produced by that process, and is best-suited for
embedded systems without flexible attestation needs.

Pioneer [33] is an attempt to provide a “first-step toward externally-verifiable
code execution on legacy computing systems.” Here, legacy means systems with
no hardware trust base – Pioneer attempts to solve the attestation problem en-
tirely in software. This faces serious challenges in the presence of a malicious OS,
and at least one method is known for an OS to fool Pioneer. Also, the success
of Pioneer on any given system requires an immense degree of knowledge about
(and control of) the underlying hardware. A trusted third party must know the
exact model and clock speed of the CPU as well as the memory latency. The sys-
tem must not be overclocked, must not support symmetric multi-threading, and
must not generate system management interrupts during execution of Pioneer.
Thus, an attacker with sufficient hardware understanding might subvert attesta-
tion. At least one such attack, for systems with 64-bit extensions, is mentioned
on the Pioneer web site [33].

Schellekens et al. [32] seek to improve the reliability and remove some of the
constraints on Pioneer-style attestation systems by integrating hardware support
from TPMs in several ways. By using a TPM’s tick stamping functionality, a
challenger can achieve an approximation of a time measurement made on the ap-
praised platform, reducing the variability resulting from network lag. They also
propose modifications to the bootloader, so that a TPM’s PCRs could contain
information about the machine’s CPU identifier or a performance measurement
of a test Pioneer challenge. These modifications remove some attack vectors
against Pioneer.

Nexus. Nexus [35] is an effort at Cornell to develop an operating system with
particular attention to “active attestation.” It enables separation via secure
memory regions and moves device drivers into userspace. It introduces “label-
ing functions,” a mechanism for providing dynamic runtime data to appraisers.
Measurement tools may be sent to the target system by the appraiser and do
not need to be pre-integrated with the base system.

As it involves an entirely new microkernel-based operating system, Nexus is
most likely to be deployed in a specialized role such as something one might

30

use for separation purposes instead of a traditional hypervisor. This relationship
seems even more relevant in light of the fact that the Nexus project intends to
be able to run Linux on top of a Nexus process.

Property Based Attestation. There has been extensive research into the notion of
property-based attestation, often within the context of particular scenarios. Most
of these scenarios can be viewed or adapted to fit within a flexible attestation
framework. We mention a brief selection here.

Jonathan Poritz [28] and Sadeghi and Stüble [29] have each pointed out that
the end consumer of an attestation ought to care about security properties of the
target, as opposed to the specific mechanisms employed to achieve those prop-
erties. Poritz suggests that a solution might include virtualization and trusted
third parties, but does not propose a concrete approach. Sadeghi and Stüble go
farther, suggesting multiple approaches, some of which may require significant
changes to the TPM or the TCG software stack.

These authors and several others go on to propose a protocol for performing
such property-based attestations [4]. This protocol could be implemented as an
ASP in our system.

Kühn et al. [22] propose a mechanism for modifying the boot loader to pro-
duce property-based attestations for use in TPM quotes and data sealing. In ad-
dition to storing the standard hashes in TPM PCRs, the boot loader also refers
to a pregenerated list associating measurements with properties and stores the
appropriate properties in another register. A trusted boot loader will only use
signed property lists created by a trusted authority whose public key matches
a reference stored in the TPM. This effectively moves half of the appraiser’s
functionality—evaluating hashes for meaning—onto the local machine.

Their solution offers several advantages over earlier property-based attesta-
tion proposals, including not requiring extensive changes to the TPM or OS
and allowing for data to be sealed to properties rather than hashed measure-
ments. However, their approach assumes a central entity in an IT environment
which is responsible for defining property lists, and which is trusted to do so by
all recipients of measurements. This is useful in many real-world environments,
but would require modification for use in delegated attestation architectures like
those we describe. In addition, while hashes of machine components can be hid-
den, the properties of all software on the machine are extended into a single
PCR, providing limited options for constrained disclosure.

Sadeghi et al. [30] also build upon the ideas proposed by Kühn et al. by
describing a virtual TPM architecture in which each virtual TPM may contain
one or more property providers. Each property provider translates actual hash
values as recorded in a PCR into a provider-specific property PCR corresponding
to the original. A vTPM policy determines whether actual measurement data
or some particular property data is used for a given TPM command, so that,
for example, actual hashes might be released for a quote but properties derived
from a trusted certificate might be used for sealing and unsealing data. While
the proposal in this paper uses vTPM operations to determine which property
provider should be used, one could imagine variations with more complexity;

31

taking appraiser identity into account could allow fine-grained privacy control,
while attestation delegation could be achieved by negotiating provider selection
based on mutual trusted authorities.

Nagarajan et al. [27] take a related approach to the problem of property-based
attestation, suggesting that expert appraisers can provide property certificates to
a platform. Rather than having a trusted component on the appraised platform
translate PCR values into properties, the signed certificate associating PCR
values with a more abstract property is provided to measurement requestors
along with a TPM quote. The advantage of this system is that multiple trusted
authorities can provide property associations, and properties may cover different
abstraction levels. However, this system does not allow for even the limited
privacy granted by [22], since any relevant PCR values will still need to be
provided to a measurement requestor.

While this is not a complete list of research into property-based attestation,
the variety of use-cases outlined here highlights the need for our notion of se-
mantically explicit attestation and a flexible architecture capable of supporting
it.

TLS Variants. Gasmi et al. [10] and Armecht et al [2] propose specialized TLS
variants that include evaluation of endpoint states, local policy decisions about
the trustworthiness of remote communications partners, and TPM-rooted session
keys. Central to their goals is the idea that communications partners should
know not only what software the remote system was running at the beginning of
the communication, but should have the opportunity to cease communication if
that state changes at any time in an unacceptable fashion. These protocols are
natural candidates for inclusion as ASPs within an architecture like the one we
describe.

Other ASPs. Some highly specialized measurement and attestation solutions in
the current literature are ideally suited for adoption in architectures like the
one we propose, as attestation service providers (ASPs). With their focus on
attestation of a limited portion of a system, these projects have the potential to
give in-depth and detailed visibility into specific portions of a platform.

CoPilot [18] is a system for detecting root kits in a Linux kernel run on a
PCI add-in card, accessing system memory using DMA. It periodically computes
hashes over key parts of memory that impact kernel execution, compares against
a known value, and reports to an external system that enables manual decisions
to be made regarding detected changes. It does not provide a truly comprehensive
measurement of the target system, because the measurements it produces do not
include important information residing in the kernel’s dynamic data segment. In
addition, since CoPilot does not have direct access to the CPU’s registers, it
is only able to perform measurements at known memory locations and cannot
associate any of its measurements with what is actually running on the processor.

Gu et al. [13] propose a mechanism for remotely attesting to the correctness
of program execution. Their solution builds on top of a combination of a TPM
and a secure kernel offering process isolation and memory curtaining. In order

32

to provide meaningful attestation about a program run, they measure not only
the program code and initial input, but also additional input provided to the
program during its execution in the form of relevant system calls. A dependency
analysis of the program is used to determine relevancy. A PCR in the TPM is
updated with the most recent measurement whenever a relevant system call is
trapped, ensuring that the PCR value accurately reflects the program’s execution
history at all times.

Software is not the only useful attestation target. One of our core principles
for attestation architectures is comprehensive information, so that appraisers
can make decisions based on a complete picture of the target system. Van Dijk
et al. [42] propose a mechanism by which a trusted timestamp device, such as
the TPM’s monotonic counter, can be used to prove recency of data in storage
devices. Techniques such as this, when implemented using remotely verifiable
trustworthy mechanisms, can supplement other software-focused attestation. For
example, an architecture for a trusted database server might well have a recency
checker as part of its measurement tool suite.

8 Conclusion

Attestation is an area which will see many technological innovations and develop-
ments in the near future. In particular, since the major vendors are introducing
improved support for virtualized systems, architectures such as ours should be
increasingly easy to implement in a trustworthy way. The semantic explicitness
and freshness of the attestations that we propose should allow a common vocabu-
lary across many architectures. Constrained disclosure should encourage systems
owners to allow their systems to participate in attestations. Comprehensive infor-
mation should encourage appraisers to place credence in well-supported claims,
particularly given underlying trustworthy attestation mechanisms. We have at-
tempted to clarify the way that existing work can be used to contribute to our
goals.

References

1. B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible
Authentication Protocol (EAP). RFC 3748 (Proposed Standard), June 2004.

2. Frederik Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Mar-
tin Unger, Gianluca Ramunno, and Davide Vernizzi. An efficient implementation
of trusted channels based on openssl. In STC ’08: Proceedings of the 3rd ACM
workshop on Scalable trusted computing, pages 41–50, New York, NY, USA, 2008.
ACM.

3. Boris Balacheff, Liqun Chen, Siani Pearson (ed.), David Plaquin, and Graeme
Proudler. Trusted Computing Platforms: TCPA Technology in Context. Prentice
Hall PTR, Upper Saddle River, NJ, 2003.

4. Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-Reza
Sadeghi, and Christian Stüble. A protocol for property-based attestation. In STC
’06: Proceedings, First ACM Workshop on Scalable Trusted Computing, pages 7–
16, New York, NY, USA, 2006. ACM Press.

33

5. AMD Corporation. Amd64 architecture programmer’s manual volume 2: Sys-
tem programming rev 3.11. http://www.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/24593.pdf, January 2006.
6. Intel Corporation. Intel trusted execution technology. http://download.intel.

com/technology/security/downloads/31516803.pdf, November 2006.
7. Microsoft Corporation. Ngscb official page. http://www.microsoft.com/

resources/ngscb/default.mspx, 2007.
8. L. deMoura, S. Owre, and N. Shankar. The SAL language manual. Technical

Report SRI-CSL-01-02, SRI International, 2003.
9. Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for

shapes in cryptographic protocols. In Tools and Algorithms for Construction and
Analysis of Systems (TACAS), number 4424 in LNCS, pages 523–538. Springer,
March 2007. Extended version at URL:http://eprint.iacr.org/2006/435.

10. Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, and
N. Asokan. Beyond secure channels. In STC ’07: Proceedings of the 2007 ACM
workshop on Scalable trusted computing, pages 30–40, New York, NY, USA, 2007.
ACM.

11. David Grawrock. The Intel Safer Computing Initiative. Intel Press, 2006.
12. TCG Best Practices Group. Design, Implementation, and Usage Principles for

TPM-Based Platforms, May 2005. Version 1.0.
13. Liang Gu, Xuhua Ding, Robert Huijie Deng, Bing Xie, and Hong Mei. Remote at-

testation on program execution. In STC ’08: Proceedings of the 3rd ACM workshop
on Scalable trusted computing, pages 11–20, New York, NY, USA, 2008. ACM.

14. Joshua D. Guttman. Authentication tests and disjoint encryption: a design method
for security protocols. Journal of Computer Security, 12(3/4):409–433, 2004.

15. Joshua D. Guttman, Jonathan C. Herzog, John D. Ramsdell, and Brian T. Snif-
fen. Programming cryptographic protocols. In Rocco De Nicola and Davide San-
giorgi, editors, Trust in Global Computing, number 3705 in LNCS, pages 116–145.
Springer, 2005.

16. Joshua D. Guttman, F. Javier Thayer, Jay A. Carlson, Jonathan C. Herzog,
John D. Ramsdell, and Brian T. Sniffen. Trust management in strand spaces:
A rely-guarantee method. In David Schmidt, editor, Programming Languages and
Systems: 13th European Symposium on Programming, number 2986 in LNCS, pages
325–339. Springer, 2004.

17. Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote attesta-
tion – a virtual machine directed approach to trusted computing. In Proceedings
of the Third virtual Machine Research and Technology Symposium, pages 29–41.
USENIX, May 2004.

18. Nick L. Petroni Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copi-
lot - a coprocessor-based kernel runtime integrity monitor. In USENIX Security
Symposium, pages 179–194. USENIX, 2004.

19. Yasuharu Katsuno, Yuji Watanabe, Sachiko Yoshihama, Takuya Mishina, and
Michiharu Kudoh. Layering negotiations for flexible attestation. In STC ’06:
Proceedings, First ACM Workshop on Scalable Trusted Computing, pages 17–20,
New York, NY, USA, 2006. ACM Press.

20. Ross Kerber. Advanced tactic targeted grocer: ‘Malware’ stole Hannaford data.
The Boston Globe, page 1, 18 March 2008.

21. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification

34

of an OS kernel. In ACM Symposium on Operating Systems Principles, Big Sky,
MT, October 2009.

22. Ulrich Kühn, Marcel Selhorst, and Christian Stüble. Realizing property-based
attestation and sealing with commonly available hard- and software. In STC ’07:
Proceedings of the 2007 ACM workshop on Scalable trusted computing, pages 50–57,
New York, NY, USA, 2007. ACM.

23. Peter A. Loscocco, Perry W. Wilson, J. Aaron Pendergrass, and C. Durward Mc-
Donell. Linux kernel integrity measurement using contextual inspection. In STC
’07: Proceedings of the 2007 ACM workshop on Scalable Trusted Computing, pages
21–29, New York, NY, USA, 2007. ACM.

24. Ken McMillan. The SMV system, 1992. http://www.kenmcmil.com.
25. Jonathan Millen, Joshua Guttman, John Ramsdell, Justin Sheehy, and Brian Snif-

fen. Call by contract for cryptographic protocol. In FCS-ARSPA, 2006. http:

//www.mitre.org/work/tech_papers/tech_papers_06/06_0498/index.html.
26. Jonathan Millen, Joshua Guttman, John Ramsdell, Justin Sheehy, and Brian Snif-

fen. Analysis of a measured launch. Technical report, The MITRE Corpora-
tion, June 2007. http://www.mitre.org/work/tech_papers/tech_papers_07/07_
0843/index.html.

27. Aarthi Nagarajan, Vijay Varadharajan, and Michael Hitchens. Trust management
for trusted computing platforms in web services. In STC ’07: Proceedings of the
2007 ACM workshop on Scalable trusted computing, pages 58–62, New York, NY,
USA, 2007. ACM.

28. Jonathan A. Poritz. Trust[ed — in] computing, signed code and the heat death
of the internet. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied
computing, pages 1855–1859, New York, NY, USA, 2006. ACM Press.

29. Ahmad-Reza Sadeghi and Christian Stüble. Property-based attestation for com-
puting platforms: caring about properties, not mechanisms. In NSPW ’04: Pro-
ceedings, 2004 Workshop on New Security Paradigms, pages 67–77, New York, NY,
USA, 2004. ACM Press.

30. Ahmad-Reza Sadeghi, Christian Stüble, and Marcel Winandy. Property-based
tpm virtualization. In ISC ’08: Proceedings of the 11th international conference on
Information Security, pages 1–16, Berlin, Heidelberg, 2008. Springer-Verlag.

31. Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and
implementation of a TCG-based integrity measurement architecture. In Proceed-
ings of the 13th USENIX Security Symposium, pages 16–16, Berkeley, CA, USA,
2004. USENIX Association.

32. Dries Schellekens, Brecht Wyseur, and Bart Preneel. Remote attestation on legacy
operating systems with trusted platform modules. Electron. Notes Theor. Comput.
Sci., 197(1):59–72, 2008.

33. Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Pioneer: Verifying integrity and guaranteeing execution of code
on legacy platforms. In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), pages 1–16, October 2005. See also Pioneer Web pages, http:
//www.cs.cmu.edu/%7Earvinds/pioneer.html.

34. Elaine Shi, Adrian Perrig, and Leendert Van Doorn. BIND: A time-of-use attes-
tation service for secure distributed systems. In Proceedings of IEEE Symposium
on Security and Privacy, May 2005.

35. Alan Shieh, Dan Williams, Emin Gün Sirer, and Fred B. Schneider. Nexus: a
new operating system for trustworthy computing. In SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems principles, pages 1–9, New York,
NY, USA, 2005. ACM Press.

35

36. Brad Stone. 11 charged in theft of 41 million card numbers. The New York Times,
page B 1, 5 August 2008.

37. Mark Thober, J. Aaron Pendergrass, and C. Durward McDonell. Improving co-
herency of runtime integrity measurement. In STC ’08: Proceedings of the 3rd ACM
workshop on Scalable Trusted Computing, pages 51–60, New York, NY, USA, 2008.
ACM.

38. Trusted Computing Group. TCG Trusted Network Connect: TNC Architecture for
Interoperability, May 2006. Version 1.1.

39. Trusted Computing Group. TCG Trusted Network Connect TNC IF-IMC, May
2006. Version 1.1.

40. Trusted Computing Group. TPM Main Specification, Design Principles, ver-
sion 1.2 edition, 2006. https://www.trustedcomputinggroup.org/specs/TPM/

mainP1DPrev103.zip.
41. Trusted Computing Group. TCG Specification Architecture Overview, revi-

sion 1.4 edition, 2007. http://www.trustedcomputinggroup.org/.../TCG_1_4_

Architecture_Overview.pdf.
42. Marten van Dijk, Jonathan Rhodes, Luis F. G. Sarmenta, and Srinivas Devadas.

Offline untrusted storage with immediate detection of forking and replay attacks.
In STC ’07: Proceedings of the 2007 ACM workshop on Scalable trusted computing,
pages 41–48, New York, NY, USA, 2007. ACM.

36

