
�MS ID: IJIS0052

11 October 2004 16:30 CET

Int J Inf Secur (2004) 00: 1–20 / Digital Object Identifier (DOI) 10.1007/s10207-004-0052-x

Rigorous automated network securitymanagement∗

Joshua D. Guttman, Amy L. Herzog

The MITRE Corporation, Bedford, MA, USA
e-mail: {guttman, aherzog}@mitre.org
Published online: 2004 – Springer-Verlag 2004

Abstract. Achieving a security goal in a networked sys-
tem requires the cooperation of a variety of devices,
each device potentially requiring a different configura-
tion. Many information security problems may be solved
with appropriate models of these devices and their inter-
actions, giving a systematic way to handle the complexity
of real situations.
We present an approach, rigorous automated network

security management, that front-loads formal modeling
and analysis before problem solving, thereby providing
easy-to-run tools with rigorously justified results. With
this approach, we model the network and a class of prac-
tically important security goals. The models derived sug-
gest algorithms that, given system configuration informa-
tion, determine the security goals satisfied by the system.
The modeling provides rigorous justification for the al-
gorithms, which may then be implemented as ordinary
computer programs requiring no formal methods training
to operate.
We have applied this approach to several problems.

In this paper we describe two: distributed packet filtering
and the use of IP security (IPsec) gateways. We also de-
scribe how to piece together the two separate solutions to
these problems, jointly enforcing packet filtering as well
as IPsec authentication and confidentiality on a single
network.

Keywords: – TSa

∗ Supported by the National Security Agency under contract
DAAB07-99-C-C201, and the United States Air Force under con-
tract F19628-99-C-0001. Preliminary versions of parts of this ma-
terial appeared in Proceedings of the 1997 IEEE Symposium on
Security and Privacy ; Proceedings of ESORICS 2000 ; and Proceed-
ings of VERIFY 2002.

1 Introduction

Controlling complexity is a core problem in information
security. In a networked system many devices, such as
routers, firewalls, virtual private network gateways, and
individual host operating systems, must cooperate to
achieve security goals. These devices may require differ-
ent configurations, depending on their purposes and net-
work locations. To solve many information security prob-
lems, one needs models of these devices and their inter-
actions. We have focused for several years on these prob-
lems, using rigorous automated network security manage-
ment as our approach.
Rigorous automated security management front-loads

themathematical workneeded for problem solving.Rigor-
ous analysis is needed to solve many information security
problems, but unfortunately specialists in modeling are in
short supply. We focus the modeling work on represent-
ing behavior as a function of configurations and predicting
the consequences of interactions among differently config-
ureddevices. Ausefulmodelmust also allowone to express
a class of practically important security goals.
The models suggest algorithms that take as input in-

formation about system configuration and tell us the se-
curity goals satisfied in that system. Sometimes we can
also derive algorithms to generate configurations to sat-
isfy given security goals. The soundness of the algorithms
follows from the models. However, the algorithms are im-
plemented as computer programs requiring no logical ex-
pertise to use. Resolving individual practical problems
then requires little time and no formal methods special-
ists while offering a good level of the higher assurance of
security.
Our purpose in this paper is to illustrate the rigor-

ous security management approach. We describe a group
of problems and the modeling frameworks that lead to

TS
a Please provide up to five key words.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

�MS ID: IJIS0052

11 October 2004 16:30 CET

2 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

their solutions. One problem concerns distributed packet
filtering, in which packet-filtering routers are located at
various points in a network. The problem is to constrain
the flow of different types of packets through the net-
work. Another problem concerns gateways running the
IP security protocols (IPsec); the problem is to ensure
that authentication and confidentiality goals are achieved
for specific types of packets traversing the network. We
have implemented solutions to these problems [7, 8, 10].
The goal of the present paper is to provide an integrated
description of our methods and also to unify the two so-
lutions so that packet filtering goals and IPsec goals are
jointly enforced on a network.

Steps in rigorous automated security management. The
method requires four steps.

Modeling: Construct a simple formal model of the prob-
lem domain. For instance, the packet-filtering system
model contains a bipartite graph, in which nodes are
either routers or network areas. Edges represent in-
terfaces, and each interface may have packet filters
representing the set of packets permitted to traverse
that edge in each direction.

Expressing Security Goals: Selecting a model constrains
which security goals are expressible, so that model
simplicity must be balanced against the ability to
represent core security problems. Within each model,
identify one or a few security goal forms that define
security-critical aspects of the system. In our treat-
ment of IPsec, one goal form characterizes assertions
about authenticity; confidentiality is expressed using
a different goal form. People managing a particular
system will choose a number of goals of these general
forms as expressing the properties they need for their
system. Thus, it is crucial that these goal forms ex-
press at least some of the most important security con-
siderations that the system managers need to achieve.

Deriving Algorithms: The system model and security
goal forms must be chosen so that algorithms can de-
termine if goals are enforced in a particular system.
Each specific system configuration (abstracting from
characteristics not reflected in the model) is a prob-
lem instance, for which the analysis algorithms must
determine whether given goals are achieved. In some
cases, another algorithm may, given some information
about a system and some desired goal statements, fill
in the details to determine a way for the system to
satisfy the goals.
The rigor in our method lies in the mathematical char-
acter of the model and the opportunity to give con-
vincing proofs of correctness for these algorithms.

Implementing: Having defined and verified one or several
goal enforcement algorithms in the previous step, one
writes a program to check goal enforcement. The in-
puts to this program consist of goal statements that
should be enforced and system configuration infor-
mation. For instance, in our packet-filtering example,

the system configuration information consists of net-
work topology information and the router configura-
tion files. The program then enumerates which goals
are met and gives counterexamples for unmet goals.
The programmay also generate new and better config-
uration files.

2 Packet-filtering devices

Packet-filtering devices such as routers, firewall systems,
and IPsec gateways are an important component of net-
work layer access control. Since packets passing from one
area in a network to another often traverse many in-
termediate points, and may travel via alternate routes,
filtering devices in several locations may need to coop-
erate. It is difficult to determine manually what division
of labor among devices at different points in a network
ensures policy enforcement, particularly given multiple
routes. This is a problem of localization.
We will describe this problem from the rigorous auto-

mated security management vantage point, stressing the
four steps: modeling (Sect. 2.1), defining security goals
(Sect. 2.2), developing algorithms to enforce these goals
(Sect. 2.3), and implementing the algorithms (Sect. 2.4).

2.1 Modeling

Our model has two parts, namely, a model of networks as
undirected bipartite graphs (Sect. 2.1.1) and a model of
packets as having certain distinguishable characteristics
(Sect. 2.1.2).

2.1.1 Modeling networks

We regarda network as a bipartite graph.The nodes of the
graph are areas, collections of hosts and networks which
are similar in terms of security policy; and devices, which
are dual-homed hosts or packet-filtering routers connect-
ing the areas and moving packets between them. There is
an (undirected) edge betweena filtering device andanarea
if the device has at least one interface on that area.
Thus, areas and devices are the two sorts of node in

our network graph, and we use variables such as a and d
to range over them (respectively).
In Fig. 1, Engineering, External, Allied, etc. are areas,

and the black squares indicate filtering devices. This di-
agram represents a corporation that owns the three net-
works marked Engineering, Finance, and Periphery. The
Internet, indicated as External, is connected to the cor-
poration via a filtering device at Periphery. However,
the engineering staff have long-term collaborative rela-
tions with another organization called Allied and must
exchange different network services with their collabora-
tors than would be acceptable with other organizations.
Hence, there is also a dedicated network connection (and
filtering point) between them.

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 3

Fig. 1. Corporate protection example

Such situations, where different trust relations attach
to different portions of a network, are common. Our prob-
lem is to reliably enforce a security policy sensitive to
these differences. Trust relations must be translated to fil-
tering decisions in a way that is sensitive to the topology
of the network.
Formalizing a real-world network takes some care. We

can express access control policies on the network only if
they involve the flow of packets from one area to a dif-
ferent area. We cannot express requirements on packets
traveling within a single area, nor could we enforce them.
Thus, security goals for a particular network must deter-
mine the granularity of its model.
In addition, we must ensure that all of the real-world

connectivity between distinct areas in our networks is
represented. We cannot enforce access controls on the
traffic between areas if we do not know what filtering de-
vices (or dual-homed hosts) may move packets from one
area to another. On the other hand, the areas may repre-
sent large collections of physical networks that havemany
routers within them. Those internal devices are of no in-
terest for our analysis. This point is highly relevant to the
usability of our method. Large networks, administered
by a single authority, typically use relatively few routers
as filtering devices. Thus, substantial practical problems
arise with networks not much more complicated than the
one shown in Fig. 1.
Indeed, often there are different layers of adminis-

trative control. For example, enterprise-level network
administration may be concerned with policy among
large corporate units, the Internet, and strategic busi-
ness partners. By contrast, a corporate laboratory may
have more specific requirements concerning communi-
cation among its distributed portions, located within
different large corporate units. Their point of view dis-
tinguishes smaller components within them and may
lump the remainder together as a single area provid-
ing transport among these smaller units. Enforcement
for their policy may depend on an entirely separate
collection of filtering devices, typically also of modest
size.

2.1.2 Modeling packets

In our modeling, we need only consider an aspect of pack-
ets if a device that filters and routes packets may be

sensitive to it. Generally speaking, these are the source
and destination addresses, the protocol (such as tcp,
icmp, and so forth), and certain protocol-specific fields.
Protocol-specific fields include the source and destination
ports in the case of tcp or udp; message type in the case
of icmp and igmp, and for icmp additionally a message
code; and an additional bit in the case of tcp indicat-
ing whether the packet belongs to an already established
connection. We ignore many other characteristics such as
the payload, the source-routing history, time-to-live, and
checksum.
These are the only packet properties that are avail-

able to configure a Cisco router for packet filtering [5].
Other filtering methods such as ip chains and ip fil-
ters give loosely similar expressiveness for properties of
packets [20, 21].
We refer to a possible value of these fields as an ab-

stract packet. We regard an abstract packet as a single
item in our model, even though it represents many con-
crete ip packets. These ip packets are indiscernible, as
far as we are concerned, so our theory identifies them
as a single abstract packet. The boolean algebra of sets
of abstract packets allows us to represent filter behavior
and to express what dangers a security policy seeks to
prevent.
Our model consists of essentially only these two in-

gredients, namely, a bipartite graph representing the net-
work and this notion of abstract packet (together with the
boolean algebra of sets of them). The remainder of the no-
tions we need are defined in terms of these ingredients,
notably paths, trajectories, and security postures, which
we will explain in Sects. 2.1.3 and 2.1.4.

2.1.3 Devices and filtering postures

A filtering device in our model is a node with interfaces on
one or more network areas. Thus, we regard an interface
as an edge between that node and the node representing
the network area. Packets flow in both directions across
this edge. Most filtering devices can be configured to dis-
card packets passing in either direction across any inter-
face, and they typically pass different packets depending
on the direction of flow. Thus, from our point of view, an
edge between an area a and a device d is characterized by
two sets of abstract packets: inb(a, d) defines the pack-
ets permitted to traverse the edge inbound into the device
from the area, while outb(a, d) defines the packets per-
mitted to traverse the edge outbound from the device to
the area.
A filtering posture for a particular network (i.e., a bi-

partite graph) consists of an assignment of sets inb(a, d)
and outb(a, d) to each pair a, d such that d is a device
having an interface onto the area a.
We have no interest in distinguishing different inter-

faces that the filtering device may have on the same area.
They cannot control the flow of packets in any additional
useful ways.

�MS ID: IJIS0052

11 October 2004 16:30 CET

4 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

2.1.4 Paths and trajectories

A path through a network is a sequence of immediately
connected nodes on the associated bipartite graph. We
ignore issues of routing in our current presentation, so
that our conclusions will hold even on the conservative as-
sumption that routing tables may change unpredictably.
Thus, a packet may potentially traverse any path through
the network. Routing information may be easily incorpo-
rated into the model if desired, and the tool we describe in
Sect. 2.4 has an option to determine whether to consider
routing.
A trajectory is a path π taken by a packet p, which we

regard as simply the pair (π, p) consisting of the path and
the packet (i.e., an abstract packet).
The trajectory is a crucial notion. The purpose of fil-

tering devices is to ensure that some trajectories cannot
occur. These are trajectories in which packets exercising
vulnerable services are transmitted from untrusted hosts
and allowed to reach endpoints we would like to protect.
Thus, security goals will be certain sets of trajectories, in-
terpreted as the trajectories acceptable according to that
policy. A configuration enforces a goal if it filters and
discards a packet before it traverses a trajectory not in
the set, interpreted as a trajectory contrary to the pol-
icy.
Our definition of trajectory, as just given, effectively

assumes that the state of the packet does not change as
the packet traverses the network. A trajectory as defined
here does not associate different packets (or distinguish-
able states of the traveling packet) with successive lo-
cations. (In Sect. 3 we consider an elaborated notion of
trajectory that does associate different packets with suc-
cessive locations, as is necessary because the protocols we
consider there depend on transforming the packet as it
travels.)

2.2 Expressing security goals

Security goals rely upon two sorts of ingredients:

1. Which areas has the packet traversed? For instance,
was it once in the External area, and has it now
reached the Engineering area?

2. What does the packet say? The contents of the packet
are simply its properties as an abstract packet. For in-
stance, if the destination port of the packet is port 53,
then, given the vulnerabilities in many dns implemen-
tations, we may wish to discard it unless the destina-
tion address is a carefully administered host we make
available for external dns queries.

Ingredient 1 concerns the actual path of the packet as it
traverses the network, regardless of what it claims. Ingre-
dient 2 concerns only what the packet claims, not where
it has really passed. These two kinds of information di-
verge when filtering devices send packets through unex-
pected paths, or packets are spoofed, or packets are inter-
cepted before reaching their nominal destinations. A use-

ful notion of security policy must consider both kinds of
information.
As an example, suppose that in the network shown in

Fig. 1 we wish to have a dns server located in the Engin-
eering area accessible only by company hosts. Then we
may have a policy that no packet with destination port 53
that was ever in the External area should be delivered to
the Engineering area. Here, the source field address of the
packet is irrelevant. Even if the source address claims to
be in the Periphery network, the packet should not be de-
livered. The attack may be contained in incoming packets
without any reply packets actually needing to be returned
to the original source host. In this case, the attacker may
even prefer to adorn his attack packets with a source ad-
dress within the organization.
If the dns server is required to be accessible from

the Periphery area, it is a derived security requirement
that dns-directed packets with spoofed source addresses
not be permitted to enter the Periphery from External.
Once they have done so, it will no longer be possible to
distinguish these suspicious ones from packets originat-
ing locally there, so that the bad packets can be filtered
between Periphery and Engineering. We have thus illus-
trated that certain goals can be met only if filtering occurs
at specific locations, where the decisions depend on the
topology of the network and the goals to be achieved.
Moreover, the goal that concerns us in this example con-
cerns properties not only of the packet itself (its destina-
tion address and port being the dns server and port 53)
but also of the path itself, since the packet is more apt to
exercise a vulnerability if it has come into the organiza-
tion from outside.
A security policy should be a property of trajectories –

a set of permissible packet-path pairs – so we can express
goals like the one we have just described.

2.2.1 Policy statements and policies

We adopt a simple notion of network access control policy
for the remainder of Sect. 2 that balances actual trajec-
tory and header contents. A policy statement concerns
two distinct areas occurring in the actual path of the
packet, one earlier network area and one later network
area. If φ is some predicate of packets, and p ranges over
packets, then

If p was previously in a1 and later reaches a2, then
φ(p)

is a policy statement when a1 �= a2. It requires that a2 be
protected against non-φ packets if they have ever been in
a1. For instance,

If p was ever in the External area and later reaches
the Engineering area, then p should be an smtp
packet with its destination an approved mail host

would be a policy statement relevant to the corporate
example pictured in Fig. 1. In this policy statement, we
aim to protect hosts in the Engineering area from attacks

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 5

that might be transmitted from the External area, the
only exception being that specific mail hosts are not pro-
tected against packets participating in the smtp protocol,
i.e., tcp packets with destination port 25.
It is also possible to interpret this form of statement

as offering some confidentiality protection. In this inter-
pretation, a1 is protected against loss of data to a2 if
those data are carried only in packets p such that φ(p).
For instance, a corporation may use outbound filtering to
ensure that traffic with a database server cannot be mis-
routed outside its networks since much sensitive business
information is carried in these packets.
It would also be possible to consider more complicated

policy statements, involving, e.g., three areas. As an ex-
ample, we might require a packet that came from the
External area via the Allied area and eventually reached
the Engineering area to have:

– An external address as its ip source field;
– An internal address as its ip destination field;
– A source or destination port of 25, indicating that it is
an smtp packet.

Other packets could not pass through the Allied area.
However, realistic security goals appear to be express-

ible using two-area policy statements. In the case of our
example, we could replace this three-area policy state-
ment with a (slightly stronger) pair of two-area policy
statements. The first would require that if a packet p that
was in the External area reaches the Allied area, and if
p has a destination address in the internal areas, then p’s
source address should be in the External area and p’s ser-
vice should be smtp. The second would require that if
a packet p that was in the Allied area reaches the En-
gineering area, then p’s destination address should be in
one of the internal areas. If this pair of two-area state-
ments is satisfied, then the three-area requirement will
also be satisfied. The extra strength of these two-area
statements was probably desired anyway: namely, that
the corporation’s internal networks should not be used as
a pass-through from the Allied organization.
Therefore, for the remainder of Sect. 2, a policy state-

ment will be a two-area statement asserting that any
packet p that was in one area and later arrives in a differ-
ent area meets some constraint φ(p). A policy will mean
a set of policy statements, one for each pair of distinct
areas a1, a2. The constraintmay be vacuously true, allow-
ing everything to pass between them; or else, at the other
extreme, unsatisfiable, requiring that nothing pass.

2.3 Deriving algorithms

The ideas introduced in previous sections suggest two
algorithms that exploit the boolean operations on con-
straints φ(p) in combination with the graph structure of
the underlying network specification. These algorithms
may be used to check a putative filtering posture or
to generate a filtering posture that will enforce a given
policy.

Both of these algorithms depend on the notion of
the feasibility set of a path. Given a filtering posture
〈inb, outb〉, the feasibility set of a path π is the set of all
abstract packets that survive all of the filters traversed
along the path. That is, if π traverses device d, entering it
from area a1, then an abstract packet p is in the feasibility
set of π only if p ∈ inb(a1, d). If π enters area a2 from d,
then p is in the feasibility set of π only if p ∈ outb(a2, d).
We can compute the feasibility set of a path iteratively

by starting with the set of all packets; as we traverse the
inbound step from a1 to d, we take an intersection with
inb(a1, d); as we traverse the outbound step from d to a2,
we take an intersection with outb(a2, d). Binary decision
diagrams allow us to carry out such computations reason-
ably efficiently.
We use this idea in both of the following two sections.

2.3.1 Checking a posture

To check that a posture enforces a policy P , we examine
each path between areas to ensure that the feasibility set
for that path is included in the policy statement for the
areas it connects. If π is a path starting at area a0 and ter-
minating at area ai, we must check that the feasibility set
for π is included in P (a0, ai), i.e., the set of abstract pack-
ets that can actually traverse the path is a subset of the
set of abstract packets permitted to travel from a0 to ai.
Algorithmically, it is enough to check this property for

noncyclic paths, as the feasibility set for a cyclic path π1
must be a subset of the feasibility set for any noncyclic
subpath π0. The set of noncyclic paths is fairly small
for reasonable examples; in the case of the corporate ex-
ample, 40 noncyclic paths begin and end at areas (rather
than at filtering devices).

2.3.2 Generating a posture

Creating a posture is a more open-ended problem. There
are essentially different solutions, different ways to as-
sign filtering behavior, possibly to different devices or to
different interfaces of a device, such that the net result
enforces the global security policy.

Outbound filtering. Various posture generation algo-
rithms can be based on the idea of “correcting” a pre-
existing filtering posture F = 〈inb, outb〉. We say that
F ′ tightens F if inb′(a, d) ⊆ inb(a, d) and outb′(a, d) ⊆
outb(a, d) for all a and d.
Suppose that π is a path from area a0 to ai that en-

ters ai from device d, and suppose that the feasibility set
for π is φ. If φ is not a subset of the policy constraint
P (a0, ai), then we can update F to a new filtering posture
F ′ = 〈inb′, outb′〉, where F ′ differs from F only in that

outb′(ai, d) = outb(ai, d)\ (φ\P (a0, ai)),

where φ\ψ is the set difference of φ and ψ. F ′ tightens
F to prevent any policy violations that would otherwise

�MS ID: IJIS0052

11 October 2004 16:30 CET

6 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

occur on the last step of π. This change cannot cause any
new policy violations because it cannot increase any fea-
sibility set. It can only reduce the feasibility sets of other
paths that also traverse this edge.
Hence, if we start from an arbitrary filtering posture

F0 and iterate this correction process for every cycle free
path π, we will obtain a filtering posture that satisfies
the policy P . We organize this process as a depth-first
traversal of the graph starting from each area in turn. It
performs the tightening by side-effecting data structures
that hold the filters for the individual filtering device in-
terfaces. However, this recipe for generating a posture
does not say how to use the inbound filters effectively.

Inbound filtering. We use the inbound filters for protec-
tion against spoofing because they know which interface
the packet has arrived through, which the outbound filter
does not. Many human-constructed firewalls use inbound
filters for this purpose.
As a heuristic, we assume that packets from one area

should not take a detour through another area to reach
a directly connected filtering device. Our expectation is
that there will normally be good connectivity within any
one area and that a packet originating anywhere in an
area will easily be able to reach a device if the device has
an interface anywhere in that area. Although this expec-
tation may not always be met – for instance when an area,
like External in Fig. 1, consists of most of the Internet –
a security policy may choose to require that packets arrive
as expected, and act defensively otherwise.
Wemayeasily formalize thisheuristic.Supposeapacket

p reaches a device d through its interface to area a, but
the source field of p asserts that it originates in area a′,
where a′ �= a. If d also has an interface on a′, then we want
to discard p. For, if p had really originated where it claims
to have originated, then p should have reached d through
its interface on a′. We will refer to the inbound filters
that implement this idea as inb0. We apply our correction
technique starting with inb0 as inbound filters.
In constructing inb0 we have used only the structure

of the network specification, not the policy or any pre-
existing filtering posture. These ingredients may be con-
sulted to produce somewhat more finely tuned filtering
postures.

2.4 Implementing: network policy enforcement

In this section, we first describe earlier implementation ef-
forts and then summarize the functionality of a tool kit
currently undergoing technical transition to operational
use.

2.4.1 NPT and the atomizer

This method for checking a filtering posture against a pol-
icy was implemented in 1996 in the Network Policy Tool
(NPT) [7]. The following year it was reimplemented in

Objective Caml [15]. NPT also implemented posture gen-
eration, recommending filtering behavior for each of the
routers on which a network’s security depends. NPT
did a symbolic analysis, working not with sets of con-
crete IP address, for instance, but rather with symbolic
names representing nonoverlapping sets of hosts. Simi-
larly, a service was a symbolic name representing a set
of ports within a particular protocol. An abstract packet
was then essentially a triple, consisting of a symbolic
name representing the source field, a symbolic name
representing the destination field, and an oriented ser-
vice. An oriented service consisted of a service together
with a flag saying whether the well-known port was the
destination port or the source port. Thus, it indicated
whether the packet was traveling from client to server or
vice versa. Special data structures offered representations
for sets of abstract packets.
NPT was highly efficient and executed the algorithms

we described in Sects. 2.3.1–2.3.2 in seconds, when run on
examples of quite realistic size. These included a dozen
and a half areas and a dozen filtering devices. Unfortu-
nately, the abstract representation made it hard for a sys-
tem administrator to construct input to NPT that would
accurately represent the real-world network and its pol-
icy. Likewise, output from NPT was hard to translate
back into filtering router access lists for devices such as
Cisco routers. Firmato and Fang [1, 19] were developed
soon after NPT and provide similar functionality with
more emphasis on reading and reconstructing actual con-
figurations, and more emphasis on management conve-
nience, but with less attention to modeling and rigor.
The first of our problems – constructing NPT models

of real systems – was solved in the Atomizer, a tool that
would read Cisco access lists and generate NPT specifi-
cations, by discovering which sets of hosts and ports were
always treated the same way, and could therefore be fused
into a single symbolic name [8]. Sets were represented
via binary decision diagrams (bdd), and the algorithm to
fuse them (“atomize” them) exploited the bdd represen-
tation essentially. However, the automatically generated
names were hard to interpret in the real networks, thus
exacerbating the second problem – that of of translating
recommendations back into concrete filtering rules. Nev-
ertheless, the bdd-based methods of the Atomizer were
found to be very appropriate for representing sets of pack-
ets. The sets relevant to filtering have just the character-
istics that make bdds relatively compact and operations
on them reasonably efficient [3, 4].

2.4.2 Interpreting access lists

From our point of view, a configuration file, such as for
a Cisco router, contains interface declarations and ac-
cess lists. An interface declaration may specify a par-
ticular access list to apply to packets arriving inbound
over the interface or being transmitted outbound over the
interface.

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 7

An access list is a list of lines. Each line specifies that
certain matching packets should be accepted (“permit-
ted”) or discarded (“denied”). When a packet traverses
the interface in the appropriate direction, the router ex-
amines each line in turn. If the first line that matches is a
“deny” line, then the packet is discarded. If the first line
that matches is a “permit” line, then the packet is per-
mitted to pass. If no line matches, then the default action
(with Cisco routers) is to discard the packet.
For instance, the lines in Fig. 2 permit two hosts (at

ip addresses 129.83.10.1 and 11.1) to talk to the network
129.83.114.∗. They also permit the other hosts on the net-
works 129.83.10.∗ and 129.83.11.∗ to talk to the network
129.83.115.∗. The asterisks are expressed using a netmask
0.0.0.255, meaning that the last octet is a wildcard. For
simplicity, in this particular example there is no filtering
on tcp or udp ports, which can also be mentioned in ac-
cess list lines.
Each line of an access list defines a set of sources

ϕs, destinations ϕd, and service characteristics ϕv and
stipulates whether matching packets should be discarded
or passed. A datagram δ matches a line if δ.src ∈ ϕs∧
δ.dst ∈ ϕd∧ δ.svc ∈ ϕv.
At any stage in processing, a packet that has not yet

been accepted or rejected is tested against the first re-
maining line of the list. If the line is a “permit” line, the
packet has two chances to be permitted: it may match
the specification for the first line, or it may be permitted
somehow later in the list. If the line is a “deny” line, the
packet has to meet two tests to be permitted: it must not
match the specification for the first line, and it must be
permitted somehow later in the list. Since the default is to
deny packets, the empty list corresponds to the null set of
permissible packets. Thus, we have a recursive function η
of the access list:

η([]) = ∅,
η((permit, ϕs, ϕd, ϕv) :: r) = (ϕs∩ϕd∩ϕv) ∪ η(r),
η((deny, ϕs, ϕd, ϕv) :: r) = η(r) \ (ϕs∩ϕd∩ϕv).

The function η allows us to transform a parser for the in-
dividual configuration file lines (emitting sets describing
the matching conditions) into a parser that emits a set
describing the meaning of the whole access list.

Fig. 2. A Cisco-style access list

Filtering devices other than Cisco routers use different
languages to express which packets are permitted to tra-
verse each interface, but their semantic content is similar.

2.4.3 The NPE tools

Recently, NPT has been updated and packaged with
a suite of complementary tools to form the Network Pol-
icy Enforcement (NPE) software. NPE supports a cycle of
policy discovery, analysis, and enforcement.
Its primary input is a file listing the routers to be

queried, with some annotations. The annotations include
an IP address and a password for the router, which is
required to connect to it and retrieve the full configura-
tion. The router-probing component uses telnet or ssh
to connect with each of the routers, retrieving its cur-
rently effective configuration. The probe tool records:

1. The IP address and network mask for each interface,
2. The access list for filtering across each interface in
each direction, and

3. The routing table.

The information in item 1 determines a network map.
Item 2 and, optionally, 3 determine what packets can tra-
verse each interface in each direction. When routing in-
formation from item 3 is used, we take account of the
fact that a packet cannot traverse an interface outbound
unless the routing table routes it that way. Since this
information is, however, dynamic and changes as a conse-
quence of routing protocols, some sites do not want to rely
on it to ensure their security, which is the reason why our
tools may be configured not to consider it.
A second input to NPE is an optional file describing

any desired policy for the network under analysis. This
file defines sets of addresses and states policies. A policy
concerns two sets of addresses, s1 and s2, and a set φ of
packets. The semantics is that if any two areas a1 and a2
are such that any address in s1 resides in a1 and any ad-
dress in s2 resides in a2, and any packet p can pass from
a1 to a2, then p ∈ φ.
NPE constructs bdds representing the sets of packets

that may traverse each interface in each direction. It cal-
culates from these bdds an “effective policy” containing
the most permissive policy enforced by the given collec-
tion of configuration files. This is done using a relatively

�MS ID: IJIS0052

11 October 2004 16:30 CET

8 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

straightforward depth-first search through the network
graph derived from item 1.
It also identifies violations of the desired policy. For

each violation, the system administrator is given a path
through the network and a set of packets that are ca-
pable of traversing this path, all of which are incompat-
ible with the desired policy. Given a set of violations,
NPE can also recommend a number of routers that if
reconfigured suffice to eliminate all of these violations.
It determines the set of packets that should be permit-
ted to cross each interface of these routers. The choice of
routers can be made according to several different strate-
gies. For instance, packets that cannot be delivered may
be stopped as late as possible or, alternatively, as early
as possible. The latter strategy avoids wasting network
bandwidth, but may also prohibit packets unnecessarily,
on the grounds that they may later be misrouted. An-
other strategy is to choose a cut set of routers that lie on
the paths of all of the violations reported, selecting the set
to have minimal cardinality. This strategy is based on the
idea that frequently the cost of reconfiguring and retest-
ing a router dwarfs the cost of some lost bandwidth or the
fine points of whether a few services are deliverable. As
of the current writing, the description of what packets to
allow over an interface are given in a vendor-independent
language rather than in the configuration language for
specific routers. An alternative, vendor-specific backend
is under development.
NPE has been tested with large router files contain-

ing a total of 1300 access list lines in a single run. The
resulting process requires 175MB and runs for 2min on
a 550-MHz Pentium III Linux machine, hardly an un-
reasonable burden. However, it has not been tested with
large numbers of routers or highly interconnected net-
works. It is relatively difficult to find installations that
depend onmore than a few routers for filtering. Moreover,
most networks are interconnected in a very sparse, highly
structured way, as is required to manage them in a rea-
sonable way. Thus, despite the fact that our algorithms
would become unfeasible in highly interconnected net-
works relying on large numbers of filtering routers, they
are quite usable in practice.

3 The IP security protocols (IPsec)

The IP security protocols (see [12–14] as well as [11, 18]),
collectively termed IPsec, are an important set of se-
curity protocols that include ensuring confidentiality, in-
tegrity, and authentication of data communications in
an IP network. A major advantage of IPsec is that
the security protection occurs at the IP layer. This ren-
ders application modifications unnecessary, and one secu-
rity infrastructure is capable of protecting all traffic. In
addition, because of the way IPsec is usually deployed,
it requires no changes to individual computers; IPsec-
enabled routers are generally put in place at strategic

points in the network. This flexibility has led to great
interest from the commercial market; many IPsec prod-
ucts are now available.
However, to provide such flexibility, the IPsec pro-

tocol set is fairly complex, and the chances that a prod-
uct will be misconfigured – or that several devices will
be configured in inconsistent ways – are high. Even with
good products, the way they are used can compromise
the security it is capable of providing.Many organizations
will set up their IPsec infrastructure too quickly, get-
ting it wrong, an anxiety also expressed by Ferguson and
Schneier [6], who detail several ways in which misconfigu-
rations could compromise security.
The IPsec protocols specify headers and processing

that can be used to ensure that packet payloads are en-
crypted during some portion of their trajectories. They
also allow packets to be accompanied by a message au-
thentication code (mac) for part of the trajectory, en-
abling a recipient to determine the point in the network at
which this mac was applied and making any subsequent
alterations detectable. We abstract from the actual state
of the packet payload or mac and simply regard associ-
ated IPsec headers as representing the security-relevant
state of the packet. IPsec operations may be applied re-
peatedly at different points on the network. All decisions
about when to add encryption or macs are made locally.
Likewise, payload decryption and verifying macs when
removing them are local operations.
This presents us with another problem of localization:

determining what meaningful global security properties
are achieved by some set of local IPsec operations.
An example of the difficulty of localization can be seen

in Fig. 3. Assume that companies A and B each have their
own connection to the Internet, with IPsec gateways at
the perimeters. Further assume that the two engineering
divisions, EngA and EngB, have a direct connection to
a collaborative testing network, PrivNet. There are likely
several different granularities of security policy being im-
plemented: a companywide policy dictating what traffic
should leave the company in an IPsec tunnel, a financial
policy about what traffic should leave SG1 unencrypted,
an engineering policy about what sorts of traffic should
be allowed in the PrivNet area and with what protection,
and so on. It is clear that these localized policies can affect
one another, and we desire a way to determine in what
ways they actually do.
In [10], we formalized the types of security goal that

IPsec is capable of achieving. We then provided criteria
that entail that a particular network achieves its IPsec
security goals. We present this work here as an example
of rigorous automated security management. Before pre-
senting our network model (Sect. 3.2) and defining the
security properties of interest to us here (Sect. 3.3),
we present a brief introduction to the IPsec protocols
(Sect. 3.1). In Sect. 3.4, we develop algorithms for check-
ing whether security goals are met, and we prove that
the algorithms are correct. The problem is more demand-

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 9

Fig. 3. Example network using IPsec

ing than the algorithms of Sect. 2.3, so we have given
the correctness proofs in much more detail. In Sect. 3.5,
we describe the configuration-checking software we de-
veloped to automate this procedure.

3.1 IP security

IPsec is a set of Internet standards-track protocols de-
signed to provide high-quality, IP layer security services
for IPV4 and IPV6. These services include connection-
less integrity and data origin authentication (hereafter
referred to jointly as authentication), rejection of re-
played packets, confidentiality, and limited traffic flow
confidentiality, and can be used by any higher-level
protocol [12–14].
IPsec processing can be done either within a host or
else at a security gateway. In an entirely host-based en-
vironment, each individual machine would handle its
own IPsec processing, applying cryptographic trans-
forms (and the IPsec headers describing them) before
emitting packets onto the network. For incoming pack-
ets, IPsec processing requires undoing cryptographic
operations, checking the results, and deleting the cor-
responding IPsec headers on packets received off the
network. IPsec processing can also dictate that certain
packets without cryptographic processing be passed or
dropped. In a host-based implementation, this typically
requires changes to the IP stack executing in each host’s
kernel.
Alternately, one can deploy a smaller number of IPsec-
enabled gateways, each of which performs IPsec process-
ing on behalf of the machines “behind” it. This end-to-
end, network-level protection makes IPsec a good proto-
col for virtual private networks (VPNs), and many cur-
rent VPNs conform to the IPsec standards. Keys may
be manually placed, or alternatively key exchange may
be handled by the Internet Key Exchange, a protocol de-
signed for use with IPsec [11]. In this case, there are
supplementary needs, including a certain amount of pub-
lic key infrastructure. In our discussion in this paper, we
will not discuss key management further but will assume
that it is handled by some secure means.
IPsec processing for outbound packets consists of the

following elements. First, a security association (SA) is

selected based on properties of the existing IP and trans-
port layer headers of the packet. The SA specifies the type
of protection, including what cryptographic operations
are to be performed, together with parameters including
the key. Encryption and cryptographic hashes are used to
produce, respectively, a new payload or a test for integrity
to achieve confidentiality or authenticated integrity. SAs
can be combined into bundles for composite protection.
Second, the processsing specified in the SA (or sequence
of SAs making up the bundle) is applied. Third, IPsec
header information is added to the resulting ciphertext or
the hash.
The IPsec standard defines two security protocols

for traffic protection: authenticated header, or AH, and
the encapsulating security payload, or ESP. AH pro-
vides, as one would expect, authentication services and
some protection against replay attacks. ESP provides
confidentiality and limited traffic flow confidentiality; it
may be configured to provide authentication with data
integrity as well. There are some fine points: AH en-
sures the integrity of certain header fields that ESP
does not cover, even when ESP is used with authen-
tication. Also, ESP may be used to provide authenti-
cation without encryption. We will assume that when
encryption is used, authentication services are also used,
because this is advisable [2] and because it is hard to
see the real meaning of providing confidentiality for
data that may change without notice. What’s the secret
then?
The security protocols can be used in one of two

modes: tunnel and transport. In transport mode, the
IPsec header fields are combined with the original IP
headers of the packet. This mode can therefore be used
only if the entities performing IPsec processing at both
endpoints of the communication are the same as the en-
tities communicating. If either end is a security gateway,
tunnel mode must be used instead. In tunnel mode, the
entire IP packet is protected; a new IP header is created
with a new source field and a new destination field. These
fields give the addresses of the entry point and the exit
point of the tunnel.
We focus on IPsec in networks where at least some

of the IPsec processing occurs at security gateways. The
reasons for this are as follows:

�MS ID: IJIS0052

11 October 2004 16:30 CET

10 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

– Most networks relying on IPsec do involve security
gateways.
– Firewalls typically already exist at strategic locations
for IP security gateways, and in fact many products
provide both firewall functionality and IPsec process-
ing.
– Gateways have the advantage that an organization
can define an organizationwide security policy; the
lion’s share of the enforcement of this policy may
be carried out using a limited amount of equipment
directly under the management of the organization.
Suborganizations (or individual users on particular
hosts) may be completely unaware of this policy, as-
suming they do not use IPsec on their own. If they
desire to use IPsec, then there are constraints that
they must follow to ensure that their processing is
compatible with the organizationwide policy; these
constraints are described in Sect. 3.4.

Thus, while our model allows for indvidual hosts to be
IPsec-enabled, our primary interest lies in the case where
this is not the exclusive form of IPsec.
In this situation, there are things that can certainly go

wrong. For instance, suppose that we want packets from
a particular peer s to be authenticated when they arrive
at a destination d, and in fact there is a pair of gateways
offering IPsec processing between them. There are still
ways that packets not originating at s can reach d. For
instance, suppose that a spoofer can route packets to d
without traversing the gateways. Or suppose the spoofer
can route a packet to s’s gateway that arrives on the same
interface that traffic from s traverses. To achieve this, the
spoofer may even be able to send IPsec-protected traffic
to a security gateway near s, where the protected packets
claim to be from s but are not.
When s wants to ensure confidentiality for packets

to d, there are dual concerns. The packet might be mis-
routed onto a public network without traversing a gate-
way. Or possibly a gateway will provide ESP protection
but transmit it to a gateway distant from d, so its contents
will be disclosed before it reaches d. We seek a systematic
way to express these sorts of problems and to ensure that
they do not occur.

3.2 Modeling

We view systems as composed of areas and devices capa-
ble of IPsec operations or packet filtering. A device has
interfaces on one or more areas. Any machine (such as
a switch or host) that performs no IPsec operations or
filtering we may simply ignore.
In the example shown in Fig. 3, areas appear as ovals

and devices appear as black squares. An edge represents
the interfaces between a device and the area to which it
is connected. We will never connect two areas directly via
an edge; this would not give a security enforcement point
to control the flow of packets between them. Instead, we

coagulate any areas that are connected by a device that
provides no security enforcement, representing them by
the same oval.
While this simple, bipartite graph representation is

useful heuristically, it is inconvenient for rigorous model-
ing of IPsec processing. Several steps of processing may
need to occur while the packet is associated with a par-
ticular interface, and they may depend as well on the
direction in which the packet is traversing that interface.
Therefore, we prefer a system model in which there are
two nodes corresponding to each interface. They repre-
sent the conceptual location of a packet when IPsec pro-
cessing is occurring, either as it traverses the interface
inbound into the device or as it traverses the interface
outbound from the device. We call these conceptual loca-
tions directed interfaces.
To incorporate this notion, we will now introduce an

enriched system model consisting of a directed graph con-
taining three kinds of nodes. These represent areas, de-
vices, and directed interfaces. To construct a model from
a system representation in the style of Fig. 3, for each edge
between a device d and an area a we insert two directed
interface nodes, which we will call id[a] and od[a]. These
represent inbound processing for a packet traveling from
a to d and outbound processing for a packet traveling
from d to a, respectively. We add four directed arcs:

1. a→ id[a] and id[a]→ d, the inbound arcs, and
2. d→ od[a] and od[a]→ a, the outbound arcs.

For instance, the result of applying this process to the sys-
tem representation shown in Fig. 4 produces the enriched
model shown in Fig. 5.
We will assume an enriched system representation

G= (V,E) throughout the remainder of this section. A lo-
cation � is a member of V , that is, an area, a device, or an
interface.
Let P be a set of values we call protocol data. We may

think of its values as the elements of IP headers other
than source and destination. For instance, an IP header
may specify that the protocol is TCP, and the embed-
ded TCP header may specify a particular source port and
destination port; this combination of protocol and port
information may be taken as a typical member of P .
Let A ⊂ P be a set we call authenticated protocol

data; it represents those headers that provide IPsec au-
thentication services. Let C ⊂ A be a set we call confi-
dentiality protocol data; it represents those headers that
provide IPsec confidentiality services. The assumption
C ⊂ A codifies our decision not to consider ESP headers
that provide only confidentiality (cf. Sect. 3.1; we amplify
the point in Sect. 3.3.2).
A header is a member of the set H = V ×V ×P , con-

sisting of a source location, a destination location, and
a protocol data value. Packet states are members of H∗,
that is, possibly empty sequences 〈h1, . . . , hn〉. We use ·
as prefixing operator: h · 〈h1, . . . , hn〉= 〈h, h1, . . . , hn〉.

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 11

Fig. 4. Unenriched system representation

Fig. 5. Enriched system representation

Let K be a set of “processing states,” with a distin-
guished element ready ∈K. Intuitively, when an interface
has taken all of the processing steps in the security as-
sociation (SA, see Sect. 3.1) for a packet p, it enters the
processing state ready, indicating that the packet is now
ready to move across the arc from that interface. If this is
an outbound interface, it means that the packet may now
go out onto the attached area; if it is an inbound inter-
face, it means that the packet may now enter the device,
to be routed either to some outbound interface or for local
delivery. Other members of K are used to keep track of
multistep IPsec processing, when several header layers
must be added or removed before processing is complete
at a particular interface. These clusters of behavior repre-
sent IPsec security association bundles.
We regard the travels of a packet through a system

as the evolution of a state machine. The packet may not
yet have started to travel; this is the start state. The
packet may no longer be traveling; this is the finished
state. Every other state is a triple of a node � ∈ V , indi-
cating where the packet currently is situated; a processing
state κ ∈K, indicating whether the packet is ready to
move, or how much additional processing remains; and
a packet state θ ∈H∗, indicating the sequence of headers
nested around the payload of the packet.

Definition 1. Ω(G,K,P,A,C) is the set of network
states over the graph G= (V,E), the processing states K,
and the protocol data P with C ⊂A⊂ P . LetH = V ×V ×
P . Ω(G,K,P,A,C) is the disjoint union of

1. start,
2. stop, and

3. the triples (�, κ, θ), for � ∈ V , κ ∈K, and θ ∈H∗.

The transition relation of a network state machine is
a union of the following parameterized partial functions.
We define what the resulting state is, assuming that the
function is defined for the state given. We also limit when
some of these functions may be defined. Different IPsec
security postures are determined by different choices of
domain for each of these partial functions (subject to the
constraints given).
The sets of authenticated headers A and confidential-

ity headers C play no role in determining the evolution of
network states, but they play a central role in expressing
and verifying the security goals for IPsec, as formulated
in Sect. 3.3.

Definition 2. A network operation is any partial func-
tion of one of the following forms:

1. Packet creation operators

create�,h(start) = (�, ready, 〈h〉)

when defined for (�, h)∈ V ×H. create�,h is not defined
unless its argument is the state start.

2. The packet discard operator

discard(�, κ, θ) = stop

when defined. discard is undefined for start.
3. Packet movement operators

movee,κ(�, ready, θ) = (�
′, κ, θ)

when e ∈ E, �
e
→ �′, and κ �= ready. movee,κ is unde-

fined for all other network states.
4. Header prefixing operators

prefixh,κ(�, κ
′, θ) = (�, κ, h · θ)

when defined. The function prefixh,κ is nowhere defined
when h �∈A.

5. Header pop operators

popκ(�, κ
′, h · θ) = (�, κ, θ)

when defined.
6. Null operators

nullκ(�, κ
′, θ) = (�, κ, θ)

when defined.

A transition relation

→⊂ (Ω(G,K,P,A,C)×Ω(G,K,P,A,C))

is a union of operators create, discard, move, prefix, pop,
and null.

When → is a transition relation for Ω(G,K,P,A,C), we
regard each history of the associated state machine as

�MS ID: IJIS0052

11 October 2004 16:30 CET

12 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

representing a possible trajectory for a packet through the
network.
The assumption that prefixh,κ is nowhere defined

when h �∈A means that the only nested headers we con-
sider are IPsec headers. The discard operator allows us to
subsume packet filtering, as in Sect. 2, as part of IPsec
functionality, which matches the intent of the IPsec
RFC [14].
We call the assumption that

movee,κ′(�, κ, θ) = (�
′, κ′, θ)

is not defined when κ �= ready the motion restriction.
We call the assumption that it is not defined when κ′ =
ready the inbound motion restriction. The motion re-
striction codifies the assumption that a device will not
move a packet until it is ready. The inbound motion re-
striction codifies the assumption that there will always be
a chance to process a packet when it arrives at a location,
if needed, before it is declared ready to move to the next
location.
Given a packet p, we call the address in the source

header field of its topmost header src(p). We call the ad-
dress in the destination header field of the topmost header
dst(p).We also call a packet p an IPsec packet if its outer-
most header h is in A. We say that a header h provides
confidentiality if h ∈ C and that it provides only authen-
tication if h ∈ A\C. Our treatment need not distinguish
between ESP used only for authentication and AH; how-
ever, these headers may be different members of A, and
individual systems may have security goals requiring one
rather than the other.

Cryptographic assumptions. We will make two assump-
tions about the IPsec cryptographic headers. First, we
assume that cryptographic headers cannot be spoofed; in
other words, if we receive a message with an authenticat-
ing header from a source “known to us,”1 then the entity
named in the source field of the header is the entity that
applied the header, and the payload cannot have been
changed without detection.
Second, confidentiality headers have the property that

packets protected with them can be decrypted only by
the intended recipient, i.e., the device named in the ESP
header destination field. More formally, using a dash for
fields that may take any value, we stipulate that for any
transition:

(�, κ, 〈[s′, d′,−], . . . 〉)−→ (�, κ′, 〈[s, d, α], [s′, d′,−], . . . 〉),

α ∈A and s ∈ S implies � = s. Moreover, for any transi-
tion:

(�, κ′, 〈[s, d, γ], [s′, d′,−], . . . 〉)−→ (�, κ, 〈[s′, d′,−], . . . 〉),

1 Presumably as certified by some public key infrastructure, and
certainly assumed to include those devices that are shown as nodes
in the system model.

γ ∈ C and s ∈ S implies �= d.
These properties axiomatize what is relevant to our

analysis in the assumption that key material is secret. If
keys are compromised, then security goals dependent on
them are unenforceable.

3.3 Expressing security goals

We focus on authentication and confidentiality as secu-
rity goals in our analysis. Concrete security goals select
certain packets that should receive protection [14]; se-
lection criteria may use source or destination addresses,
protocol, and other header components such as the ports,
in case the protocol is TCP or UDP.

3.3.1 Authentication goals

The essence of authentication is that it allows the recipi-
ent to, so to speak, take a packet at face value. Thus, for
a packet p selected for protection by an authentication
goal,

IfA is the value in the source header field of p as re-
ceived by B, then p actually originated at A in the
past, and the payload has not been altered since.

We do not regard a packet as being (properly) received
unless the cryptographic hash it contains matches the
value computed from a secret shared between the two
IPsec processing devices and the packet contents. It will
not be delivered up the stack otherwise, nor forwarded to
another system after IPsec processing.

3.3.2 Confidentiality goals

We assume that confidentiality headers (as in ESP 3.1)
provide authentication and add encryption. We have two
reasons for assuming so. First, the IPsec specification al-
lows both authentication and confidentiality to be used
with the ESP header; it is inadvisable to request only
confidentiality when authentication can also be had at
the same time, and at modest additional processing cost.
Second, it seems hard to state precisely what data are
kept confidential, if those data might change as the packet
traverses the network [2, 6]. When using confidentiality
headers, we are thereby attempting to achieve an authen-
tication goal as well as a confidentiality goal.
A confidentiality goal for a packet with source field A,

requiring protection from disclosure in some network lo-
cation C, stipulates:

If a packet originates at A, and later reaches the
location C, then while it is at C it has a header
providing confidentiality.

The cryptographic protection may refer to the ESP
header more specifically, stipulating certain parameters
(key length, algorithm, etc). The proviso that the packet
was once at A is necessaryvirtual private networks be-
cause in most cases we cannot prevent someone at C

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 13

from creating a spoofed packet with given header fields.
However, a spoofed packet cannot compromise the confi-
dentiality of A’s data if they have [meaning the data] no
causal connection to A.

3.3.3 Example goals

Consider the network in Fig. 3. Given this example net-
work, a potential authentication goal could be that pack-
ets traveling from EngA to EngB should be authenti-
cated, meaning that any packet with source field claiming
to be from EngA that reaches EngB should in fact have
originated in EngA. An example confidentiality goal is
that packets traveling from FinA to FinB should be en-
crypted whenever outside those areas. This means that if
a packet has source field in FinA and actually originated
there, then if it reaches any other area R, it has an ESP
header providing encryption while at R.
One advantage to this form of expression is that it is

semantically precise. Another is that policies expressed
in this form appear to be intrinsically composable, in the
sense that separate goals can always be satisfied together.
Moreover, this form of expression often suggests place-
ment of trust sets, in a sense we will now introduce.

3.3.4 Trust sets

Once a packet enters an appropriate cryptographic tun-
nel, achieving a security goal does not depend on what
happens until it exits. Thus, the locations in the network
topology that are accessible to the packet from the source
(before entering the tunnel) or accessible from the exit
of the tunnel (before reaching the destination) are the
only ones of real importance. We will call these locations
a trust set for a particular security goal. A trust set is
goal specific; different goals may have different trust sets.
For instance, an engineering group working on a sensitive
project could easily have much more restrictive security
goals than its parent corporation (in terms of trust).
Typically, a trust set is not a connected portion of the

network, but often instead consists of two large portions
(each a connected subgraph), with a large, less trusted
network between them, such as the public Internet. In
some cases the trust set may consist of several islands,
and the tunnels may not connect all of them directly. In
this case, a packet may need to traverse several tunnels
successively in order to get from one island of the trust
set to a distant one. The choice of trust set for a par-
ticular security goal is a matter of balance. Clearly, the
source must belong to the same island of the trust set as
the tunnel entrance, and the tunnel exit must belong to
the same island as the destination (or the entrance to the
next tunnel). This encourages creating trust sets as large
as possible, since then a few tunnels may serve for many
endpoints. However, the scope of a trust set must gener-
ally be limited to a set of areas on which it is possible to

monitor traffic and check configurations. This encourages
making the trust sets as small as possible. The art of using
IPsec effectively consists partly in balancing these two
contrasting tendencies.

Boundaries. Of special importance are those systems in-
side a trust set with a direct connection to systems out-
side the trust set. We term these systems the boundary of
the trust set. We assume that every device on the bound-
ary of a trust set is capable of filtering packets. This may
be a portion of its IPsec functionality [14]. Alternatively,
the device may not be IPsec-enabled but instead be a fil-
tering router or packet-filtering firewall. We regard such
devices as a degenerate case of an IPsec-enabled device,
one which happens never to be configured to apply any
cryptographic operations.

Definition 3. A trust set S for G = (V,E) consists of
a set R⊂ V of areas, together with all devices d adjacent
to areas in R and all interfaces id[∗] and od[∗].
The inbound boundary of S, written ∂inS, is the set of

all interfaces id[a] or id[d
′], where d ∈ S and a, d′ �∈ S.

The outbound boundary of S, written ∂outS, is the set
of all interfaces od[a] or od[d

′], where d ∈ S and a, d′ �∈ S.

Suppose that, in Fig. 5, a security goal states that
packets traveling between Ai and Bj (i, j ∈ {1, 2}) must
be protected with a confidentiality header whenever in
the Internet area. A reasonable trust set S for this goal
would include all areas except for the Internet, as well as
their attached devices and interfaces. The trust set S is
not a connected set. The outbound boundary of S is la-
beled in Fig. 6 and the inbound boundary in Fig. 7.

Fig. 6. Outbound boundary marked with hollow circles ◦

Fig. 7. Inbound boundary marked with hollow circles ◦

�MS ID: IJIS0052

11 October 2004 16:30 CET

14 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

3.4 Deriving algorithms

Given an environment in which one can rigorously reason
about packet states and precise specifications of security
goals, how does one ensure the goals are enforced? This
section focuses on answering that question by detailing
formal behavior requirements for systems and then prov-
ing they guarantee enforceability.
In our reasoning, we will assume that security goals

are stated in the form given in Sects. 3.3.1 and 3.3.2.

3.4.1 Authentication

Our authentication problem can be stated in the follow-
ing way. Suppose a and b are area nodes. What processing
conditions can we impose such that an authentication
goal holds?
To make this precise, let us say an authenticated state

is one having the form (a, κ, 〈[a,−,−]〉) and an acceptor
state is one of the form (b, ready, 〈[a,−,−]〉). The sym-
bol authentic denotes the set of authenticated states, and
accept denotes the set of acceptor states. We want to en-
sure that every acceptor state, in which a packet purport-
edly from a is delivered at b, is preceded by an authen-
ticated state, in which the packet was sent from a. Our
question can be stated thus: exhibit a set of processing
restrictions that ensure the following:

For any path start−→∗ ω where ω ∈ accept, there is
an intermediate state ω′ such that

start−→∗ ω′ −→∗ ω,

where ω′ ∈ authentic.

Thus, whenever an acceptor state is reached, an authenti-
cated state must have occurred earlier in the state history.
In this sense, the prior occurrence of an authenticated
state is guaranteed when an acceptor state is observed.
This use of “authenticated” for the states ω′ ∈ authentic
follows Schneider [22].
Achieving authentication requires two types of behav-

ior restrictions on trust set nodes, depending on whether
or not the system in question is in a boundary. We list
behavior restrictions for each.
First we list a constraint that is required for the proofs

but is vacuous (trivially satisfied) in IPsec [14], where
inbound processing can only remove packet headers but
never add them. Fix a trust set S.

Prefix ready rule.

(�, κ, θ)−→ (�, κ′, h · θ)

If � ∈ ∂inS, then κ= ready.

Authentication tunnel constraints. In order to achieve au-
thentication, there are two rules that must be observed
by every IPsec-enabled device in the trust set. The first

of these is that nodes in S must not spoof packets with
sources in S.

Creation rule. For any transition

start−→ (�, κ, 〈[s,−,−]〉),

if � ∈ S, then �= s.
For the second rule, fix a trust set S. Whenever an

IPsec-enabled device in S processes an IPsec packet
p with src(p) �∈ S, and removing this header leads to
a packet p′ with src(p′) ∈ S, p′ must be discarded. It cod-
ifies the idea that only nodes in S should be trusted to
certify a packet as coming from S.

Pop rule. For any transition

(�, κ, 〈[s, d,A], [a,−,−] . . . 〉)−→ (�, κ′, 〈[a,−,−] . . . 〉),

if � ∈ S, then s ∈ S.

Authentication boundary constraints. Given the authen-
tication goal above, boundary systems must only abide
by one extra processing constraint: they must not pass an
inbound packet that did not present any authentication
headers.

Inbound ready rule.

(�, κ, θ)−→ (�, ready, 〈[a,−,−]〉)

If κ �= ready and � ∈ ∂inS, then θ = 〈[s, d,A], [a,−,−]〉.

3.4.2 Unwinding

We prove that the processing restrictions formulated
above are sufficient to ensure the authentication goal. To
do so, we exhibit an unwinding set G.

Definition 4. An unwinding set G is a set such that

1. start �∈G,
2. accept⊆G,
3. authentic⊆G,
4. For any transition x→ y with x �∈G and y ∈G, then
y ∈ authentic.

Proposition 1. A sufficient condition for the authenti-
cation condition to hold is the existence of an unwinding
set.

Proof. Any path start−→∗ ω with ω ∈ acceptmust have
the form

start−→∗ x→ y −→∗ ω,

with x �∈ G, y ∈ G. By the unwinding condition 4, y ∈
authentic. �
A transition x→ y is header nonaugmenting iff it is of the
form (�, κ, θ�θ′) → (�, κ′, θ′), where θ′ is a final segment
of the concatenation θ�θ′.

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 15

We now exhibit an unwinding set G.

G= accept∪authentic∪ continue

where continue is defined:

Definition 5 (Continuing States). A state is a con-
tinuing state if it belongs to one of the three disjoint classes
below:

C1 (�, ready, 〈[a,−,−]〉) for � ∈ ∂inS;
C2 (�, κ, 〈[a,−,−]〉) for � ∈ S \∂inS,
i.e., for locations in the portion of S other than the
inbound boundary;

C3 (�, κ, 〈· · · [s, d,A], [a,−,−]〉) for s ∈ S and any �.

Proposition 2. G is an unwinding set.

Proof. Suppose x→ y with x �∈G, y ∈G. The proof is
a completely mechanical enumeration of cases. In each
case, we show either that it cannot really occur or that
y ∈ authentic.

Case I: y ∈ accept. By definition of accept, y is of the form
(b, ready, 〈[a,−,−]〉).

1. b ∈ ∂inS.

(a)x→ y is a motion. The inboundmotion restric-
tion excludes this case.

(b)x→ y is nonaugmenting. By the inbound ready
rule, x is of the form

(b, κ, 〈. . . , [s, d,A], [a,−,−]〉)

with s ∈ S. This implies x ∈C3⊆ continue⊆G.
(c) x= start. In this case, by the creation rule b= a.
Thus y ∈ authentic.

2. b ∈ S \∂inS.

(a) If x→ y is a motion, then x must be of the
form (�, ready, 〈[a,−,−]〉). By definition of net-
work boundary of S, � ∈ S. This implies x ∈C1∪
C2⊆G. This case is thus excluded.

(b)Otherwise xmust be of one of the following forms:

a) (b, κ, 〈[s, d,A], [a,−,−]〉) with s ∈ S, so x ∈
C2⊆G, which excludes this case also.

b) start. In this case, by the creation rule y is of
the form (b, κ, 〈[s,−,−]〉), with b= s= a. Thus
y ∈ authentic.

Case II: y ∈ C1. Thus y = (�, ready, 〈[a,−,−]〉) for � ∈
∂inS.

1. x = (�′, κ, θ). The inbound motion rule excludes
this case.

2. x= (�, κ, θ). By the inbound ready rule, the tran-
sition x→ y must be a pop. In this case, by the pop
rule x must be of the form (�, κ′, 〈[s, d,A], [a,−,−]〉)
for s∈ S, so x∈C3⊆G, which excludes this case also.

3. x= start. In this case, the creation rule implies �= a,
so y ∈ authentic.

Case III: y ∈C2. In this case y is of the form

(�, κ, 〈[a,−,−]〉)

for � ∈ S \∂inS.

1. x = (�′, κ′, θ) with �′ �= �. In this case, the transition
x→ y must be a location change. By definition of a
border, �′ ∈ S, and by the motion ready restriction,
κ′ = ready. In this case x ∈C1 or x ∈C2, depending
on whether �′ ∈ ∂inS or �′ ∈ S \∂inS. Thus this case is
excluded.

2. x = (�, κ′, θ). In this case, the transition x→ y must
be a pop. By the pop rule x must be of the form
(�, κ′, 〈[s, d,A], [a,−,−]〉) for s ∈ S, so x ∈ C3 ⊆ G,
which excludes this case also.

3. x= start. In this case, the creation rule implies �= a,
so y ∈ authentic.

Case IV: y ∈C3. y is of the form

(�, κ, 〈· · · [s, d,A], [a,−,−]〉)

for s ∈ S.

1. If x→ y is a motion, then x ∈C3.
2. If x→ y is a nonaugmenting header transition, then x
must also be of the formC3.

3. If x→ y is a push, then either x ∈C3 or x is of the
form (�, κ′, 〈[a,−,−]〉). By cryptographic restriction,
� = s ∈ S. In this case x ∈C1 or x ∈C2, depending
on wehether � ∈ ∂inS or � ∈ S \∂inS. Thus this case is
excluded. �

3.4.3 Confidentiality

We will consider the following confidentiality problem:
Suppose a and b are area nodes. What conditions can we
impose on the enclave nodes’ processing to ensure that
packets traveling from a to b are encrypted whenever they
are not in the trust set S?More formally, given some set of
processing restrictions,

If we start with a packet of the form (a, ready,
〈[a, b, p]〉), where a, b ∈ S, then it will never be the
case that (�, κ, 〈[a, b, p]〉) if � �∈ S.

Achieving confidentiality is more simple than authentica-
tion. There are two simple constraints, one on all devices
in the trust set and an additional constraint for boundary
members.

Confidentiality tunnel constraints. Fix a trust set S. The
constraint on all trust set members requires them not to
“tunnel” packets requiring protection out to a dangerous
area. Our constraint will ensure that, whenever a system
inside S adds a confidentiality header to a packet that
would require protection, the source and destination of
the added header are also in S.

�MS ID: IJIS0052

11 October 2004 16:30 CET

16 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

Push rule. For any transition

(�, κ, 〈[s1, d1, p1] · · · [a, b, p]〉)−→

(�, κ′, 〈[s2, d2, p2][s1, d1, p1] · · · [a, b, p]〉),

if �∈ S, s1, d1 ∈ S, and p1 �∈C, then s2, d2 ∈ S. We include
the case where 〈[s1, d1, p1] · · · [a, b, p]〉= 〈[a, b, p]〉.

Confidentiality boundary constraints. As with authenti-
cation, we impose one constraint on boundary members.
If a packet p is traversing an outbound interface on the
boundary of S, and p could contain a packet p0 ∈ P with
no confidentiality header, discard p.
One way to safely implement this is to pass a packet p

only if its topmost layer is a confidentiality header, or else
it has no IPsec headers and p �∈ P .

Outbound ready rule. For any transition

(�, κ, θ)−→ (�, ready, θ′),

if � ∈ ∂outS, then either θ′ = 〈[s, d, C], . . . [a, b, p]〉 for
s, d ∈ S, or else θ′ = 〈[s′, d′,−], . . .〉, where either s′ or d′

is not in S.

Invariant. We will prove that the processing restrictions
formulated above are sufficient to ensure the confidential-
ity goal using an invariant of our state machine. We will
first show that the invariant holds, then prove that, given
the invariant, our confidentiality goal holds as well.

Proposition 3. Suppose that Σ is a state machine sat-
isfying the outbound ready rule and the Push rule, and
suppose that (�, κ, θ) is the state resulting from a sequence
of actions beginning with createa,[a,b,p], where a, b ∈ S.

1. If � ∈ S, then either

(a)whenever [s1, d1, p1] is any layer of θ, then s1, d1 ∈
S and p1 �∈ C, or

(b) there is a final segment of θ of the form

〈[sk, dk, C] · · · [si, di, pi] · · ·〉,

where sk, dk ∈ S and for each i < k, si, di ∈ S and
pi �∈ C.

2. If � �∈ S, then there is a final segment of θ of the form
〈[sk, dk, C] · · · [si, di, pi] · · ·〉, where sk, dk ∈ S and for
each i < k, si, di ∈ S, and pi �∈ C.

Proof.We will examine each of the possible state tran-
sitions in turn, showing for each that they cannot violate
the invariant.

Case 1: create and discard. In the case of the create
operator, we know that the first transition in our state
machine is the following (which does not violate the in-
variant):

start−→ (a, ready, 〈[a, b, p]〉)

The invariant imposes no constraints on the finish state,
thus the discard transition is irrelevant.

Case 2: pop. Assume that we are at location �. We
are interested in the state transition popκ(�, κ

′, h · θ) =
(�, κ, θ). Our cryptographic assumptions prevent any lo-
cation from removing an encryption layer not destined for
them. Thus, no location can remove the necessary confi-
dentiality protection (provided it was applied), and the
invariant is not violated.

Case 3: prefix. Assume once again we are at location �.
The transition is prefixh,κ(�, κ

′, θ) = (�, κ, h · θ). The only
case that has bearing on the invariant is that where � ∈ S,
and there is no encryption layer in θ. By the Push rule,
src(h), dst(h) ∈ S as well. If h is a confidentiality header,
the packet now satisfies the second invariant condition for
locations in S. If h is not a confidentiality header, the
packet satisfies the first invariant condition for locations
in S.

Case 4: null. The invariant imposes no constraints on κ.

Case 5: move. Again, assume we are at location �. The
transition is

movee,κ(�, ready, θ) = (�
′, κ, θ).

Since this involves no change of state, the only case that
could violate the invariant is that where � ∈ ∂oS and
�′ �∈ S. The Outbound Ready rule ensures that the top
layer of θ is either [s, d, C] with s, d ∈ S or [s′, d′,−] with
s′, d′ �∈ S. The Push rule ensures that below the bottom-
most confidentiality layer, all layers have source and des-
tination in S. So, regardless of which portion of the Out-
bound Ready rule is appropriate, the invariant is not vio-
lated.
Thus, the given invariant holds for our state machine.

We nowmust show it implies enforcement of the confiden-
tiality goal.
The confidentiality goal is ensured if it is never the

case that (�, κ, 〈[a, b, p]〉) if � �∈ S. Condition 2 of the in-
variant provides this: suppose that we are at � �∈ S. Then
there is at least one layer [s, d, C] with s, d ∈ S, and no
layers with external sources “beneath” that layer. �

3.4.4 Manageability

One of the advantages of our treatment of IPsec is that it
is compatible with the layered structure of organizations.
In particular, the two corporations A and B in Fig. 3 may
have security goals they want to achieve via IPsec, while
the two engineering departments within them may have
more tightly constrained goals that they need to achieve.
In this case, they may manage their own IPsec-capable
equipment and configure them as needed. Typically such
suborganizations do not have access to the topological

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 17

boundary of the parent organizations. In this case, to be
sure that their IPsec configurations do not interfere with
the goals of their parents, they need only ensure that they
obey two conditions, namely, the Pop rule and the Push
rule for trust sets S in which that the parent participates.

3.5 Implementation: the confidentiality and
authentication IPsec checker (CAIC)

Checks for these behavior restrictions were implemented
in the confidentiality and authentication IPsec checker
(or CAIC, pronounced “cake”). When given Cisco IPsec
configuration files and a network/policy specification,
CAIC will check trust sets and boundaries for the be-
havior restrictions described above. It returns to the user
both a verdict (the goal is enforced or not) and a descrip-
tion of goal failure (if appropriate). It describes which
behavior restriction was not met and the specific sorts of
packets upon which the goal fails.

3.5.1 CAIC input

As mentioned above, CAIC checks security goal enforce-
ment for a network topology that uses Cisco routers for
IPsec processing. It requires information about router
configuration, network topology (including trust set and
boundary information), and security goal information as
input. This information is expected in a single file, though
router configuration files can be referenced as shown in
Fig. 8 (lines beginning with an exclamation point are
comments).
The first field in a router specification is a unique

name given to the router (for example, SG1 in Fig. 3).
The second field identifies the router’s configuration in-
formation (this information can be gotten by running the
command show running-config on a Cisco router). The
third field indicates the type of router configuration; cur-
rently, the tool only supports Cisco routers running IOS.
Expansion of the tool to support other types of router is
ongoing, however.
CAIC can be used in an iterative manner, to see how

changing configurations affect goal achievement. This file

Fig. 8. Referencing router configuration files with CAIC

Fig. 9. Example CAIC packet set specification

format allows all router configuration files to be located in
some central location and referenced by path.
After router specification, trust sets are defined.

A particular trust set is delimited with begin trustset
.... end trustset and trust set members are given via
IP address ranges and masks. One can imagine that the
areas EngA and PerimA in Fig. 3 might have the follow-
ing ranges:

199.94.88.0 0.0.0.255 trust !ENG A

199.94.89.0 0.0.0.255 trust !PERIM A

Boundary information is also crucial; after trust sets
are defined, certain hosts are called out to be boundary
elements. An example boundary member specification is
as follows:

D1 Serial 0

This line states that on IPsec device D1, the serial 0
interface is a boundary interface. (The location of the de-
vice, and its IP address, can be given within a comment
on the same line for human readability.)
After trust sets and boundaries are specified, the in-

put file contains goal statements. There are two kinds
of goal statement – authentication and confidentiality.
CAIC supports a Cisco-style definition of packet sets that
can later be referenced in goals. The small access list pic-
tured in Fig. 9 defines packets between areas FinA and
PayrollB for some company. The packet set 191 can later
be referenced in any security goal statements in the in-
put file. A simple example desires confidentiality for the
packets described by the above access list:

! ACHIEVEMENT 191

achieve confidentiality for 191

3.5.2 Goal enforcement checking and output

Given the network information, trust set/boundary infor-
mation, and security goals for a particular network, CAIC
will perform each of the checks described in Sect. 3.4 for
each individual goal. CAIC shares much of its imple-
mentation with NPE and uses binary decision diagrams
to represent the packet sets relevant to each network
configuration.

�MS ID: IJIS0052

11 October 2004 16:30 CET

18 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

When a particular security goal is achieved, a report
such as the following is printed out:

Achievement 2 for packets-of-interest ACL

number 182 -- an authentication achievement.

In the case that a particular goal is not enforced, addi-
tional information is printed after the identification lines
above. First, a notification of the specific behavior check
which failed is printed, as well as the offending location.
An example where a confidentiality Push rule was not
obeyed follows:

Confidentiality Push Rule NONCOMPLIANCE

involving crypto map B1>>cm-cryptomap__1

in interface Serial0 of device

testconfigs4/CRCF.B1.txt.

The peer IPSec device is not in the trust

set or the tunnel has no confidentiality

transform.

Following the specific rule infraction and its location,
a description of the packets of interest is given.
CAIC has been tested with reasonably sized network

specifications generatedwith Cisco’s “ConfigMaker” tool.
This tool allows a user to graphically specify her network
topology and then produces configuration files based on
the input. Using this tool, CAIC was run on networks in-
volving tens of areas and devices, and under ten security
goals. On a Pentium II 450 desktop PC with 256MB of
RAM, CAIC takes less than 10 s to return results. CAIC
can easily and quickly handle network topologies with
hundreds of IPsec-enabled routers, each being analyzed
in isolation, andmany tens of security goals.

4 Combined packet filtering and IPsec

To protect their networks, organizations need to use
a variety of different techniques in tandem. Most com-
panies use both packet-filtering firewalls and IPsec,
typically as part of a virtual private network. We have
presented techniques to use either of these mechanisms
separately to ensure that meaningful security goals are
achieved, but their use in combination complicates mat-
ters. The remaining question is how to ensure that dan-
gerous packets that should have been filtered were not
protected by IPsec headers (and possibly encrypted) as
they traverse the filtering point where they should be dis-
carded. Later, a security gateway may remove the IPsec
headers and cryptographic transformation, unleashing
packets that will damage the recipient. Thus, our core
idea is that tunnel endpoints must impose all filtering
constraints that might have been missed while the packet
was encapsulated with IPsec.
Following our method for rigorous automated secu-

rity management, we need to take four steps to resolve
this problem. The first, the modeling step, is unneces-
sary in this case, since the model of Sect. 3 is already

sufficiently expressive. In particular, packet filtering is
already expressed as an aspect of IPsec processing as
codified in Definition 2. We can adopt the previous model
unchanged.

4.1 Expressing security goals

The security properties we would like to achieve are es-
sentially the same as in the preceding sections, namely,
filtering goals, authentication goals, and confidentiality
goals. Since authentication and confidentiality goals were
already formalized within the same modeling framework
in Sect. 3.3, we leave them unchanged here. The same
methods still suffice to ensure that they are met in a par-
ticular network configuration.
In defining filtering goals, we have additional degrees

of freedom. In Sect. 2.1.4, trajectories associate a single
packet with all of the locations traversed. By contrast, in
the trajectories formalized as histories of the state ma-
chines of Sect. 3.2, Definitions 1 and 2, the packet may
have different sequences of headers while traversing differ-
ent locations. If we retain the idea from Sect. 2.2.1 that
a filtering policy statement will concern two locations and
the packets that can travel from one to the other, then
we have a choice on how to characterize those packets.
Should we consider the state of the packets as they leave
the earlier location or as they arrive at the later location,
or should we allow both to vary independently?
We choose in fact to consider only trajectories in

which the packet has the same headers at the early and
later position, which we can call “symmetric two-location
filtering statements.” This decision is motivated by two
considerations:

– Known attacks do not involve IPsec. That is, a packet
with IPsec headers is not known to exercise seri-
ous vulnerabilities, for instance in the tcp/ip stack
and its processing of IPsec messages. Such vulnera-
bilities, if discovered, must be corrected very quickly,
since it is intolerable to have vulnerabilities within
the infrastructure intended to provide security itself.2

Known attacks may be transmitted via packets that,
for part of their trajectory, are IPsec-protected; how-
ever, they do their harm only when restored to their
original form.
Thus, we consider that symmetric two-location filter-
ing statements express the practically important secu-
rity objectives.
– An adaptation of the algorithms of Sect. 2.3 provides
good ways of reasoning about symmetric two-location
filtering statements.

One other decision is also needed: whether to interpret the
first location of a two-area symmetric statement as con-

2 Potential denial-of-service attacks using, e.g., fragmented
IPsec packets, requiring cryptographic processing to discover that
they should be discarded, are a somewhat different matter, and
indeed we have not considered denial-of-service attacks and avail-
ability goals in this paper.

�MS ID: IJIS0052

11 October 2004 16:30 CET

J.D. Guttman, A.L. Herzog: Rigorous automated network security management 19

cerning the location at which the packet originates or sim-
ply some location traversed before the other location. We
choose to interpret it as the point of origin of the message,
a notion that makes sense in a model in which data origin
authentication is one of the security services provided.
We capture the notion of two-location filtering state-

ments in the following definition.

Definition 6. Let Ω(G,K,P,A,C) be a set of network
states (Definition 1) and → be a transition relation for
it (Definition 2). Let G = (V,E) and H = V ×V ×P .
A symmetric two-location filtering statement is a triple
(�, �′, φ), where �, �′ ∈ V and φ⊂H∗.
Let t be a trajectory, i.e., a history of (Ω,→), so

t= 〈start, (�1, κ1, θ1), . . . , (�n, κn, θn), . . .〉.

The trajectory t is a counterexample to a symmetric two-
location filtering statement (�, �′, φ) if, for any n, �= �1,
�′ = �n, and θ1 = θn �∈ φ.
(Ω,→) satisfies �, �′, φ if no trajectory is a counterex-

ample to it.

By the form of the create in Definition 2, we know that θ1
is a packet state of length 1 in the sense that θ1 = 〈h〉 for
some header h. So we may also assume that φ concerns
only packet states of length 1, i.e., θ ∈ φ implies θ= 〈h〉 for
some header h.

4.2 Deriving algorithms

We now want to develop algorithms that, given M =
(Ω,→) and a filtering statement �, �′, φ, will definitely tell
us ifM does not satisfy �, �′, φ and will rarely report fail-
ure unless there exists a counterexample to the filtering
statement. To do so, we reduce the problem from the
enriched graph G of Ω to an ordinary undirected, bipar-
tite graph G′ to which the NPE algorithms apply. In the
process, we will also use the confidentiality and authenti-
cation properties known to hold of M to give additional
information reducing false positives. That is, the addi-
tional information will help reduce the cases in which we
report that there may be violations, when in fact there is
no counterexample t.
For the remainder of this section, let us fix a network

configurationM = (Ω,→).
We “reabsorb” the interfaces of a router into the

router and replace each pair of contrary directed edges by
a single undirected edge, thus turning a graph having the
form shown in Fig. 5 into one taking the form shown in
Fig. 4. If an enriched graphG is reabsorbed in this way, we
refer to the result as Gr.

IPsec tunnels. More importantly, we create new fictional
interfaces between two potentially distant routers to
model the IPsec tunnels that may lie between them. In
this way, we recognize IPsec as a service that transports

packets via a safe medium. We regard these fictional in-
terfaces as filtering points for each of the two routers. One
permits outbound (from the router) all those packets that
the endpoint pushes IPsec headers onto, and the other
permits inbound (into that router) all packets that the
router accepts, having popped IPsec headers off them.
More precisely, let od[a] be the outgoing interface from

device d onto an area a. We say that od[a] is a tunnel
entrypoint for d′ if there are any packet states 〈h〉 and
protocol data p such that od[a] pushes [d, d

′, p] onto 〈h〉,
eventually readying [d, d′, p] · 〈h〉, or the result of further
pushes, to move from the interface. We say that an in-
coming interface id′[a] is a tunnel exitpoint from d if there
are any packets [d, d′, p] · 〈h〉 off which id′ [a] pops [d, d

′, p],
eventually readying 〈h〉, or the result of further pops, to
move from the interface. We say that there is a tunnel be-
tween od[a] and id′ [a] if the former is a tunnel entrypoint
for the latter and the latter is a tunnel exitpoint for the
former. We say that the contents of a tunnel are the set
of packet states 〈h〉 such that, if 〈h〉 reaches od[a], then it
readies some · · · · [d, d′, p] · 〈h〉, and moreover there is some
· · · · [d, d′, p] · 〈h〉 that, if it reaches id′ [a], will cause 〈h〉 to
be readied by id′[a].
Given a graph Gr, constructed by reabsorbing an en-

richednetwork graphG, we addan interface betweend and
d′ whenever there is a tunnel between any pair of their in-
terfaces. The device d is assumed to pass outbound over
this interface the union of the contents of all tunnels to in-
terfaces of d′, and d′ is assumed to pass inbound the same
set of packet states. In order to make the result formally
a bipartite graph, we must also add a fictitious area to
which only these twonew interfaces are connected.Wewill
refer to the resulting bipartite graph asGrt.

Exploiting authentication and confidentiality goals. In
our original NPE work, we never had a guarantee that
the source field of a packet could be trusted. Since IPsec
gives us such guarantees, we propose to take advantage
of them. Likewise, IPsec also gives us a confidentiality
assertion that certain packets, having originated in one
location, will always be in encrypted form when travers-
ing another location.
We extract, therefore, two families of sets of packet

states. For each pair of locations �, �′, we letα�,�′ be the set
of 〈[s, d, p]〉 such that address s belongs to the area or de-
vice � andM provides authentication services for 〈[s, d, p]〉,
as determined for instance byCAIC (Sect. 3.5). Letγ�,�′ be
the set of packets 〈[s, d, p]〉 such that address s belongs to
the area or device � andM provides confidentiality services
for 〈[s, d, p]〉, as determined likewise by CAIC.
We may now use the same algorithms provided by

NPE, though when calculating the packets that may flow
from �0 to �1 wemay omit packets inα�,�1 for � �= �0. These
packets cannot reach �1 unless they originate in �, not �0.
Likewise, we may omit packets in γ�0,�1 , as these packets
will never be in their original state when they reach �1 but
will necessarily have an IPsec confidentiality header.

�MS ID: IJIS0052

11 October 2004 16:30 CET

20 J.D. Guttman, A.L. Herzog: Rigorous automated network security management

In this way, we may use the same methods as in NPE,
but sharpened to reflect both the transport opportinities
created by IPsec and also the authentication and confi-
dentiality assertions that it offers. We have not yet incor-
porated these methods into a tool such as NPE or CAIC.

5 Conclusion

We have argued by example in favor of rigorous auto-
mated network security management. This method em-
phasizes modeling, which allows a class of systems to be
represented in a uniform mathematical style. Configura-
tion files may be parsed to generate a representation of
those aspects of an actual system that are required by the
modeling. The modeling ensures that a class of practically
meaningful security goals may be expressed in terms that
fit with the representation. As a consequence, algorithms
for checking whether a system meets a security goal may
be developed and verified. In some cases, an algorithm
can also construct a related system that achieves a goal
when the actual system does not. Finally, an implemen-
tation allows these algorithms to be applied to a problem
instance without the need for any formal modeling exper-
tise at runtime.
Several advantages follow from this approach. It is ef-

ficient, allowing for the time-consuming task of formal
verification to be done only once. Further, this verifica-
tion can be separate from any property-checking tools,
allowing those tools to be implemented quickly and run
efficiently. We illustrated this approach by summarizing
previous work on packet-filtering and IPsec formal ver-
ification. We also introduced a new instance of this ver-
ification approach, which ensures achievement of both
packet-filtering goals and IPsec desires.
Rigorous automated security management appears to

be effective for a range of information security problems.
We have applied it to analyze policies [9] in an oper-
ating system offering mandatory access control, namely,
security-enhanced Linux [16, 17].

References

1. Bartal Y, Mayer A, Nissim K, Wool A (1999) Firmato: a novel
firewall management toolkit. In: Proceedings of the IEEE
symposium on security and privacy. IEEE Press, New York

2. Bellovin S (1996) Problem areas for the IP security protocols.
In: Proceedings of the 6th USENIX UNIX security sympo-
sium, July 1996.
Also at ftp://ftp.research.att.com/dist/smb/badesp.ps

3. Brace KS, Rudell RL, Bryant RE (1990) Efficient implementa-
tion of a BDD package. In: 27th ACM/IEEE design automa-
tion conference, pp 40–45

4. Bryant RE (1986) Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans Comput C-35(8):677–691

5. Cisco Systems (1994) Router Products Command Reference,
10th edn. Chapters 10 to 17 (especially Chapter 16). For more
recent information, see
http://www.cisco.com/univercd/

6. Ferguson N, Schneier B (1999) A cryptographic evaluation of
ipsec. Counterpane Internet Security, Inc.
http://www.counterpane.com/ipsec.html

7. Guttman JD (1997) Filtering postures: Local enforcement for
global policies. In: Proceedings of the 1997 IEEE symposium
on security and privacy. IEEE Press, New York, pp 120–129

8. Guttman JD (2001) Security goals: packet trajectories and
strand spaces. In: Gorrieri R, Focardi R (eds) Foundations
of security analysis and design. Lecture notes in computer
science, vol 2171. Springer, Berlin Heidelberg New York,
pp 197–261

9. Guttman JD, Herzog AL, Ramsdell JD, Skorupka CW (2004)
Verifying information flow goals in security-enhanced Linux. J
Comput Secur. Forthcoming TSb

10. Guttman JD, Herzog AL, Thayer FJ (2000) Authentication
and confidentiality via IPsec. In: Gollman D (ed) ESORICS
2000: European symposium on research in computer security.
Lecture notes in computer science, vol 1895. Springer, Berlin
Heidelberg New York

11. Harkins D, Carrel D (1998) The Internet Key Exchange
(IKE). IETF Network Working Group RFC 2409, November
1998

12. Kent S, Atkinson R (1998) IP authentication header. IETF
Network Working Group RFC 2402, November 1998

13. Kent S, Atkinson R (1998) IP encapsulating security payload.
IETF Network Working Group RFC 2406, November 1998

14. Kent S, Atkinson R (1998) Security Architecture for the In-
ternet protocol. IETF Network Working Group RFC 2401,
November 1998

15. Leroy X, Doligez D, Garrigue J, Rémy D, Vouillon J
(2000) The Objective Caml system,version 3.00. INRIA,
http://caml.inria.fr/.

16. Loscocco P, Smalley S (2001) Integrating flexible support for
security policies into the Linux operating system. In: Pro-
ceedings of the FREENIX Track of the 2001 USENIX annual
technical conference

17. Loscocco P, Smalley S (2001) Meeting critical security ob-
jectives with security-enhanced Linux. In: Proceedings of the
2001 Ottawa Linux symposium

18. Maughan D, Schertler M, Schneider M, Turner J (1998)
Internet Security Association and Key Management Proto-
col (ISAKMP). IETF Network Working Group RFC 2408,
November 1998

19. Mayer A, Wool A, Ziskind E (2000) Fang: a firewall analysis
engine. In: Proceedings of the IEEE symposium on security
and privacy, May 2000. IEEE Press, New York, pp 177–187

20. Reed D (2002) Ip filter. Download Web Page, December.
URL http://coombs.anu.edu.au/ avalon/

21. Russell R (2000) Linux ip firewalling chains. Linux Howto,
October 2000. URL http://www.netfilter.org/ipchains/

22. Schneider S (1996) Security properties and CSP. In: Proceed-
ings of the 1996 IEEE symposium on security and privacy,
May 1996. IEEE Press, New York, pp 174–187

TS
b Any update available?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)

