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Abstract. Trusted Platform Modules (TPMs) provide trust and attes-
tation services to the platforms they reside on, using public key encryp-
tion and digital signatures among other cryptography operations. How-
ever, the current standards mandate primitives that will be insecure in
the presence of quantum computers. In this paper, we study how to elim-
inate these insecure primitives. We replace RSA-based digital signatures
with a hash-based scheme. We show that this scheme can be implemented
using reasonable amounts of space on the TPM. We also show how to
protect the TPM from rollback attacks against these state-sensitive sig-
nature operations.

Keywords: Post-quantum · Trusted Platform Module · TPM · Attes-
tation Identity Key · AIK · Merkle trees

1 Introduction

A Trusted Platform Module (TPM) is a low-cost cryptographic microprocessor
for enabling trusted computing functionalities. TPMs follow a set of global in-
dustry standards laid out by the Trusted Computing Group (TCG) also called
the TCG standards (versions 1.2 and 2.0). As of this writing, there are a num-
ber of vendors which supply hardware TPMs: AMD, Atmel, Broadcom, IBM,
Infineon, Intel, Lenovo, National Semi, Nationz, Qualcomm, STMicroelectron-
ics, Samsung, Sinosun, Texas Instruments, Nuvoton Technology, and Fuzhou
Rockchip [1]; and most personal computers and a few mobile devices (with the
notable exception of Apple computers) are shipped with a TPM [2]. It is as-
sumed that a TPM is implicitly trustworthy and tamper-resistant. This trust
is bootstrapped to enable two trusted computing capabilities, secure encrypted
storage and remote attestation, explained below.

1.1 Secure Encrypted Storage

Costing a couple of dollars each, a TPM is an inexpensive solution for securing
sensitive data even under the threat that the hosting platform may become
corrupted [2]. This is achieved by storing sensitive information outside the TPM
only in encrypted form, with the corresponding encrypting TPM key either in
the TPM’s hardware-protected area or also encrypted by another TPM key. In



this way, a TPM serves as a tamper-resistant hardware Root-of-Trust for Storage
(RTS) [2–4].1

Because the TPM has a limited amount of non-volatile RAM (NVRAM),
only a few special TPM keys are kept in protected space within the TPM. Other
keys are stored in encrypted form in unprotected areas on the platform. They
exist in unencrypted form only transiently as needed and only within the TPM.
The storage keys thus form a key hierarchy (a tree), where each non-root key is
encrypted under its parent key.

In TPM version 2.0, the encryption of child nodes can be done either symmet-
rically or asymmetrically [2,3]. Thus, we can trivially avoid a quantum-insecure
storage mechanism by using only symmetric storage keys. A single caveat to the
solution is duplication, or a mechanism for transferring or backing up TPM keys.
Currently, duplication is handled by decrypting a specific key (or even an entire
subtree) and then re-encrypting it with the public portion of another TPM’s
RSA key [2–4]. Symmetric encryption cannot replace RSA encryption without
preplacing shared TPM keys across platforms.

1.2 Attestation

A platform state measurement indicates whether a platform is in an expected
state and therefore still trustworthy. Through a separate mechanism, the hash
of this measurement can be written into special TPM registers called Platform
Configuration Registers (PCRs). This is done using a trusted hardware compo-
nent: a Root-of-Trust for Measurement (RTM; e.g., Intel TXT for boot measure-
ments) [5].

A TPM can be used for securely reporting the measurement stored in the
PCRs [2–7]; and so it serves also as a hardware Root-of-Trust for Reporting
(RTR). This is done using two types of TPM keys: an Attestation Identity Key
(AIK) and an Endorsement Key (EK). An AIK is an asymmetric signature
key corresponding to a user and or application on the platform and is used for
enabling anonymity. There may be many AIKs per platform. To be useful, an
AIK must satisfy the property that it is infeasible for an adversary to forge a valid
signature (under the key) using any information stored on the platform outside
of the TPM. An EK is an asymmetric encryption key with the unforgeability
property that it is infeasible for an adversary to create a valid encryption under
the key. It is unique to the platform, created randomly, and properly certified
by the manufacturer. The EK is kept inside the TPM, never leaves the TPM,
and is used for certifying AIKs as genuine.

The AIK is used to sign a quote, which includes the measurements stored
in the PCRs as well as a verifier-provided nonce for freshness. For the signed
quote to be meaningful, the AIK itself is certified in order to prove that the AIK

1 Note that while a TPM can guarantee confidentiality and detect modification of se-
curely stored data, it cannot retrieve secured data in the event that data is damaged;
some other mechanism should be implemented to mitigate data loss.
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belongs to a genuine TPM. The signed quote, along with the AIK’s certificate,
is sent to a verifying party.

Each TPM is shipped with a vendor-certified EK (version 1.2) or Primary
Seed (version 2.0) [2–4]. All AIKs are securely derived from this key or seed as
needed and certified by a trusted Privacy-CA (PCA). The Direct Anonymous
Attestation (DAA) protocol also ensures anonymity [8]. This alternative does not
require a trusted third party but incurs a large cost in cryptographic complexity
instead.

1.3 Our Contributions

Current TPM solutions were designed to be secure against classical adversaries,
as opposed to quantum adversaries. This is problematic since some of the trust
arguments rely on the intractability of computational problems with known ef-
ficient quantum algorithms. For example, TPM keys were originally (in version
1.2) all RSA keys, which are insecure given Shor’s quantum integer factorization
scheme [9], and both PCA and DAA protocols use RSA encryption.

This paper presents our initial investigation into architecting a quantum-
secure TPM. We have identified the following set of current TPM mechanisms
to be those which rely on RSA and, thus, known to be vulnerable to quantum-
attacks:

1. Secure (encrypted) storage
2. Duplication
3. TPM signing keys
4. PCA protocol
5. DAA protocol
6. Encrypted transport session

(By encrypted transport session, we mean transporting information, e.g., a TPM
command, securely to a TPM.)

Although RSA is insecure in a post-quantum era, there are some notable
alternatives without any known attacks. One such alternative is hash-based dig-
ital signature schemes, such as Merkle’s tree authentication using a one-time
signature (OTS) scheme. We claim that Merkle tree signatures are a practical
alternative to RSA authentication, solving issues 3 and 4 above. (Disclaimer:
The signing-based PCA protocol described in this paper is weaker than the
original; we lose repudiability of a claim that two AIKs are linked.)

In this paper:

– We present our hash-based TPM signing key construction: QUAntum Secure
Hash (QUASH). Given the space limitation of the TPM, our solution offloads
most of the storage to the untrusted platform in a way that preserves security.

– We also show that our solution prevents replay attacks; it prevents a partic-
ular OTS key from being used to sign multiple messages.

– Lastly, we provide recommendations for system parameters.
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1.4 Related Work

Efficient quantum algorithms [9, 10] break RSA, Digital Signature Algorithm
(DSA), and Elliptic Curve Digital Signature Algorithm (ECDSA) in a quantum-
world setting [11]. Fortunately, a number of cryptographic techniques are be-
lieved to be quantum-secure despite these known algorithms, including: hash-
based, code-based, lattice-based, and multivariate-quadratic-equations cryptog-
raphy [11, 12]. In this paper, we propose a hash-based TPM signing solution,
whose security relies solely on the existence of collision-resistant hash functions
and pseudorandom number generators and assess its practicality as a system.
Our approach for storing data outside the TPM is similar to the technique pre-
sented in [13] for creating virtual monotonic counters for TPMs.

Lattice-based cryptography provides a strong alternative candidate for en-
abling quantum-secure TPM signatures. A recent paper [12] presents an effi-
cient signature scheme Tightly-secure Efficient Signatures from standard LAt-
tices (TESLA) that relies on the intractability of standard lattices as opposed
to ideal lattices. The paper presents fixed parameters for quantum-security. Our
hash-based approach has the benefit that its security is based solely on the exis-
tence of collision-resistant hash functions and pseudorandom number generators,
whereas the lattice-based approach relies on the intractability of lattice prob-
lems. However, the hash-based approach has a key management problem that
the lattice-based approach avoids. A more in-depth comparison between our ap-
proach and one that uses this lattice-based signature scheme is outside the scope
of this paper.

Road Map: Section 2 contains our problem statement (the definitions and
system model we adopt for our construction) and the technical background nec-
essary for understanding our post-quantum attestation solution. In Sects. 3 and
4, we provide our main results: our hash-based TPM signing key construction,
QUASH, and a practicality assessment of this solution. In Sect. 5, we conclude
with a summary of our work.

2 Problem Statement and Preliminaries

Our goal is to architect hash-based TPM signing keys, defined below.
Unlike the RSA signature scheme, hash-based signature schemes require

maintaining some key state information to work. At a minimum, the leaf num-
ber is needed in order to avoid reusing an OTS key pair; and some auxiliary
information is required for efficient signing. We also introduce the notion of an
Endorsement Signing Key (ESK), which is a vendor-certified TPM signing key
for certifying AIKs.

Definition 1 A tamper-evident hash-based AIK is a TPM signing key with the
additional property that it is infeasible for an adversary to change an AIK state
value without the change being detected.

Definition 2 The hash-based ESK is an unforgeable TPM signing key derived
from a Primary Seed, with the property that it is infeasible for an adversary to
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change the ESK state value. (A Primary Seed is a large random number which
is created by the vendor and protected by the TPM.)

If the number of AIKs is limited and relatively small, we can simply store all
required key state information within the protected NVRAM space of the TPM.
Our goal is to extend this solution to the case where an unbounded number of
AIKs can be created, despite the hard space limit within the NVRAM. We do
this by storing the key state information outside of the TPM in balanced binary
(e.g., red-black trees or treaps) hash trees and by keeping only digests of the
state information within the NVRAM for integrity protection.

Our construction, QUASH, has the following set of desirable properties.

– Tamper-evidence: prevention of OTS key reuse. The key state infor-
mation is integrity-protected by storing hash digests in the TPM NVRAM.
Thus, our tamper-evident signing solution prevents an OTS key from being
used more than once, a concern if we use hash-based signatures.

– Availability: localization of data loss. While a TPM can guarantee
confidentiality and data modification detection of securely stored data, it
cannot retrieve secured data in the event that encrypted data is lost. Thus,
a modification to any of the AIKs’ state information renders multiple AIKs
unusable. Given “registers" for holding multiple integrity check values within
the TPM’s NVRAM, we minimize the number of AIKs that are lost when
the state information of a single AIK is corrupted.

– Efficiency: TPM space requirements. We show that our construction
can work with a space-limited TPM, despite hash-based signatures schemes
requiring key state storage and producing large signatures.

– Efficiency: integrity checks. Looking up and updating key state infor-
mation on the platform is efficient. Our solution uses a balanced binary tree
structure that requires only O(logN) steps, where N denotes the number of
AIKs. More critically, the integrity checks executed by the TPM are efficient,
also requiring only O(logN) steps.

– Efficiency: AIK re-generation. Hash-based signatures require generating
fresh OTS keys post-provisioning since only a finite number of OTS keys can
be created at set-up time. We amortize the key re-generation time by creating
fresh OTS keys for a subsequent Merkle tree during signing.

2.1 System Model

We assume that the TPM is trusted and tamper-resistant, but the hosting plat-
form is untrusted. The TPM’s functionalities are augmented to include hash-
based capabilities. Specifically, it can create a Merkle signature scheme key,
integrity check a current AIK state, and sign a message using such an integrity-
checked current key state. Additionally, its NVRAM is equipped with a small
number of special registers, which we call Integrity Registers.

In today’s implementation, the TPM’s NVRAM is used for storing root keys
for certificate chains, the EK (an RSA encryption key), the expected measure-
ment of the machine launch state, and decryption keys used before the disk is
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made available [14]. The minimum NVRAM size required by the TPM (version
1.2) spec is 1280 bytes [15]. We assume that the TPM RAM size is also fairly
limited.

2.2 Merkle Tree Authentication

Merkle tree authentication is specified by two algorithms: a one-time signature
(OTS) scheme and a Merkle signature scheme. Merkle signature schemes differ
from each other in their traversal algorithms for constructing the “next authen-
tication path" efficiently. We describe the Merkle signature scheme generically,
intentionally hiding the details for the traversal algorithm for readability, and
also because it is well-understood how the traversal time and storage size vary
depending on the algorithm used, see [11].2

Moreover, real experimental results reveal that the overall performance of
a tree authentication scheme (using a state-of-the-art traversal algorithm) is
dominated by the performance of the underlying OTS scheme [21]. Given that
our choice in OTS scheme greatly affects the practicality of our construction, we
provide descriptions of several OTS schemes in the appendix. While the original
Lamport-Diffie scheme (LD-C in this paper) was shown to be optimal in number
of hash computations [22], LDWM is the usual go-to OTS scheme, because it
decreases both the signature and storage sizes.

Within the context of this paper, h(·) is a cryptographic one-way hash func-
tion, and r(·) is a cryptographically secure pseudorandom number generator
(PRNG) as defined below.

Definition 3 A cryptographic hash function h : {0, 1}∗ → {0, 1}n maps arbi-
trary length strings to strings of length n, such that the following properties are
satisfied:

– (Easy to compute) Given any x ∈ {0, 1}∗, it is easy to compute its hash
y = h(x).

– (Pre-image resistance) Given any y in the image, it is computationally in-
feasible to find any x such that h(x) = y.

– (Second pre-image resistance) Given a x1 ∈ {0, 1}∗, it is computationally
infeasible to find any x2 6= x1 such that h(x2) = h(x1).

– (Collision resistance) It is computationally infeasible to find any pair x1, x2 ∈
{0, 1}∗ such that h(x2) = h(x1).

Definition 4 A cryptographically secure pseudorandom number generator

r : {0, 1}m → {0, 1}n

is a function that generates an n-bit output from a truly random m-bit seed and
satisfies the next-bit test: Given the first polynomial number of output bits, it is
computationally infeasible to to predict the next bit of the output with probability
non-negligibly larger than 1

2
.

2 Merkle’s original construction requires O(H2) space and O(H) time [16], but recent
constructions provide more efficient results [17–20].
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Setup. A Merkle signature scheme (MSS) public key is equivalent to the result
of the following computation. First we initialize a tree of constant branching
factor D and height H and generate DH OTS key pairs. The OTS key pairs are
derived from the hash of the AIK name id, the re-generation number i, the leaf
index ℓ, and the private-value index j: The AIK seed for AIK id is

sAIK(id) = h(id);

the seed for the i-th Merkle tree for id is

sMSS(id, i) = sAIK(id)|i = h(id)|i;

and the seed for the ℓ-th leaf of the i-th Merkle tree for id is

sLEAF(id, i, ℓ) = sMSS(id, i)|ℓ = h(id)|i|ℓ.

The concatenation of a leaf seed and a private-value index is inputted into the
pseudorandom number generator r(·) to create an OTS private key value, see
appendix.3 We store the hash of the ℓ-th OTS public key in the ℓ-th leaf of
the tree, and the value of each non-leaf node is computed as the hash of the
concatenation of its children’s stored values. The MSS public key corresponds
to the root value of this tree.

The approach above–computing values for all DH leaves and subsequently
hashing up the Merkle tree–is unnecessarily space consuming in practice. The
convention is to keep a much smaller number of hashes in a stack, see [11].

Signing. Given a leaf in the Merkle tree, its authentication path is the sequence
of sibling nodes along the path from it to the root. For example, the authenti-
cating path for leaf 12 in Fig. 1(a) is (ν(11), ν(6), ν(1)), where ν(i) denotes the
hash value at node i.

An MSS signature is valid iff two conditions hold: the OTS signature σ

verifies, and the OTS public key value y is consistent with the MSS public key
Y and an authentication branch B. Thus, an MSS signature Σ is the quadruple:

Σ = (ℓ,σ,y, B), (1)

where ℓ denotes the leaf index number. The OTS public key y and signature σ

can be computed from the OTS setup and signing algorithms, respectively. A
traversal algorithm is implemented to compute the next authentication path B,
and some key state information is saved to do this efficiently.

Because MSS setup is time-consuming, we recommend amortizing the cost
of generating the next Merkle tree during signing. A single call to the signing
algorithm should produce a signature, while doing a little bit of computation for
incorporating one additional leaf in setting up the next tree, see Fig. 1(b). We

3 In general, the OTS keys do not have to be derived from the same parent seed. We
do so here to save storage space.
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Fig. 1. (a) The nodes for node 12’s authentication path are in green. (b) Computation
for the next tree during is amortized during signing. During signing using leaf i, leaf i′

for the next tree is created and incorporated into the next tree’s stack.

could increase or decrease the key re-generation rate according to how fast the
OTS keys are being used. This would require some other mechanism for deter-
mining the key usage rate and slight modifications to the key_state structure
below.

The key_state object has the following fields:

– ID , TPM signing key id

– parent , parent TPM signing key id

– iter , tree iteration or re-generation number

– height , height of Merkle tree

– bfactor , branching factor of Merkle tree

– ots , OTS scheme used

– lparam , loop parameter for the OTS scheme, see appendix

– leaf , leaf number (for signing)

– stack , stack for next tree

– state , initial state for next tree

– cur_state , saved state for updating the current tree’s authenti-
cation path

ID stores the MSS key’s unique id. parent stores the id of the key’s par-
ent. iter stores the re-generation number. height and bfactor store the tree’s
height and constant branching factor, respectively. ots and lparam store the
OTS scheme and its corresponding loop parameter. leaf stores the leaf index.
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stack stores the stack for setting up the next tree. state stores the initial saved
state for the next tree, which includes the first authentication path. cur_state

stores auxiliary state structures for tree traversal algorithms that are more opti-
mal and may include the authentication path for the next signature. An instance
of a key_state object is initialized with iter and leaf set to 1; lparam set to
⊥; and with state and cur_state empty.

3 QUAntum Secure Hash (QUASH)

The MSS setup algorithm must be executed within the TPM. Otherwise ma-
licious software may swap out the real public key with any value, including a
MSS public key created from its choice for the seed. The MSS signing algorithm
must also be executed within the TPM, since the purpose of having a TPM
signing key is to prove (to some verifier) that some function (e.g., construction
of a quote) was carried out by a trusted component.

However, hash-based digital signature schemes are space-intensive, requiring
key state and producing large signatures. Thus, the design challenge is to offload
the key state storage to the untrusted platform in a way that preserves security.
We outline the main design challenges here:

– Key state must be stored outside TPM: A single key_state object
for an AIK of branching factor 2 and height 20 takes 4 KB of space, see
Table 1 in Sect. 4. To support even twenty such AIKs, either the TPM’s
NVRAM size must increase by an order of magnitude, or we must store the
required key state information outside of the TPM in such a way that the
overall solution remains secure.

– Preventing rollbacks: Rollbacks must be carefully managed, since the
AIK key states are stored on the untrusted platform, and an OTS key is
secure only if it is used once.4

– Efficient integrity checks: To prevent rollback attacks and issues from
unintended data corruptions, we keep hash chains of the AIKs’ key states in
the protected space. These hashes are kept in special registers in the TPM’s
NVRAM and are used for integrity checks prior to key creation and signing.

Since the integrity checks must be computed by the resource-limited
TPM, the naive approach of computing the hash chain directly from the
AIKs’ key states is impractical; a more efficient method is needed.

– Resiliency from data corruption: Each TPM Integrity Register holds a
compressed representation of a group of AIKs’ key state information. Thus,
damage to a single key state in the group could render all AIKs in the group
useless. Our solution allows for recovery of AIKs and TPM registers where
possible and minimizes the number of AIKs that are unrecoverable.

4 Encrypting the AIKs’ state information does not prevent rollbacks; an adversary
could restore an AIK to a previous state by writing over its current encrypted state
with a saved previous encrypted state.
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3.1 Data Structures

State Storage Trees. The AIKs’ state information is organized in balanced bi-
nary trees outside of the TPM. Each node in a State Storage Tree corresponds to
an AIK and contains the information necessary for signing under this key. Specif-
ically, each node stores a pair: a key_state object k (introduced in Sect. 2.2)
and a subtree hash. The subtree hash is the hash of the concatenation of k and
the subtree hashes of the node’s children.5

Integrity Registers. Digests of last good key states are stored in the TPM’s
NVRAM in registers, which we call Integrity Registers.

Group Membership. The key states of a group of AIKs are hash-chained
together to create a single hash digest. Thus, damage to any key state in the
group can render all of the keys in this group useless. To mitigate this kind of
data loss, an AIK belongs to multiple groups, where the hash chain of each group
is stored in a separate Integrity Register. Given (d · I) Integrity Registers, each
key state object belongs to I groups. Group membership is decided by the hash
value of the key id. A key id is a member of group Gb

i
if the i-th d-ary bit of its

hash is b:

Gb

i = {id : i-th d-ary bit of h(id) is b}. (2)

For every group Gb
i
, there is a corresponding State Storage Tree T b

i
for main-

taining the state information of the AIKs in Gb
i and a corresponding Integrity

Register Rb
i

for storing the tree hash of T b
i
. We denote by trees(id) a list of

State Storage Trees to which id belongs, ordered lexiconically:

trees(id) = {T b

i : id ∈ Gb

i}. (3)

For example, if d = 2, i = 2, and the hash of id ends in 01, id belongs to groups
G1

0 and G0
1. The State Storage Trees trees(id) = (T 1

0 , T
0
1 ) and corresponding

Integrity Registers R1
0 and R0

1 are depicted in green in Fig. 2 below.

3.2 AIK Methods

We describe our methods for creating and certifying AIKs and signing under
AIKs using the data structures described in the previous subsection. In Sect. 3.3,
we show that our solution is tamper-evident and thwarts forgeries. Our practi-
cality assessment of our solution is given in Sect. 4.

5 The AIK seeds are never stored anywhere. The Primary Seed s0, i.e., the “unsalted
ESK seed," is the only seed stored in the TPM’s NVRAM. A TPM signing key seed
is generated from s0 as needed and only in the protected space in the TPM.)
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Step 5: Update state storage trees

Integrity check

Untrusted Platform Step 1

Step 2

Step 3

Step 4

T 0
0

T 0
1

k8

T 1
0

k3

k1 k6

k10

T 1
1

Trusted TPM

NVRAM

R0
0

R1
0

R0
1

R1
1

ESK State

Fig. 2. State Storage Trees track AIK key state information. Integrity Registers in the
TPM’s NVRAM store integrity check values.

AIK Creation. To create a new identity key id,

1. The platform determines the list trees(id) and sends a request to create
an AIK to the TPM via a TPM interface, such as the TCG Software Stack
(TSS). The request contains id, the parent id, the OTS scheme, and the
Merkle tree height and branching factor.

2. Upon receiving the request, the TPM computes the list trees(id) and sends
an acknowledgement that the request was received to the platform.

Steps 3 and 4 are repeated for every T b
i ∈ trees(id):

3. The platform computes what the authentication path for node h(id) ∈ T b
i

will be after the node is inserted into the tree. It sends this authentication
path to the TPM.

4. To check the integrity of the authentication path, the TPM ensures that (i)
the hashes along the authentication path are consistent with each other, and
(ii) the hash at the root is equal to the value stored in the Integrity Register
Rb

i corresponding to T b
i .

a. For the first authentication path that passes both integrity checks, the
TPM instantiates a new key_state object k using the MSS setup method.
The AIK seed s is determined from the parent signing key seed sP and
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id, e.g., s = sP ||id.
6 The TPM computes the hash of the key state k and

returns k and the public key Y to the the platform.
b. If both integrity checks pass, the TPM updates the Integrity Register Rb

i

using the hash of k; otherwise, if either integrity checks fail, the Integrity
Register is marked invalid.

c. If T b
i

is the final tree in trees(id): if a new key was successfully created,
the public portion Y of the MSS key is signed by the ESK within the
TPM. The TPM returns the ESK endorsement to the platform; other-
wise, it returns an error.

d. Send an acknowledgment to inform the platform that the round has
ended, if nothing has been sent yet this round.

5. The platform updates all the trees in trees(id) with the returned key state
k.

Signing. The protocol for signing a message M using an identity key id is
similar:

1. The platform determines the list trees(id) and sends a sign-message request
to the TPM. The request contains id and the message M .

2. Upon receiving the request, the TPM computes the list trees(id) and sends
an acknowledgement that the request was received to the platform.

Steps 3 and 4 are repeated for every T b
i
∈ trees(id):

3. The platform computes the authentication path for node h(id) ∈ T b
i . It sends

this authentication path and the key state k stored at node h(id) ∈ T b
i

to
the TPM.

4. To check the integrity of the authentication path, the TPM ensures that (i)
the hash of k and the hashes along the authentication path are consistent
with each other, and (ii) the hash at the root is equal to the value stored in
the Integrity Register Rb

i corresponding to T b
i .

a. For the first authentication path that passes both integrity checks, the
TPM signs the message M using the MSS signing method and k.

b. If both integrity checks pass, the TPM updates the Integrity Register
Rb

i
using the updated MSS object k; otherwise, if either integrity checks

fail, the Integrity Register is marked invalid.
c. If T b

i is the final tree in trees(id): if M was successfully signed, the
TPM returns the signature and the updated key state k′ to the platform;
otherwise, it returns an error.

d. If the signature used the “last leaf" in the current Merkle tree, the public
portion Y of the next MSS key is signed by the ESK and this newly
created ESK endorsement is also sent to the platform.

e. Send an acknowledgment to inform the platform that the round has
ended, if nothing has been sent yet this round

5. The platform updates all the trees in trees(id) with the returned key state
k.

6 If the parent key is not the ESK, this is determined recursively.
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Signing a Key Handle. Each AIK must be certified as having been created by
a legitimate TPM. This is done by signing each AIK public value using the ESK.
The ESK itself is certified by the vendor, perhaps using a message authentication
code (MAC) derived from the Primary Seed s0.

7

The ESK is a TPM hash-based signing key whose seed is derived from s0
and some user-inputted salt. Both s0 and the ESK state information is kept in
the TPM’s NVRAM and never leaves the protected space.

Key and Register Recovery. The TPM itself does not provide a mechanism
for recovering data lost during storage, transmission, or processing. Even a low
bit error rate can render all AIKs useless without some means of recovering
AIKs (when possible) and reverting Integrity Registers to useable states. Here,
we describe how this can be accomplished.

First, for each State Storage Tree, the platform computes the hash chain value
from scratch (i.e., from the key states, as opposed to from the subtree hashes)
and sends an AIK recovery request to the TPM along with the tree hashes. The
TPM responds with the set B of State Storage Trees which did not pass the
integrity checks and resets the corresponding Integrity Registers. (By resetting,
we mean that the registers reflect the valid integrity value corresponding to an
empty State Storage Tree.) For every tree t ∈ B, for every node v ∈ t, the
platform checks if there exists a State Storage Tree t′ /∈ B, and t′ ∈ trees(id),
where id is the id of v. Note that this can be computed efficiently from the hash
of id. If t′ exists, the platform marks the AIK as recoverable.

For every tree t ∈ B and recoverable node v ∈ t, the platform sends to the
TPM a request to add node v to t, along with an authenticating path for v in
t and a proof of correctness for v (i.e., a tree t′ /∈ B, and t′ ∈ trees(id) and
an authenticating path for v on t′). If the proof verifies, the TPM updates the
corresponding Integrity Register accordingly; otherwise, the register is marked
as invalid.

From above, we see that AIKs in damaged State Storage Trees can be re-
covered from undamaged State Storage Trees. An AIK id is recoverable iff there
exists a State Storage Tree in trees(id) that passes all integrity checks. In other
words, an AIK is unrecoverable iff

t ∈ trees(id) =⇒ t ∈ B.

For a fixed number N of AIKs, increasing d and I decreases the conditional
probability of an AIK residing in a damaged tree and the probability of an AIK
being unrecoverable. However, this obviously increases the number of Integrity
Registers in the TPM’s NVRAM.

3.3 Correctness and Security Proofs

We provide sketches of correctness and security proofs for our construction here.

7 Note that ESK may periodically require a fresh certificate.
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Lemma 1 If an authenticating path passes both integrity checks (step 4 for both
AIK setup and signing), then the path does not contain any unauthorized modi-
fications.

Proof. If the hash value in the Integrity Register holds the intended value, then
in order for an adversary to modify the path, it must do so in such a way that
the final tree hash at the root retains this intended value. This is infeasible by
the (second pre-image resistance) property of the hash function, see Def. 3.

Moreover, if an Integrity Register holds a valid value, it must be the intended
value; since the Integrity Register is protected by the TPM, and the TPM up-
dates the register with a valid value iff all integrity checks on the corresponding
authenticating branch pass. (Remark: Thus when an integrity checks fails for a
State Storage Tree T b

i
, the corresponding Integrity Register Rb

i
must be marked

invalid in order for Lemma 1 and Corollaries 1 and 2 to hold, see step 4b in AIK
creation and signing.) ⊓⊔

Corollary 1 (Tamper-resistance) Any unauthorized modification of an AIK’s
key state information (stored outside the TPM) is detectable.

Corollary 2 (Unforgeability) It is infeasible for an adversary to forge a sig-
nature under a properly certified AIK.

Theorem 1 (Correctness) Let id be any hash-based AIK with at least one au-
thentication path which passes all three checks (for signing). Given any message
M of any arbitrarily length, a signature on M under AIK id verifies.

Proof. Let p be the first authenticating path that passes all three integrity
checks. From Lemma 1, p does not not contain any unauthorized modifications.
Thus, the AIK’s key state is the intended key state, and so any signature under
it verifies. ⊓⊔

4 Practicality Assessment

4.1 Space Analysis

We first determine how much space is needed for storing a key state object. The
hash output size is assumed to be (256 bits or) 32 bytes. Eight of the key_state

object fields—ID, parent, iter, height, bfactor, ots, lparam, and leaf—take
up very little space. For concreteness, we have allotted 4 bytes for each of these
fields; so 8× 4 = 32 bytes are needed for storing all of these fields.

The maximum total storage size is dominated by the storage requirements
for the remaining fields—stack, state, and cur_state—which depend on the
traversal algorithm being used and the dimensions of the Merkle tree. We use
the state-of-the-art traversal scheme from [20]; and our Merkle tree is binary
with height H = height.
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During Merkle tree setup, an initial state consisting of H “authentication"
nodes, H− 2 “treehash" nodes, and a single “retain" node are stored [20], hence,
2H− 1 nodes. The stack for this computation requires a maximum of H nodes.

Additionally, the traversal algorithm requires storing at most 3.5H−4 nodes
in cur_state at any given step [20]. Thus, the total maximum space (in bytes)
required for storing a key state object is bounded by Γ (H) =

32 + (32× (6.5H − 5)) = 208H − 128. (4)

Table 1 shows the key state storage size for binary Merkle trees of various sizes.

Targeted Range

H = 15 H = 20 H = 25

# OTS keys 2H 3 · 104 1.05 · 106 33.55 · 106

Storage size Γ (H) 208H − 128 3.0KB 4.0KB 5.1KB

Table 1. Key state storage size in KB.

TPM Space for AIK Creation. Here, we provide an estimate for the TPM
space needed to create an AIK. This estimation is meant to approximate the
maximum space used by a space-efficient implementation.

In the analysis below, a unit is 32 bytes. For simplicity, we assume that the
Merkle trees are binary of height H ; we use the traversal algorithm described
in [20] and the space-efficient [23] SHA-256 for the hash function; the space
required for running the PRNG likewise is minimal; and the length of each OTS
private x-value is 1 unit.

In creating a TPM signing key, the maximum resident TPM space is needed
when the public key is being signed. We estimate the space required as follows:

– 1 unit for storing the public key (input);
– Γ (H) = 6.5H − 4 units for storing the ESK key state (input), see (4);
– 1 unit for storing the leaf index ℓ (output);
– N(ots) units for the maximum OTS signature σ size (output);
– N(ots) units for the maximum OTS public-key portion y size (output); and
– H units for the maximum authentication path size (output);

where the loop parameter N(ots) depends on the OTS scheme, see appendix.
For example, for LD-C, NC(ots) = 512. At this point, we need not retain the
input authentication path, the newly created key state, its hash, nor the updated
register value. (Remark: In order to save TPM space, the newly created AIK
state is returned to the platform before signing the retained public key value
using the ESK state, see AIK Creation in Sect. 3.2.)
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We need only negligible scratch space for running the MSS signing method:
Only negligible additional space (beyond the space allotted for storing the out-
put) is required for computing the OTS signature and public-key. Likewise, only
negligible additional space (beyond space for storing the inputted ESK state) is
required for updating cur_state, state, and stack.

Table 2 shows the maximum TPM space needed for creating an AIK of
various sizes. Note that the total space required is not impacted by the number
N of AIKs; (unless N is impractically large).

LD-C LD-Z
LDWM LDWM LDWM

w = 2 w = 4 w = 8

H = 15 36.4 20.5 12.1 7.9 5.8

H = 20 37.6 21.7 13.3 9.1 7.0

H = 25 38.8 22.9 14.5 10.3 8.2

Table 2. TPM space required for AIK creation inKB.

TPM Space for AIK Signing. The maximum space in the TPM needed for
signing a message occurs at the point when the message is being signed using
the MSS signing method. The space requirement is identical to that of setup:
The TPM retains the AIK state, but does not need the ESK state. It also needs
to store the hash of M , but does not need to store a public key value.

4.2 Time Analysis

Since the State Storage Trees are balanced binary hash trees,

– Determining (the key state and) the authentication path takes i · log(N)
time, where N is the number of AIKs, and an id belongs to i groups.

– Determining the root value from (the key state and) the authentication path
also takes i · log(N) time.

– To update a State Storage Tree, only the nodes along a path to the root need
to be reevaluated. Moreover, reevaluating a subtree hash requires only one
hash operation. So, updating the State Storage Trees takes i · log(N) time.

There are traversal algorithms that require O(H) space and O(H) time with
low constant factors [18–20]. Therefore, by using an optimal traversal algorithm,
the cost of MSS signing is dominated by the cost of executing the underlying
OTS scheme once. Amortizing the re-generation cost only increases the signing
time by roughly a factor of two.

The only time-inefficient step is MSS setup, which necessarily requires time
proportional to the number of OTS keys created at setup time. For the ESK,

16



this can occur at provisioning time. For AIKs, we would like to set up on-the-fly,
as needed. To mitigate this setup cost, we can setup a new AIK with a small
Merkle tree and ramp up its size for subsequent tree(s).

5 Conclusion

We conclude that our construction for hash-based TPM signing keys is practical,
if a state-of-the-art traversal algorithm, such as [20], is implemented.

QUASH can be implemented with a fairly small NVRAM: If an ESK Merkle
tree includes roughly 6.5million OTS key pairs, it can certify 100 AIKs, each
requiring at most (216 =) 65 thousand re-generations without needing to be re-
certified by the vendor. This can be accomplished by setting a binary Merkle tree
height to 23. Given these Merkle tree parameters, the maximum storage space
required for storing the key_state object is 4.7KB. Supporting 6 Integrity
Registers would require an additional 192 bytes.
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A One-Time Signature Schemes

The Lamport-Diffie Complement (LD-C), the Lamport-Diffie Zero Count (LD-
Z), and the Lamport-Diffie with Winternitz improvement (LDWM) schemes were
formally included in Merkle’s 1979 paper introducing tree authentication [16]. All
signatures are of digests, or hashes, of the original message. So to sign a message
M of arbitrary length, a signing algorithm is run on the digest d = h(M) of M .

Lamport-Diffie Complement. The Lamport-Diffie Complement (LD-C) scheme
requires a private and public value pair (x, y) for each bit of the message digest
d as well as each bit of the bit-wise complement d̄ of the message digest. We
assume that the message M is also hashed using the hash function h(·), and
therefore the hash output length n is known and fixed. The input to the signing
algorithm is the pre-computed loop-parameter NC = 2n.

An LD-C key is a vector of pairs: Each pair consists of a pseudorandomly
derived value (a private value x) and its hash (a public value y), see Alg. 1 below.
|| denotes concatenation.

Algorithm 1: LD-C set-up algorithm

Data: A leaf seed s, a loop parameter NC = 2n
Result: An LD-C public-key y = [y1, y2, . . . yNC

]
1 for i = 1 : NC do

2 xi = r(s||i);
3 yi = h(xi);

4 return y;

Let di denote the i-th bit of a message digest d.
The signature of a message consists of a vector of NC binary strings each of

length n. For each i ∈ [n], either the i-th string σi = xi, and σn+i is a string
of zeros (if di = 1); or σi is a string of zeros and σn+i = xn+1 (if di = 0), see
Alg. 2.

A verifier can check a signature by computing the hash of each non-zero block
in the signature and comparing it against the corresponding public value in y.
The signature is valid iff all hashes equal their corresponding public value.

The signature scheme is secure since forging a valid signature requires finding
an inverse of a hashed value (a public value). Note that including the complement
of the message digest prevents a man-in-the-middle attack.

Lamport-Diffie Zero Count. In LD-C, the bit-wise complement of the message
digest is used to determine the signature. Instead of the complement, Lamport-
Diffie Zero Count (LD-Z) includes a zero count of the message digest bits to
thwart forgery. Thus, the set-up algorithm is identical to Alg. 2, with the ex-
ception that the inputted loop parameter is NZ = n+ logn, where log(·) is the
logarithm base 2.
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Algorithm 2: LD-C signing algorithm

Data: A message digest d, a leaf seed s, and a set-up loop parameter NC

Result: An LD-C signature σ

/* allocate signature structure with all zeros */

1 Set σ as a length-NC vector of length-n zero-blocks;
2 for i = 1 : NC/2 do

3 if di = 1 then

4 σi = r(s||i);

5 else

6 σn+i = r(s||n+ i);

7 return σ;

To sign a message digest d, we count the number of zeros in d and concatenate
the zero count to d, so that

d′ = d||z, (5)

where z is the log(n)-bit binary representation of the zero count. Then, the
signature σ is a length-NZ vector of blocks, each of length n, where the i-th
block is either xi (if d′ = 1) or a string of zeros (if d′ = 0), see Alg. 3.

Algorithm 3: LD-Z signing algorithm

Data: A message digest d, a leaf seed s, and a loop parameter NZ

Result: An LD-Z signature σ

1 Compute the zero count z of d, and determine d′ = d||z;
/* allocate signature structure with all zeros */

2 Set σ as a length-NC vector of length-n zero-blocks;
3 for i = 1 : NZ do

4 if di = 1 then

5 σi = r(s||i);

6 return σ;

As before, a verifier can check that the signature hashes are the expected
y-values. In this scheme, the zero count prevents man-in-the-middle attacks.

Winternitz Improvement. Whereas an LD-C key is of length NC blocks, an
LD-Z key takes up only NZ blocks of size equal to the LD-C key blocks. The
Winternitz improvement (LDWM) further reduces the key length by signing
w bits at a time, where w is the Winternitz parameter. Typical values of the
Winternitz parameter are either 2, 4, or 8 [24].
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An LDWM key pair consists of a length-NW vector of value pairs, where

NW =
⌈ n

w

⌉

+

⌈

⌊log
(⌈

n

w

⌉)

⌋+ w + 1

w

⌉

, (6)

and where each value pair (xi, yi) consists of a pseudorandom value xi and a
hash value yi from applying h2

w
−1(·) to xi, see Alg. 4 below. Here the exponent

(2w − 1) in the hash function means iterating the hash function (2w − 1) times.
As before, we assume that NW has been computed by a parent function and is
passed to the LDWM set-up algorithm.

Algorithm 4: LDWM set-up algorithm

Data: A leaf seed s, a loop paramter NW and the Winternitz parameter w
Result: An LDWM public-key y = [y1, y2, . . . yNW

]
1 for i = 1 : NW do

2 xi = r(s||i);

3 yi = h2
w−1(xi);

4 return y;

To sign a message digest d: we first pad d with zeros so that its length is an
even multiple of w and compute a checksum c (in binary) as follows

c =

NW
∑

i=1

(2w − d′), (7)

where d′ denotes the padded d. Then we pad c with zeros so that its length is
also a multiple of w. We denote by d′′, the concatenation of the padded d with
the padded c; so

d′′ = d′||c′, (8)

where c′ denotes the padded c. For every i ∈ [NW ], we compute σi = hbi(r(s||i)),
where bi denotes the decimal representation of the i-th length-w block of d′′. The
final LDWM signature σ is [σ1, . . . , σNW

], see Alg. 5 below.
A signature can be verified by checking that each σ-value hashed an appro-

priate number of times equals the corresponding public y-value. The checksum
prevents forgeries. We refer the reader to [11, 16] for the security proofs.

B Requirements for OTS Schemes

While Merkle describes LD-Z as an improvement over LD-C since it requires less
space, and LDWM as a further improvement; we include our own detailed (non-
asymptotic) time-space analyses of these schemes here. We derive the resource
requirements for each of the OTS schemes provided in Sect. A and the overall
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Algorithm 5: LDWM signing algorithm

Data: A message digest d, a leaf seed s, the loop parameter NW , and the
Winternitz parameter w

Result: An LDWM signature σ

1 Determine d′′′ from d;
2 for i = 1 : NW do

3 σi = fbi(r(s||i));

4 return σ;

Merkle tree authentication provided in Sect. 2.2 with respect to these primitives.
Let m denote the length of an OTS scheme private value, and let n denote the
length of a hash digest. The time and space requirements for (i) the PRNG
function to obtain an OTS private value and (ii) hashing an OTS private value
are given below:

– The PRNG r(·) has output size m, scratch space complexity Sr, and time
complexity Tr. We assume that Sr ≥ NC = 2n.

– Hashing an OTS private value x to a digest y = h(x) produces an output of
size n and has scratch space and time complexities Sx and Tx, resp.

While the time and space complexities of these sub-routines are really func-
tions of m and / or n, we will write them as constants for readability. For example,
it will be understood that the time requirement Tx for hashing an OTS private
value to a digest is really a function Tx(m) of m.

Set-up Time Set-up Space

Tr steps Tx steps add. max (Sr +m,Sx + n)+

LD-C NC NC O (NC) (NC − 1)m

LD-Z NZ NZ O (NZ)
† (NZ − 1)m

LDWM NW (2w − 1)NW O (NW ) (NW − 1)m

Signing Time Signing Space

Tr steps Tx steps add.

LD-C n − O (n) NC ·m+ Sr

LD-Z
NZ

2
− O (NZ)

† NZ ·m+ Sr

LDWM NW

(

2w−1 − 1

2

)

NW O (n) (NW − 1)m+max (Sr +m,Sx + n)

Table 3. Requirements for OTS schemes. †Add. steps required for the zero count.
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B.1 LD-C and LD-Z

We first determine the resource requirements for the LD-C set-up and signing
procedures provided by Algs. 1 and 2 in Sect. A.

LD-C Set-up Requirements. Each iteration of the for-loop in Alg. 1 requires Tr

steps for generating a random x-value, Tx steps for hashing the x-value, and
some marginal constant time for checking the loop condition. So, a total of
TC = NC(Tr + Tx +O(1)) steps are required for the total set-up time.

We now compute the space requirement. At the i-th step of the for-loop, we
need to hold the values of the previously calculated y-values; this requires (i−1)n
bits. For obtaining xi, we need a scratch space of size Sr and an additional m
bits allocated for the output of r(·). For obtaining y, we need a scratch space of
Sx (which subsumes the m bits for holding the parameter xi) and an additional
n bits allocated for the output of yi = h(xi). Thus the maximum space required
for the set-up phase is given by SC = (NC − 1)n + max(Sr +m,Sx + n), plus
some negligible space for bookkeeping.

LD-C Signing Requirements. For every i ∈ [n], either the i-th pseudorandom
x-value is recomputed (if di = 1), or the (n + i)-th pseudorandom x-value is
recomputed (if di = 0). Either way, an x-value is computed per iteration of the
for-loop. Thus, the signing time requirement is TC = n(Tr + O(1)). The total
space required is given by the sum of the space allocated for the signature (2mn
bits) and the scratch space for re-evaluating the x-values serially (Sr bits), plus
some negligible space for bookkeeping: SC = 2mn + Sr. See the first row of
Table 3 for LD-C’s time-space requirements.

LD-Z Requirements. Whereas an LD-C public key includes a key-value for each
bit of the complement of the message digest, LD-Z includes a key-value for each
bit of the zero count. Thus, by a nearly identical analysis as above, the set-up
time TZ and space SZ requirements for LD-Z are:

TZ = NZ(Tr + Tx +O(1)) (9)

SZ = (NZ − 1)n+max(Sr +m,Sx + n). (10)

Deriving the signing requirements requires a subtly different analysis. First,
we must evaluate a zero count in LD-Z (which is an unnecessary step in LD-C).
Moreover, while we re-evaluate exactly one pseudorandom value (either xi or
xn+i) for each i ∈ [n] in LD-C; in LD-Z, we must check the zero count bits
separately, and at every check there is some probability of not re-evaluating a
pseudorandom value. Thus, signing requires O(n) steps for determining the zero
count and an additional NZ(Tr +O(1)) steps for the for-loop in the worst case;
and an average of

TZ = NZ

(

Tr

2
+O(1)

)

+O(n) (11)

=

(

NZ

2

)

Tr +O(NZ) (12)
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steps assuming that the message digest is uniformly distributed over n-bit strings.
The space requirement for signing is SZ = NZ +Sr; the space required for com-
puting the zero count is subsumed by the space required to compute an x-value.
See the second row of Table 3 for LD-C’s time-space requirements.

B.2 Winternitz Improvement

Set-up Requirements. Computing the public key using the Winternitz improve-
ment consists of computing NW hash digests, where

NW =
⌈ n

w

⌉

+

⌈

⌊log
(⌈

n

w

⌉)

⌋+ w + 1

w

⌉

and w denotes the Winternitz parameter; and where each digest is computed
from generating a pseudorandom value and iterating the hash function (2w − 1)
times on the pseudorandom value. Thus, the required set-up time for LDWM is

TW = NW · (Tr + (2w − 1)Tx +O(1))

Compared with LD-C or LDWM, the number of iterations reduces by roughly
a factor of w; however, the dominating component is the number of hash com-
putations, which increases considerably by an exponential factor in w. On the
other hand, the set-up space requirement reduces roughly by a factor of w; the
total set-up space required is

SW = (NW − 1)n+max(Sr +m,Sx + n)

plus some marginal space for bookkeeping.

Signing Requirements. To sign a message digest, we first pad the message digest,
calculate the checksum, and then pad the checksum; this takes O(n) time.

The signature consists of NW hash digests. Each digest is computed by it-
erating the hash function some b times on either a message digest block or a
checksum block, where 0 ≤ b ≤ 2w − 1. Thus, the expected signing time require-
ment is

TZ = NW

(

Tr +

(

2w−1 −
1

2

)

Tx +O(1)

)

+O(n) (13)

= NWTr +NW

(

2w−1 −
1

2

)

Tx +O(n) (14)

The space required is SW = (NW − 1)n + max(Sr +m,Sx + n). See the third
row of Table 3 for LD-C’s time-space requirements.

We make the simplifying assumption that the checking a loop-condition,
counting zeroes, and performing the Winternitz operation take marginal time
and space. Comparing the resource requirements across the OTS schemes, we
find that LD-Z outperforms LD-C both in setting up a key and signing a message,
for all m and n. Comparing LDWM against LD-Z, the time requirements increase
by an exponential factor in w, while the space requirements reduce by a linear
factor in w.
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