
Programming Cryptographic Protocols�

Joshua D. Guttman, Jonathan C. Herzog, John D. Ramsdell,
and Brian T. Sniffen

The MITRE Corporation

Abstract. Cryptographic protocols are useful for trust engineering in
distributed transactions. Transactions require specific degrees of confi-
dentiality and agreement between the principals engaging in it. More-
over, trust management assertions may be attached to protocol actions,
constraining the behavior of a principal to be compatible with its own
trust policy. We embody these ideas in a cryptographic protocol pro-
gramming language cppl at the Dolev-Yao level of abstraction. A strand
space semantics for cppl shaped our compiler development, and allows
a protocol designer to prove that a protocol is sound.

1 Introduction

In this paper, we describe the core of a cryptographic protocol programming lan-
guage, cppl, a domain specific language for expressing cryptographic protocols.
It matches the level of abstraction of the Dolev-Yao model [15], in the sense that
the programmer regards the cryptographic primitives as black boxes, and con-
centrates on the structural aspects of the protocol. cppl allows the programmer
to control protocol actions using trust constraints [23], so that an action such
as transmitting a message will occur only when the indicated trust constraint
is satisfied. We offer a semantics for cppl in the style of structured operational
semantics; this semantics identifies a set of strands [34] as the meaning of a
role in a protocol. The semantics is useful for two reasons. First, it suggests a
method by which the programmer may prove that a protocol meets its security
goals [21]. Second, it clarifies issues of scope and binding, and therefore assisted
us in implementing a correct compiler.

Trust Engineering. A domain specific language for cryptographic protocols raises
the question, however, why programmers need to create new protocols. Although
there could be several answers to this, one specific answer motivated our work
on cppl. When a programmer must implement a transaction in a distributed
application, cppl allows him to engineer a protocol to achieve the specific au-
thentication and confidentiality goals needed by this transaction. This process—
the process of shaping a transaction so that it can reflect the trust goals of its
participants—we call trust engineering.

� Supported by the MITRE-Sponsored Research program. Authors’ addresses:
guttman, jherzog, ramsdell, bsniffen@mitre.org.

R. De Nicola and D. Sangiorgi (Eds.): TGC 2005, LNCS 3705, pp. 116–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Programming Cryptographic Protocols 117

Moreover, each participant must understand at exactly which step in the
protocol they undertake a commitment, such as the commitment to pay for
some goods. If a principal P makes several successive commitments in a protocol,
then P should be able to decide before each of these steps whether it is willing
to incur that commitment. If not, it may prefer to select some alternative, or it
may need to abort the transaction. The content of the commitment will depend
on the constituents of the messages in this execution, for instance the cost of the
purchase or the principal to whom the money should be transferred.

Thus, it is not sufficient to have a few specific security protocols, such as TLS
or SSH; instead, different combinations of confidentiality and agreement are re-
quired in different transactions. Although a transaction may be implemented
using TLS or SSH as a lower level medium for confidentiality or entity authen-
tication, a protocol design problem still persists, of ensuring the right degree of
agreement and secrecy between the participants, and of identifying the trust and
commitments required for each step in the protocol.

The protocol design problem is pervasive in electronic commerce, web ser-
vices, and other aspects of distributed applications. cppl is intended to express
the core functionality that programmers will need, if they are to use crypto-
graphic protocols as a central mechanism in trust engineering, and especially to
connect trust management [25] and protocols [23].

An Example. Suppose that we would like to go into business, offering on-line
stock quotes to a set of clients registered as customers. On a particular occasion,
a client will request a collection of data D, possibly representing a market sec-
tor; we assume that the value D also contains a transaction identifier that the
client can use to re-identify this request when billed. The client and server use
a Needham-Schroeder-like protocol [32] to agree on a session key, and then the
server delivers a real time stream of data containing stock quotes for sector D.
In Figure 1, we see that the session key SK replaces the responder’s nonce of
the Needham-Schroeder protocol; we assume for now that each principal has the
other’s public encryption key. The server B wants to authenticate A to ensure
that he can bill A for delivering this data. Conversely, the client A wants B to
successfully authenticate its clients, so that A will not be charged for any service

A B

m1

{|Na, A, D|}KB � {|Na, A, D|}KB � n1

m2

�
�

� {|Na, SK |}KA � {|Na, SK |}KA n2

�
�

m3

�
�

{| SK |}KB � {| SK |}KB � n3

�
�

m4

�
�

�{|data is, V |}SK �{|data is, V |}SK
n4

�
�

Fig. 1. NS Quote Protocol

118 J.D. Guttman et al.

consumed by other clients C. A also needs to authenticate B, and ensure that
the session key is shared only with B. This allows A to infer—based on a trust
decision about B—that the data is accurate, timely, and therefore suitable for
business use.

In this protocol, A is committing himself to the request for D in sending
the message on node m1. B learns that A has made this request when the
authenticating handshake completes, which occurs when B receives the third
message on node n3. When sending the message on node n4, B is committing
itself to the assertion that V is an accurate stream of values for the market
sector D. B also must guarantee to itself that A will pay for the data D before
transmitting it; this decision may depend on databases of subscribers, accounts
in arrears, and similar facts.

Structure of the paper. In Section 2, we summarize the main ideas of the lan-
guage, describing its core syntax and informal semantics in Section 3. A strand-
based semantics for individual local protocol runs in given in structured oper-
ational semantics format in Section 4, and the global execution semantics in
terms of bundles is in Section 5. The strand space methods for proving results
about protocols are adapted to this context in Section 6. Our stock quote service
example is described in detail in Section 7.

2 Main Ideas of CPPL

cppl is intended to provide only the minimal expressiveness necessary for pro-
tocol design, which calls for three fundamental ingredients. First, a protocol run
must respond to choices made by its peer, as encoded in different formats of
message that could be received from the peer. Second, the principal on behalf
of whom the protocol is executing must be able to dictate choices reflecting
its trust management policy [2,7,17,23], using the choices to determine whether
messages are sent, and if so of what format. Finally, cppl provides a mechanism
to encapsulate behaviors into subprotocols, so that design may be modularized.
The interface to a subprotocol shows what data values must be supplied to it
and what values will be returned back on successful termination. The interface
also shows what properties the callee assumes about the input parameters, and
what properties it will guarantee to its caller about values resulting from suc-
cessful termination. These—branching on messages received, consulting a trust
management theory before transmission, and subprotocols—are the three main
forms of expressiveness offered by cppl.

We also rely on three libraries. The first is a cryptographic library, which
is used to format messages, to encrypt and decrypt, to sign and verify, and to
hash. The second is a communications library. It connects to other principals on
the network and manages network level channels to them. These channels need
not achieve any authentication or confidentiality in themselves [15].

The third library is a trust management engine. The trust management en-
gine allows us to integrate the protocol behavior with access control in a trust
management logic [2,5,28], giving an open-ended way to control when to abort

Programming Cryptographic Protocols 119

a run, and to control the choice between one subprotocol and another. The
trust management engine is free to determine the formulas expressing trust con-
straints. However, cppl determines the set of values that may appear as individ-
ual constants in these formulas. These values are nonces, keys, and other values
that we regard as texts; texts include addresses and names. The trust manage-
ment engine maintains a theory, a set of formulas in the trust management logic.
The theory is used to infer that trust constraints are satisfied; a theory may be
augmented with new formulas as a protocol execution proceeds.

We associate a formula with each message transmission or reception. The
formula associated with a message transmission is a guarantee that the sender
must assert in order to transmit the message. The formula associated with a
message reception is an assumption that the recipient is allowed to rely on. It
says that some other principal has previously guaranteed something. A protocol
is sound if in every execution, whenever one principal P relies on P ′ having
said a formula φ, then there was previously an event at which P ′ transmitted a
message as part of this protocol, and the guarantee formula on that transmission
implies φ.

In the NS Quote protocol shown in Figure 1, on node m1 the client guar-
antees that it is requesting the value of D from B. We represent this with
the formula requests(A, B, D). At the end of the authentication phase, in node
n3, B has ascertains that this has occurred, and relies on the formula A says
requests(A, B, D). Knowing that A has made this request presumably helps B be
sure of being paid. On node n4, B guarantees will pay(A, D) and curr val(D, V).
The first part is intended to protect B itself, since B wants not to transmit the
value V without an expectation of being paid. The second part is intended to
protect A, that is, to ensure that A receives correct information. There is one
other guarantee in this protocol. It guards node n2, stipulating owns(A, KA),
i.e. that the value used to encrypt the second message is in fact the public key
of A.

The same rely/guarantee idea shapes our treatment of subprotocols. A lo-
cal message, sent by the calling protocol, starts a subprotocol run. Hence, the
caller makes a guarantee on which the callee can rely. When the subprotocol
run terminates normally, the callee sends a message back to its caller; the callee
now makes a guarantee on which the caller can rely for the remainder of its run.
Thus, a subprotocol call is a mechanism for the caller to discover the information
guaranteed when the callee terminates successfully.

The Run-Time Environment. The language is organized around a specific view
of protocol behavior. In this view, as a principal executes a single local run
of a protocol, it builds up an environment that binds identifiers to values en-
countered. Some of these values are given by the caller as values of parameters
when the protocol is initiated; some are chosen randomly; some are received as
ingredients in incoming messages; and some are chosen to satisfy trust manage-
ment requirements. These bindings are commitments, never to be updated; once
a value has been bound to an identifier, future occurrences of that identifier
must match the value or else execution of this run aborts. In particular, when

120 J.D. Guttman et al.

a known value (such as SK) is expected in an incoming message (such as the
message received on n3), any other value will prevent execution of this run from
continuing.

The environment at the end of a run records everything learnt during execu-
tion. A selection of this information is returned to the caller.

Related Work. Despite the large amount of work on protocol analysis, the pre-
dominant method for designing and implementing a new protocol currently con-
sists of a prolonged period of discussion among experts, accompanied by careful
hand-crafted implementations of successive draft versions of the protocol. The
recent reworking of the IP Security Protocols including the Internet Key Ex-
change [24] for instance, involved a complex and important cluster of protocols.

Languages for cryptographic protocols, such as spi calculus [4,3,14,8], have
been primarily tools for analysis rather than programming languages.

There has been limited work on compilation for cryptographic protocols,
with [33,31,13] as relevant examples. We add a more rigorous model of protocol
behavior, centered around the environment mentioned above. We provide clear
interfaces to communications services and the cryptographic library. We stress
a model for the choices made by principals, depending on a trust management
interpretation of protocols and on an explicit pattern-matching treatment of
message reception. A semantics ties our input language to the strand space
model [21]. This semantics motivates the structure of our compiler; moreover,
a designer can use it to verify that a new protocol meets its confidentiality
and authentication goals. Alternatively one could translate cppl into spi or the
applied pi calculus [4,3], allowing other verification methods [18,1].

3 The CPPL Core Language

We describe here not the user-level syntax for cppl, but a simplified syntax,
which we call the cppl core language. It provides information at the right loca-
tions to make the semantics easy to express, and likewise to direct the compiler.
Users write programs in a different surface syntax, illustrated in Section 7.

The syntax of the cppl core language is presented in Figure 2. The cppl

core language has procedure declarations and seven types of code statements.
Programming language identifiers are indicated by x and y, and message tags
by r. When used to concatenate message patterns, the comma operator is right
associative, and tagging binds less tightly than comma. The language has syntax
for guarantees and relies—by convention we write guarantees as Φ and relies as
Ψ—which are finite lists of trust management formulas. We use finite lists, which
we interpret conjunctively. Formulas in relies and guarantees may contain, in
addition to logical variables and cppl values, also cppl identifiers. If bound in
the environment at runtime, a cppl identifier will be replaced in Φ, Ψ by the
value to which it is bound; if not yet bound, it serves as a query variable that
will be bound as a consequence of a trust management call. Logical variables in a
trust management formula, if they occur, are interpreted implicitly universally.

Programming Cryptographic Protocols 121

p → proc p (x∗) Ψ c
c → return Φ x∗

| let x = new in c
| let x = accept in c
| let x = channel y in c
| (sb∗) | (x rb∗) | (cb∗)

sb → send Φ x m c
rb → recv m Ψ c
cb → call Φ p (x∗) (y∗) Ψ c
m → x | m,m′ | r m

| (m) | [m] x | { m } x

Fig. 2. cppl Core Language

A procedure declaration specifies the name p of the procedure, a list (x∗) of
formal parameters, and a list of preconditions Ψ involving the formal parame-
ters. The body of the procedure is a code statement c. A code statement may
be: a return instruction, which specifies a list of postconditions Φ and return
parameters (x∗); a let-statement; or a list of send branches, receive branches, or
call branches. An identifier x is either a lowercase identifier id, or else an identi-
fier with typing information id:type. We write ide(X) for the set of identifiers
used in the phrase X .

A well-formed code statement c with two return statements at different lo-
cations must have the same postconditions Φ and return parameters x∗. Our
translation from the user-level syntax to the core language ensures this.

NS Quote Example in cppl. To illustrate the cppl core language, we will return
to the NS Quote example. We first focus on the protocol actions, leading to the
behavior shown in Figure 3. We replace the trust management annotations with
underscores to focus attention on the channels, new values, and messages. The
server’s parameters are its own name and public encryption key. It waits to
accept an incoming connection, which the communication layer delivers as the
bidirectional channel chan. It reads a message off this channel, which binds na
to a nonce, and a and d to texts interpreted as a name and the desired data.

proc server (b:text, kb:key) _

let chan = accept in

(chan recv {na:nonce, a:text, d:text} kb _

let sk:symkey = new in

(send _ chan {na, sk, b} ka

(chan recv {sk} kb _

(send _ chan {Data is v} sk

return _))))

Fig. 3. The NS Quote Server’s Behavior

122 J.D. Guttman et al.

The server generates a fresh session key sk, which is transmitted and received
back in different encrypted forms to accomplish the authentication test of a’s
identity. Finally, the current value is returned encrypted with the session key sk,
tagged with Data is to make its interpretation unambiguous.

We now insert the trust management information in italicized form in Fig-
ure 4. The procedure relies on the assumption that kb is really the public key that

proc server (b:text, kb:key) [owns(b, kb)]

let chan = accept in

(chan recv {na:nonce, a:text, d:text} kb [true]

let sk:symkey = new in

(send [owns(a, ka)] chan {na, sk, b} ka

(chan recv {sk} kb [says requests(a, a, b, d)]

(send [will pay(a, d); curr val(d, na, v:text)]

chan {Data is v} sk

return [supplied(a, na, d, v)]))))

Fig. 4. The NS Quote Server, with Trust Formulas

b owns, and states this assumption in its procedure header. The caller must ar-
range to start the server with values satisfying this assumption. The server learns
nothing from the first message; it is encrypted using b’s public key, and could
have been prepared by an adversary as well as a regular principal. The transmis-
sion of sk is guarded by a guarantee that a owns the public encryption key ka.
We regard this as a query against a deductive database. As a consequence, either
ka becomes bound to a suitable value, or the query fails, aborting execution of
this run. Presumably, the server has a database of keys for all of its subscribers.
After the next message is received, b has authenticated the peer a, and relies
on a having said that a is requesting the data d from b. We use the predicate
says_requests(A, A’, B, D) to mean that A says requests(A’, B, D). This
has the advantage of fitting the “says” locution into Datalog [10], our implemen-
tation’s trust management logic, at least when only atomic formulas rather than
compound formulas are said. It places a burden however on a principal—the
server in this case—to include rules in its theory to allow requests(A, B, D)
to be inferred from says_requests(A, A’, B, D) for suitable values of the
variables.

If b convinces itself that a will pay, and that the current value is v, then
the value can be sent. The return parameters may be used by the caller for
accounting and billing, with the guarantee that this data was supplied. We will
extend the example in Section 7 to illustrate branching and subprotocols.

Informal execution semantics. To explain how procedures execute, we first in-
troduce an auxiliary notion: guaranteeing formulas Φ in a runtime environment.
This means to ask the runtime trust management system to attempt to ascertain
the formulas Φ. Identifiers in Φ already bound in the runtime environment are

Programming Cryptographic Protocols 123

instantiated to the associated values. Identifiers not yet bound in the runtime
environment are instantiated by the trust management system, if possible, to
values that make the formulas Φ true. The runtime environment extended with
these new bindings is the result of successfully guaranteeing Φ. If the runtime
trust management system fails to establish an instance of Φ the guarantee fails.

To execute a return statement, we attempt to guarantee the formulas Φ.
If successful, we select from the resulting environment the values of each of the
return parameters x∗; these values are returned to the caller. If the attempt to
guarantee Φ fails, execution terminates abnormally, and the caller is informed of
the failure. The caller receives no parameter values in case of failure.

To execute a list of send branches, the runtime trust management sys-
tem selects a branch within which it can successfully guarantee the formulas Φ.
The message pattern m specified on this branch, instantiated using the values
in the resulting extended runtime environment, is then transmitted. Execution
proceeds with the code c embedded within this send branch in the extended
environment. If the runtime trust management system fails to guarantee the
formulas Φ on any send branch, then execution terminates abnormally, and the
caller is informed of the failure.

To execute a list of receive branches with identifier x, the runtime envi-
ronment is consulted for the value bound to x. This value should be a channel.
When a message is received over this channel, the message is matched against
the patterns m within the receive branches. In a successful match, the message
must agree with the runtime environment for identifiers in m that are already
associated with a value. Other identifiers in m will be bound to the values ob-
served in the incoming message, yielding an extended runtime environment. If at
least one receive branch has a successful match, one such branch is selected. The
formulas Ψ are instantiated using the extended runtime environment, and sup-
plied to the runtime trust management system as additional premises. Execution
proceeds with the code c embedded within this send branch in the extended envi-
ronment. If no receive branch has a successful match, then execution terminates
abnormally, and the caller is informed of the failure.

To execute a list of call branches, the system treats the call branches as
sends followed by receives. That is, the the runtime trust management system
selects a branch, within which it can successfully guarantee the formulas Φ. It
calls the associated subprotocol procedure p with the parameters x∗ instantiated
using the values in the resulting extended runtime environment. This procedure
may return normally, in which case it supplies values for the parameters y∗; ex-
ecution continues with the embedded statement c, using the extended runtime
environment. The instances of the formulas Ψ are supplied to the runtime trust
management system as additional premises during execution of c. If p does not
return normally, then execution may continue with a different call branch; ex-
ecution proceeds in the original environment, without any extension from the
abnormally terminated call branch.

Local nature of this description. This execution semantics is local in the sense
that it describes what one principal P does. This involves deciding what values

124 J.D. Guttman et al.

to bind to identifiers; what messages to send; how to process a message that is
received; and how to select a procedure to call as a subprotocol. It says noth-
ing about how messages are routed on a network; nothing about what another
principal P ′ does with messages received from P ; nothing about how another
principal P ′ created the messages that P receives. Likewise, it describes only the
execution of one procedure. It says nothing about the behavior of a subprotocol
invoked in a call branch. In essence, the execution semantics describes only a
single principal executing a single run of a single procedure. Thus, it is natural
to describe any single run by a strand. We describe how to do this in Section 4,
and then describe what global executions are possible in Section 5.

4 Local Semantics

We give the semantics of cppl procedures and code statements by describing
the strands describing their possible behavior. Each strand specifies a sequence
of transmissions and receptions that is possible for a principal executing this
cppl phrase faithfully.
Term Algebra. Each transmission or reception is a term in a free algebra A.
The atomic terms are texts, nonces, and keys, denoted below as a. A compound
term in A is either a concatenation g, h, a tagged message tagname g, or the
result of a cryptographic operation. In this section and the next, we will write
the results of all cryptographic operations involving a plaintext g and an atomic
key K in the form {|g|}K . However, cppl has syntax to distinguish symmetric
and asymmetric operations, and to distinguish encryptions from signatures.

A direction is a value with polarity + or −, which we use to indicate trans-
mission and reception respectively. A directed term is a pair (d, t) where d is a
direction and t ∈ A.

Strand Spaces. A strand space Σ is a set equipped with a trace mapping tr
such that S ∈ Σ implies tr(S) is a finite sequence of directed terms. We regard
finite sequences such as tr(S) as (1-based) finite partial functions defined on an
initial segment of the positive integers. Σ is typically defined to be the union of
a set of regular strands, representing the behaviors compatible with a protocol
being studied, and a set of penetrator strands, representing behaviors within the
capability of an adversary. Our standard adversary model is formalized in the
Appendix as Definition 9.

Σ is an annotated strand space if in addition Σ is equipped with pair of
functions γ, ρ, such that for all S ∈ Σ and all positive integers i, if tr(S)(i) has
positive [respectively, negative] direction, then γ(S)(i) [respectively, ρ(S)(i)] is a
finite list of formulas. The formulas in the range of γ and ρ are called guarantee
formulas and rely formulas respectively. We do not stipulate the logic to which
the formulas belong, as the logic is an implementation-specific choice, which in
our implementation is Datalog. The formulas are of interest only when S ∈ Σ is
regular; penetrator strands never make an enforceable commitment, and never
rely on assertions of other principals. Thus, if S is a penetrator strand, then
γ(S)(i) = [] and ρ(S)(i) = [] whenever they are defined.

Programming Cryptographic Protocols 125

Σ is a strand space with uniqueness assumptions if Σ is equipped with an
operation Υ such that, for each S ∈ Σ, Υ (S) is a set of atoms that occur in
tr(S); these are values that are uniquely originating in bundles of interest.

To give the semantics for a set of cppl procedures, we define an annotated
strand space with uniqueness assumptions. We give the semantics in the form
of a Structured Operational Semantics. The primary judgments are of the form
σ; Γ � c : s, υ. Here σ is a runtime environment, meaning a finite function map-
ping identifiers to values; Γ is a set of formulas serving as a theory; c is the code
to be executed; and s, υ describes a strand. In this description, s describes the
messages and associated formulated, while υ is a set of atoms containing the
values assumed to have been freshly chosen. The judgment σ; Γ � c : s, υ says
that s, υ is one possible behavior that can result if c is executed in environment
σ, when the principal holds theory Γ . A typical rule shows that a larger piece
of code c1 can unleash a strand of length n + 1, assuming that a code statement
c0 embedded within c1 can unleash a strand of length n. The behavior of c0

describes everything after the first event of some behavior of c1.
We describe strands S ∈ Σ by grouping tr, γ, ρ together:

Definition 1 (Strand Descriptions). Let s be a finite sequence of pairs, where
the first element in each pair is a directed term ±t and the second element in
each pair is a list of formulas. A sequence of length 1 〈(±t , Φ)〉 describes a
strand S ∈ Σ iff the length of S is 1, tr(S)(1) = ±t; if its direction is +, then
γ(S)(1) = Φ; if its direction is −, then ρ(S)(1) = Φ.

Sequence (−t , Ψ) ⇒ s0 describes S if for some S0 ∈ Σ, s0 describes S0 and

1. tr(S)(1) = −t and ρ(S)(1) = Ψ ;
2. tr(S)(i + 1) = tr(S0)(i), γ(S)(i + 1) = γ(S0)(i), and ρ(S)(i + 1) = ρ(S0)(i),

where in each equation, the left hand side is defined just in case the right
hand side is.

Similarly, (+t , Φ) ⇒ s describes S if for some S0 ∈ Σ, s0 describes S0 and

1. tr(S)(1) = +t and γ(S)(1) = Φ; and
2. tr(S)(i + 1) = tr(S0)(i), γ(S)(i + 1) = γ(S0)(i), and ρ(S)(i + 1) = ρ(S0)(i),

where in each equation, the left hand side is defined just in case the right
hand side is.

A strand space for a set of procedures p1, . . . pn is a Σ containing strands de-
scribed by all the s, υ for which, for some σ, Γ, c, we have σ; Γ � pi : s, υ.

Since σ, σ′ are finite partial functions mapping identifiers to values, we write
σ ⊕ σ′ to mean their disjoint union. That is, if σ ⊕ σ′ is defined, then σ, σ′ have
disjoint domains, and σ ⊕ σ′ maps x to a if either σ maps x to a or σ′ does.

We use two auxiliary judgments. First, we use the judgment Γ −→ φ to
mean that the formula φ is a logical consequence of the formulas Γ . We do not
provide inference rules for Γ −→ φ here; they are inherited from the underlying
logic, e.g. Datalog in our implementation. Second, we use the judgment Γ ‖− Φ
to record the successive derivation of the formulas in the list Φ. The values

126 J.D. Guttman et al.

instantiating identifiers appearing free in Φ = [φ1, . . . , φn] may be chosen left-to-
right, in the sense that an implementation may commit to some binding x 	→ a
when x appears free in φ1, even though some later formula φj may be jointly
satisfiable with φ1 only if some other binding x 	→ b had been chosen. That is,
an implementation may get stuck and cause a strand to fail, even when a more
farsighted choice of bindings would have made success possible.

Sequential derivation

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(φ1) Γ −→ φ1 σ Γ ‖− Φ σ1

Γ ‖− [φ1; Φ] σ1

Vacuous derivation

Γ ‖− []

Fig. 5. Sequential derivation and instantiation

Structured Operational Semantics. The semantics of procedure p is given by
describing its behavior when it is invoked. In this semantics, a procedure is
invoked when it receives a message with a call tag, its own principal identity, an
activation identifier a, and a vector of atoms, one for each parameter declared
by the procedure (Invocation in Figure 6). The initial environment σorig maps
the principal identifier pr to the executing principal’s identity.

Invocation

σ1 = σorig ⊕ σ′ dom(σ′) ⊆ ide(pr , n, ai , x∗) σ1; Γ0, (Ψ σ) � c : s, υ

σorig ; Γ0 � proc n Ψ x∗ c : (−call pr , n, ai , x∗ σ1 , Ψ σ1) ⇒ s, υ

Fig. 6. Procedure Semantics

The procedure semantics show the principal and activation identifier being
bound to pr , ai , but this binding is hidden from programmers. In cppl programs,
there is nothing special about the identifiers pr and ai.

A run of a procedure may conclude by signaling a failure. It does so by sending
a message with a fail tag, its principal identifier, and the activation identifier ai .
The code c causing a failure may be an empty list of send branches (), or a return
statement return Φ x∗ whose formulas Φ cannot be guaranteed. It may also be
a channel name together with an empty list of receive branches (x), or else a
name that is not bound to a channel, followed by zero or more receive branches,
or else any receive statement that the implementation considers to have timed
out. A successful run of a procedure concludes by returning its results, or by
invoking a subprotocol by means of a tail recursive call. In this semantics, to
return, the strand sends a message with a ret tag, the activation identifier ai ,
and an atom for each variable named in the return statement (Return, Tail call
in Figure 7). The activation identifier ai is used to ensure results are delivered

Programming Cryptographic Protocols 127

Fail

σ; Γ � c : 〈(+fail ai σ , true)〉, ∅
Return

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖− Φ σ1

σ; Γ � return Φ x∗ : 〈(+ret (ai , x∗)σ1 , Φ σ1)〉, ∅
Tail call

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖− Φ σ1

σ; Γ � (call Φ n x∗ y∗ Ψ return Ψ y∗ cb∗) :
〈(+(call pr , n, ai , x∗) σ1 , Φ σ1)〉, ∅

Fig. 7. Success and Failure Semantics

to the proper caller. To do so, the caller uses a uniquely originating atom, noted
in the semantics by adding it to the set of atoms associated with the calling
strand (see Figure 11). The “let new” statement generates a nonce or session
key, also a uniquely originating atom (Let new in Figure 8). The “let channel”
and “let accept” statements also bind the variable x to a value, in this case a
channel created by the runtime system. We omit formalizing them. In all of the
“let” statements, we require the let-bound identifier not to have been bound
previously. In this way we preserve the principle that the environment may be
extended with new bindings, but the value bound to any identifier never changes.

Let new

a
∈ υ σ1 = σ ⊕ (x �→ a) σ1; Γ � c : s, υ

σ; Γ � let x = new in c : s, υ ∪ {a}

Fig. 8. Let new semantics

The semantics of sending and receiving have much in common. A send branch
adds an event—consisting of the sent message paired with the guarantee guarding
the send—to the front of any behavior of the following statement (Figure 9). If
a send statement has a number of branches, the semantics is non-deterministic,
taking the union of the behaviors possible for the send branches, together with a
failure if all branches are refused (Figure 7). For a group of rules, σ′ assigns values
to identifiers occurring free in Φ, i.e. dom(σ′) ⊆ ide(Φ). This group contains the
successful Send rule with its guarantee, as well as the Return rule and the Tail
call rule in Figure 7.

The semantics of a receive statement has the opposite sign (Figure 10). More-
over, in a group of rules, σ′ assigns values to identifiers occurring free in the
message pattern m, i.e. dom(σ′) ⊆ ide(x, m). This group includes the successful
Receive rule, as well as procedure invocation in Figure 6, where the pattern m
is pr , n, ai , x∗.

The semantics of subprotocol call is a combination of a transmission to the
callee and a message reception from it (Figure 11). A call may start a subpro-

128 J.D. Guttman et al.

Send with guarantee

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖− Φ σ1 σ1; Γ � c : s, υ

σ; Γ � (send Φ x m c sb∗) : (+msg (x, m) σ1 , Φ σ1) ⇒ s, υ

Send alternative

σ; Γ � (sb∗) : s, υ

σ; Γ � (send Φ x m c sb∗) : s, υ

Fig. 9. Semantics of send

Receive and rely

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(m) σ1; Γ, Ψ σ1 � c : s, υ

σ; Γ � (x recv m Ψ c rb∗) : (−msg (x, m) σ1 , Ψ σ1) ⇒ s, υ

Receive alternative

σ; Γ � (x rb∗) : s, υ

σ; Γ � (x recv m Ψ c rb∗) : s, υ

Fig. 10. Semantics of receive

Call and rely

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ)
Γ ‖− Φ σ1 σ2 = σ1 ⊕ σ′′ dom(σ′′) ⊆ ide(y∗) σ2; Γ, Ψ σ2 � c : s, υ

σ; Γ � (call Φ n x∗ y∗ Ψ c cb∗) :
(+call pr , n, ai , x∗ σ1 , Φ σ1) ⇒ (−(ret ai , y∗ σ′′) , Ψ σ2) ⇒ s, υ ∪ {ai}

Callee fails

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖− Φ σ1 σ;Γ � (cb∗) : s, υ

σ;Γ � (call Φ n x∗ y∗ Ψ c cb∗) :
(+(call pr , n, ai , x∗ σ1) , Φ σ1) ⇒ (−fail ai , true) ⇒ s, υ ∪ {ai}

Call alternative

σ; Γ � (cb∗) : s, υ

σ; Γ � (call Φ p x∗ y∗ Ψ c cb∗) : s, υ

Fig. 11. Call Semantics

tocol that eventually fails, in which case execution has not committed to this
branch; execution may continue with the next call branch and the unextended
environment σ.

In the “Call and rely” production, σ′ assigns values to identifiers occurring
in Φ, i.e. dom(σ′) ⊆ ide(Φ), while σ′′ assigns values to identifiers occurring free
in the pattern ret ai , y∗, i.e. dom(σ′′) ⊆ ide(ai , y∗) = y∗. Our implementation
assumes that all of the identifiers y∗ will be unbound in σ1, and issues an error
message otherwise, but an implementation could allow some of these identifiers
already to be bound, in which case the values received in these positions would
have to match the values already bound to the identifiers in σ1.

Programming Cryptographic Protocols 129

Definition 2. If δ = proc n Φ x∗ c is a cppl procedure declaration, then [[δ]]σΓ
is the set of s, υ such that

σ; Γ � δ : s, υ

is derivable using the inference rules in this section and the rules for the under-
lying logic’s consequence relation −→.

Given cppl procedures δ1, . . . , δn, let

∆ =
⋃

δi,σ,Γ

[[δi]]σΓ.

Σ, an annotated strand space with uniqueness assumptions, models the proce-
dures δ1, . . . , δn if every S ∈ Σ is described by some s with s, Υ (S) ∈ ∆, and for
every s, υ ∈ ∆, s describes at least one S ∈ Σ with Υ (S) = υ.

Parametric Strands. The structured operational semantics that we have just
given clarifies the relations between the code being executed, the runtime envi-
ronment, the theory in force, and the actions taken. However, there is another
kind of regularity in the behavior of cppl programs. This is the fact that the
infinite number of strands described by the semantics are in fact all instances
of a finite number of genuinely different strands. They are simply instantiated
with infinitely many different values.

Any execution of the return statement return Φ x∗ unleashes either a strand
of the form

〈(+ret (ai , x∗)σ , Φσ)〉, ∅
or one of the form 〈(+fail ai σ , true)〉, ∅. If we let σ0 be an assignment that
maps each identifier in this code statement to a value of the appropriate type,
then every assignment σ in these two forms may be written as σ0 ◦ α for some
replacement α. That is, every strand of the forms shown is an instance of the
strands for the specific value σ = σ0. Similarly, any strand unleashed from let
x = new in c will be of the form s, υ ∪{a} for some a �∈ υ where s, υ is a strand
unleashed from c.

Send and receive branches are roughly tagged unions. The strands that may
be unleashed by the send branches (sb∗) are, in addition to a failure, all strands
that may be unleashed by the code embedded within the send branches, each
prefixed with a single positive message pattern. For receive branches, the prefixed
pattern is negative. However, our nondeterministic semantics does not require
the “tagging” initial patterns to be disjoint. Call branches are slightly more com-
plex, since there is the uncommitted behavior of a call and a failure, preceding
invocation of another branch.

We refer to this informally presented finite set of strands as S. Suppose in a
procedure δ the nesting depth d is the number of nested parentheses introduced
by send, receive, and call statements. Let the branching factor k be the maxi-
mum number of send branches, receive branches, and call branches in any one
statement.

130 J.D. Guttman et al.

Proposition 1. Suppose the depth of a procedure δ is d and its branching factor
is k. There is a set S(δ) of strands with cardinality |S(δ)| ≤ kd such that, for
every strand s, υ, if s, υ ∈ [[δ]]σΓ , then s, υ = (s0, υ0) · α for some α and some
s0, υ0 ∈ S(δ).

If s, υ = (s0, υ0) · α for some α and some s0, υ0 ∈ S(δ), then for some σ, Γ ,
s, υ ∈ [[δ]]σΓ . If s0, υ0 ∈ S(δ), then length(s0) ≤ (2kd) + 2.

Typically, k and d are small, and the cardinality of S(δ) is far less than kd.
Although a finite set of procedures δi yields a finite set

⋃S(δi), there are never-
theless infinitely many global executions associated with the δi; indeed, natural
questions such as secrecy are not uniformly decidable [16], although important
classes are decidable [6,22].

We assume that for every replacement α, Γ −→ φ implies Γ ·α −→ φ ·α, this
being a defining property of a consequence relation for logics with replacements.

Proposition 2. For every procedure δ, and replacement α, the judgment

σ; Γ � δ : s, υ implies σ · α; Γ · α � δ : (s, υ) · α.

Proof. Each rule is invariant under applying a replacement α.

5 Global Semantics

In order to model subprotocol call and return, and other local or inherently
secure interactions, we enrich the notion of a direction. Directions will distinguish
transmission from reception as before. However, a direction may additionally
specify that the peer at the other end of a message transmission arrow is regular.
It may also specify, in the case of message transmission, that the message will
definitely be delivered.

Definition 3. A direction d is a value with the following properties: (1) the
polarity of d is one of the symbols +,−, indicating transmission and reception
respectively; (2) the partner of d is one of the symbols regular and any; and (3)
the delivery confidence of d is one of the symbols guaranteed and maybe.

We write directions in the form +c
p and −c

p. The subscript p indicates whether
the partner is regular (r) or any (a). The superscript c indicates whether the
delivery confidence is guaranteed (g) or maybe (m). When the partner is any,
we generally omit the subscript. When the delivery confidence is maybe, we
generally omit the superscript. We say that a node is negative when its polarity
is −, and that it is positive when its polarity is +. The delivery confidence is of
interest only when a node is positive; the recipient of a message knows that it
has been received. With this amplification of the notion of direction, we preserve
the definitions of strand space from the beginning of Section 4.

Strands are either penetrator strands, taking the forms shown in Definition 9
from Appendix A, or else substitution instances of a finite number of roles of a

Programming Cryptographic Protocols 131

given protocol. When a protocol is defined by a finite number of cppl declara-
tions δ1, . . . , δn, then these roles are the members of

⋃S(δi) as in Proposition 1.
We call the instances of the roles regular strands.

Transmission that preserves confidentiality is a special kind of message trans-
mission; these nodes have direction d with positive polarity and regular partner.
Reception that ensures authenticity is (dually) a special kind of message recep-
tion; these nodes have direction d with negative polarity and regular partner.
If a communication arrow n → n′ ensures both confidentiality and authentica-
tion, then the directions of n and n′ both have regular partner. Purely local
communication such as subprotocol call or return is of this kind.

We write Conf for the set of nodes n of the form +c
r and Auth for the set of

nodes n of the form −c
r (where c may be either g or m).

The set N of all nodes forms a directed graph 〈N , (→ ∪ ⇒)〉 together with
both sets of edges n1 → n2 for communication and n1 ⇒ n2 for succession
on the same strand (Definition 8). The content of the annotations comes from
an enriched notion of bundle, in which message transmission arrows n1 → n2

behave as indicated by the properties of the directions of the two nodes.

Definition 4. Let B = 〈NB, (→B ∪ ⇒B)〉 be a finite acyclic subgraph of 〈N , (→
∪ ⇒)〉. B is a bundle with secure communication or sc-bundle if:

1. If n2 ∈ NB is negative, then there is a unique n1 such that n1 →B n2.
2. If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2.
3. If n′ ∈ Auth and n →B n′, then n is regular. If n ∈ Conf and n →B n′, then

n′ is regular; if moreover n →B n′′, then n′ = n′′.
4. If n1 ∈ NB is positive with delivery confidence guaranteed, then there is a

n2 such that n1 →B n2.

n �B n′ if some sequence of zero or more arrows →B,⇒B lead from n to n′.

An sc-bundle B does not assume secure communication if every node n occurring
in it has partner any and delivery confidence maybe. Thus, the bundles in the
sense of earlier work such as [21] are a special case of sc-bundles.

Proposition 3. If B is an sc-bundle, �B is a finite partial order. Every non-
empty subset of the nodes in B has �B-minimal members.

Secure Communication within CPPL. We represent the strands in the cppl

semantics as strands with secure communication as a function of the tags in the
terms. In particular, if a term is of one of the forms ±call t, ±ret t, or ±fail t, then
we regard the direction as being ±g

r . That is, the partner is assumed regular, and
the delivery is assumed to be guaranteed. If a term is of the form ±msg t, then
we regard the direction as being ±m

a . As a consequence, any sc-bundle formed
from cppl strands will provide authentication, confidentiality, and guarantee
of delivery for the local mechanism of subprotocol invocation and termination.
No assumption is made for the messages dispatched and received in ordinary
protocol transmission and reception events.

132 J.D. Guttman et al.

In this, we follow the Dolev-Yao model for protocol messages over the net-
work, but we assume that each individual participant has a secure platform on
which to run her cppl procedures. Secure communication in the sense of Defini-
tion 4 can also be used to represent communication through a secure transport
medium such as the tunnels provided by TLS and IPsec, thus providing a strand
space variant to the methods of Broadfoot and Lowe [9]. We will now develop
a method—encapsulated in Propositions 4–6 and the finite semantics S(δ)—to
prove security properties for the procedure definitions of a protocol.

6 Reasoning About the Global Semantics

Occurrences and Sets. We view each term as an abstract syntax tree, in which
atoms are leaves and internal nodes are either tagged messages, concatenations,
or else encryptions. A branch through the tree traverses a key child if the branch
traverses an encryption {|t|}K and then traverses the second child (the key)
labeled K.

An occurrence of t0 in t is a branch within the tree for t that ends at a node
labeled t0 without traversing a key child. A use of K in t (for encryption) is a
branch within the tree for t that ends at a node labeled K and that has traversed
a key child. We say that t0 is a subterm of t (written t0 � t; see Definition 8,
Clause 1) if there is an occurrence of t0 within t. When S is a set of terms, t0
occurs only within S in t if, in the abstract syntax tree of t, every occurrence of
t0 traverses a node labeled with some t1 ∈ S (properly) before reaching t0. Term
t0 occurs outside S in t if t0 � t but t0 does not occur only within S in t.

A term t originates at node n1 if n1 is positive, t � term(n1), and n0 ⇒+ n1

implies t �� term(n0). It originates uniquely in a set N of nodes if there is exactly
one n ∈ N at which it originates. It is non-originating in N if there is no n ∈ N
at which it originates.

Definition 5 (Safety). Let B be an sc-bundle. a ∈ Safe ind0(B) if a originates
nowhere in B. a ∈ Safe indi+1(B) if either (1) a ∈ Safe indi(B) or else

(2) a originates uniquely on a regular node n0 ∈ B and, for every positive regular
node n ∈ B such that a � term(n), the following holds: Either n ∈ Conf or
else a occurs only within S in term(n), where

S = { {|h|}K0 : K−1
0 ∈ Safe indi(B) }.

a ∈ Safe ind(B) if there exists an i such that a ∈ Safe indi(B).

Proposition 4 (Safety ensures secrecy). If a ∈ Safe ind(B) and there exists
n ∈ B such that term(n) = a, then n is regular.

Proofs of this proposition and the others in this section will appear elsewhere.

Definition 6 (Export Protection). A set S of terms provides export protec-
tion for B if for every t ∈ S, t is of the form {|h|}K where K−1 ∈ Safe ind(B).

Programming Cryptographic Protocols 133

When C is a set of terms, we also write Conf(C) for the set of nodes n ∈ Conf
such that term(n) ∈ C. The outgoing authentication test allows us to infer that
there is a regular strand including m0 ⇒+ m1 as in Figure 12.

n0
n0 ∈ Conf(C) or a occurs only within S � m0

n1

�

�
�
�
�
�
�
�

�n0
∈ Conf(C) and a occurs outside S � m1

�

�
�
�
�
�
�
�

Fig. 12. The Outgoing Authentication Test

Proposition 5 (Outgoing Authentication Test). Let B be an sc-bundle
with regular nodes n0, n1 ∈ B; let S be a set of terms providing export pro-
tection for B; and let C be a set of terms. Suppose that (1) a originates uniquely
at n0 and either n0 ∈ Conf(C) or else a occurs only within S in term(n0); and
(2) n1 �∈ Conf(C) and a occurs outside S in term(n1).

There exists a regular m0 ⇒+ m1 such that (1) m0 is the earliest occurrence
of a on its strand s; (2) m1 is the earliest node on s such that m1 �∈ Conf(C) and
a occurs outside S in term(m1); (3) m1 is positive, and m0 is negative unless
m0 = n0. Moreover, n0 �B m0 ⇒+ m1 �B n1; a � term(m0); and for all
m �B m0, either n0 ∈ Conf(C) or a occurs only within S in m.

Proposition 6 (Incoming Authentication Test). Suppose n1 ∈ B is nega-
tive. (1) If t � term(n1) and t = {|h|}K for K ∈ Safe ind(B), then there exists
a positive regular m1 ≺ n1 such that t originates at m1. (2) If n1 ∈ Auth, then
there exists a unique positive regular m1 → n1. Moreover in either case:

Solicited Incoming Test. If a � t originates uniquely on n0 �= m1, then n0 �
m0 ⇒+ m1 ≺ n1.

Propositions 4–6 suffice to prove the main authentication and secrecy properties
of protocols. In our context, we want particularly to establish soundness, i.e. that
in every execution, one principal’s relies are supported by earlier guarantees by
other principals [23]. We write prin(m) to refer to the regular principal acting
on a node m, which we assume is some conventionally chosen parameter to the
regular strand that m lies on. If m lies on a penetrator strand, then prin(m) is
undefined. We also write P says φ, subject to the understanding that this will
be encoded suitably into the implemented logic.

Definition 7. Soundness. Bundle B supports a negative node n ∈ B iff ρ(n)
is a logical consequence of the set of formulas {prin(m) says γ(m) : m ≺B n}.

Let Π be an annotated protocol, and let B be a set of sc-bundles over Π. Π
is sound for B if, for all B ∈ B, for every negative n ∈ B, B supports n.

134 J.D. Guttman et al.

In practice, we use the authentication test theorems to prove the existence of
nodes m such that the formulas prin(m) says γ(m) imply ρ(n). Since only positive
regular nodes m help to support ρ(n), if we cannot prove the existence of positive
regular nodes m of a protocol preceding a negative node n, then the rely formula
on n must be trivial, i.e. a consequence of the empty set of formulas. In particular
if the message received on n could have been generated without help by the
adversary, then ρ(n) = [], i.e. it is vacuously true.

7 Example: Protocol-Based Access

We will now return to the NS Quote Protocol given at the beginning of the paper
in Figure 1. In it, an initiator A requests on-line stock quotes from a responder B,
and B delivers them if it can determine that A is a registered subscriber. We
prove first that it is unsound, hardly surprising as it is based on the (broken)
Needham-Schroeder protocol.

Proposition 7. NSQ is unsound; there is a bundle B in which the public keys
of A and B are non-originating, and the nonces Na, Nb are uniquely originating,
but in which node n4 is unsupported.

Proof. In Figure 13, ρ(n4) = A says requests(A, B, D), while by contrast γ(m1) =
requests(A, M, D′).

m1
{|Na, A, D′|}KM � n1

•
�
�

{|Na, A, D|}KB � B

•
�

�
�
�
�
�
�
�
�

� {|Na, SK |}KA •
�
�

•
�
�

{| SK |}KM � M

•
�
�

{| SK |}KB � •
�

�
�
�
�
�
�
�
�

•
�
�

� {|Data is V |}SK
n4

�
�

Fig. 13. Counterexample to NS Quote Soundness

A Corrected Protocol. To correct the protocol, and also enrich its functionality,
we revise our example protocol to take the form in Figure 14. In this version of
the protocol, we add B’s name to the message sent from node n2, as suggested
by Lowe [29] when he discovered the attack we showed in Figure 13. We also
add a decision, made by the server B. It chooses in nodes n4 and n′

4 between
two levels of service. Corporate users may pay dear, but they receive prompt

Programming Cryptographic Protocols 135

delivery of precise data at a premium price; individual users may pay much more
cheaply to receive information that is delayed a few minutes and rounded from
thirty-seconds of a point to the nearest eighth of point. The resulting protocol is
the same except at the last step, where different tags distinguish the two types
of outcome (Figure 14). There are three steps we will take to implement this

A B

m1
{|Na, A, D|}KB � {|Na, A, D|}KB � n1

m2

�

�{|Na, SK , B|}KA �{|Na, SK , B|}KA n2

�

m3

� {|SK |}KB � {| SK |}KB � n3

�

m4

�

� {|Dear V |}SK � {|Dear V |}SK
n4

�

.

m′
4

�

� {|Cheap V |}SK � {|Cheap V |}SK
n′

4

�

Fig. 14. NSL Quote Protocol with Choice

example. First, we will program the message flow, namely the portion of the cppl

implementation that manipulates communication channels, generates nonces and
session keys, and sends and receives messages. Second, we will integrate the trust
management semantics for each of the messages. The final step is to specify
procedure headers, thereby providing a way to link behaviors together by calling
subprotocols. In this example, the benefit is to allow flexibility in retrieval of
certified public keys. However, the general ability to encapsulate subprotocols in
an informative way appears to us to be one of the major strengths of the cppl

integration of trust management and protocols.

Message Behavior. The client generates a nonce, opens a channel to the server,
and then expects to engage in two round trips of sending a message and receiving
a reply (Figure 15). The return statements here do not carry the parameters and
final guarantee, because those will be declared instead in the procedure header.
We omit the trust management formulas for now, leaving only underscores in
their place.

The server (Figure 16) waits to accept an incoming connection. It then re-
ceives a message off that channel, authenticates the claimed sender via a message
round trip, and delivers data of one quality or the other, tagged with either Dear
or Cheap.

Trust Management Annotations. For readability, we italicize the trust man-
agement formulas. The client (Figure 17) guarantees that it is requesting the
information in its first outgoing message, and relies on the server having guar-
anteed the information in its last incoming message, at one of the two possible
levels of service.

136 J.D. Guttman et al.

let chan = connect(b addr) in

let na = new nonce in

send chan {na, a, d} kb

receive chan {na, k, b} ka

send chan {k} kb

receive chan cases

{Dear v} k return

| {Cheap v} k return

end

Fig. 15. Client Behavior in NSL Quote

let chan = accept in

receive chan {na, a, d} kb

let k = new symkey in

send chan {na, k, b} ka

receive chan {k} kb

send cases

chan {Dear v} k return

| chan {Cheap v} k return

end

Fig. 16. Server Behavior in NSL Quote

let chan = connect(b addr) in

let na = new nonce in

send [requests(a,b,d)] chan {na, a, d} kb

receive chan {na, k, b} ka []

send [] chan {k} kb

receive chan cases

{Dear v} k [says curr val(b, d, v)] return

| {Cheap v} k [says approx val(b, d, v)] return

end

Fig. 17. Client Trust Management, NSL Quote

The server’s trust management behavior is described in Figure 18. The rely
formula on the server’s first receive statement is empty, i.e. an empty list []
meaning true , as is required because the adversary may have prepared the
message {na, a, d} kb. Before the final transmission, the server chooses be-
tween the two branches in the send statement according to a trust management
formula, guaranteeing payment for the information transmitted, and retrieving
a current value for v. If B can establish that A will pay for the high quality data
it selects the first branch. If B can establish only that A will pay for the low
quality data, it selects the second branch. If B cannot establish even that, for
instance because A is not yet a subscriber, then B must fail in this protocol run,
terminating abnormally without sending either of these messages, and without

Programming Cryptographic Protocols 137

returning information to its caller. For either class of service, part of determin-
ing whether A will pay for the data is determining whether he has requested
it. A crucial authentication service provided by the protocol is to justify B in
relying on this conclusion when B receives message three, illustrating the value
of protocol soundness. B has one other guarantee in this version of the protocol;
he guarantees owns(a,ka) asserting that the purported peer in this run is the
owner of the public encryption key to be used in this run. This is the first oc-
currence of the identifier ka, reflecting the fact that the guarantee is a query, in
the manner of logic programming; it binds the new identifier ka to some value k
for which the trust management engine can establish that the principal bound
to a owns k as public encryption key.

Procedure Headers. We encapsulate the behavior of cppl procedures using head-
ers. The header gives the name of the procedure, the parameters with which it
should be called, the parameters that it will return, and two formulas. The
first, the rely statement, declares the condition under which this procedure may
properly be called. It is a relation on the parameters to the call. The caller must
guarantee at least this strong a condition before calling the procedure with ac-
tual parameters. The second statement is the procedure’s guarantee. This is a
relation on the procedure’s input and output parameters, and it defines what
the caller has learned by means of the procedure call. The guarantee need only
hold on successful termination; failure returns no parameters and guarantees
no formula. The server’s guarantee supplied(a, q, d, v) informs its caller
that data has been supplied to a client, so that the client may be billed. The
identifier q is one of the return parameters; the participants use it to interpret
the quality of the information returned in v. The identifier q occurs only in the
return guarantee, and the trust management engine selects a suitable value for
it immediately before a successful return. It uses the rules in Figure 20 as an
ingredient in selecting its value.The client must additionally use its trust in b
for this type of data, inferring curr_val(d, V) from says_curr_val(b, d, V),
and inferring approx_val(d, V) from says_approx_val(b, d, V).

let chan = accept in

receive chan {na, a, d} kb []

let k = new symkey in

send [owns(a, ka)] chan {na, k, b} ka

receive chan {k} kb [says_requests(a, a, b, d)]

send cases

[will_pay_dear(a, d); curr_val(d, v)] chan {Dear v} k

return

| [will_pay_cheap(a, d); approx_val(d, v)] chan {Cheap v} k

return

end

Fig. 18. Server Trust Management, NSL Quote

138 J.D. Guttman et al.

client (a, ka, b, kb, b addr, d) (na, q, v)

rely [owns(a, ka); owns(b, kb); at(b, b addr)]

guarantee [val(d, q, v)]

statement, see Figure 17

end

server (b:text, kb) (a, q, d, v)

rely [owns(b, kb)]

guarantee [supplied(a, q, d, v)]

statement, see Figure 18

end

Fig. 19. Client and Server Procedure Headers in NSL Quote

val(D, "high quality", V) :-

curr_val(D, V).

val(D, "low quality", V) :-

approx_val(D, V).

Fig. 20. Axioms Governing Quality for NSL Quote

Subprotocols. An advantage of connecting procedures with their trust manage-
ment pre- and post-conditions in this way is that it leads to attractive notions
of subprotocol and of call. We illustrate subprotocols here (Figure 21) by incor-
porating an optional subprotocol for certificate retrieval when the server B does
not have a certificate for the client in its local certificate database. Possibly B
would like to increase its clientele; an independent service certifies customers,
and delivers the certificates for a fee. B attempts to retrieve the client’s public
key from its local store; if that succeeds, it calls the null_protocol, which does
nothing. If the local retrieval fails, it consults the certification service via the
get_public_key protocol. This protocol may be implemented separately, as the
only constraint that the programmer requires is that it should satisfy the inter-
face given in its header. We summarize the protocol’s correctness in a soundness
assertion. We state it here without being precise about the unique origination
and non-origination assumptions that define the set B of bundles with respect
to which soundness holds.

Proposition 8. The set of cppl procedures displayed in Figures 17–21 is sound
for bundles in which the private decryption keys are uncompromised and the
newly generated values are uniquely originating.

Using the disjoint encryption result for protocol composition [20], the soundness
of the main protocol depends only on a simple property of the certificate retrieval
subprotocol, beyond what is declared in its header.

Programming Cryptographic Protocols 139

maybe_get_public_key (a:text) (ka:verkey)

guarantee [owns(a, ka)]

call cases

[owns(a, ka)]

null_protocol () () []

return

| [cert_auth(c:text); owns(c, kc:verkey); at(c, c_addr:text)]

get_public_key (a, c, kc, c_addr) (ka)

[owns(a, ka)]

return

end

null_protocol () () return end

get_public_key (a:text, c:text, kc, c_addr) (ka:verkey)

rely [owns(c, kc); at(c, c_addr)]

guarantee [owns(a, ka)]

... statement ...

end

Fig. 21. Subprotocols for Certificate Retrieval

8 The Current CPPL Implementation

We have developed two successive cppl implementations. The second generation
compiler was written after the structured operational semantics presented here
in Section 4, and benefited from the concise specification. In both cases, we
used OCaml [27] as the implementation language, and the compilers translate a
cppl source file into OCaml. When parsing a source file, the compiler generates
an abstract syntax tree modeled after the core syntax given in Figure 2. In
particular, it replicates the return parameter list and the guarantee formula in
the header for a procedure at each return statement within that procedure. Each
cppl procedure is translated into an OCaml procedure that takes a number of
cppl values as arguments and returns a tuple of results.

A full cppl program is constructed from at least two source files. The first is
a cppl source file used to specify the cppl procedures. The other is an OCaml
source file that defines the main routine invoked when the program is started.
This routine generates the principal’s theory from a sequence of Datalog [10]
formulas, and generates additional Datalog facts by opening a keystore contain-
ing public keys. Code generated from both files is linked against three libraries
needed at runtime. One is a communications library. It provides the channel
abstraction, including code to open channels to specified addresses and to await
an incoming connection. Second, the cryptographic library controls the format-
ting of messages as bitstrings, and provides abstractions of keys and operations
for encryption, decryption, hashing, signatures, and verification. Because of the
well-defined interfaces, alternative libraries can easily be substituted; we have

140 J.D. Guttman et al.

developed one cryptographic library based on Leroy’s Cryptokit [26] and an-
other that provides access to a Trusted Platform Module [35,36], if the latter is
available on the underlying hardware.

The third main runtime library is our Datalog [10] trust management engine.
Datalog is a declarative logic language in which each formula is a function-free
Horn clause, and every variable in the head of a clause must appear in the body
of the clause. Our implementation uses the tabled logic programming algorithm
described in [11,12]. All queries terminate because of Datalog’s syntactic restric-
tions, and because the implementation maintains a table of intermediate results.

One of the main jobs of the compiler is to translate the message patterns con-
tained in the cppl source program into executable code. For a message pattern
in a receive statement, the generated code must parse incoming messages. The
compiler emits code containing calls to the interface procedures exported by the
cryptographic library. The emitted code must raise an exception if the incoming
message is not of the right form, or if an identifier in the pattern is already bound,
and the incoming message contains a different value in that position from the
value bound in the runtime environment. For message patterns in transmission
statements, the generated code must use the cryptographic library to assemble a
suitable concrete message, which is then handed to the communications library
for transmission through a channel. When asymmetric cryptography is used in
message transmission or reception, the code may require the cryptographic li-
brary to use a private key held only in its own keystore. For instance, when the
NSL Quote server B parses the message {na, a, d}kb, kb is bound in the run-
time environment. However, parsing succeeds only if the cryptographic library
possesses a private decryption key K−1

B inverse to the value KB bound to kb.
The private decryption key is not mentioned in cppl source programs, and it
is the obligation of the cryptographic library together with the main routine
to ensure that suitable private keys are available. The semantic productions for
Send and Receive in Figures 9 and 10 are optimistic, since they do not indicate
that these keys may be missing. The Receive production also does not explicitly
say that the environment is extended only from values contained as subterms of
an incoming message, not from values used only as encryption keys.

A number of different demonstration-sized protocols have been implemented
in cppl, suggesting solutions to different information security problems. Alter-
native protocols allow adapting the solutions to differing trust relations among
the principals.

9 Conclusion

Three central ideas have shaped our approach to cppl. First, cryptographic
protocols are a coordination mechanism between principals. The purpose of a
cryptographic protocol is to ensure that principals which have successfully com-
pleted their strands are sure to agree on certain values [37,30]. In this view, an
authentication property is an assertion about parameters matching between sep-
arate strands. “Entity authentication” means agreeing specifically on the param-

Programming Cryptographic Protocols 141

eters naming the principals; “message authentication” for a message t requires
agreement on all of the atomic values contained in t. These and other variants
of agreement may be proved uniformly using the authentication test theorems
(Propositions 4–6). In the case of an annotated protocol, in which nodes are as-
sociated with rely and guarantee formulas, an agreement on values also ensures
a corresponding degree of agreement between the principals on assertions; we
summarize this in the notion of soundness (Definition 7). Many protocols must
also establish recency, by ensuring that an event in each local run occurs between
two events of each other local run [19]. Recency comes for free from the outgoing
test and the solicited incoming test. A cryptographic protocol thus coordinates
values, assertions, and time across different strands.

Our second motivating idea was that trust decisions at run time may control
a principal’s protocol behavior. Each message transmission is associated with a
commitment that the principal makes if it transmits the message. If the principal
cannot derive the trust constraint for a message, then the principal does not
send the message. This provides a mechanism for selecting between branches of
execution, namely to choose a branch with a derivable guarantee. If there is no
such branch, then the principal stops and aborts this protocol run.

Our third central idea was a semantic idea. We gave the semantics for a single
protocol procedure as a finite number of parametric strands, each of bounded
length. Each regular strand determines a sequence of messages that may have
been sent and received by the time the run is complete; these messages are
parametrized by the values (keys, nonces, names, prices, etc.) selected in this
run. The instances of the parametric strands are determined by the structured
operational semantics presented in Section 4. A global execution is a bundle. This
says that it is a number of regular strands, possibly together with penetrator
strands, that are linked together in a causally well founded way (Section 5). A
regular (non-penetrator) strand in a bundle represents a sequence of transmis-
sions and receptions enacted by one principal while executing a single session
of a single protocol role or subprotocol role. The bundle may use secure com-
munication, allowing it to model subprotocol call and return as local, secure
message transmissions. In Section 6 we developed useful techniques for deter-
mining whether all bundles for a particular set of protocols and subprotocols
satisfy security goals.

Future Work. Various areas remain for future work. For instance, our method
carefully separates the protocol properties that are used to prove soundness,
but not represented in a logic, from the trust management decisions that are
logically represented. The advantage of this procedure is that there is a clear
boundary between operational reasoning about protocol behavior and logical
reasoning within trust theories. However, there is also a disadvantage, since rea-
soning involving both protocol behavior and its trust consequences is not easily
integrated. As an example, if a principal is deciding whether to accept a new
protocol, it would be desirable to deduce its acceptability from an explicit policy.
We also need a better way to represent the imperative effects that may be the re-
sult of a protocol execution, for instance, a bank transferring money from buyer

142 J.D. Guttman et al.

to seller at the end of an electronic commerce transaction. Finally, the current
data model of cppl is extremely impoverished, and an improved language would
allow processing of structured data to be integrated with protocol actions and
trust decisions.

References

1. Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. Just Fast Keying in the pi
calculus. In David Schmidt, editor, Programming Languages and Systems: ESOP
2004 Proceedings, number 2986 in LNCS, pages 340–354. Springer Verlag, January
2004.

2. Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon D. Plotkin. A cal-
culus for access control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706–34, September 1993.

3. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure com-
munication. In 28th ACM Symposium on Principles of Programming Languages
(POPL ’01), pages 104–115, January 2001.

4. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148(1):1–70, January 1999.

5. Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In 6th
ACM Conference on Computer and Communications Security, November 1999.

6. Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols:
Tagging enforces termination. In Andrew D. Gordon, editor, Foundations of Soft-
ware Science and Computation Structures, number 2620 in LNCS, pages 136–152.
Springer, April 2003.

7. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Distributed trust management. In
Proceedings, 1996 IEEE Symposium on Security and Privacy, pages 164–173, May
1997.

8. Michele Boreale. Symbolic trace analysis of cryptographic protocols. In ICALP,
2001.

9. Philippa Broadfoot and Gavin Lowe. On distributed security transactions that use
secure transport protocols. In Proceedings, 16th Computer Security Foundations
Workshop, pages 63–73. IEEE CS Press, 2003.

10. Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know
about datalog (and never dared to ask). IEEE Transactions of Knowledge and
Data Engineering, 1(1), 1989.

11. W. Chen, T. Swift, and D. S. Warren. Efficient top-down computation of queries
under the well-founded semantics. J. Logic Prog., 24(3):161–199, 1995.

12. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. J. ACM, 43(1):20–74, 1996.

13. Federico Crazzolara and Giuseppe Milicia. Developing security protocols in χ-
spaces. In Proceedings, 7th Nordic Workshop on Secure IT Systems, Karlstad,
Sweden, November 2002.

14. Federico Crazzolara and Glynn Winskel. Composing strand spaces. In Proceedings,
Foundations of Software Technology and Theoretical Computer Science, number
2556 in LNCS, pages 97–108, Kanpur, December 2002. Springer Verlag.

15. Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 29:198–208, 1983.

Programming Cryptographic Protocols 143

16. Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewrit-
ing and the complexity of bounded security protocols. Journal of Computer Secu-
rity, 12(2):247–311, 2004. Initial version appeared in Workshop on Formal Methods
and Security Protocols, 1999.

17. Cédric Fournet, Andrew Gordon, and Sergei Maffeis. A type discipline for autho-
rization policies. In Mooly Sagiv, editor, European Symposium on Programming,
volume 3444 of LNCS, pages 141–156. Springer Verlag, 2005.

18. Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. In Proceedings, 15th Computer Security Foundations Workshop.
IEEE Computer Society Press, June 2002.

19. Joshua D. Guttman. Key compromise and the authentication tests. Elec-
tronic Notes in Theoretical Computer Science, 47, 2001. Editor, M. Mislove.
URL http://www.elsevier.nl/locate/entcs/volume47.html, 21 pages.

20. Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint
encryption. In Proceedings, 13th Computer Security Foundations Workshop. IEEE
Computer Society Press, July 2000.

21. Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, June 2002.

22. Joshua D. Guttman and F. Javier Thayer. The sizes of skeletons: Decidable cryp-
tographic protocol authentication and secrecy goals. MTR 05B09 Revision 1, The
MITRE Corporation, March 2005.

23. Joshua D. Guttman, F. Javier Thayer, Jay A. Carlson, Jonathan C. Herzog,
John D. Ramsdell, and Brian T. Sniffen. Trust management in strand spaces:
A rely-guarantee method. In David Schmidt, editor, Programming Languages and
Systems: 13th European Symposium on Programming, number 2986 in LNCS, pages
325–339. Springer, 2004.

24. Charlie Kaufman, ed. Internet key exchange (IKEv2) protocol. Internet
Draft, September 2004. Available at http://www.ietf.org/internet-drafts/

draft-ietf-ipsec-ikev2-17.txt .
25. Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Authen-

tication in distributed systems: Theory and practice. ACM Transactions on Com-
puter Systems, 10(4):265–310, November 1992.

26. Xavier Leroy. Cryptokit. Sofwtare available via http://pauillac.inria.fr/
∼xleroy/software.html, April 2005. Version 1.3.

27. Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-
lon. The Objective Caml System. INRIA, http://caml.inria.fr/, 2000. Version
3.00.

28. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based
trust management framework. In Proceedings, 2002 IEEE Symposium on Security
and Privacy, pages 114–130. May, IEEE Computer Society Press, 2002.

29. Gavin Lowe. An attack on the Needham-Schroeder public key authentication pro-
tocol. Information Processing Letters, 56(3):131–136, November 1995.

30. Gavin Lowe. A hierarchy of authentication specifications. In 10th Computer Se-
curity Foundations Workshop Proceedings, pages 31–43. IEEE Computer Society
Press, 1997.

31. Jonathan Millen and Frederic Muller. Cryptographic protocol generation from
CAPSL. Technical Report SRI-CSL-01-07, SRI International, December 2001.

32. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12), December
1978.

http://www.elsevier.nl/locate/entcs/volume47.html
http://www.ietf.org/internet-drafts/
draft-ietf-ipsec-ikev2-17.txt
http://pauillac.inria.fr/
~xleroy/software.html

144 J.D. Guttman et al.

33. Adrian Perrig and Dawn Xiaodong Song. A first step toward the automatic genera-
tion of security protocols. In Network and Distributed System Security Symposium.
Internet Society, February 2000.

34. F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230,
1999.

35. Trusted Computing Group, https://www.trustedcomputinggroup.org/

downloads/TCG 1 0 Architecture Ov%erview.pdf. TCG Specification Archi-
tecture Overview, revision 1.2 edition, April 2004.

36. Trusted Computing Group, https://www.trustedcomputinggroup.org/

downloads/specifications/mainP1DP% rev85.zip. TPM Main: Part I De-
sign Principles, specification version 1.2, revision 85 edition, February 2005.

37. T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. Computer,
25(1):39–52, January 1992.

A Additional Strand Notions

Definition 8. Fix a strand space Σ:

1. The subterm relation � is the smallest reflexive, transitive relation such that
t � {|g|}K if t � g, and t � g, h if either a � g or a � h.
(Hence, for K ∈ K, we have K � {|g|}K only if K � g already.)

2. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisfying 1 ≤ i ≤
length(tr(s)). We often write s ↓ i for 〈s, i〉. The set of nodes is N . The
directed term of s ↓ i is tr(s)(i).

3. There is an edge n1 → n2 iff term(n1) = +t or +c t and term(n2) = −t or
−a t for t ∈ A. n1 ⇒ n2 means n1 = s ↓ i and n2 = s ↓ i + 1 ∈ N .
n1 ⇒∗ n2 (respectively, n1 ⇒+ n2) means that n1 = s ↓ i and n2 = s ↓ j ∈ N
for some s and j ≥ i (respectively, j > i).

4. Suppose I is a set of terms. The node n ∈ N is an entry point for I iff
term(n) = +t for some t ∈ I, and whenever n′ ⇒+ n, term(n′) �∈ I. t
originates on n ∈ N iff n is an entry point for I = {t′ : t � t′}.

5. An term t is uniquely originating in S ⊂ N iff there is a unique n ∈ S such
that t originates on n, and non-originating if there is no such n ∈ S.

If a term t originates uniquely in a suitable set of nodes, then it plays the role of
a nonce or session key. If it is non-originating, it can serve as a long-term shared
symmetric key or a private asymmetric key.

Definition 9. A penetrator strand is a strand s such that tr(s) is one of the
following:

https://www.trustedcomputinggroup.org/
downloads/TCG_1_0_Architecture_Ov%erview.pdf
https://www.trustedcomputinggroup.org/
downloads/specifications/mainP1DP%_rev85.zip

Programming Cryptographic Protocols 145

Mt: 〈+t〉 where t ∈text
KK : 〈+K〉 where K ∈ KP
Cg,h: 〈−g, −h, +g, h〉
Sg,h: 〈−g, h, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉
Dh,K : 〈−K−1, −{|h|}K , +h〉
Vh,K: 〈−[[h]]K , +h〉
Ah,K: 〈−K−1, −h, +[[h]]K〉
Hh: 〈−h, +hash(h)〉
TCh: 〈−h, +tag h〉
TSh: 〈−tag h, +h〉
A node is a penetrator node if it lies on a penetrator strand, and otherwise it is
a regular node.

	Introduction
	Main Ideas of CPPL
	The CPPL Core Language
	Local Semantics
	Global Semantics
	Reasoning About the Global Semantics
	Example: Protocol-Based Access
	The Current CPPL Implementation
	Conclusion
	Additional Strand Notions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

