
March 1991

Joshua D. Guttman

Approved for public release;
distribution unlimited.

MITRE
Bedford, Massachusetts

A Proposed
Interface Logic
for Verification
Environments

March 1991

Joshua D. Guttman

CONTRACTSPONSOR RADC
CONTRACT NO. F19628-89-C-OOOl
PROJECT NO. 4030
DEPT. G1l7

Approved for public release;
distribution unlimited.

MITRE
The MITRE Corporation
Bedford, Massachusetts

A Proposed
Interface Logic
for Verification
Environments

Department APprova,,~~~/

ii

Abstract

This report proposes adoption of an interface logic for verification environ
ments, namely, a logic with a syntax that is simple for machines to generate
and parse, and which has a standard semantics. It is intended to codify log
ical presuppositions that are common to a considerable number of efforts in
specification and verification, thereby allowing a range of work to be shared
among them rather than duplicated. The practicality of the proposals were
tested by implementing them in a program called IMPS.

iii

Acknowledgments

I am grateful to colleagues at MITRE for comments and conversations at
many stages of this work. In particular, W. M. Farmer and F. J. Thayer
helped to design the logic as well as to design and implement the IMPS
software that were used to test the proposals made here. 1. G. Monk was
the designer of a previous version, from which many ideas derived. They,
together with M. E. Nadel, J. D. Ramsdell, and J. G. Williams, also read
drafts and strengthened it greatly.

This work was supported by RADC/COTC, under Air Force contract
FI9628-89-C-000L Almost all of the implementation of the IMPS software
was supported by the MITRE-Sponsored Research program (projects 90770
and 91280).

iv

Table Of Contents

Section

1 Introd uction
1.1 Properties of an Interface Logic
1.2 Method

2 Issues of Expressiveness
2.1 Partially Defined Functions
2.2 Overlapping Sorts
2.3 Functions and Operators on Functions
2.4 Simplification and Decision Procedures.
2.5 Polymorphism or Theory Interpretation

3 Syntax and Informal Semantics
3.1 Types and Sorts

3.1.1 Type Structures
3.1.2 Sort Structures

3.2 Specifying Sortings ...
3.3 Languages........
3.4 Expressions and Variable Lists

3.4.1 A Type-Checking Algorithm
3.4.2 Variable Lists and Implicit Sortings
3.4.3 Truth and Falsehood
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11

Propositional Constructors
The Apply-Operator Constructor .
Equality : . . .
If
Variable-Binding Constructors ..
Constructors Concerning Definedness
The With Constructor
Eliminating With and Variable Lists .

Page

1
2
5

7
7

12
13
15
16

19
20
20
21
22
23
25
28
32
34
34
35
36
37
38
40
43
44

4 Formal Semantics 46
4.1 Structures........................... . . 47
4.2 Denotation and Satisfaction for FQ 48

4.2.1 Truth, Falsehood, and the Propositional Constructors 49

v

4.2.2 Apply-Operator, Equality, and If
4.2.3 Variable-Binding Constructors

4.3 ST: The Lambda Constructor.
4.4 Denotation and Satisfaction for PF. . .

4.4.1 Apply-Operator, Equality, and If
4.4.2 Variable-Binding Constructors
4.4.3 Constructors Concerning Definedness

4.5 Comments
4.5.1 Overlapping Sorts
4.5.2 Full Semantics and General Semantics
4.5.3 Relations among FQ, ST, and PF

5 Conclusion

List of References.

vi

49
50
50
51
52
53
54
55
55
56
58

63

65

Section 1
Introduction

The goal of this report is to advance the idea of an interface logic for
verification environments (henceforth referred to as VES). By this we mean
a logic with a syntax that is simple for machines to generate and parse, and
that has a standard semantics and a sufficient degree of expressiveness. It is
intended to codify logical presuppositions that are common to a considerable
number of efforts in specification and verification.

Our hope is that it will become possible largely to separate the work
of developing formula-generators, such as verification-condition generators
and specification-language processors, from the effort of developing theorem
proving software. Currently, research efforts whose primary emphasis is on
formula generation often spend a great deal of time and effort developing
theorem-proving software to demonstrate that the formulas they generate
are susceptible to automated deduction. This effort is often redundant, as
the theorem provers are often based on the same classical semantics for first
order logic or simple type theory. In this report, we argue that a useful
interface logic can be found, and propose a sequence of candidate logics.

We believe that many existing software environments for program or
design verification can be easily adapted to generate assertions in the form
proposed in this paper, and that many existing theorem provers can be
adapted to take input in this form. They appear to include FDM [18], Gypsy
[14], EHDM [28], m-EVES and EVES [7], Penelope [22], Ariel, and HOL [15]. 1

It is unfortunate that work done on automated theorem-proving for one of
these projects can not be made available to others.

In addition, we expect that many research efforts in verification over the
next few years will also be able to use this format. This is not to say that
all will, as there is certainly reason to continue to examine non-classical
or otherwise unusual logics. Current efforts involving logics substantially
different from the classical predicate calculus discussed here include SDVS
[23], NUPRL [8], and Romulus (formerly Ulysses) [27].2 Our intent is not to
put a dent in these or similar projects, but rather to define a framework to

IThe Boyer-Moore theorem prover [2, 3] is an intermediate case: using the technique
of skolemization, it may be able to handle the first logic in the sequence we propose.

2 Possibly, using somewhat more complicated translations, some of these efforts might
also be able to benefit from the interface logic.

1

serve the needs of the large collection of verification environments that are
based on similar logics.

1.1 Properties of an Interface Logic

We believe that any logic suited to serve as an · interface logic must have
three characteristics:

• a simple syntax;

• a widely accepted semantics;

• a sufficient degree of expressiveness.

The syntax of the interface logic needs to be simple so that programs can
easily translate between it and whatever syntax may be preferred by a par
ticular formula generator or theorem proving system. Moreover, because the
interface logic is intended as a medium of communication between programs,
there is no obligation to choose a syntax that will be easy for human users to
read and write. Indeed, one advantage of a simple, machine-oriented syntax
is that it is then easy to experiment with a range of programs to translate
between it and various "user-oriented syntaxes." The choice of a good hu
man interface is thus separated from the selection of a logic to serve as an
interface among programs.

A semantics that is already widely accepted is a necessity for two main
reasons. First, the logic is intended to serve as a bridge among indepen
dently designed components, some of them already existing. It will more
readily serve this purpose if its theoretical commitments are similar to those
of the majority of the components it will mate. Second, since the logic in
tended to serve as a lingua franca, a large number of researchers will need
to have a thorough understanding of its semantics. Happily, the standard
semantic approach to predicate logic is suited to play this role, being so
well understood, and so widely understood. We would think it was uniquely
suited to the role.

The degree of expressiveness of an interface logic is . the most delicate
of these issues, because it must suffice for a range of formula generators,
without being excessively burdensome on theorem provers. One half of the
problem is to determine what characteristics are needed so that realistic for
mula generators will be able to express candidate theorems and the axioms
from which they are to be proved. The other half is to determine what cost
this expressiveness imposes on theorem provers. Naturally, the less regular

2

the set of formulas to be used in reasoning, the more carefully designed a
theorem prover must be. In order to appraise the usefulness of different
kinds of expressiveness, we discuss four general semantic issues. These are:

• Partially defined functions: should they be expressed directly, with
the concomitant non-denoting terms, or represented indirectly?

• Overlapping sorts (data types): should they be permitted, or should
sorts be assumed disjoint?

• Functions and operators on them: should objects such as functions
belong to syntactically distinct sorts of "higher type"? Should there
be variable-binding operators such as >. to introduce expressions of
these sorts? To what extent are polymorphic operators (operators of
variable type) needed?

• Simplification and decision procedures: Most theorem provers will sup
ply special simplification and decision procedures, and such a proce
dure is normally applicable in all theories satisfying certain properties.
How can they be organized so that all theories satisfying the properties
can access them, independent of vocabulary?

In addition, to evaluate first-hand the difficulties that these cause in the
course of theorem-proving, we have implemented some of these elements
within a prototype theorem-proving environment called IMPS. We will dis
cuss the issues in detail in in Section 2.

On the basis of our experience in this area, we have drawn four conclu
sions:

• if possible, the logic should allow partial functions and overlapping
sorts;

• it should contain the>. operator to make "higher-order objects" easy
to introduce and manipulate;

• the logic should provide notation appropriate for declaring theories,
together with theorems, definitions, and theory-specific (partial) pro
cedures for simplification and deciding validity;

• to support the >. operator and partial functions, without excluding
too many existing theorem-proving systems, it is desirable to define a
succession of logics starting with a first order syntax and introducing
the more controversial features in sequence.

3

Hence, we have devoted the bulkiest part of this report-contained in
Sections 3-4-to the syntax and semantics of a sequence of three logical sys
tems. The intent of this portion of the report is to demonstrate, by example,
that useful interface logics can be defined without elaborate formal research.
We do not consider these logics to be the only reasonable candidates, and
hope that this report will stimulate alternative proposals, and suggestions
for revisions.

Of the three logics, the first is many-sorted classical first order predicate
logic, expressed with a simple, machine-oriented syntax. This version of first
order logic is somewhat unusual in that it contains second order free vari
ables, which we have added so that axioms like induction can be expressed
without any special machinery for schemas (see also Section 4.5.2). However
it has no bound higher order variables. We refer to it as FQ, to emphasize
that quantification is purely first order in this system.

The second logic, called ST, is many-sorted classical simple type theory,
which is predicate logic equipped with constants and variables of higher
(function) types; in this logic all variables may appear bound. The third
logic presented, called PF, differs from the second in that it allows terms to
be undefined, and functions to be partial; also, sorts may overlap.

First-order logic is included because some quite usable theorem proving
systems have very weak support for variable-binding operators, and thus
cannot be extended to support the simple type theory we describe. Similarly,
we have included a version of simple type theory where functions are total
and all terms are defined, even though we believe that partial functions
and non-denoting terms are desirable, and that the majority of the needed
checking for definedness can be automated. Nevertheless, we recognize that
many theorem-proving systems will not be suited to these techniques. Thus
it would be not be desirable for all projects to support partial functions.

Not all details have been resolved. Before these logics could be considered
a well-specified medium of communication between programs, many detailed
questions would need answers. For instance, how are software versions to be
specified? How are the lexical roles of individual characters (what in Lisp
are called read-tables) to be specified? What particular command names
are to be used for a host of necessary operations? This report makes no
attempt to answer questions at this level.

4

The three logics to be described form a naturally ordered sequence in
that first order logic is simplest, simple type theory3 is intermediate, and
simple type theory with partial functions and undefined terms is the most
complex. Each is a sublogic of the next in the sense that a theory in one
logic can be faithfully transferred to the next logic (in a sense to be made
precise in Section 4.5.3) by a simple syntactic process.

Hence, it is desirable for projects focusing on formula generators, such
as specification processors or veGs, to stay within the simplest of the three
that is consistent with their research and development goals. Conversely,
if a project is developing a theorem prover, it should aim at the richest of
the three interface logics that can be supported with the approach selected.
This strategy will increase the set of compatible pairs of formula generators
and theorem provers.

1.2 Method

Our method for reaching the conclusions defined in this paper involved two
parts. First, we have consulted a series of papers including [9, 10, 24, 25] on
logical issues written at MITRE.

Second, we have considered the lessons of developing an automated rea
soning testbed under the funding from the MITRE-Sponsored Research pro
gram. This system, called IMPS, an Interactive Mathematical Proof System,
is under continuing development [11, 19]. It is based on a version of sim
ple type theory allowing partial functions; its semantics were studied in [10].
Software allows creation oflanguages and theories (with facilities for reading
and printing expressions), and extension of existing theories by definitions.
Several mechanisms for reasoning are provided. They include simplification,
support for user-invoked tactics on expressions, and a facility for building
tree-like deductions interactively or as directed by procedures called strate
gies. 1M PS is equipped with a highly informative user interface for deduc
tions, based on GNU Emacs [29] and 1EX[21]. We have used IMPS to ensure
that automated deduction systems can implement those logics efficiently. It
is now a sophisticated and effective implementation of PF, the richest of
the logics we will discuss. In addition, it now implements the method of
theory interpretations as a substitute for polymorphism. We have found
that good support for theory interpretation seems to make it unnecessary to

3 "Simple type theory" is so-called not because it is intrinsically simple in any sense,
but for a historical reason: it was a simplified version of Russell's original "ramified" type
theory.

5

complicate the logic with explicit polymorphism, a point that has long been
made by Goguen and his colleagues [4, 12, 13] in reference to programming
languages (see Section 2.5).

6

Section 2
Issues of Expressiveness

In order to explain why we have selected the three logics FQ, ST, and
PF, we will with discuss five issues:

• Partially defined functionsj

• Overlapping base-sortsj

• Functions and operators on themj

• Simplification and decision proceduresj

• Polymorphism and theory interpretation.

2.1 Partially Defined FUnctions

In this section, we will argue that it is desirable for an interface logic to
support partially defined functions and non-denoting terms, as incorporated
in the logic PF. We have studied how to organize a theorem prover so that
non-denoting terms will not be an intolerable burden, and we recommend
that the approach be pursued [11]. However, for much current work non
denoting terms would create an intolerable burden, and this report also
proposes the more traditional logics FQ and ST, in which all terms are
defined.

Partially defined fUDctions and non-denoting terms are ubiquitous in
both mathematics and computing. Mathematical examples of non-denoting
terms come in many flavors:

• x/Oj

• d(lxl)/dx at OJ

• limx-t1r /2 tan x.

Partially defined functions are also, in some modeling approaches, natural
ways of representing various "bad" behaviors of computer programs, such as
non-termination or abnormal termination for certain values of parameters.

7

Thus any system for reasoning about computer programs or rigorous math
ematics must either allow partial functions, or else provide some alternative
mechanism for coping with these issues. (See [10] for a more detailed and
inclusive discussion of the range of options.)

We shall consider a version of the partial functions approach in which
terms may be undefined, but formulas are always either true or false. Our
work indicates that this is a quite natural compromise, in that it delivers the
advantages of a direct treatment of partial functions, while causing a mini
mal disruption to the patterns in reasoning familiar from classical predicate
logic and standard mathematical practice. Indeed, much standard informal
mathematics can be formalized quite smoothly using this framework. We
will refer to this as "the direct approach" to the partial functions problem;
we hope that this terminology will not be thought contentious.

It is clear that the rules for using existential and universal quantifiers
must be modified to be sound on the direct approach . For instance in a
single-sorted context, using t 1 to express the assertion that t is defined, we
would have the rule of existential generalization in the form:

</>(t) tl
3x </>(x)

instead of
</>(t)

3x </>(x)"

Similarly, substitution depends on definedness, in that rj>(s , t) follows from
¢>(x, y) by applying the substitution (x - S; Y - t) only on the additional
assumption that s 1 At!. However, few rules need changes, and the notion
of model is also not much affected.

In traditional mathematical logic, two techniques are used to avoid par
tial functions and non-denoting terms. One is to ensure that a function
that would be partial is not represented by a function symbol. Instead,
its graph, a predicate with one extra argument place, may be used. This
is perfectly satisfactory for metalogic, but it is inconvenient when concrete
formulas must actually be used in reasoning. The reason for this is that
in most contexts, the extra argument place must be filled with a variable,
which is quantified. Thus rewriting x/y = z by its graph div(x,y,z), we
must transform (x / y) / w = 3 into a formula such as:

Vz1 , Z2 div(x, y , Zl) A div(zI, w, Z2) => Z2 = 3.

Clearly, this translation method becomes too cumbersome for deeply nested
terms. The other common technique is to introduce a function symbol whieh
represents some "totalization" of a partial function. Normally, it is unspec
ified which totalization is meant. Thus, one might introduce a function

8

symboldiv(x,y) with the axiom y f:. 0 => y*div(x,y) = x. It is then un
specified what the value of x/O is, although it is something. This technique
is more useful in practice than the first.

Comparison: Mathematical Examples. How does this "total func
tions with unspecified values" approach compare to the direct approach? In
simple cases, they seem to be interchangeable. In the direct approach, one
has the axiom

Vx,y,z [x = z/y => x * y = z];
however, one must ensure that z / y is defined before using the axiom to
simplify (z/y) * y to z. In effect , y must be shown to be non-zero. In the
"total functions with unspecified values" approach, the corresponding axiom
is stated:

Vy, z [-,(y = 0) => z/y * y = z].
Here again, y must be shown to be non-zero.

Nevertheless, we think that in mathematically (or computationally) more
complex cases, the direct approach is far superior. For instance, if I is a
real function, consider f', the first derivative of f, evaluated at some real
number x. Is I'(X) defined? There are familiar ways of answering this kind
of question. But, is there any good way to write down a necessary and
sufficient condition, comparable to -,(y = 0) in the example above? Well,
perhaps one could use the definition of derivative:

f'ex) = lim f(t) - I(x).
t-+x t - x

But the question is whether this limit exists. Would it be fruitful to write
out the necessary and sufficient condition for such a limit to exist? It seems
unworkable to include such conditions in every formula that asserts some
thing about the value of f' (x). Certainly it is far better to be able to write:

1'(x)l => </>U'(x ».
When it comes time to check that the formula is applicable for a particular
I and x, then the usual facts about the definedness of derivatives can be
applied.

Our case is strengthened if we let the situation be even slightly more
complex. Suppose that I is itself defined as the (pointwise) limit of a se
quence (Ji) of functions. There is now a question of where I is defined. We

9

would like to say that if the limit of this sequence of functions is not defined
for some open interval, then f'(x) is not defined for x in that interval. How
ever, on the "total functions with unspecified values" approach, we cannot
be sure. Perhaps, in some model, the unspecified values of the (artificially
total) function f are constant in that interval. Then in fact l' is defined
(and = 0) within the interval. This is not an easy way to do mathematics.

Comparison: Programming Language Example. A similar argu
ment also applies to formal reasoning about program behavior. Many pro
gramming languages currently of interest contain the higher order operators
on programs that would make this line of argument apply. We will give
a simple example, expressed with the notation and terminology of Scheme.
We will use the word thunk to mean a procedure with no parameters, so that
if the Scheme expression p represents a thunk, then (p) returns the value
of executing p without arguments in the current state (and variable-binding
environ~ent, etc.).

Consider a function if* which takes three arguments, assumed to be
thunks.4 It behaves as an if-then-else operator. (if* test conseq alt)
first evaluates (test) in the current state so. IT that terminates in state S1,

returning value v, then either (conseq) or (alt)-depending on whether v
is distinct from ' If-is evaluated in S1 .

Formally, we will consider a thunk to be a (mathematical) function of the
state in which it is executed; the values are pairs of the form (s, v) meaning
that execution terminates in state s and returns value v. The meaning of an
expression such as (if* test conseq al t) is given in the same way, and
if e is an expression, then we will use [e] to refer to its denotation, which
is a function from states to pairs (s, v). We will think of non-termination
in terms of partial functions, so that if (test) does not terminate when
executed starting in s, then its denotation is a function that is undefined for
the argument s.

On the direct approach, we would formalize the semantics of if* as
follows.

1. If [(test)]so is undefined, then [(ih test conseq alt)]so is un
defined. Otherwise, suppose [(test)]so = (S1,V1).

"I.e., some sort of error arises if any argument is not a thunk. However, for present
purposes, let us suppose that no procedure ever raises an error.

10

2. Suppose V1 #'If. IT [(conseq)]s1 is defined and = (S2,V2), then:

[(ih test conseq alt)]so = (S2,V2) .

Otherwise, [(ih test conseq al t)]so is undefined.

3. Suppose V1 ='If. IT [(alt)]s1 is defined and = (S2,V2), then:

[(ih test conseq alt)]so = (S2' V2).

Otherwise, [(ih test conseq alt)]so is undefined.

By contrast, on the "total functions with unspecified values" approach, we
cannot represent the semantics of if* properly.

To prove this, consider the case in which [(test)]so is intuitively unde
fined. In each model, it must be supplied with some arbitrary value (Sl. V1).

Unfortunately, in any particular model V1 is either' If or not. IT not, then
in this ' model:

3s1 • [(ih test conseq alt)]so = [(conseq)]s1.

IT V1 =' If in this model, then

3s1 . [(if* test conseq alt)]so = [(alt)]s1.

Hence, the semantics predicts that the disjunction of these two cases is valid.
However, this is not correct. For instance, suppose both conseq and al t
are:

(lambda () 1).

Then it would follow that [(if* test conseq al t)]so = 1 holds true in
every model. But this is absurd, because (if* test conseq alt) is non
terminating when started in So, so that its denotation may be arbitrarily
chosen.

Conclusion. These examples suggest that, if partial functions are to be
avoided, it may be preferable to add a new "bottom element," or possibly
several new "erroneous elements," to the models under consideration. Then,
rather than "completing" a partial function by giving it unspecified values
outside its natural domain, one would complete it by giving it these new
values. However, in the case where only one new "bottom element" is added,

11

there is a simple translation between this and the direct approach. Moreover,
the latter has the advantage that a theorem prover can "know how to reason"
with the "bottom element," and can thus hide some of the routine checking
that expressions are defined/non-bottom from the user.

For these reasons, we advocate research on effective theorem proving
in logics supporting partial functions along the lines we have termed the
"direct approach." However, because this is not compatible with much
valuable current work, we also present the more traditional logics FQ and
ST. Our goal in defining them was to do so in such a way that verification
environments using these logics would be able to migrate to PF, our logic
with partial functions, as theorem proving systems supporting it develop
toward maturity.

2.2 Overlapping Sorts

Our second question concerns sorts: should we regard them as being disjoint,
or should they be allowed to overlap? By a sort we mean a set of objects
that are treated as belonging to "a single kind" for the purposes of some
theory. Natural numbers, real numbers, and real functions are some familiar
examples of sets of objects that are frequently treated as sorts. Similarly,
the data types of programming languages will be regarded as sorts.

The question whether sorts should be allowed to overlap is tied to the
treatment of partial functions. For instance, consider the natural numbers
N and the real numbers R. The untutored view is that N is included in
R. Now the function gcd makes sense only on natural numbers (or integers,
but in any case not outside the integers). If i,j are variables ranging over
N, then all is well and good: gcd(i,j) should be well-defined. But what
about the variables x, y, ranging over R? If the logic does not support
undefined terms, then the expression gcd(x, y) is undesirable: it is almost
always undefined. However, if N is included in R, then we cannot reasonably
prohibit expressions of the form gcd(s, t) where sand t behave syntactically
as real valued terms. For, their values may in fact be in N, so that gcd(s, t)
is well-defined. For this reason, we allow overlapping sorts in PF, which is
suited to reasoning with possibly undefined terms. On the other hand, in
FQ and ST, we take the view that sorts do not overlap.

Very frequently, when two sorts (1 and T overlap, one, say (T, is actually
included within the other. In this situation, we expect a theorem prover for
PF to be able to recognize efficiently that if a term is defined with a value of
sort (T, then it also has a value of sort T. It was easy to ensure this in 1M PS.

12

However, ther are also cases where two sorts may overlap, although neither
is a subsort of the other. Consider a language with a basic sort set. That
is, sets are among the individuals treated by this language. Moreover, some
(but not all) sets represent partial functions from sets to sets. However, not
all partial functions from sets to sets are represented by sets. Suppose we
think of the "representation" relation here as being simply identity, as there
is no reason why we should not. Then the sorts set and set-set overlap,
although neither is contained in the other.

Two fine points should be added. First, we do not in fact restrict the
semantics of FQ and ST to avoid overlapping sorts. Instead, we have ar
ranged their syntax so that assertions that would be sensitive to whether
sorts really overlap or not simply do not occur in the logics. This point is
discussed in detail in Section 4.5.1. Second, when a user wants to discuss
the relation between Nand R in FQ and ST, he can do so using coercion
functions. A coercion function between two sorts is a one-one function de
fined on the included sort, taking values in the other. By defining a suitable
coercion, statements about the relations between, say, the multiplication
operations in Nand R can be expressed. The relations between sorts are
more cumbersome to express in these logics when there is merely an overlap
between them, without either including the other. However, they require no
special machinery in PF.

2.3 Functions and Operators on Functions

We refer to a sort T as a higher sort if it consists of the n-ary functions
taking arguments in sorts (Tll ••. , (1n (its domain sorts) and yielding values
in a sort (To (its range sort). A higher-order operator (or an operator on
functions) is a function one of whose domain sorts is itself a higher sort.

We will argue that functions and operators on them are ubiquitous, not
only in mathematics, but also in computing. For this reason, it is essen
tial to be able to construct expressions referring to functions easily, and to
be able to apply complex expressions built using operators on functions.
The familiar A constructor serves this purpose. Our experience with IMPS

indicates that it is no harder to simplify expressions involving the A con
structor than expressions involving other variable-binding constructors. For
this reason, we would conclude that a theorem-proving system that handles
nested quantification in the straightforward way should extend to handle
the A constructor. System that eliminate nested quantification in favor of
Skolem-functions, however, may not be extensible to ST. In essence, we

13

have included the logic FQ, which lacks the>. constructor, so that theorem
provers lacking genuine variable-binding constructors would be able to sup
port a form of the interface logic. The decision is reinforced by the fact that
some approaches to verification, such as Hoare logics (or veGs) for certain
programming languages, do not make use of expressions of higher types.

We can point to a large class of higher-order operators; to use them
effectively, we naturally need to be able to refer to the objects we want to
apply them to. Examples would include:

• Sum and product: The operators E and IT have several usages. Ac
cording to one usage, they apply to a predicate (e.g. of integers) and
a function (taking integer arguments). The value is determined by
summing (or multiplying) the values of the function for all arguments
passing the test expressed in the predicate. For instance:

>.n. II >.j . j.
).j . l~j~n

This expression defines the factorial function. In this usage, the value
is undefined if infinitely many j satisfy the predicate. According to
another usage (most commonly involving E), the operators take a
single argument, a sequence (e.g. of reals). In this usage, Ef is the
limit, as n increases, ofthe partial sums f(O)+·· ·+ fen). It can thus
be defined in terms of limit and the first usage of E.

• Limit, differentiation and integration.

• In computing, list-oriented and stream-oriented [1] mapping functions.

• Higher order procedures, such as those in ML [16], or operations, such
as those in T [26] , which are applicable to procedures and other oper
ations.

• Fixed point and direct limit operations prevalent in denotational se
mantics.

A logic that is intended to be useful for sophisticated reasoning in math
ematics and the theory of computation needs to be able to express these
operators. Moreover, it needs a uniform and clear way to build up expres
sions for the higher-type objects to which they apply. While>. is by no means
the only way to express these objects, it is familiar and comprehensible, and,
in our experience, not difficult to reason with.

14

What is involved in reasoning with expressions constructed with the >.
operator? In addition to the need to be able to apply ,a-conversion (the
rule normally stated as (>.x . t)t' = t[t'lx]), and to recognize when two
expressions differ by a-conversion, it is also important to be able to simplify
the insides of >. expressions. We have found, in working with IMPS, that
simplifying the body of a >. expression presents no essential problem. The
main requirement is the following. When v is a variable bound by the >.
operator, then information about v, known in the context of simplification,
must not be applied to occurrences of v inside the >. expression. But this
requirement that the scope of bound variables must be respected is exactly
the same requirement that must be observed for any other variable-binding
operator, such as V or 3.

2.4 Simplification and Decision Procedures

We have discussed a number of desirable properties of an interface logic.
However, do these properties make its use in a verification system imprac
tical? One of the features that we expect from a verification system is that
it recognize simple inferences that depend for their validity on the theory
in use. Reasoning with partial functions or higher order functions is more
delicate, possibly even to the extent that it might be unreasonable to expect
verification systems to incorporate these features in the foreseeable future.

In order to test these ideas we attempted to provide our testbed IMPS

system with a class of procedures that can carry out theory-dependent in
ferences for the user ; we have called these procedures tactics. A particularly
important tactic is simplification; this tactic serves to "tidy up" both the
logical and term structure of an expression. One of the main contributions
here has been the way we handle possibly undefined expressions which might
cancel out in the course of a simplification. Despite this apparently stringent
restriction, the IMPS simplifier is able to get its job done quickly and effec
tively. It is no surprise that allowing partial functions in theories introduces
a difficult problem of checking definedness of expressions. However, one of
the significant lessons that we have learned from the IMPS testbed is that
these difficulties can be overcome.

In part, the success we are reporting is a result of the specific design
of the IMPS system, mainly the way algebraic simplification is organized
and the way theory-specific information concerning definedness is handled.
Consequently, our conclusions may not be applicable to systems with fun
damentally different designs.

15

However, a broadly relevant contribution is the design of the IMPS simpli
fier itself, which is essentially vocabulary independent. This means that the
same simplification procedures can be used for theories with (e.g.) ring-like
operations independently of the underlying language. This is clearly useful
in situations (such as those that motivate the need for . an interface logic
in the first place) in which the exact structure of the language to be dealt
with by the simplifier is not known beforehand. For additional information,
consult [11].

2.5 Polymorphism or Theory Interpretation

The logics in this report do not contain any explicit mechanism for defin
ing theories with polymorphic sortings and expressions. Our opinion is that
it will not be necessary to do so, and that the version presented here will
be adequate. We believe that the mechanism of theory interpretation, long
advocated by Goguen in the case of programming languages [4, 12, 13], and
examined by us in [9], is a theoretically appealing and practically efficient
alternative. Moreover, we have implemented a mechanism for theory inter
pretation in IMPS, our testbed system, and find it to be highly effective.

In essence, this problem arises out of the need to have generic theories
and specifications. Consider the datatype "list of integers". It is easy to
specify the behavior of the associated primitives, such as cons, car, and
cdr in Lisp terminology. However, the datatype "list of floating-point num
bers" is just the same, except that the elements of the list are floating-point
numbers rather than integers. Thus , there is a need to be able to construct
a datatype "list of elements", where elements form some other datatype; it
will be determined later which other datatypes will be in question.

This situation is extremely common; examples include the relation be
tween:

• graphs and their vertices;

• matrices and the members of the ring that supplies their elements;

• statements about limits and continuity, and the underlying topological
space.

In addition, polymorphism within a single theory is also familiar; think of
the predicate "is a total function," which can be applied in a uniform way
to functions of many sortings within a theory.

16

One approach, developed in ML and proposals for specifications based on
ML [16], is to designate certain sortings as variable sortings or polymorphic
sortings. An "instantiation" of the theory allows one to specify concrete
sortings to associate with the variables. The same polymorphic theory can
be used in many instantiations, and expressions of the theory with polymor
phic types can be instantiated by other expressions of the same theory to
support polymorphism within a single theory.

An alternative, which we find simpler and consider to be adequate, is to
allow theories to have only "straightforward" sortings. To apply the theory
to instantiations, a map is set up from it, as the source theory, into a second
theory. This map translates formulas in the source theory to formulas in
the target theory. The requirement on a theory interpretation is that the
image of any axiom, under the translation, should be a theorem of the target
theory.

Typically, the translation assigns "concrete meanings" in a different vo
cabulary to a few primitives of the source theory; the remainder of the
source theory is then transferred unchanged. The supplementary vocabu
lary normally belongs to the theory of a concrete data type, so we will call
the theory that supplies it the concrete theory. When there is no conflict of
vocabulary, the target theory can be constructed directly from the source
theory and the concrete theory. The language of the target theory is formed
by adding the vocabulary of the concrete theory to that part of the vocabu
lary of the source theory that is transferred unchanged. The axioms of the
target theory are those of the concrete theory together with the translations
of the axioms of the source theory. When a theory is intended to be used
as the source of interpretations, we call it a "generic theory." However, we
emphasize that generic theories are not a special kind of theory; they are
just intended to be used in special way.

One implementation idea serves to make interpretations more effective.
There are a number of generic theories that are applicable to every concrete
theory, and typically in very many ways . For instance, consider the theory
of pairs with first element chosen from sort (7 and second element chosen
from sort (7'. There are a few basic facts about pairs that should be chosen
once and for all , and should then be available to be applied to any (J and
(7'. It might seem cumbrous to have to define vocabulary and justify an
interpretation for every pair of sorts that one might want to pair together.
However, as is well known [15], pairs can be represented in simple type
theory in a purely logical form. The pair of a of sort (J and a b of sort (J'

17

can be identified with the predicate pair(a,b) defined to be:

AX : (7 y : (7' • X = a /\ y = b.

The first component of such a pair ¢ can then be represented as:

LX' : C1 • 3y' : (7' • ¢ = pair(x' , y').

U sing such ideas, we can represent all the basic operators involving pairs in
pure type theory. Thus, the expressions needed always exist in any concrete
theory. Thus, we may define patterns for expressions. Given two expressions
a and b, the pair pattern chooses appropriately sorted variables x and y, and
builds the A-expression above. N aturaily, it can be arranged that theorems
about generic pairs are available in the course of building up proofs involving
concrete pairs. Similarly, theorems with special forms can be treated as
rewrite rules and installed in a simplifier.

An additional source of a weak polymorphism available in PF derives
from the existence of overlapping sorts. This so-called inclusion polymor
phism [5] is very convenient, as operators can be defined an an inclusive
sort-and theorems proved-and then transferred to other sorts that are
contained within it.

18

Section 3
Syntax and Informal Semantics

Although the syntax has been developed in connection with a Lisp imple
mentation, it is intended to be easy for programs of many kinds to generate,
read, and otherwise manipulate. We will refer to it as an "s-expression syn
tax," because expressions have the appearance of nested lists, which in Lisp
parlance are referred to as s-expressions. Also as in Lisp, all operators are
placed in prefix position.

It should be emphasized from the start that the s-expression syntax
is intended to be used as a medium of communication between programs.
Thus, we do not consider it an objection that this syntax is not aesthetically
pleasing to certain tastes. On the contrary, one advantage of an s-expression
syntax of the kind we will describe is that it is easy to write programs that
translate between it and "user-oriented syntaxes."

We have in fact implemented procedures to translate between this syntax
and a more familiar mathematical syntax for expressions, which we call
a "string syntax." The string syntax supports infix and prefix operators,
and settable precedence relations between different operators. However, it
represents less than half a week's labor.

We have also implemented procedures to generate 'lEX output from ex
pressions in the s-expression syntax. Using these procedures, mathemati
cally meaningful expressions can be viewed on a bit-mapped screen in the
form that a mathematician would most normally expect to see them. The
'lEX interface represents a similarly small investment of effort. Thus we
would argue that the s-expression syntax represents a valuable "canonical
formj" a variety of pleasing alternative forms can easily be generated from
it or reduced to it.

Indeed, in the following sections we do not attempt to express all formu
las in the canonical s-expression syntax. Whenever readability is a primary
concern, we use familiar conventions to make expressions more compact.
However, the rules for converting between our informal "user-oriented syn
tax" and the official s-expression syntax are very simple.

We assume that implementations will be able to group characters into
lexical units in a reasonable way. In what follows, we shall use the word
symbol to refer to a string of characters making up a lexical item used as
name of a constant or variable. A string of characters that represents a

19

number will be called a numeral.
Logical expressions are to be represented in the form of s-expressions,

where the class of s-expression is defined inductively:

• A symbol or a numeral is all s-expression;

• If 81, .. • 8 n (where 0 :S n) are all s-expressions, then so is the re
sult of enclosing them within parentheses, separated by whitespace:
(Sl·· .sn).

The syntax must represent items of four different kinds:

• sortings, indicating the type of values that expressions have;

• languages, indicating the vocabulary of a formal language, and the
sortings of the constants of the languagej

• variable-lists, declaring a sequence of variables and indicating their
sortings, which are used to allow a variable name to appear in formulas
without an explicit indication of its sortingj

• expressions, the meaningful linguistic units in the logic: they may
be constants or variables, or else compound expressions built up by
constructors, the logical constants of the systemj and

3.1 Types and Sorts

A type is a non-empty set of objects, which are treated as being "all of
a kind" in a particular theory. In FQ and ST, the set of objects that a
variable ranges over is always a type. In PF, a type may have smaller sets
within it, called sorts, that are also of special significance, and have variables
ranging over them. A syntactic type or sorting will be a syntactic form that
specifies either a type or a sort. We will try to use the words type, sort,
syntactic type, and sorting consistently. The former two will always denote
something semantic, namely a set or "domainj" the last two will always
denote something syntactic, which is used to specify a domain.

3.1.1 Type Structures

The types available in ST form a structure familiar from simple type theories
[6], except that we allow any number of base types of individuals. The types
available in FQ are built up in the same way, except that only the lowest

20

layers are available. PF will make use of these type structures, adding
additional ingredients to accomodate sorts properly included in types.

A type structure consists of three main ingredients.

1. A finite number of base types of individuals. These will be considered
the domains of the structure.

2. The set of truth values {T, F}, which we shall refer to as prop.

3. The function types of the form 'To, •.. , 'Tn -1 -+ 'Tn, whenever all of the
'Ti are types. This is construed as the set of n-ary functions taking
arguments from 'To X ••• X 'Tn-1 and yielding values in 'Tn.

A type is a base type if it is either prop or else one of the base types of
individuals. It is said to be of kind prop only if it is propj otherwise it is
said to be of kind indo A function type is said to be of kind ind or prop,
depending as the range type 'Tn is of kind ind or prop. We sometimes use
the phrase "prop-sorted" to mean "of kind prop".

In FQ and ST, the function types are assumed to contain all total func
tions from their domains to their range. In PF, a function type of kind
ind contains all partial functions from its domains to its range (including
those functions that happen to be total). However a function type of kind
prop contains only the total functions from its domains to its range. We
believe that it is very difficult to preserve laws similar to the familiar rules
of classical logic if (properly) partial functions are included in the function
types of kind prop [10].

3.1.2 Sort Structures

Sorts (that is, subtypes) in PF are organized into sort structures. A sort
structure consists of a type structure together with:

1. A finite set of named sorts, each a non-empty subset of a designated
type in the type structurej

2. The function sorts of the form 0'0, •.• , O'n-1 -+ O'n, whenever all of the
O'i are sorts.

As above, a function sort of kind ind contains all partial functions from its
domains to its range (including those functions that happen to be total),
while a function sort of kind prop contains only the total functions from
its domains to its range. Thus in particular, suppose 0'0 is a subsort of O'h,

21

f : (To - (T1, and a E (Tb \ (To. Then f(a) is undefined if (Tl is of kind ind
(see Section 4.4 for the treatment of the case in which (Tl is of kind prop).

If (T is a sort, we define the type of (T as follows:

1. If (T is a type then the type of (T is (T;

2. If (T is a named sort, then its type is the designated type in which it
is included;

3. If (T is a function sort (To, ••• , (Tn-l - (Tn, and the type of (Ti is Ti for
each i, then the type of (T is TO, ••• , Tn -l - Tn.

We write T((J) for the type of (T.

3.2 Specifying Sortings

As a sort is either a type (or named sort) or a function sort, a linguistic
entity representing a sort-which we will refer to as a sorting-will be either
a symbol or a list representing domains and range. Thus the syntactically
atomic sortings are symbols such as RR, ind, or prop. We shall call the
sortings representing function sorts higher sortings. They have the form:

(so .. 'Sn Sn+1)

This represents the sort of functions taking arguments from the sorts rep
resented by So ••• Sn and yielding values in the sort represented by Sn+1.

In this we assume that 0 ~ n. The syntax makes no provision for O-ary
functions: we see no reason to introduce a O-ary function with a value in
sort (T as an object distinct from its sole value.

To specify a particular type structure for some formal theory, we must
give a finite number of symbols to refer to base types of individuals. The
type symbol prop is always reserved for the type of propositions, containing
just the values truth and falsehood.

For PF, to introduce the syntactic machinery needed for a formal theory
we must also specify a sort structure. In specifying formal languages and
reasoning about sort-inclusion, we have found it valuable to have syntacti
cally fixed information about the order of various sorts within a type (under
inclusion). Thus, we associate an enclosing sort ofthe same type with each
named sort. The enclosing sort is required to include the named sort.

To specify sorts and their relations of inclusion, we introduce a sequence
of pairs of the form:

22

(named_sorting enclosing_sorting).

Each named_sorting is a symbol, and each enclosing_sorting is a sorting, i.e.,
a type symbol, a previously introduced atomic sorting or else a higher sorting
in which only previously introduced atomic sortings appear. Naturally, the
type associated with a named sorting is the type associated with its enclosing
sorting.

Since the enclosing sort must have been previously introduced, there can
be no cycles, and the relation generates a finite partial ordering. We extend
this partial ordering to function sorts by stipulating that

(T1," • ,(Tn - (To is below

if m = n and for each i where 0 ~ i ~ n, (Ti is below (Ti. If two sorts have
the same type, then that type is an upper bound for them in this ordering.
Moreover, because each atomic sort has a single enclosing sort, an inductive
argument shows that any two sorts of the same type have a least upper
bound.

We divide expressions into a few different categories depending on their
kind and height:

• An expression having lowest syntactic type is a formula if it is of kind
prop and a term otherwise;

• An expression of higher syntactic type is a predicator if it is of kind
prop and a function otherwise;

• A predicator with range sorting prop is also called a predicate.

Note that by a predicate we do not necessarily mean a single formal symbol,
a constant; on the contrary, we will also call complex expressions of this
kind predicates.

3.3 Languages

Languages are of two species, namely basic languages and compound lan
guages. Moreover, basic languages are divided into two varieties, namely
self-extending languages and non-self-extending languages. For the moment,
we will ignore self-extending languages.

A (non-self-extending) basic language has a name, and declares a number
of base sorts and constants. A compound language cites one or more already
defined languages to be included as a starting-point, and then declares a
number of additional base sorts and constants.

23

Thus, we need clauses of four kinds to express language declarations.

• An embedded-language clause has the form (embedded-languages
language-name1 .. . language-nameN), where each language-name is
a symbol.

• A base-types clause has the form (base-types type-namel ... type
nameN), where each type-name is a symbol.

• A named-sorts clause has the form (named-sorts (sort-namel
enclosing-sortl) ... (sort-nameN enclosing-sortN)) where each sort
name is a symbol and each enclosing-sort is a sorting containing only
prop, ind (in the case of PF), and previously introduced type and
sort names.

• A constant clause has the form (constants (constant-name1 sort
ingJ) ... (constant-nameN sortingN)), where again all of the
constant-names are symbols and the sortings are sortings.

A language declaration for a non-self-extending language then has the form
(language-name clauses), where language-name is a symbol, which will serve
as a name for the language being declared, and clauses is a set of embedded
language, sort, and constant clauses, containing at most one of each.

The language thus declared has, as its set of sorting symbols, the union
of those in all embedded languages, together with those declared in the sort
clause and prop. The set of constants consists of all those in any embedded
language, together with those declared in the constant clause. It is an error
for the same symbol name to appear as a constant with two different sortings.

Self-extending languages are an attempt to support numerical types
smoothly. The problem with numerical types-such as, say, the integers,
or the integers mod 61, or the 3 X 4 matrices of reals-is that there are a
large (or infinite) number of constants in the language. A language for the
integers mod 61 should be able to read the constant 67 mod 61, or print it if
it is generated in the course of simplification. However, the specifier cannot
be expected to declare all of these constants at the time that he introduces
the language. What he can do is to associate a numerical type with a base
sorting. Whenever the implementation reads anew, undeclared token, the
token is checked against the numerical types. If it satisfies one, then a new
constant having the corresponding sorting is created.

Although we have used the notion of a numerical type, but there is no
unique meaning in common currency. For our purposes, we will let the

24

exact meaning be determined by the various implementations. All that
is needed now is that every numerical type in the relevant sense should
be denoted by some symbol. If the implementation reads a token that
would normally generate a value of that type, as for instance a normal Lisp
system, reading the token 12/56, would generate a rational number, then
the token is associated with the numerical type rational. For instance, if
we stipulate the association «non-negative-integer NN) (integer JJ)
(rational QQ)) , then a new constant written -12 will automatically be
read into sort JJ, while 12/56 will be read into sort QQ.

A self-extending-language clause has the form (extensible (num-typel
sortingJ) ... (num-typeN sortingN)). All of the num-types and sortings
are assumed to be symbols.

A language declaration for a self-extending language then has the form
(language-name clauses), where language-name is a symbol, which will
serve as a name for the language being declared, and clauses is a set of
self-extending-Ianguage, sort, and constant clauses, containing at most one
of each.

Self-extending languages never have embedded languages. Instead, we
require that the self-extending part of a language be declared as a separate
unit, which can then be included with other languages of any kind in further
languages. This convention does not reduce the power of the self-extending
language mechanism, and we found that it simplified the checking done by
the implementation when languages are to be declared.

Any language declaration as defined above is acceptable for ST and PF.
A language declaration is acceptable for FQ if the sorting associated with
each constant is either a base sorting or else a list of base sortings. Nested
sortings are not permitted in FQ.

3.4 Expressions and Variable Lists

Expressions are built up from constants and variables by constructors. Con
stants are determined by declaring a language, and language declaration
allows us to determine the sorting of any symbol serving as a constant. As
to variables, we require that a variable have two attributes, a name, repre
sented by a symbol and a sorting. A single variable occurs at two different
occurrences in an expression if and only if the symbol is the same and the
sorting is the same. But how is the sorting associated with a variable name
at some occurrence in a formula to be indica.ted?

It would be too restrictive, and ultimately unworkable, to have to state

25

the sortings associated with all variable names once and for all when a lan
guage is declared. For instance, many basic properties of logic depend on
the fact that there are available an unbounded number of distinct variables
of each sorting. One solution to the problem is to display, at every occur
rence of a variable, not only its name but its sorting also. However, this
makes formulas too unwieldy in practice. We will in fact choose to do it by
associating the variable names with sortings in a structure we call a variable
list at the start of a relevant syntactic unit. However, we will introduce
our syntax for variable lists in Section 3.4.2. Until then, we will represent
variables and their sortings in an explicit form. Thus, we will write:

[sorting nameJ

for the variable with name name and sorting sorting. For instance, a variable
named f intended to range over real functions will be written:

[err rr) f].

Similarly, when we need to present a list of variables-for instance, the list
of variables bound by a quantifier or by >.-we will present it simply as a
list of variables with explicit sortings. An example would be:

(lambda ([(rr rr) fJ err xJ)
(apply-operator [err rr) fJ err x]»

This way of associating sortings and variable names should be regarded as an
abstract syntax, and the syntax of variable lists introduced in Section 3.4.2
as a corresponding concrete syntax. We will show in Section 3.4.11 how to
eliminate the concrete syntax in favor of the abstract syntax.

Constructors are the recursively applicable items used to build complex
expressions. They serve to represent the logical connectives. Examples of
constructors include equality, the propositional connectives, and the quanti
fiers. Another important constructor is apply-operator. It serves to build
up "applications," formed by applying an operator--either a function or
a predicator-to arguments. As an example of a compound expression in
PF, we would offer the equation expressing the core of the binomial theo
rem; formatted automatically using 1M PS facility for 'lEX typesetting, this
expression reads:

m

with m,b,a: (a+b)m = Lcomb(m,k).am
-

k ·bk•

k=O

26

(= (apply-operator - (apply-operator + [rr aJ err bJ) [zz mJ)
(apply-operator
sum 0 [zz mJ
(lambda ([zz kJ)

(apply-operator

*
(apply-operator

*
(apply-operator comb [zz mJ [zz kJ)
(apply-operator - err aJ

(apply-operator sub [zz mJ [zz kJ»)
(apply-operator - [rr bJ [zz kJ»»)

Figure 1: The Binomial Equation with Explicit Variable Sortings

This equation is valid only under the assumptions that a and b are non-zero,
and m is positive. In the s-expression syntax with explicit variable sortings
at every occurrence, this has the form given in Figure 1. The constructors
appearing here, besides apply-operator, are =, lambda, and and. The
constants, which in this case belong to a language for real arithmetic, are
0, +, *, -, <=, and sum. This last is a higher order operator of sorting (zz
zz (zz rr) rr). That is, two integers i and j, serving as lower and upper
bounds, and a function f from integers to reals, it returns a real number
as value when defined. The value is intended to be the sum of the values
f(k) for all values k such that i ~ k ~ j. The cumbrousness of this example
will also make clear the desirability of avoiding explicit sortings for every
occurrence of variables; in the somewhat more compact notation that will
be introduced in Section 3.4.2, this equation reads as given in Figure 2.
However, for the purposes of defining the syntax of the interface logic, it
will be best to start with the most explicit form, in which the sorting of
each variable is explicitly presented.

We should emphasize that even in form with implicit sortings, the in
terface logic is by no means compact. However, because it is so simple, it
is very easy to write programs that manipulate it, for instance programs
to print and parse formulas in appealing syntaxes. The IMPS system has
two separate parsers and three printers. The user can switch between them
with a single command, even while in the middle of a proof. Hence, our

27

(with «zz m) (rr b a))
(= (apply-operator - (apply-operator + a b) m)

(apply-operator
sum 0 m
(lambda «zz k))

(appl y-operat~r

*
(apply-operator

*
(apply-operator comb m k)

(apply-operator - a (apply-operator sub m k)))

(apply-operator - b k))))))

Figure 2: The Binomial Equation with Implicit Variable Sortings

conclusion is that the user-interface improves when the kernel of the system
is built around an extremely simple and regular syntax.

The richest system, PF, contains nineteen operators. Of these, three
are concerned with definedness, and therefore have no role in FQ or ST.
Another, the definite description operator iota, could be introduced into
FQ and ST, but its semantics are somewhat irregular in the case where
the definite description is not uniquely satisfied. Hence we will include it
only in PF. Finally, the lambda constructor is used to construct expressions
belonging to higher types. Hence it appears in ST and PF but not in FQ.

The full collection of constructors is presented in Table 1. We have used
the notation aCe) to indicate the sorting of e, when e is an expression, and
T(e) to refer to its type. Except in PF, 0'(e) = T(e).

There is considerable redundancy in this set of constructors. However,
it would be inconvenient to omit any of them. Moreover, implementations
should be structured so that it is easy to add constructors, as there are
various other candidates that might be desirable.

3.4.1 A Type-Checking Algorithm

To summarize the discussion of the previous pages, we present an algorithm
expressed in the Scheme language which, given a well-formed expression, will
return its syntactic type. Given a non-well-formed expression, it will call a

28

II Constructor Sort of Result I Argument Restrictions II
(the-true) prop
(the-false) prop

(and p ... q) prop
(or p ... q) prop

(if-form p q r) prop T(p) = ... = T(q)
(implies p q) prop = T(r) = prop

(iff p q) prop
(not p) prop

(= el e2) prop r(el) = r(e2)
(forall var-list body) prop
(forsome var-list body) prop T(body) = prop
(apply-op 0 al ... aN) range(a(0 » Note 1

(if P c a) lub(a(c),a(a» Note 2

II (lambda var-list body) I Note 3 II
(iota var-list body) a(v)

(iota-p var-list body) a(v) Note 4
(undefined var-list) a(v)
(defined-in el e2) prop r(el) = r(e2)

(is-defined e) prop

Notes:

1. T(0) must be a higher type. The i-th domain of r(0) must equal
r(ai). The name apply-op shortens apply-operator for the sake of
the margins.

2. T(p) must be propj r(c) must equal T(a).

3. If var-list declares variables named VI, •.• , Vn associated, respec
tively, with the sorts aI, ... , O'n, then the sorting of the result is
(al ... an a(body».

4. var-list declares a single variable of the form (v)j for iota-p, v is
required to be of kind prop, while for the other two constructors, it is
required to be of kind indo

5. The constructor lambda belongs only to ST and PF. The constructors
iota, iota-p, undefined, defined-in, and is-defined belong only
toPF.

Table 1: The Constructors of FQ, ST, and PF

29

procedure signal-error on a "message" explaining the problem; the value of
signal-error can be chosen so that its result is a Scheme value distinct from
any possible syntactic type. In practice, one would choose signal-error to
be an escape procedure that would avoid any work attempting to compute
the type of enclosing expressions.

We assume here that there is a procedure language-type-constant
that, when given a language and a formal constant in that language will
return the type of the constant in the language. If its second argument is
not a constant in the language given in the first argument, then it returns the
Scheme false value If. For numerical objects (in self-extending languages),
we need a procedure type-numerical-object. When given a language and
an s-expression, it either returns the type of the numerical object that the
s-expression represents (according to that language), or, if there is none,
calls the signal-error with an appropriate argument.

We also need a procedure sorting->type for use in PF. Given a sorting,
it returns the syntactic type that the sorting is included within. Naturally,
it is the identity on a syntactic type.

(define (typecheck-top sexp language)
(typecheck sexp language (lambda (var-name) 'If»)

(define (typecheck sexp language var-name-typer)
(cond «numerical-object? sexp)

(type-numerical-object language sexp»
«symbol? sexp)

(or (language-type-constant language sexp)
(var-name-typer sexp)
(signal-error
(list
sexp
"symbol neither constant in language
nor typable variable"»»

«pair? sexp)
(typecheck-pair sexp language var-name-typer»

(else
(signal-error
(list
sexp
"sexp neither numerical-object,
symbol nor pair"»»)

30

(define (typecheck-pair sexp language var-name-typer)
(case (car sexp)

«the-true the-false)
(typecheck-truth-value sexp»

«and or)
(typecheck-and-or sexp language var-name-typer»

«if-form)
(typecheck-fixed-Iength-propositional-constructor
sexp
language
var-name-typer
3))

«implies iff)
(typecheck-fixed-length-propositional-constructor
sexp
language
var-name-typer
2))

«not)
(typecheck-fixed-length-propositional-constructor
sexp
language
var-name-typer
1»

«apply-operator)
(typecheck-apply-operator sexp language var-name-typer»

«=)
(typecheck= sexp "language var-name-typer»

«if)
(typecheck-if sexp language var-name-typer»

«forall forsome)
(typecheck-quantifier sexp language var-name-typer»

«lambda)
(typecheck-lambda sexp language var-name-typer»

«iota)
(typecheck-definite-descriptor sexp language

var-name-typer ind»
«iota-p)
(typecheck-definite-descriptor sexp language

31

var-name-typer prop»
«undefined)

(typecheck-undefined sexp language var-name-typer»
«defined-in)
(typecheck-defined-in sexp language var-name-typer»

«is-defined)
(typecheck-is-defined sexp language var-name-typer»

«vith)
(typecheck-vith sexp language var-name-typer»

(else
(signal-error
(list
sexp
"bogus constructor" (car sexp»»»

The individual typechecking procedures for the different contructors are
defined in the appropriate places below.

3.4.2 Variable Lists and Implicit Sortings

As we pointed out at the beginning of Section 3.4, it is preferable not to
represent a variable by the pair consisting of its sorting and its name at every
occurrence. To do so makes formulas unnecessarily cumbersome. Hence
we introduce the notion of a variable list; a variable list "declares" the
sorting to be associated with a collection of variable names in a syntactically
determined stretch.

We define variable lists in two stages:

• A variable sublist is an s-expression of the form:

(sorting VI ••. vn),

where n > 0 and each Vi is a symbol (the name of the corresponding
variable), and sorting is a sorting (which will be associated with the
variable name in the occurrences governed by this variable list).

• A variable list is an s-expression of the form:

(sublistl ... sublistn),

where n may be o. It is required that no v occur twice in the sublists.

32

Thus, we would represent the assertion that for every scalar s and vector
v, there exists a vector v' such that s * v = v' in the form:

(forall «scalar s)(vector v»
(forsome «vector v-prime» (= (* s v) v-prime»).

Similarly, the assertion that for all vectors VI and V2, there exists a vector
V3 such that VI + V2 = V3 would be written in the form:

(forall «vector v_l v_2»
(forsome «vector v_3» (= (+ v_l v_2) v_3»).

A variable list for FQ is a variable list in which the sorting associated
with each variable is either a base sorting or else a list of base sortings.
Nested sortings are not permitted in variable lists for FQ.

In the typechecking algorithm, we will need two procedures to manipu
late variable lists. The first, decode-variable-list, takes two arguments.
Suppose the first argument is a function 9 that, given a variable name,
returns either a syntactic type or else If, and the second argument is a vari
able list l. Then decode-variable-list returns a function which, given a
variable name, again returns either a syntactic type or else If. However, if
the variable name occurs in l, then the syntactic type of the sorting that it
is associated with in l is given. If it does not appear in i, then the value of
9 for that name is returned.

Speaking algorithmically, we define how to augment an association 9
according to a variable list as follows. Suppose 9 is an association of
variable names to sortings, and var-list is a variable list of the form
((SIVn •. • Vl n) ••• (SmVml ••• Vmk)). By the assumption that a variable name
occurs at most once in a variable list, we know that vii = vi'i' => i = i'.
Hence, we can let the augmented association g' be defined as follows:

{

Si if v = vii for some i and j
g'(v) = g(v) if v of vii, and g(v) is a type

If otherwise

In Scheme code we would express this algorithm as follows:

(define (decode-variable-list g var-list)
(lambda (var-name)

(letrec
«loop

33

(lambda (var-list)
(if (null? var-list)

(g var-name)
(let «sub-list (car var-list»)

(if (mamq var-nama (cdr Bub-list»
(sorting->type (car sub-list))
(loop (cdr var-list»»»»

(loop var-list»»

A procedure variable-list->type-list is also needed. When given a
single variable list as argument, it returns the types of the variables declared
in the variable list (listed in the same order).

3.4.3 Truth and Falsehood

In order to ensure that there is a uniform way of referring to the two truth
values in all languages, we introduce the-true and the-false. Because
only constructors are specified by the logic-all constants belong to the indi
vidually specified language-the-true and the-false will be syntactically
null-ary constructors. The result of applying them to no arguments-written
(the-true) and (the-false) are formulas denoting the truth values. An
implementation will normally introduce programming language constants to
refer to these objects; IMPS uses truth and falsehood.

(define (typecheck-truth-value sexp)
(if (null? (cdr sexp»

prop
(signal-error (list sexp "too many components"»»

3.4.4 Propositional Constructors

Six propositional operators are included, namely and, or, if-form, implies,
iff, and not. In these logics, and and or are n-ary, meaning that they takes
as arguments any number offormulas, and return a formula. A formula (and
p q ...) is true if all of p, q, ... are, while (or p q ...) is true if at least
one of them is. The constructor if-form is ternary; it takes a conditional,
a consequent, and a alternative-all formulas. It returns a formula which is
true if and only if either both the conditional and the consequent are true,
or else the conditional is false and the alternative is true. The constructors

34

implies and iff are binary, and not is unary. They have their normal
truth-functional meaning.

(define (typecheck-and-or sexp language var-name-typer)
(if (every?

(lambda (component)
(eq?
prop
(typecheck component language var-name-typer»)

(cdr sexp»
prop
(signal-error (list sexp "non-formula argument"»»

(define (typecheck-fixed-length-propositional-constructor
sexp
language
var-name-typer
Ith)

(if (= (length (cdr sexp» Ith)
(if (every?

(lambda (component)
(eq?
prop
(typecheck component language var-name-typer»)

(cdr sexp»
prop
(signal-error
(list sexp .

"non-formula argument"»)
(signal-error

(list sexp
"vrong number of components"»»

3.4.5 The Apply-Operator Constructor

The apply-operator constructor is used to build a complex expression by
applying an "operator"-that is, either a function or a predicator-to ar
guments. The well-formedness condition for the application depends only
on the syntactic types, not the sortings, of the components. Thus if op is
an expression with sorting (81 .. . Sn8n+l), and e1, ... , en are a sequence

35

of the same number of expressions. Then (apply-operator op argl '"
argN) is a well-formed expression of sorting range if T(ei) = T(Si) for each
t.

In FQ and ST, this is exactly the condition one would expect. In PF
it represents a decision not to use subsorting information to determine well
formedness. Our grounds are that an expression such as gcd(3, (2.2/1.1))
should be defined (and equal to 1) even though a crude syntactic analysis
gives a syntactic sorting of RR rather than ZZ for the subexpression 2.2/1.1.

(define (typecheck-apply-operator sexp

(if

language
var-name-typer)

(= (length operator-type)
(+ (length (cddr sexp» 1»

(let «operator-type

jdon't forget range
jtype is there!

(typecheck (cadr sexp) language var-name-typer»)
(if (every?

(lambda (expected-type argument)
(equal?
expected-type
(typecheck argument language var-name-typer»)

(all-but-last operator-type)
(cddr sexp»)

(last operator-type)
(signal-error
(list sexp

"arg mismatch"»)
(signal-error
(list sexp

"wrong number of args"»»

3.4.6 Equality

Equality (written =) is a constructor taking two arguments . As with the
apply-operator constructor, the condition on the arguments concerns only
their types, which must agree.

(define (typecheck= sexp language var-name-typer)
(if (= (length (cdr sexp» 2)

(if (equal?

36

(typecheck (cadr sexp) language var-name-typer)
(typecheck (caddr sexp) language var-name-typer»

prop
(signal-error
(list sexp

"arg mismatch"»)
(signal-error
(list sexp

"wrong number of args"»»

3.4.7 If

By analogy with the propositional constructor if-form, the logic offers a
constructor if, which builds conditional expressions of any type. It takes
three arguments, the first of which is a formula. The second and third
arguments must be of the same type. In PF, the sorting of the resulting
expression is the least upper bound of the sortings of the second and third
arguments (with respect to the partial ordering defined on page 23). In FQ
and ST the type of the conditional expression is the (common) type of the
second and third arguments.

The value of the expression (if pst) is the value of s if p is true, and
the value t if P is false.

(define (typecheck-if sexp language var-name-typer)
(if (= (length (cdr sexp» 3)

(let «test (cadr sexp»
(conseq (caddr sexp»
(alt (cadddr sexp»)

(let «result-type
(typecheck conseq language var-name-typer»)

(if (and
(equal?
prop
(typecheck test language var-name-typer»

(equal?
result-type
(typecheck alt language var-name-typer»)

result-type
(signal-error

37

(list
sexp
"mistyped components"»»

(signal-error
(list sexp

"wrong number of components"»»)

3.4.8 Variable-Binding Constructors

The variable-binding constructors common to the three logics are forall
and forsome. Each of them requires a list of variables and a formula. These
are called, respectively, the newly bound variables and the body of the
expression. The resulting expression is a formula. In FQ, it is required that
the newly bound variables must have base sortings.

The resulting formulas are true if for every [respectively, at least one]
assignment of values to the newly bound variables, the body is true.

(define (typecheck-quantifier sexp language var-name-typer)
(if (= (length (cdr sexp» 2)

(let «var-list (cadr sexp»
(body (caddr sexp»)

(if (var-list? var-list)
(if (eq? prop

(typecheck
body
language
(decode-variable-list
var-name-typer
var-list»)

prop
(signal-error
(list
sexp
"non-prop body

to quantified expression"»)
(signal-error
(list
sexp
"bad variable-list"»»

38

(signal-error
(list sexp

"wrong number of components"»»

ST and PF also contain the constructor lambda. It requires a variable
list and an expression, which may have any sorting .So. If all of the vari
ables in the variable-list are Vb ••. , Vn , and they appear in that order,
and with sortings S1, ••• , Sn, then the sorting of the resulting expression
is (SI ••• snSO)' The resulting expression denotes the function whose value
for the argument list aI, ... , an is the denotation of the body, under the
assumption that the newly bound variables have the values the values aI,

•.. , an respectively.

(define (typecheck-Iambda sexp language var-name-typer)
(if (= (length (cdr sexp» 2)

(let ((var-list (cadr sexp»
(body (caddr sexp»)

(if (var-list? var-list)
(append
(variable-list->type-list var-list)
(list

(typecheck
body
language
(decode-variable-list
var-name-typer
var-list»))

(signal-error
(list
sexp
"bad variable-list"»»

(signal-error
(list sexp

"wrong number of components"»»

PF contains the definite description operators iota and iota-po These
bind a single variable, which must be of kind ind in the first case and of
kind prop in the second. An expression built using iota is undefined if its
body is not uniquely satisfied. An expression built using iota-p cannot be,

39

bacause it is of kind prop. We stipulate that its value is "false-like" in the
sense defined in Section 4.4.

(define (typecheck-definite-descriptor sexp

(if (= (length (cdr sexp» 2)

(let «var-list (cadr sexp»
(body (caddr sexp»)

(if (var-list? var-list)
(let «type-list

language
var-name-typer
kind)

(variable-list->type-list var-list»)
(if (= (length type-list) 1)

(if (kind-matches? kind (car type-list»
(car type-list)
(s ignal-error
(list sexp

"result of wrong kind"»)
(signal-error
(list sexp

"wrong number of variables"»»
(s ignal-error
(list
sexp
"bad variable-list"»»

(signal-error
(list sexp

"wrong number of components"»»

(define (kind-matches? goal-type result-type)
(if (kind-ind? goal-type)

(kind-ind? result-type)
(kind-prop? result-type»)

3.4.9 Constructors Concerning Definedness

Three constructors deal with definedness, and occur only in PF. They are
is-defined, undefined, and defined-in.

40

The first, is-defined, takes a single term or function as argument. The
result , a formula, is true just in case the expression given as argument has
a value.

(define (typecheck-is-defined sexp language var-name-typer)
(if (= (length (cdr sexp» 1)

(let «ignore
(typecheck (cadr sexp) language var-name-typer»)

prop)
(signal-error
(list sexp

"wrong number of components"»»

The second, undefined, is a variable-binding constructor. As such, it
takes a list of variables containing exactly one variable, but this followed by
no term or function as its body. The identity of the variable is irrelevant,
as the variable occurs only to indicate the relevant sorting.s The resulting
expression has no free variables, and its variable of quantification is its sole
bound variable. It has the syntactic sorting of the variable, but its value
is undefined. This constructor is useful in the course of simplification. For
instance, suppose that t is some complex expression of sorting RR, and it is
known to be defined. We may then want to reduce the quotient tit on the
assumption that t's value is different from O. The undefined constructor
allows us to replace tit with the expression:

(if (not (= to»
1
(undefined ([rr x]»).

It can also be used to state-say, in the definition of a function- that the
function will be undefined whenever some condition is not met.

(define (typecheck-undefined sexp language var-name-typer)
(if (= (length (cdr sexp» 2)

(let «var-list (cadr sexp»)
(if (var-list? var-list)

5The reason we do not simply use the sort itself in the formula is that sorts are not first
class objects in these logics. There are no variables over sorts; sorts cannot be quantified;
there are no functions from sorts to sorts. Hence, we stick to the convention that sorts
also cannot be constituents of expressions.

41

(let «type-list
(variable-list->type-list var-list»)

(if (= (length type-list) 1)

(if (kind-ind? (car type-list»
(car type-list)
(signal-error
(list sexp

"wrong kind variable (ind)"»)
(signal-error
(list sexp

"wrong number of variables"»»
(signal-error
(list
sexp
"bad variable-list"»»

(signal-error
(list sexp

"wrong number of components"»»

The third constructor, defined-in, takes as arguments two expressions
that must agree in type. The identity of the second expression is irrelevant,
and only its syntactic sorting matters. The constructor returns a formula
that is true just in case its first argument is defined and has a value in the
sort denoted by the sorting of its second argument. In IMPS it is customary
to apply this constructor with second argument of the form (undef ined ([s
xJ)), because the latter is an expression of sorting s that is conveniently
constructed and independent of the constants available in any particular
formal theory.

(define (typecheck-defined-in sexp language var-name-typer)
(if (= (length (cdr sexp» 2)

(if

(eq?
(typecheck (cadr sexp) language var-name-typer)
(typecheck (caddr sexp) language var-name-typer»

prop
(signal-error (list sexp "arg mismatch"»)

(s ignal-error
(list sexp

"wrong number of components"»»

42

3.4.10 The With Constructor

We use variable-lists, as described above, to indicate the sortings of free
occurrences of variables as well as bound occurrences of them. In order to
have available an appropriate variable list for a free occurrence of a variable,
we introduce a constructor, with, which takes the same form as the variable
binding operators. However, it does not bind occurrences, nor does it have
any truth-conditional meaning. Its only significance is that it makes the
sortings of variables explicit. Thus, for instance, in the following expression,
which represents the induction schema:

(with «(nn prop) p»
(implies (and (p 0)

(forall «nn n»
(implies (p n) (p (1+ n»»)

(forall «nn n» (p n»».

P is a free variable ranging over sets of natural numers (or, more precisely,
unary predicates of objects of the sort denoted by nn). This is of course
precisely the significance attached to the expression:

(implies (and ([(nn prop) pJ 0)

(forall «nn n»
(implies ([(nn prop) pJ n)

([(nn prop) pJ (1+ n»»)
(forall «nn n» ([(nn prop) pJ n»).

which simply makes explicit that every occurrence of p is to be associated
with the sorting (nn prop). Indeed, this is the only significance of with.

We emphasize that with is not a variable-binding constructor. Occur
rences of the variable names it governs are free if it is the outermost con
structor in an expression. Moreover, it does not introduce a scope in any
logically meaningful sense. For instance, in:

(or (with «prop p» p)
(with «prop p» (not p»).

the variables in the two disjuncts are identical, and it would be unsound to
rename the variable p in one conjunct but not the other.

(define (typecheck-with sexp language var-name-typer)
(if (= (length (cdr sexp» 2)

43

(let «var-1ist (cadr sexp)))
(if (var-1ist? var-1ist)

(typecheck
body
language
(decode-variab1e-1ist var-name-typer var-1ist))

(signal-error
(list sexp "bad variable-list"))))

(signal-error
(list sexp "wrong number of components"))))

3.4.11 Eliminating With and Variable Lists

We give next an algorithm for the process of expanding variable names.
At any stage in the expansion process, there is a current s-expression e,
and an association 9 between variable names and sortings. Initially 9 is
the null function; that is, no variable name is associated with a sorting.
Every time that the algorithm traverses a constructor using a variable list,
it augments the association 9 by decoding the variable list in the sense
defined in Section 3.4.2.

1. If e is a variable name V, and it has sorting 8 in g , then return [8 v].

2. If e is a variable name v , but v has no associated sorting in g, return
v.

3. If e is a constant , return e.

4 . Suppose e is of the form (constr compi '" compN), where constr
is not with or a variable-binding constructor. Let compi, ... , compN be
the results of (recursively) executing the expansion process on compi,
" ., compN respectively, with the association g. Then return (constr
compi ' " compN).

5 . Suppose e is of the form (with var-list body). Let g' be the re
sult of augmenting 9 by decoding the variable/sorting associations in
var-list. Return the result of (recursively) executing the expansion
process on body and g'.

6. Suppose e is of the form (constr var-list body), where constr is
a variable-binding constructor.

44

(a) Let g' be the result of augmenting 9 with the variable/sorting
associations in var-1ist.

(b) Let body is the result of (recursively) executing the expansion
process on body and g'.

(c) Let V be the list of items of the form [Si Vi] where the Vi are the
variable names occurring in var-1ist taken in the same order,
and the Si are the associated sortings.

(d) Return (constr V body).

If e is an expression in the concrete syntax, we say that the sorting of an
occurrence of a variable name V in e is S if s is the sorting associated with that
variable name in the variable list of the smallest enclosing variable-binding
constructor or with constructor whose variable list contains v. Otherwise,
we say that occurrence has undetermined sorting. An expression in the con
crete syntax is readable if no variable occurrence has undetermined sorting.
Clearly, e is readable if and only if case 2 in the expansion algorithm never
occurs. Hence an expression is readable if and only if, in the result of the
expansion process, every variable name has been replaced by a pair [s v].

The with constructor is essentially a tool for allowing us to transform
any expression into a readable expression without changing its intended
meaning; all that is done is to make explicit the intended sortings of the
variable name occurrences in it. As will be seen in Section 4, no semantics are
assigned to the with constructor, because the semantics are assigned to the
abstract syntax in which every occurrence of a variable name is immediately
associated with a sorting.

45

Section 4
Formal Semantics

Suppose that £, is a language whose set of type and sort symbols (ex
clusive of prop) is S = {81,' .. , 8 n }, and whose constants form a set C. We
assume that for any c E C, the sorting of e is given by a function eTj that is,
if e E C, then eT(c) is the sorting of e in £'.

For the purposes of this section, we finesse the issue of self-extending
languages: C may be infinite, and we assume that all potential new constants
are already included in it, with the appropriate sortings. Note, however, that
only finitely many symbols are in C, the remaining members being strings
that are treated (or "read") not as symbols but as numerical objects. We
also assume that all "possible" variables are in use, in the sense that we
will take a variable to be a pair consisting of any symbol not naming a
constant, together with a sorting. As there are infinitely many symbols (of
unrestricted length), this is consonant with the normal approach to logic,
which requires that there be infinitely many variables of each sorting. We
will refer to the set of variables as V. As V is disjoint from C, we may assume
that, for v E V, eT(v) returns the second component of v.

First consider the logics FQ and ST. If C is as described above, then
a frame for C is a type structure together with a map from S to the basic
types of individuals. We can write a frame for these logics as an indexed
family of the non-empty sets of individuals. If F = {Fs : s E S} is a frame
for C, then the interpretation of a sorting S in F, which we will writei:J:s,
is defined by induction on the structure of s:

• I:F(s) = Fs for a base sorting s E S.

• I:F(prop) = {T, F}.

• If s is a higher sorting (S1 .,. Sm Sm+1), then I:F(s) is the set of all
total m-ary functions f : I:F(st) X .,. x I:F(sm) -+ I:F(sm+!)'

In FQ this inductive definition could be "clipped off" after the first induction
step, because every variable or constant has a sorting that is either a base
sorting or else a list of base sortings. In ST, all the levels are used. We
do not require that the base sortings for a frame in these logics be disjoint.
That would be unnecessary, because the syntax of the logics prevents us

46

from expressing any formula that would be sensitive to whether sorts are
disjoint or not. We will make this claim more precise below in Section 4.5.1.

Turning next to PF, we again let C be a language with type symbols
(exclusive of prop) S = {St, ... ,8n }, and named sorts S' = {8n +!, ... ,8k}'
A frame for C is a family F = {Fs : 8 E SUS'} of non-empty sets indexed
by SuS'. 1:J:-(8) is again defined by induction on the structure of 8.

• i:J:(8) = Fs for a type symbol or named sort 8 E SuS'.

• l.:F-(prop) = {T, F}.

• Suppose s is a higher sorting (S1 ... Sm Sm+1), and Sm+1 is not prop
sorted. Then l:J:(s) is the set of all partial (and total) m-ary functions:

• Suppose s is a higher sorting (S1 ... Sm sm+!), and sm+! is prop
sorted. Then IF(s) is the set of all total m-ary functions:

It is required here that if Si is a named sort with some sorting S as its
enclosing sort, then I:F(si) ~ IF(s), From this it follows that if t is the
syntactic type of any sorting s, then I:F(s) ~ I:F(t).

4.1 Structures

A structure for the language £, consists of a frame for the language, which
serves to interpret the sor.tings of £', together with an association between
the constants of C and objects in the frame. The definition is uniform, and
does not need to be stated independently for PF. However, a structure for
C incorporates a frame for £', so there is a hidden dependency on the choice
of logical system.

When C is a language as described at the beginning of this section,
we define an C-structure .A = (:F,Ie) to be a frame for £, together with a
function defined on C. The only requirement on A is that Ie take values
in the range of IF in a way consistent with I:F's treatment of sortings. In
particular, for all e E C, Ie(e) E IF(O'(C)). If the underlying logic is PF,
then the values of Ie may be partial functionsj however, Ie is not a partial
function, because Ie(e) is always some object in the frame F .

47

We will also need the notion of a variable assignment, which is a total
function a mapping the variables V into F such that 0:(v) E 1.1"(0'(v)). We
will use Greek letters from the beginning of the alphabet to refer to variable
assignments. IT V C V, then we use the relation a"'vf3 to mean that v ~ V
implies a(v) = f3(v). If v E V, then O:"'vf3 means O:""{v}f3.

In the next three subsections, we will give the clauses in the definitions
of denotation and satisfaction that apply to the three logics. For a given
A and 0:, this means extending Ie to a function I that is applicable to all
expressions. In PF, this function is not a total function, but is defined for a
particular expression just in case that expression has a denotation. However,
I is always defined for variables, constants, and expressions of kind prop.

We will follow standard terminology in saying that a formula <p is valid in
a structure A (written A 1== 4» if, for every variable assignment 0:, IA (a, 4» =
T. The formula <p is valid (written F <p) if it is valid in every structure A.
A structure satisfies a theory r (written A F r) if every formula (axiom)
of the theory is valid in the structure. If r is a set of formulas and <p is a
formula, then we say that <p is a semantic consequence of r just in case, for
all A, A 1== r implies A F </>.

We must also ensure that there is a sorting associated with every occur
rence of a variable name in an expression to be interpreted by the function I.
This would be problematic if were we genuinely interested in expressions in
the concrete syntax that are not readable in the sense given in Section 3.4.1l.
However, our real concern is only with expressions where no variable occur
rence has undetermined sorting. To simplify the semantic definition, we will
work directly with expressions in the abstract syntax described in Section 3.
Thus we shall assume that there are no with-constructors in an expression
to which a denotation is being ascribed. In addition, in the first position
after a variable-binding constructor, we will always find a list of pairs of the
form [5 v]. Finally, each variable occurrence will have this explicit form. We
shall call a pair [s v] a "decorated" variable.

Thus, we regard variable lists, with their specification of sorting, and
with constructors, as being "mere syntax," to be removed before formal
semantics are given for a more abstract syntax.

4.2 Denotation and Satisfaction for FQ

Suppose that £ is a language for FQ, A is an C-structure, and 0: is a variable
assignment. Let u be extended so that for any expression e in C, u(e) is the
sorting of e in C. We proceed to define a function I(a, e) extending Ie and

48

0: to all expressions e, in such a way that I(a,e) E I.:F(a(e)). 1(0:, e) defines
the denotation of e (or truth value of e if e is a formula), relative to A. The
definition is an induction on the structure of the expression e. The relation
"'v is used to handle variable-binding operators; this was an innovation of
Tarski's.

The interpretation of variables and constants is determined directly from
0: and A. IT [v s] is an occurrence of the variable named v with associated
sorting 5, then 1(0:, [v 5]) = o:([v s]). Similarly, if e E C is a constant of C,
then 1(0:, c) = Ide).

4.2.1 Truth, Falsehood, and the Propositional Constructors

the-true: I(a, (the-true») = T.

the-false: I(a, (the-false») = F.

and: I(a, (and p q») = T if, for every formula </> among p q,
1(0:,</» = T. Otherwise, its value is F. In particular, I(a, (and») =
T.

or: 1(0:, (or p q») = T if there is at least one formula </> among p
q such that I(a, 4» = T. Otherwise, its value is F. In particular,

1(0:, (or») = F.

implies: I(a, (implies p q») = T if either I(a,p) = For I(o:,q) = T.
Otherwise, its value is F.

iff: I(a, (iff p q») = T if I(a,p) = I(a,q). Otherwise, its value is F.

not: 1(0:, (not p») = T if I(a,p) = F. Otherwise, its value is F.

if-form:

I((. ») {I(o:,q) ifI(a,p)=T
a, l.f-form p q r = I(0:, r) otherwise.

4.2.2 Apply-Operator, Equality, and If

apply-operator: 1(0:, (apply-operator op a1 aN))

= [1(0:, op)](I(0:, al), .. . ,I(0:, aN)).

equality: I(a,(= s t»)=TifI(o:,s)=I(o,t). Otherwise, its value is F.

49

if:

I(a (if s t) = {I(a,S) if I(a,~) = T
,p I(a, t) otherWIse

One comment is in order about apply-operator. Suppose an expres
sion e is of the form (op al ... aN), where op is an operator of sorting
(SI ... SNSO), and al, ... , aN are expressions of sortings SI, ... , SN, respec
tively. Then, inductively, we may suppose that I(a,op) E I.r[(SI ... SNSO)]
and, for each i from 1 to N, I(a, ai) E I:F[Si]. Hence, the denotation of e,
[I(a, op)](I(a, a1), ... , I(a, aN», belongs to the required sort, namely I:F[so].

4.2.3 Variable-Binding Constructors

The clauses for forall and forsome are quite straightforward. In the ab
stract syntax, we may suppose that an expression e having one of these as
its primary constructor has the form:

(constr V ¢»,

where V is a list of decorated variables, and ¢> is the body of the expression.

forall: 1(0:, (foraH V ¢») = T if, for every variable assignment f3 such
that f3"'ya, I({3,¢) = T. Otherwise, its value is F.

forsome: I(a, (forsome V¢») = T if there exists a variable assignment {3
such that (3"'ya and I({3,¢) = T. Otherwise, its value is F.

4.3 ST: The Lambda Constructor

If £, is a language for ST rather than for FQ, then there is one addition
that must be made. We must give a clause defining the semantics for the
constructor lambda, which does not occur in FQ. However, no changes to
the wording of the other clauses are needed. Naturally, the clauses that are
common to FQ and ST cover a much broader class of expressions in ST;
nevertheless, the logical content expressed by the constructors is identical
between the two systems.

In the abstract syntax, we may suppose that an expression e having
lambda as its primary constructor has the form:

(lambda (VI'" Vn) e'),

50

where (VI . .. vn) is a list of (distinct) decorated variables, and e' is the body
of the expression. If each Vi has sorting Si, and if the sorting of e' is So,
then the sorting of e is (SI" .snSO), and its interpretation must be an n-ary
function f of sort:

We define I(a, e) to be a function of that sort as follows. Let a = (all' .. ,an)
be an n-tuple of arguments of appropriate sorts, and let f3a be the variable
assignment such that f3a"'{vl •.... V n }O: and f3a(Vi) = ai.

lambda: I(a,lambda (VI" .Vn) e'»[a] = I(f3a,e').

By the inductive structure of the definition of I, this is always defined and
of sort ho(so).

4.4 Denotation and Satisfaction for PF

Suppose now that C is a language for PF, A is an £,-structure, and a is a
variable assignment. Let a be extended so that for any e in £, a(e) is the
sorting of e in C. We again inductively define a function 1(0:, e) extending Ie
and 0: to include complex expressions e, in such a way that I(a, e) E I:F(q(e»
whenever the former is defined. I(a, e) gives the denotation of e (or truth
value of e if e is a formula), relative to A. Thus, I, regarded as a function
of a and e, may not be a total function. As long as e is not a prop-sorted
expression, there is no need for I(a, e) to yield a value. Indeed, if e results
from applying an operator of kind ind to arguments, and the value of the
operator is a partial function, then I(a, e) will be undefined if the arguments
are not in the domain of. definition. Similarly, the constructor iota may
cause I(a, e) to be undefined.

In PF, an atomic formula is false if any of its immediate components is
undefined. This requirement (in combination with other basic principles like
(3-reduction) leads to a corresponding condition on higher type, prop-sorted
expressions. For instance, consider the complex predicate:

AX : R . X 5: 3/0.

The result of applying this to any argument t must be equivalent to t 5: 3/0,
which is false. Thus, the value of AX: R. X 5: 3/0 is equal to the constant
function >.y : R. F.

51

A similar phenomenon occurs at higher types. If we abstract the relation
::; from the previous example, we get the expression:

>"/: (RR) .>..x: R.x::; 3/0.

This expression must have the same value as the higher typed constant
function:

>"/ : (R R) . >..x : R. F.

These examples motivate the idea of the false-like object of any proposi
tional sort in a frame F, defined inductively. The false-like object belonging
to the sort of propositions is F. If s is a propositional sort with the false-like
object Fs , then the false-like object of sort s' = (81 ... sn8) is the function:

Fs' : Sl X ••• X Sn -+ S

which takes the value Fs for all tuples of arguments. We will also define a set
of expressions of PF which we will also write Fa, where 8 is a prop-sorting;
we use the inductive stipulations:

• Fprop = (the-false).

• PSI .•. 3nSo = >"V1 : 81 ... Vn : 8 n • Fso ' when So is prop-sorted.

The clauses for truth, falsehood, and the propositional constructors are
identical in wording to those given in Section 4.2.1.

4.4.1 Apply-Operator, Equality, and If

Suppose that e is of the form (op al '" aN), where op is an operator of
sorting (81 ., . 8N So); suppose al , ... , aN are expressions, where r(8i) =
r(ai. l(a,op) will yield a value for these arguments only if, for each i,
lea, ai) is defined and belongs to IF(Si). The behavior of I depends on
whether op is prop-sorted. With this in mind, we will divide the clause for
apply-operator into two main cases, each with two subcases:

apply-operator: 1. op is prop-sorted:

(a) Suppose each ai = lea, ai) is defined and belongs to sort 8i.
Then:

1(0, (op al ... aN») = (l(a,op))(at, ... ,aN)'

(b) Otherwise, I(a, (op al aN») = Fao'

52

2. op is not prop-sorted:

(a) Suppose each ai = lea, ai) is defined and belongs to sort 8i,
and suppose that l(a, op) is defined and yields a value for
al, .. . ,aN' Then:

lea, (op al aN») = (l(a,op))(at, ... ,aN).

(b) Otherwise, l(a, (op al aN») is undefined.

equality: lea, (= s t») = T if lea,s) and l(a,t) are both defined, and
they have the same value. Otherwise, its value is F.

if: l(a, (if pst»)

_ {1(a,S) if l(a,p) = T
- l(a,t) if l(a,p) = F

4.4.2 Variable-Binding Constructors

We consider next forall, forsorne, iota, and iota-p, and will turn to
lambda afterwards. The clauses for forall and forsorne are identical to
those in Section 4.2 .

In the abstract syntax, an expression e having one of forall, forsorne,
and iota as its primary constructor has the form:

(constr V </»,

where V is a list of decorated variables, and </> is the body of the expression.
If constr is iota, then V is a singleton (v).

foraH: I(a, (foraH V </>)) = T if, for every variable assignment {3 such
that (3rvya, I({3, </» = T. Otherwise, its value is F.

forsorne: I(a, (forsorne V</>)) = T if there exists a variable assignment {3
such that (3rvya and I({3, </» = T. Otherwise, its value is F.

iota: If there exists a unique variable assignment {3 such that (3"'v Q and
I({3,</» = T, then:

I(a,(iota (v) </>)) = (3(v).

Otherwise I(a, (iota (v) </>)) is undefined.

53

iota-p: If there exists a unique variable assignment f3 such that f3"'-'va and
I(f3, 4» = T, then:

I(a,(iota (v) 4») = f3(v).

Otherwise, if s = IF(a(v», and Fa is the false-like object of the ap
propriate sort, then:

I(a, (iota (v) 4>)) = Fa.

Suppose now that expression e has lambda as its primary constructor, and
is thus of the form:

(lambda (VI ... vn) e'),

where (VI ... vn) is a list of (distinct) decorated variables, and e'is the body
of the expression. If each Vi has sorting Si, and if the sorting of e' is So, then
the sorting of e is (Sl .. . SnSO).

The interpretation of e is an n-ary function f of sort:

where f may be partial if So is of kind indo Again let a = (at, ... , an)
be an n-tuple of arguments of appropriate sorts, and let f3a be the variable
assignment such that f3a"'{vl• V n }a and f3a(Vi) = ai.

lambda: I(a, e)[a] =

{
I(f3a, e') if I(f3a, e') is defined
undefined otherwise

Note that if e' is prop-sorted, I(f3, e') is defined (for all f3). Thus the second
case never occurs, and the denotation of the >.-expression is a total function,
as it should be.

4.4.3 Constructors Concerning Definedness

undefined: l(a, (undefined (v))), is, naturally, undefined. Recall that
this expression is well-formed only if V is of kind indo

is-defined: 1(0, (is-defined e) = T if I(a,e) is defined, and otherwise
is F.

defined-in: l(a, (defined-in el e2) = T if I(a,el) is defined and be
longs to IF(a(e2», and is otherwise F.

54

4.5 Comments

4.5.1 Overlapping Sorts

Although, as we described FQ and ST, overlapping sorts are not envisaged,
we have nevertheless allowed structures for these logics to use frames where
sorts do have non-null intersections. The reason for this is simple: the syntax
of the logics ensures that overlapping sorts have no effect on the truth or
falsehood of sentences.

More precisely, suppose that .A = (:F,Ic), and there are two distinct
sortings that have overlapping interpretations in :F. Let :F' differ from :F in
that, for any sort symbol s,

Ip(s) = {(x, s) : x E IF(s)}.

Now we define a function 7r from :F' to :F by induction on the structure of
sortings. If a(x) is a base sorting s, then x = (y,s), and we define 7r(x) = y.
As for prop, let 7r(T) = T and 7r(F) = F. Otherwise, a(x) is of some
higher sorting SI ... SnSO. Define 7r(x) to be the function that, when applied
to arguments 7r(al), ... ,7r(an), returns 7r(x(at, ... ,an». This stipulation
defines a unique total function, because 7r is a bijection between base sortings
Ip(s) and IF(S), and, moreover, th property of being a bijection between
corresponding sorts is preserved as we ascend the hierarchy of sorts.

Let.A' = (:F', I~), where I~ = 7r- l oIc. Now clearly.A' has no overlapping
sorts.

Moreover, we can see that IA(7r 0 a,e) = 7r(IA,(a,e». It is clear from
the definitions of 7r and .A' that this property holds when e E C, and it is a
triviality when e E V. Thus, we need to verify that it is preserved by each
semantic clause. The most interesting clauses are those for equality and
apply-operator.

If e is of the form tl = t2 in FQ or PF, then tl and t2 are expressions
having some common sorting s. By induction, we may assume that

and

Hence,

55

Moreover, as 7l" is a bijection between Ip(s) and h'(s):

Note that this line of argument breaks down in PF, where tl and t2 may
be of different syntactic sortings. This prevents us from "removing the 7l"S"

from the right hand side of the last formula.
The situation with apply-operator is similar. IT e is the application of

an operator to arguments, then the operator has some sorting (SI ... snSO)
and the ith operator has sorting Si. Thus, the action of 7l" on the interpre
tation of the arguments is consonant with its action on the operator. Here
also the situation is essentially different in PF, because ai need not have Si

as its syntactic sorting.
From IA (7l" 0 0, e) = 7l"(IA'(a, e)), it follows quickly that the truth value

of any sentence is the same in A and A'. For, 7l" is the identity on {T,F},
and, when ¢> is a sentence, I(a, ¢» does not depend on 0. Thus, for any
structure A, there is a corresponding structure A' which satisfies exactly
the same sentences, but any two sorts have null intersection.

4.5.2 Full Semantics and General Semantics

The semantics described in this section is called the full semantics for higher
order logic. Each structure is considered "full" because it contains all possi
ble functions in every functional sort. It has long been known that there can
be no complete deduction procedure relative to this semantics, because the
set of formulas valid in a language [, is not recursively enumerable unless
[, is almost trivial. However, there is an alternative semantics for simple
type theory, due to Henkin, under which a simple deductive apparatus is
complete [20, 10].

To adapt that idea to our context, we modify the definition of a frame
given above. If C is a language, let S be the set consisting of all sortings for
[" instead of simply the set of sorting symbols for £. A general frame for £
will be a family of non-empty sets indexed by S. The inductive definition of
IF used above is now unnecessary, as F is defined directly on higher sort
ings. However, instead, we stipulate that a frame meet two corresponding
conditions:

• F(prop) = {T, F}.

• For the logics FQ and ST, if s is a higher sorting (SI •• • SmSm+1) ' then

56

F(s) ~ the set of all total m-ary functions f : F(SI) X ••• X F(sm) -
F(Sm+l) .

• For the logic PF, if s is a higher sorting (SI .. . smSm+1), then F(s) ~
the set of all partial (and total) m-ary functions f : F(SI) X •.• X

F(sm) -... F(Sm+l).

In the cases of ST and PF, we stipulate that A = (F, Ie) is an interpretation
only if the function f, defined in the clause for 1(0, e), where e is of the form
lambda (VI ••• Vn) e', always exists as a member of F(u(e)). In the case
of FQ, we stipulate that A is an interpretation only if the corresponding
function exists, whenever Vb ••• , Vn are all variables of base sorting, and
comprise all the variables free in e'.

Which semantics is the "right" semantics? We feel strongly that the full
semantics, as presented originally, is the right one to use. We offer three
reasons.

The first reason is defensive. The fact that no proof procedure can be
complete relative to the full semantics does not appear to be a cogent ob
jection. For, even if there exists a complete proof procedure for a logic,
a practically useful theorem prover may prefer an incomplete proof pro
cedure. No piece of software can efficiently derive formulas of unbounded
complexity, and a theoretically incomplete method may have a wider range
of practical applicability than a theoretically complete method. Moreover,
when we consider axiomatic theories in semantically complete logics, they
are characteristically inadequate to decide all relevant questions about their
intended models. Hence, semantic completeness does not buy us what we
want anyway, namely the power to decide all questions about a structure
such as N or R.6

The second reason for preferring the full semantics is that it allows us to
characterize a wide variety of important mathematical structures-N and R
are examples-that are not defined by any axiomatic theory relative to the
general semantics. Hence, the full semantics almost always corresponds to
the intuitive mathematical meaning of an axiomatic theory. The exceptions
to this principle, such as theories formulated for non-standard arithmetic or
analysis, can be accomodated within the full semantics without too much
trouble: typically, one introduces an explicit predicate of sets characterizing
what it means for a set to be "internal" to the non-standard part of the

6We owe this line of reasoning to Leonard Monk.

57

model. Schemas such as induction are then restricted to sets satisfying this
"internal" predicate.

The third reason for preferring the full semantics is that it interacts
correctly with the process of combining theories. Suppose that TI and T2
are two theories that share no vocabulary, neither constants of their lan
guages nor sort symbols. Then, given two disjoint structures Al and A2
that satisfy Tt and T2 respectively, it should be possible to "paste" Al and
A2 together to obtain a model of TI U T2. However, if Al and A2 are not
models according to the full semantics, but only according to the general
semantics, the result of pasting them together may not satisfy the joint the
ory. The explanation is that the enriched vocabulary of Tl U T2 creates new
instances of schemas such as induction or the principle of definition by recur
sion. These new instances may not be satisfied in Al and A 2 • We consider
this argument highly relevant to the business of software verification. If the
structures Ai are considered as "implementations" of the "specifications" Ti,
then the problem with the general semantics is that implementations of in
dependent specifications cannot be combined to produce an implementation
of the whole.

Although we believe that the full semantics is most appropriate for au
tomated deduction systems, we still believe that the general semantics is
significant. The completeness theorems, relative to the general semantics,
prove that there is a "reasonable" deductive apparatus for the systems we
have defined. The theorems pick out, in a precise way, a large and impor
tant subset of the set of intuitively valid formulas whose truth is accessible
to deduction. Given that there is no deductive procedure that establishes
all intuitively valid formulas, it is important to have this supplementary
property. 7

4.5.3 Relations among FQ, ST, and PF

It is clear that for any choice of vocabulary for a language C, C regarded
as a language for FQ is a sublanguage of C regarded as a language for ST.
The latter, in turn, is a sublanguage of C regarded as a language for PF.

There is, however, a surprisingly close relationship between a set of ax
ioms r regarded as a theory in FQ, and r regarded as a theory in ST. Any
structure A may be regarded as a structure for either logic depending on
whether one decides to ignore objects of the higher sorts. Moreover, because

7William Farmer urged this point.

58

the semantic clauses for all the constructors of FQ are identical with those
of ST, this operation cannot affect the interpretation of any expression in C.
Hence, the truth or falsehood of Apr is independent of which logic is in
question, so long as each axiom in r belongs to the first order language C. It
also follows that the question whether 4> is a consequence of r is independent
of whether the logic is FQ or ST.

Two remarks are in order. First, FQ presents a first order syntax, but
has a higher order semantics. Second, this means that the difference be
tween a sound theorem prover for FQ and one for ST is very small. The
additions require only that the theorem prover support the syntax of nested
sorting lists and also the variable binding A operator. If automated simpli
fication and heuristics for deduction involving higher type expressions are
not needed, but simple proof checking will suffice, then precious little need
be done.

The relationship between ST and PF is less direct, as a structure for
PF contains a larger class of functions than the "corresponding" structure
for ST. Because of this, the valid formulas of the two logics are different;
to take the simplest example, V j, x · 3y . y = f(x) is valid in ST but not
PF. Suppose then that r is a theory in ST, and the axioms in r are all
closed sentences, as can always be arranged by universally quantifying any
free variables.

We will define a map on expressions e 1-+ e, and a map on structures
A 1-+ A', and write r for the set {4>: 4> E r}. Then:

APST r iff A'PPF r.

Within PF, we define a predicate, "extended hereditarily total" or eht,
for each sorting s. This predicate picks out those objects of sort O"(s) which
correspond directly to an object in an ST structure. In the base sorts, this
includes all objects. At the first level, for a sorting (syml .•• syroN symO) ,

where symO is not prop, it simply picks out the total functions. But at higher
types, it is slightly more complex: it must pick out those functions which are
total on arguments satisfying eht, and have some conventionally determined
behavior elsewhere. We shall make the convention that if any argument
does not satisfy eht, then the value will be undefined, if the range is not
prop-sorted, and the false-like object in the range sort if it is prop-sorted.

H s is a base sorting, define ehtf/ to be Ax : s . T. If s is a higher sorting

59

S = (SI '" snSO)' where So is prop-sorted, let the predicate eht lt abbreviate:

)./:SVVl: Sl"",Vn :sn ...,[. A ehtlti(Vi)] =>/(Vb··.,vn)=Flto ·
,=1 to n

If S is a higher sorting S = (81 ... sn80), where 80 is not prop-sorted, let the
predicate ehtlt abbreviate:

).1 : 8 VVI : s}, ... , Vn : 8 n (if-form [eht(vI) /I. ... /I. eht(Vn)]
I(VI,"" vnH
...,(I(Vb·· ., vnH))

We will write eht(t) to abbreviate ehtCT(t)(t). Note that ehtlt is an expression
of pure PFj that is, no constant from a particular language I:- appears in
it. Hence, as soon as a PF frame F is given, the interpretation of ehtll is
determined. The choice of Ie is not relevant.

We define a map on expressions and formulas e f-? e inductively:

1. If e is a constant or variable, then e == ej

2. IT e is foraH (VI'" V n) <p, then

e = forall (VI .. ' Vn) [eht(Vt) /I. ... /I. eht(Vn)] => 4>.

3. IT e is forsome (VI'" Vn) <P, then

4. IT e is lambda (VI'" vn) e', where e' is a formula, then e =

lambda (VI ... Vn) (if-form [eht(vl)/I. ... /l.eht(vn)]

[e']
(the-false))

5. If e is lambda (VI'" Vn) e', where e' is a predicator and has sorting s,
then e =

lambda (VI'" Vn) (if [eht(VI) /I. ... /I. eht(Vn)]
[e']
Fit)

60

6. If e is lambda (VI." Vn) e', where e' is not prop-sorted and has sorting
s, then e =

lambda (VI ... Vn) (if [eht(vt) /I. ... /I. eht(V n)]

[e']
(undefined« sx))))

7. If e is built by applying any other constructor to a list of components
Cb •.• , Ck, then e is the result of applying that same constructor to the
components Cl, .•• , Ck.

IT r is a set of sentences, then let r be the set {~ : <P E r} .
Now, suppose that A = {F,Ie} is a ST structure such that AFST r.

We want to define a PF structure A' which corresponds to A. Let F' be
the PF frame having the same base sorts as F. In order to define leI, we
need to correlate objects in the higher sorts of F with objects in the higher
sorts of F'. We define a mapping x f-? X taking arguments in F and values
in F'.

1. If 8 is a sorting symbol, then - is the identity on I:F(s).

2. If 8 = (SI .. . 8n80) is prop-sorted, and I E I:F(8), and:

(Vb""Vn) E I:F(SI) X '" X I:F(sn) and y == I(VI, ... ,vn),

then i(vl, ... ,Vn) == ii, while otherwise j(Xl," .,xn) = Flto '

3. If 8 = (SI ... 8nSO) is not prop-sorted, and I E I:F(s), and:

(Vb" .,Vn) E I:F(SI) X •.• x I:F(sn) and y == I(VI," .,vn),

then j(vt, ... ,vn) == ii, while otherwise i(xl,""Xn) is undefined.

Clearly, - is a bijection between I:F(s) and the part of IF' (s) satisfying eht It.
Define Ie by the condition Ie(c) = Ic(c), and define a by the condition

a(x) = a(x). Let A' = {F',Ie}.
It is a routine matter of checking each inductive semantic clause to assure

oneself that:
I(a,e) = y => I'(a,e) = ii.

Hence, for any sentence <p, AFST r if and only if A'FPF r.
Nevertheless, there is a more useful relationship between ST and PF.

And this concerns the theorem provers for the two systems. Given a theorem

61

prover for PF, it is very easy to construct a theorem prover for ST. In the
case of IMPS, a switch would be added to the system to indicate whether the
system is in ST-mode. The switch is only relevant at two points:

• If the user specifies ST-mode, then the constructors iota, iota-p,
undefined-of-sort, is-defined-in, and is-defined should not be
insta.lled;

• When the system executes the test necessarily-defined?, if it is in
ST-mode, the procedure should return t.

We believe that any rational design for a PF theorem prover would make
it very easy to switch to ST. Thus, while a specifier may have to choose
whether to write his specifications using one logic or the other, any theorem
prover that can accomodate PF will still be available if he chooses ST
instead.

62

Section 5
Conclusion

In this paper we have argued in favor of an interface logic. It would
serve to allow a variety of projects, all attempting to apply formal methods
to aspects of software or hardware correctness, to share tools and results. We
do not expect that a.ll research efforts would find it a suitable framework,
but we think that it will be consistent with the goals of a large enough
collection to substantia.lly reduce the amount of duplicated effort.

In addition, we have defined a sequence of three closely connected logics,
which we have ca.lled FQ, ST, and PF. We believe that they will serve
the purpose of providing a common interchange format. In addition, as
theorem proving systems become stronger, and can more effectively support
ST and PF, we believe that the other components of YEs will benefit. Not
only will it be easy for them to adapt to the logics, but they will also be
able to exploit the richer expressiveness of ST and PF to provide far more
effective verification. In particular, ST and PF seem to us far better suited
to reasoning about:

• computations involving real numbers and other continuous domains;

• programs in languages such as Lisp, Scheme, and C, in which pro
cedures are important data objects, and can serve as parameters or
return values;

• the semantics of programming languages.

In addition, M. Gordon has argued for the appropriateness of higher-order
logic (essentia.lly, ST) as a formalism for hardware verification [17]. How
ever, we believe that there will be immediate benefits even from adapting
existing VE components to use the interface logic in the guise FQ, as it will
enable some of the newer, and strongest, verification condition generators
to be matched with some superior theorem provers. Indeed, we believe that
the adoption of an interface logic will aid in producing a high-quality, well
integrated user-oriented verification environment, in a relatively short time,
by effectively building onto the best currently available components.

We would like to end by emphasizing the method we have used in this
paper. In particular, we have relied not only on a sequence of written studies
[9,10,24,25]' but also on our first-hand experience in implementing the most

63

complex of the logics proposed here, PF, in the IMPS system. This work,
funded partly under the MITRE-Sponsored Research program, and partly
under the present effort, guarantees that our proposals for interface logics
are practical in the sense that currently existing ideas on how to structure
theorem provers can lead to effective theorem provers for all three of the
logics described. .

List Of References

1. H. Abelson and G. J. Sussman. Structure and Interpretation of Com
puter Progmms. MIT Press, 1985.

2. R. Boyer and J Moore. A Computational Logic. Academic Press, 1979.

3. R. Boyer and J Moore. A Computational Logic Handbook. Academic
Press, 1988.

4. R. Burstall and J. Goguen. Putting theories together to make speci
fications. In Fifth International Joint Conference on Artificial Intelli
gence, 1977.

5. L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymophism. Computing Surveys, 17:471-522, 1985.

6. A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56-68,1940.

7. D. Craigen, S. Kromodimoeljo, I. Meisels, A. Neilson, W. Pase, and
M. Saaltink. m-EVES: Collected papers. Technical report, I. P. Sharp
Associates Ltd., 1988.

8. R. Constable et. al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, 1986.

9. W. M. Farmer. Abstract data types in many-sorted second-order logic.
Technical Report M87-64, The MITRE Corporation, 1987.

10. W. M. Farmer. A partial functions version of Church's simple theory
of types. Journal of Symbolic Logic, 55(3):1269-92, 1990. Also MITRE
Corporation report M88-52 (revised 1990).

11. W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An interactive
mathematical proof system. Technical Report M90-19, The MITRE
Corporation, 1990.

12. J. A. Goguen. Principles of parameterized programming. Technical
report, SRI International, 1987.

64 65

13. Joseph A. Goguen and Timothy Winkler. Introducing 08J3. Technical
report, SRI International, August 1988.

14. D. I. Good. Revised report on Gypsy 2.1. Technical report, University
of Texas, 1984.

15. M. Gordon. HOL: A proof-generating system for higher-order logic. In
VLSI Specification, Verification and Synthesis. Kluwer, 1987.

16. M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mech
anised Logic of Computation, volume 78 of Lecture Notes in Computer
Science. Springer Verlag, 1979.

17. M. J. C. Gordon. Why higher-order logic is a good formalism for
specifying and verifying hardware. Technical Report 77, University of
Cambridge Computer Laboratory, 1985.

18. J. D. Guttman. The Ina Jo specification language: A critical study.
RADC-TR 86-47, Rome Air Development Center, 1986.

19. J. D. Guttman, W. M. Farmer, and F. J. Thayer. IMPS: A proof
system for a generic logic. Technical report, The MITRE Corporation,
1990. Submitted for publication.

20. 1. Henkin. Completeness in the theory of types. Journal of Symbolic
Logic, 15, 1950.

21. D. E. Knuth. The TfjXbook. Addison-Wesley, 1984.

22. C. Marceau and C. D. Harper. An interactive approach to Ada verifi
cation. In 12th National Computer Security Conference, 1989.

23. D. F. Martin and J. V. Cook. Adding Ada program verification capa
bility to the state delta verification system (SDVS). In- 11th National
Computer Security Conference, 1988.

24. L. G. Monk. PDLM: A proof development language for mathematics.
Technical Report M86-37, The MITRE Corporation, 1986.

25. L. G. Monk. Inference rules using local contexts. Journal of Automated
Reasonin~4(4), 1988.

26. J. A. Rees, N.!. Adams, and J. R. Meehan. The T Manual. Computer
Science Department, Yale University, fifth edition edition, 1988.

66

27. J. Seldin. Mathesis: The mathematical foundations of Ulysses. Tech
nical report, Odyssey Research Associates, 1987.

28. SRI International Computer Science Laboratory. EHDM specification
and verification system (version 4.1) preliminary definition ofthe EHDM

specification language. Technical report, SRI International, 1988.

29. R. M. Stallman. GNU Emacs Manual. Free Software Foundation, sixth
edition, version 18 edition, 1987.

67

AOIO

R. D. Haggarty

GOIO

V. A. DeMarines
C. M. Sheehan

GUO

H. A. Bayard
E. H. Bensley
E. L. Lafferty
L. J. LaPadula
J. K. Millen
P. S. Tasker

GU6

F. Belvin
W. R. Gerhart

GU7

J. D. Guttman (30)
Technical Staff

External

RADC/COAC
Griffiss Air Force Base
Rome NY 13441

John Faust (5)

DISTRIBUTION LIST

~d~()r; . Q4~
D. M. Johnson z7
Project Leader, 4030

1111111 1111 1111 1111 1111 1111 1111 111111111111111111111111111111111 o 0000 00137 1947

