
Noname manuscript No.
(will be inserted by the editor)

Measuring Protocol Strength with Security Goals

Paul D. Rowe · Joshua D. Guttman · Moses D. Liskov

the date of receipt and acceptance should be inserted later

Abstract Flaws in published standards for security
protocols are found regularly, often after systems imple-
menting those standards have been deployed. Because
of deployment constraints and disagreements among
stakeholders, different fixes may be proposed and de-
bated. In this process, security improvements must be
balanced with issues of functionality and compatibility.

This paper provides a family of rigorous metrics for
protocol security improvements. These metrics are sets
of first order formulas in a goal language GL(Π) asso-
ciated with a protocol Π. The semantics of GL(Π) is
compatible with many ways to analyze protocols, and
some metrics in this family are supported by many pro-
tocol analysis tools. Other metrics are supported by our
Cryptographic Protocol Shapes Analyzer cpsa.

This family of metrics refines several “hierarchies” of
security goals in the literature. Our metrics are applica-
ble even when, to mitigate a flaw, participants must en-
force policies that constrain protocol execution. We rec-
ommend that protocols submitted to standards groups
characterize their goals using formulas in GL(Π), and
that discussions comparing alternative protocol refine-
ments measure their security in these terms.

1 Introduction

Security standards often contain flaws, and therefore
evolve over time as people correct them. Often, these
flaws are discovered after deployment, which puts pres-
sure on the choice of mitigation. The constraints of
operational deployments and the needs of the various
stakeholders are crucial, but so is understanding the
significance of the attack.

The MITRE Corporation.
E-mail: {prowe,guttman,mliskov}@mitre.org.

How are we to choose among the alternatives pro-
posed to repair a flaw? A security flaw is a failure of the
protocol to meet a goal—often one not well understood
until after the flaw becomes apparent—and a revised
understanding of the goals of the protocol is necessary
to ensure that the mitigation is secure. Obviously, sat-
isfying a goal that was not previously met is essential
to any mitigation. However, two alternatives may elim-
inate the same insecure scenario while differing in the
security they provide.

In this paper, we describe a formal language for ex-
pressing protocol security goals. We use sets of formulas
in this language to compare protocols. A protocol Π2

is then at least as secure as another protocol Π1 with
respect to a set of goal formulas G if, for each formula
Γ ∈ G, if Π1 achieves the goal Γ , then so does Π2. We
will explore various sets of formulas G below. We will
argue that any set G containing formulas of a reason-
able syntactic form should be regarded as a “measure-
ment” for the security of the protocols.

In the case of a singleton G = {Γ}, we can use a va-
riety of protocol analysis tools such as Maude-NPA [18],
ProVerif [8], Scyther [14], and our Cryptographic Pro-
tocol Shapes Analyzer cpsa [32] to ascertain whether
Π2 is at least as secure as Π1 with respect to G. It suf-
fices to show that Π2 achieves the goal Γ , or else that
some attack on Π1 provides a counterexample show-
ing that Π1 does not achieve Γ . In the same spirit, we
can use the same tools to measure protocols relative to
two-element sets G = {Γ1, Γ2} or other finite sets. We
simply evaluate the protocols for each goal separately
and combine the results.

cpsa also allows protocol comparisons using larger
sets G, especially sets of implications Φ =⇒ Ψ that all
share the same hypothesis Φ.

Measuring security. To compare alternative fixes,
we need to measure the security of the alternatives. We
view their security as their power to exclude failures.
This suggests the basic tenet:

Tenet: A system S2 is at least as secure as S1, written
S1 � S2, if and only if any attack that is successful
against S2 is also successful against S1.

Of course, it is difficult to instantiate this tenet in gen-
eral. It requires a robust and realistic model of the
adversary’s capabilities, and it requires a clear under-
standing of what constitutes an attack. We will think of
attacks as possible goals that fail, rather than as mean-
ing the specific bad executions that illustrate how they
can fail.

Indeed, S1 and S2 have to be sufficiently similar to
make sense of the “same” attack succeeding on each sys-
tem. Nevertheless, we believe this tenet can be used to
clarify why some security metrics provide more insight
than others. Let M be some measurement technique
that yields values in a domain ordered by ≤. An ideal
property to strive for in measuring security is the fol-
lowing.

M(S1) ≤M(S2) iff S1 � S2 (1)

The crux here is a general philosophy of measure-
ment, according to which the outcome of measurement
under the ≤ ordering should be a perfect substitute for
the � ordering applied directly to the systems. Luce
and Suppes [27] refer to this as the Axiom of Order for
theories of measurement. In practice, we may have to
weaken property (1) in several ways. For instance, we
might only achieve the property if we relativize � to a
restricted class A of attacks and adversaries yielding a
restricted security ordering �A. But it serves to explain
why certain metrics do not measure security well. Let’s
consider a simple example.

The number of lines of code tends to be correlated
with the number of bugs in software, and hence to the
number of security vulnerabilities. If we let M be a
method that counted the number of lines of code and
output the negative of that number, then M(S1) ≤
M(S2) would mean that S1 has at least as many lines
of code as S2. But it certainly does not follow that S2 is
more secure than S1. In this instance M(S1) ≤ M(S2)

is only loosely correlated with S1�S2, and so the metric
is not very reliable.

The lines-of-code metric also has a property that is
common to many security metrics proposed in the liter-
ature: it takes values in the real numbers. The urge to
have quantitative metrics is understandable, especially
when striving to achieve the rigor of measurement in
the physical sciences. Analogies to length, weight, tem-
perature, etc. make quantitative metrics almost irre-

sistible. But our basic tenet shows why this approach
cannot work in general. If the � security ordering natu-
rally corresponds to sets of attacks ordered by inclusion,
only very rarely will systems be totally ordered by �. In
many cases S1 will admit attacks that S2 does not allow
and vice versa, meaning � tends to be only a partial
order. Any metric that tries to totally order systems is
very likely not to achieve property (1).

This paper represents an instantiation of our general
philosophy of measuring security. We recognize that
each time there is an attack on a protocol that means
there is some (possibly unstated) security goal the pro-
tocol does not achieve. Definition 3 in Section 3.3 is a
reformulation of our basic tenet.

By security goal, we will mean logical formula of
a particular form. Roughly speaking, a security goal
is an implication Φ =⇒ Ψ where Φ is a conjunction of
atomic formulas, and Ψ is built from atomic formulas by
conjunction, disjunction, and existential quantification.
(See Def. 1 in Section 3.1). When G is a set of formulas
of this form, we will write Π1 �

G Π2 to mean that, for
every formula Γ ∈ G, if Π1 achieves Γ , then so does
Π2. When G is a singleton, several protocol analysis
tools can assist in determining whether Π1 �

G Π2.

Enrich-by-need. Enrich-by-need analysis—as in the
Cryptographic Protocol Shapes Analyzer (cpsa) [32]
or in Scyther [14]—allows us to resolve �G for some
important non-singleton sets G.

Each enrich-by-need analysis process starts from a
scenario containing some protocol behavior, such as one
or more participant’s local runs, and also some assump-
tions about freshness and uncompromised keys. The
analysis returns a set of result scenarios that show all
of the minimal, essentially different ways that the start-
ing scenario could happen. When the starting scenario
is undesirable (e.g. a confidentiality failure), we would
like this to be the empty set. When the starting scenario
is the behavior of one principal, then the analysis finds
what the protocol guarantees from that participant’s
“point of view.” These results indicate what authenti-
cation guarantees the protocol provides to that party.

For each run of the analyzer, there is a security goal
formalizing the result of the analysis. Its hypothesis Φ
describes the content of the starting scenario, and its
conclusion is a disjunction. Each disjunct describes the
content of one minimal, essentially different execution
containing the starting point. Thus, this is a strongest
security goal with hypothesis Φ.

Specifically, this goal is strongest in the implication
ordering, where Γ2 =⇒ Γ1 means that Γ1 is below Γ2 in
this ordering. Enrich-by-need analysis computes maxi-
mal elements for certain subclasses G of security goals.
Enrich-by-need can act as our measurement technique,

2

M , satisfying property (1) relative to the security order-
ing �G. In Section 6.3 we will identify key subclasses G
of goals, defined in equation (9), for which each protocol
achieves a unique strongest goal (Theorem 2). The max-
imal elements identified by the enrich-by-need method
allow us to measure and compare protocol security rel-
ative to �G (Corollary 1).

Application to standards. A concrete formal lan-
guage of security goals makes security claims explicit
and verifiable. One reason flaws and weaknesses are re-
peatedly discovered in published standards is that the
standards include vague statements, for example about
two parties achieving “authentication,” without explain-
ing what that means in practice. Basin et al. [5] have
illustrated the problems that can arise when standards
do not contain any claims about what properties they
achieve or under which adversary models. It is thus im-
portant for the standardization process to create con-
crete artifacts that serve as evidence of the security of
a protocol design.

Our logical language of security goals supports the
goals of [5]. We envision a process where those propos-
ing a protocol are required to include explicit and for-
mal claims about what security properties it achieves.
These claims should be explicit enough to allow for-
mal, independent verification that the protocol achieves
those security properties. The International Organiza-
tion for Standardization (ISO) and International Elec-
trotechnical Commission (IEC) have started to lay the
technical groundwork for such a process by publishing
a standard (ISO/IEC 29128 [19]) for certifying the de-
sign of cryptographic protocols. While this is a good
start, it still leaves room for ambiguity based on the
specific formalism chosen. Our language is designed to
be independent of both the underlying formalism used
to represent the protocol and the tool(s) used to verify
the claim. This allows a proposal to be verified rela-
tive to the same claim by independent experts using
different tools.

Despite such efforts to avoid protocol weaknesses
early in the standardization process, flaws will still un-
doubtedly be discovered after publication and deploy-
ment. Our development here of a hierarchy of security
goals �G against which to measure security is useful
for this purpose. By expressing the flaw as some (pre-
viously unstated) goal that is not achieved, standards
committees can more easily identify and compare re-
lated goals. Having an objective measure of the rela-
tive strength of security goals will allow the committee
members to separate the security properties from other
factors that may affect the feasibility of certain mitiga-
tions. The use of enrich-by-need analysis is particularly
appropriate in this case, because the analysis can com-

pare the strength of two proposed mitigations relative
to an infinite set of goals that share some hypothesis Φ.
Since the analysis results in the strongest security goal
with Φ as a hypothesis, it does not require as much in-
genuity on the part of the committee members to iden-
tify a particular strengthened security goal. This is an
advantage, especially since flaws are frequently already
the result of the failure of imagination in the human
designers to identify useful security goals.

Our contributions. We make three main contribu-
tions.

1. We introduce the metrics of security �G for crypto-
graphic protocols. Each metric is parameterized by
some set of desired security goals G.

2. We identify the sets G for which the enrich-by-need
analysis method can act as a measurement tool M
to compare the security of two or more protocols
relative to �G.

3. We ground our theory in protocols that have un-
dergone standardization. We compare our sets G
with security goals discussed in the literature. Our
methods can guide standards bodies’ deliberations
on proposed designs and protocol improvements.

Structure of this paper. In order to help the reader
gain intuition for when and why it is useful to measure
and compare the security of protocols, we begin in Sec-
tion 2 by considering the Kerberos public key extension
pkinit. The initial version contained a flaw allowing a
man-in-the-middle attack. Two alternatives emerged to
fix this. We build up some intuition about how to for-
mally express the security goals not met by the flawed
version. Section 3 develops our logical language of se-
curity goals and explains how sets of goals can serve as
security metrics.

Having explained our central ideas, we discuss re-
lated work in Section 4. We explain, in depth, the con-
nection between our logical security goals related by
implication and well-studied authentication hierarchies.
We show how our formalism encompasses and extends
that previous work. In Section 5, we show that our log-
ical language helps us to understand how policy con-
siderations that sit outside a protocol proper can con-
tribute to the protocol’s security. In Section 6 we ex-
plain the enrich-by-need method with examples, and
prove that it allows us to compare protocols with re-
gard to some infinite sets of goals. Concluding thoughts
are in Section 7.

This paper is an extended version of our [23].

3

C
m1 //

��

KAS

��
• •

m2oo

m1 = [tC , n2]sk(C), C, T, n1

m2 = {|[k, n2]sk(S)|}pk(C), C, TGT, {|AK,n1, tS , T |}k

Fig. 1 pkinit version 25, where TGT = {|AK,C, tS |}kT

2 Example: Kerberos pkinit

pkinit [39] is an extension to Kerberos [30] that allows
a client to authenticate to the Kerberos authentication
server (KAS) and obtain a ticket-granting ticket us-
ing public-key cryptography. This is intended to avoid
the management burden of establishing and maintain-
ing user passwords, which the standard Kerberos ex-
change requires.

Cervesato et al. [11] found a flaw in pkinit version
25, which was already widely deployed. The flaw was
eventually fixed in version 27. Figure 1 shows the ex-
pected message flow between the client and the KAS

in v. 25. The client provides a KAS with its identity C,
the identity T of the server it would like to access, and
a nonce n1. It also includes a signature over a times-
tamp tC and a second nonce n2 using the client’s pri-
vate key sk(C). The KAS with identity S replies by
creating a fresh session key k, signing it using its key
sk(S) together with the nonce n2 and encrypting the
signature using the client’s public key pk(C). It uses
the session key k to protect another session key AK to
be used between the client and the subsequent server T ,
together with the nonce n1 and an expiration time tS
for the ticket. The ticket TGT is an opaque blob from
the client’s perspective because it is an encryption us-
ing a key shared between S and T . It contains AK,
the client’s identity C and the expiration time tS of the
ticket.

The flaw. In Cervesato et al.’s attack [11] (Fig. 2),
an adversary I has obtained a private key to talk with
the KAS S. I uses it to forward any client C’s ini-
tial request, passing it off as a request from I. I simply
replaces C’s identity with I’s own, re-signing the times-
tamp and nonce n2. When the S responds, I re-encrypts
the response for C, this time replacing the identity I

with C. In the process, the adversary learns the session
key k, and thus can also learn the subsequent session
key AK. This allows the attacker to read any subse-
quent communication between the client and the next
server T . Moreover, the adversary may impersonate the
ticket granting server T to C, and vice versa, because

C
m1 //

��

I
m′

1 //

��

KAS

��
• •

m2oo •
m′

2oo

m1 = [tC , n2]sk(C), C, T, n1

m′1 = [tC , n2]sk(I), I, T, n1

m2 = {|[k, n2]sk(S)|}pk(C), C, TGT, {|AK,n1, tS , T |}k
m′2 = {|[k, n2]sk(S)|}pk(I), I, TGT, {|AK,n1, tS , T |}k

Fig. 2 Attack on flawed pkinit, where TGT = {|AK, I, tS |}kT

C
m1 //

��

KAS

��
• •

m2oo

m1 = [tC , n2]sk(C), C, T, n1

m2 = {|[k,F(C,n2)]sk(S)|}pk(C), C, TGT, {|AK,n1, tS , T |}k

Fig. 3 Generic fix for pkinit

the participants rely on the protocol to ensure that they
are the only entities with knowledge of AK.

The attack arises from a lack of cryptographic bind-
ing between the session key k, and the client’s iden-
tity C [11]. After C’s two-message exchange, she knows
the KAS produced the keying material k recently, be-
cause of its binding with n2. However, the KAS S may
not have intended k for C.

The protocol revision process. Since this absence
of C’s identity is the root cause of the attack, the natu-
ral fix is to include C as an additional field in the signed
portion of the second message. Indeed this is the first
suggestion in [11].

The authors of the pkinit standard offered a differ-
ent suggestion. For operational feasibility—namely, to
preserve the previous message format—more than se-
curity, the pkinit authors suggested replacing n2 with
a message authentication code over the entirety of the
first message, keying the MAC with k. Since the client’s
identity is contained in the first message, this proposal
also creates the necessary cryptographic binding be-
tween k and C, as well as with n2.

Cervesato et al. used a manual proof method to ver-
ify a generic scheme for mitigating the attack (Fig. 3),
ensuring that the two proposals were instances of the
scheme. This allowed them to avoid the time-consuming
process of writing proofs for any other proposals that
might also fit this scheme. They verified that the attack
fails if n2 is replaced with any expression F (C, n2, . . .)

that is injective on C and n2; that is, F (C, n2, . . .) =

F (C ′, n′2, . . .) implies C = C ′ and n2 = n′2.

4

We obtain the first proposal by instantiating F as
concatenation: F (C, n2) = C, n2. The second proposal
instantiates F as the MAC of the client’s request:

F (C, n2, . . .) = Hk([tC , n2]sk(C), C, T, n1).

Since the MAC provides second preimage resistance,
the injectivity requirement will hold, with overwhelm-
ing probability, in any execution the adversary can en-
gineer.

Security goals. The pkinit parable illustrates re-
curring themes in developing and maintaining protocol
standards. An attack often shows us that we care about
previously unstated and unrecognized security goals as
observed by Basin et al. [5]. pkinit achieves some level
of authentication, but it fails a more stringent type of
authentication. In Lowe’s terms [26], it achieves recent
aliveness both for the client and for the KAS S, be-
cause each party signs time-dependent data. However,
pkinit does not achieve weak agreement, since C does
not know that S was engaged in the protocol with C.
The attack helps us to express the goal that the flawed
protocol does not meet.

But an attack itself does not uniquely identify a
security goal. We learned that it is important for the
client to be guaranteed that it agrees with S on the
client’s identity, but what about other values such as
the expiration time of the ticket? Operational difficul-
ties might arise if the client is unaware of this expiration
time, but are there any security consequences? Indeed
a key contribution of [11] is to state carefully what se-
curity goal the repair provides.

This goal can be achieved in different ways. Different
stakeholders may prefer different mitigations because
of issues of efficiency, ease of deployment, or robustness
to future modification. In pkinit, the researchers opted
for a change that was minimally invasive to their for-
mal representation, thereby highlighting the root cause
of the problem. The protocol designers had more oper-
ational context to constrain the types of solutions they
deemed feasible.

While a pair of choices might both manage to sat-
isfy some stated security goal, one of them may actually
satisfy strictly stronger goals than another. We propose
a goal language (Section 3) to express when a proto-
col mitigation is at least as good as a competitor—or
strictly better than it—from the security point of view.

Strand spaces. We will develop our ideas using the
strand space terminology [37,20]. A strand is a sequence
of transmission and reception events, each of which we
will call a node. We use strands to represent the behav-
ior of a single principal in a single local protocol ses-
sion. We call these regular strands. We also use strands

to represent the basic abilities of the adversary. For
instance, a strand representing the adversary’s ability
to encrypt contains two reception nodes, in which the
plaintext t and the encryption key K are received, fol-
lowed by a transmission node in which the encryption
is sent:

• +3 • +3 •
��

t

OO

K

OO

{|t|}K

By convention, we draw strands with double-arrows
connecting the successive nodes • ⇒ •, and single ar-
rows indicating the message flow • → •.

In this framework an execution is a kind of directed
graph with these two kinds of edges. These graphs are
bundles, meaning all finite directed acyclic graphs where
(i) the nodes at the two ends of a message transmission
arrow are labeled with the same message; (ii) each re-
ception node has exactly one incoming message; and
(iii) when a node on a strand is included in the graph,
then so are all its predecessors on that strand. How-
ever, a bundle does not have to run all of the strands
“to completion,” and it may therefore contain only an
initial segment of the nodes of that strand.

A protocol Π is a finite set of strands, called the
roles of Π, together with possibly some auxiliary as-
sumptions about fresh and non-compromised values.
The messages sent and received on these strands con-
tain parameters such as C, S,AK, n1, n2, . . . in pkinit.
The regular strands of Π consist of all strands obtained
from the roles of Π by applying substitutions to these
parameters. A Π-bundle is a bundle where every strand
is either an adversary strand or a regular strand of the
protocol Π.

Fig. 2 becomes a pkinit-bundle when we expand the
single central strand labeled I into a collection of adver-
sary strands. We consider Fig. 2 an informal shorthand
for the resulting bundle.

Formalizing the authentication goal. The attack
of [11] undermines what the client C should know when
he has completed a local run of pkinit. The client
knows less about what the KAS S has done than ex-
pected.

The actions of the regular (non-adversary) princi-
pals are message transmission nodes and message re-
ception nodes. We will formulate the client’s expecta-
tion about the KAS ’s behavior as a formula about the
transmission and reception nodes of the principals.

The formula applies in a situation, depicted in (2),
where there is a reception node n which completes a run

5

of the client role, which we will write ClientDone(n).

sk(S) ∈ non •
s1 ��

//

n oo

(2)

s1 ∈ Client[C, S,_,_,_,_,_,_,_]

This node n belongs to a run of the protocol in which
the active principal has some identity C, and its in-
tended peer is a Kerberos Authentication Server S. We
will write this Self(n,C) ∧ Peer(n, S). Of course, if
S’s signature key sk(S) is compromised, then C learns
nothing from a run of the protocol. Thus, we will as-
sume that it is uncompromised, written as Non(sk(S)).
For the moment, we ignore the other parameters of the
Client role, since we will not assume anything about
them.

We regard these formulas as forming a hypothesis,
when combined by conjunction. Thus, we would like
to understand what must be true when this hypothesis
holds:

ClientDone(n) ∧ Self(n,C) (3)
∧ Peer(n, S) ∧ Non(sk(S))

In the attack, there is a local run of theKAS role, and in
fact the server has the intended identity S. The problem
is that the server’s intended peer is not the client C, but
some compromised client I. Thus, the behavior in Fig. 2
is a counterexample to the goal:

∀n,C, S . (3) =⇒ ∃m. KASDone(m) (4)
∧ Self(m,S) ∧ Peer(m,C)

where the whole of formula (3) is the hypothesis, al-
though we have contracted it to save space. Here also
we write KASDone(m) to indicate that the transmission
nodem is the final node of the KAS ’s role. We again use
Self to refer to the identity of the participant enacting
this role, and Peer to refer to its intended partner.

Clearly this is a weak goal, since it says nothing
about other parameters such as the nonces n1, n2, the
session key k, or the server T that the ticket will be
shared with. But Fig. 2 is also a counterexample to all
its stronger goals.

A curious fact about this formalism is that it says
nothing about the specific messages sent. It talks about
the nodes, such as n,m, and asserts that they lie on a
particular role at a specific position in the sequence of
nodes in which the role engages. It talks about the pa-
rameters associated with the nodes. For instance, the
Peer parameter of n is the same identity S whose sig-
nature key is assumed to be uncompromised. Moreover,
this is the same as the Self parameter of some node
m, and that m is a KASDone node.

However, it never assumes or asserts that the mes-
sages formed from the parameters have a particular lay-
out or structure. This means that the same formula can
describe executions in different protocols.

For instance, it is clear how to interpret formula (4)
in the two revised versions of pkinit. There is a self-
explanatory convention that links protocols in pkinit
v. 25 to roles in its two candidate successors, and simi-
larly for their parameters. When the protocols are more
remotely related, Guttman’s formal notion of transla-
tion applies [22]. Our convention allows us to use the
identity translation a large range of cases.

Formalizing a non-disclosure goal. We can repre-
sent secrecy goals in a similar style, using a special aux-
iliary role which we can assume belongs to all protocols
implicitly. This is the “listener role” that consists of a
single reception node. It has a single parameter x, and
the message received on this node is x. It represents
the assumption that x is compromised, and observed
unprotected. We write Lsn(n) to express that n is the
reception node lying on an instance of the listener role.
We write Hear(n, x) to express that the message heard
on node n is x, i.e. to stipulate a value for the parame-
ter of the role. Thus, consider the assumption that adds
a listener to formula (3):

ClientDone(n) ∧ Self(n,C) ∧ SessKey(n, k)

∧ Peer(n, S) ∧ Non(sk(S)) (5)
∧ Lsn(m) ∧ Hear(m, k)

Here we are also using the predicate SessKey(n, k) to
refer to the session key parameter of the client’s final
reception node. The formula asserts that the same value
k is also heard unprotected on the listener nodem. This
formula represents a situation visualized in (6).

sk(S) ∈ non C
s1 ��

//

n oo
k // m

(6)

s1 ∈ Client[C, S,_,_,_,_,_, k,_]

For the protocol to ensure secrecy for k in this sit-
uation means that this situation should never be able
to arise. Here we interpret secrecy failures as meaning
the full disclosure of a secret. This is coarser than the
standard cryptographic definition, which refers to any
ability of the adversary to distinguish the secret from a
random value [6]. Formalizing secrecy as full disclosure,
the security goal would be:

∀n,m,C, S, k . (5) =⇒ false (7)

Unfortunately, the adversary can extract k from m′2 in
the run shown in Fig. 2. Thus, Fig. 2 illustrates why
this goal fails: The adversary has the power to transmit
k so that it will be heard on a listener node.

6

Thus, both non-disclosure and authentication goals
are expressible using these ideas.

3 Protocol Goals to Measure Security

As we have just illustrated, we express protocol goals as
formulas in first order logic. For each protocol Π, there
is a goal language GL(Π); however, these languages are
designed so that for related protocols, the languages can
be similar or often identical. This helps when comparing
the goals achieved by related protocols.

3.1 The Goal Languages

The goal language is designed to have the minimum
possible expressiveness while remaining useful. It con-
tains no arithmetic; it contains no inductively defined
data-types such as terms; and it has no ability to de-
scribe the syntax of messages.

This is an important and useful feature of the goal
language: goals are much easier to view as logical ob-
jects that exist independent of a particular protocol
when they do not reference the syntax or structure of
messages. The ability to view goals independently from
individual protocols is essential when trying to compare
different protocols in terms of the goals they achieve.
This reduced expressiveness has proved useful in prior
work. Formulas in GL(Π) are preserved under a class
of “security preserving” transformations between proto-
cols [22]. Also, for an interesting restricted class of pro-
tocols, Dougherty and Guttman showed the set of se-
curity goals they achieve is decidable [16]. Mödersheim
et al. [2] show how to adapt another analysis approach
to this class of goals.

Predicates in the goal language. We will describe
the goal language GL(Π) associated with a given proto-
col Π. Although there is a connection between GL(Π)

and Π, our intention is to be able to describe logical
sentences that apply both to Π and to variants of Π.

For each node in a role of Π, the goal language
GL(Π) has an associated role position predicate. The
two predicates ClientDone(n) and KASDone(m) used
above are examples. Each role position predicate is a
one-place predicate that says what kind of node its ar-
gument n,m refers to.

On each node, there are parameters. The parame-
ter predicates are two place predicates. Each parameter
predicate associates a node with one of the values that
has been selected when that node occurs. For instance,
Self(n, c) asserts that the self parameter of n is c. This
allows us to assert agreement between different strands.

Functions: pk(a) sk(a) inv(k)
ltk(a, b)

Relations: Preceq(m,n) Coll(m,n) =
Unq(v) UnqAt(n, v) Non(v)

Table 1 Protocol-independent vocabulary of languages GL(Π)

Peer(m, c) asserts that m appears to be partnered with
c, which is the same principal who is in fact the self pa-
rameter of n.

The role position predicates and parameter pred-
icates vary from protocol to protocol, depending on
how many nodes the protocol has, and how many pa-
rameters. However, when we regard two protocols as
variants of each other, we expect a certain amount of
overlap between the associated names. For instance, the
ClientDone(n) predicate in the example should have a
meaning (i.e. a node that satisfies it) in any variant of
the pkinit protocol. Furthermore, we expect that the
satisfying nodes represent informally corresponding ac-
tivity in the two variants.

Beside role position predicates and parameter predi-
cates, GL(Π) has the protocol-independent vocabulary
in Table 1. It helps to express the structural proper-
ties of bundles. Preceq(m,n) asserts that either m and
n represent the same node, or else m occurs before n;
Coll(m,n) says that they lie on the same strand.m = n

is satisfied when m and n are equal. Non(v) and Unq(v)

express non-compromise and freshness (unique origina-
tion), and UnqAt(n, v) identifies the node at which v is
assumed fresh. pk(a) and sk(a) relate a principal a to
its keys, ltk(a, b) represents the long-term shared key
of two principals a, b, and inv(k) is the inverse of a key.

We have only presented here an informal idea of how
to interpret formulas in this language. For a full, formal
description of the semantics of the satisfaction relation
|= see [22].

The examples of the last section illustrate how we
can use the vocabulary of GL(Π) to express a vari-
ety of security goals. These include authentication goals
and—since we assume that any protocol Π contains the
listener role—non-disclosure goals as well.

Goals. The formulas that we used in our examples
have a special form. They are implications. Their hy-
potheses are conjunctions of atomic formulas of GL(Π).
The conclusions took two superficially different forms.
Formula (4) has an existential formula as its conclusion.
It asserts that an additional event exists, satisfying a
particular role position predicate, and with some pa-
rameters matching those in the hypothesis. Formula (7)
has the conclusion false. A conclusion could also be a
disjunction, where the protocol allows the behavior as-
sumed in the hypothesis to be explained in a number

7

of different ways. For instance, the KAS server may
have executed either the role shown in Fig. 1, or else a
different role in which it first retrieves a public-key cer-
tificate for C, and then replies with the message shown
in Fig. 1. Since we may regard false as the degenerate
disjunction with zero disjuncts, and the conclusion of
formula (4) as a degenerate disjunction with one dis-
junct, we regard them all as having n-ary disjunctions
as conclusions. Since the goals are intended to hold in all
cases, we regard any variables free in the whole formula
as implicitly universally quantified. Thus, we stipulate:

Definition 1 A security goal (or sometimes simply a
goal) is a closed formula Γ ∈ GL(Π) of the form

∀x . (Φ =⇒
∨

1≤j≤i

∃yj . Ψj) (8)

where Φ and Ψj are conjunctions of atomic formulas.
We write

hyp(Γ) = Φ, and
conc(Γ) =

∨
1≤j≤i ∃yj . Ψj .

We assume that the existentially bound variables in yj
are distinct from all variables in hyp(Γ); this is no loss
of generality, since we can rename bound variables.

Non-disclosure goals here are the special case in which
the disjunction is empty since the upper index is 0.

We propose to express the security services that pro-
tocols provide by a set of formulas of the form (8). These
so-called geometric sequents are natural to express se-
curity goals. Each enumerates some finite number of
facts that serve as the hypothesis. Then, the claim in
the conclusion is that one of zero or more alternatives
holds, where each of these is a finite number of facts
that should also be found to hold. Thus, the claim is
localized, and independent of the totality of behavior
in the world of users of the protocol. This is quite ap-
propriate for security properties.

We do not formalize here indistinguishability prop-
erties, which are properties of pairs of runs, or proba-
bilistic properties, which focus on the distributions gov-
erning runs.

3.2 Measuring a Protocol with Goal Formulas

Security goals admit a natural partial order based on
implication: Γ1 ≤ Γ2 iff Γ2 ⇒ Γ1. Stronger goals are
higher in the partial order. We can use this partial or-
der as a measure of the security of a protocol in the
following way.

Definition 2 A protocol Π achieves security goal Γ
iff for every bundle B of Π, B |= Γ .

This provides our formal basis for deciding whether
a protocol is “good enough” for a given purpose. An im-
mediate consequence of this definition is that achieving
goals is downward closed in the partial order. More for-
mally:

Lemma 1 If Π achieves Γ ′ and Γ ≤ Γ ′, then Π also
achieves Γ .

Thus, if Π achieves some goal Γ , it also achieves any
other goal that is a consequence of Γ .

Def. 2 is intuitively clear. However, it quantifies over
all bundles B. This makes it look like a daunting def-
inition to verify in practice. Although this problem is
known to be undecidable in general [17], there is a semi-
decision procedure for finding counterexamples.

Theorem 1 There is a semi-algorithm to find a bundle
B of Π such that B 6|= Γ , if any exists.

Proof Let conc(Γ) be
∨

1≤j≤i ∃yj . Ψj . Since Π-bundles
are finite structures, we can enumerate them. For each
B, again because it is a finite structure, there are at
most finitely many variable assignments η such that
B |=η hyp(Γ).

For each such η and each j such that 1 ≤ j ≤ i, there
are only finitely many ways to extend η to assign val-
ues to the variables yj in B. Thus, we can determine
whether η satisfies ∃yj . Ψj . ut

Of course, the method detailed in the proof above is
naively inefficient. Numerous tools exist that implement
much more efficient algorithms to achieve the same re-
sult. Throughout this paper we use our tool cpsa to
implement this check.

We would like to apply these ideas to pkinit v. 25
and the two proposed mitigations from Section 2. Let
us use pkinit1 to denote the fix in which F (C, n2) =

(C, n2), and use pkinit2 to denote the other fix in which
F (C, n2) = Hk([tC , n2]sk(C), C, T, n1). In the previous
section we identified formula (4) as the security goal
that is not achieved in pkinit v. 25. Call this formula
Γ . Cervesato et al. prove by hand that both pkinit1

and pkinit2 achieve Γ , so it should be no surprise that
applying cpsa to those versions confirms the result.
Thus both of these fixes are good enough for the newly
described goal Γ .

3.3 Comparing Protocols

We want to use security goals not only to measure a
protocol against a given goal, but also to measure the
relative strength of two or more protocols Πi against
each other. We will be able to do this, but only when

8

the role position predicates and parameter predicates
have a well-defined semantics for each Πi. This ensures
that if Γ is a goal then we can ask whether B |= Γ for
any bundle B of any of the protocols Πi.

There is a certain amount of freedom in choosing
the names of these predicates, and the results of the
comparisons will depend on the names chosen. We may
arrive at strange conclusions if, for example, in pkinit1,
ClientDone(·) is satisfied by the last node on a client
strand, but in pkinit2 it is satisfied by the last node of
a server strand. There is a natural way to identify the
nodes and parameters of one protocol with those of its
variants when there are protocol transformations [22]
between them. For example, all the variants of pkinit
have corresponding nodes and parameters. The only
thing that changes is the exact structure of the mes-
sages. [22] formalizes what it means for the semantics
of a language to respect these identifications. For the
remainder of this section we assume our security goals
are expressed in a goal language where the predicate
names are uniformly chosen for each of the protocols
Πi, respecting the natural identifications of nodes and
parameters.

The partial order ≤ on goals naturally induces a
partial order � on protocols in the following way.

Definition 3 A protocol Π2 is at least as strong as a
protocol Π1, written Π1 � Π2, iff for every goal Γ , if
Π1 achieves Γ then so does Π2.

For the set of all goals that the protocol Π achieves,
we write:

Ach(Π) = {Γ | Π achieves Γ}.

The position of each Π in the partial order � is de-
termined by the set Ach(Π) of goals it achieves. Then
Π1 �Π2 iff Ach(Π1) ⊆ Ach(Π2). So � mirrors the par-
tial order on sets of goals ordered by inclusion. Thus,
the � order justifies us in regarding Ach as a measure
of protocol strength, as in our Tenet for measurement
(cf. Eq. 1). By Lemma 1, the sets Ach(Π) are closed
under logical implication.

Definition 3 is a very strong condition because it
accounts for every goal. Indeed, the condition may be
too strong for practical use. For one thing, it is not clear
how one would verify that Π1�Π2. That would require
a structured way to consider every goal, or at least an
efficient way of calculating Ach(Π). Also, protocols are
typically designed with a small, finite number of goals
in mind. It may be sufficient to understand the relative
behavior of Π1 and Π2 on a finite set of design goals G.
This suggests relativizing the partial order � to a set
G of goals of interest.

Definition 4 A protocol Π2 is at least as strong as
protocol Π1 under G, written Π1 �

G Π2, iff for every
goal Γ ∈ G, if Π1 achieves Γ then so does Π2.

When Π1�
GΠ2 and Π2�

GΠ1 we write Π1 ./
G Π2.

When Π1�
GΠ2 and Π2 6�GΠ1 we write Π1�

GΠ2.

We want to be clever in choosing sets of goals G so
that (1) it is straightforward to verifyΠ1�

GΠ2, and (2)
�G usefully distinguishes as many protocols as possible.
The first condition pushes us to consider smaller sets,
while the second condition pushes us to consider larger
sets. In fact:

Lemma 2 Π1 ./
G Π2 and G′ ⊆ G implies Π1 ./

G′
Π2.

3.4 Comparing Protocols by Finite Sets

The smallest useful set is a singleton G = {Γ}. In
this case the induced partial order �{Γ} is actually a
two-point total order on protocols. Each protocol either
achieves Γ or not. If we let Γ(4) be the pkinit authen-
tication goal in formula (4), then

pkinit �{Γ(4)} pkinit1 ./
{Γ(4)} pkinit2,

because pkinit does not achieve the goal but both fixes
do. Similarly, for the non-disclosure goal Γ(7) in for-
mula (7),

pkinit �{Γ(7)} pkinit1 ./
{Γ(7)} pkinit2.

Thus, the two fixes agree on {Γ(4), Γ(7)}, i.e.

pkinit1 ./
{Γ(4),Γ(7)} pkinit2.

Larger finite sets G may induce more interesting
partial orders. When G represents the set of desired
goals, it is the job of the protocol designer to define a
protocol that achieves all the goals in G so that G ⊆
Ach(Π). As standards committees propose fixes to pro-
tocols, however, cases may arise in which two proposals
Π1 and Π2 are incomparable via �G. Such cases pro-
vide an opportunity for standards committees to dis-
cuss the relative importance of goals in G. It may be
worthwhile to sacrifice some goals in order to achieve
others. Recognizing that two protocols are incompara-
ble in the partial order defined by the goals allows the
trade-offs to be much clearer.

4 Related Work

There are several approaches to measuring the secu-
rity of systems. One approach focuses on establishing
a set of standardized names for common concepts, lan-
guages for expressing and sharing information about

9

those concepts, and system administrator tools to au-
tomatically collect measurements of a system with re-
sults expressible in those languages. Works exemplified
by Martin [28], Sun et al. [36], and Liu et al. [25] demon-
strate ways to leverage common enumerations such as
CVE [12] and CWE [13] in automatically generating se-
curity metrics for the analysis of operational systems.
Our approach differs in several crucial aspects. By fo-
cusing on the relatively narrow domain of cryptographic
protocols, we can more easily develop a general and
formal language of events in which to express security
properties. We are thus able to provide a clear seman-
tics for formulas in our language that corresponds to
the effects of attacks without enumerating those attacks
explicitly.

4.1 Protocol Security Hierarchies

More closely related to our work are approaches to an-
alyzing security protocols relative to specific definitions
of protocol security. There have been many attempts in
the literature to define protocol security [6,38,34,26,9,
10,1] and there has been no consensus on a formal def-
inition of what is meant by that term. This is for good
reason: Security comes in various forms and strengths.
Some varieties may be suitable for one purpose, but
insufficient for another.

This point was clearly made by Lowe in [26] when
he defined a hierarchy of authentication specifications
ranging from aliveness to injective agreement on a set
of values. Since then, Cremers and Mauw [14] have
amended and extended this hierarchy to capture syn-
chronization properties (reminiscent of properties de-
fined in Woo and Lam’s [38] and Roscoe’s [34]) and
whether or not some party’s peer is running the ex-
pected role. In [4], Basin and Cremers identify a hi-
erarchy of adversary models and derive a hierarchy of
protocols according to the strongest adversary model
under which the protocols are secure. Their adversary
models come mostly from Canetti and Krawczyk’s [9,
10]. Security in this case is with respect to a small, fixed
set of well-defined secrecy and authentication goals.

We view the present work as a step in the direc-
tion of unifying, simplifying, and extending the related
work on hierarchies of specifications, adversary models,
and protocols. Our security goal language is designed to
express properties in a manner that is independent of
the underlying formalisms or tools used to verify them.
The structure of goals as first order formulas makes
the relative strength of security goals clear and imme-
diate. The language is expressive enough to capture the
natural notions of authentication and secrecy used by
others. Judicious use of the atomic predicates Non(v),

Unq(v), and Preceq(m,n) can also express subtle lim-
its on the adversary’s ability to compromise both long-
term and short-term data. These are the dimensions
along which Basin and Cremers vary their adversary
models in [4]. Thus we can also incorporate a variety
of adversary models into the specifications themselves,
which Basin and Cremers identify as an alternative ap-
proach to theirs.

Our aim in the rest of this section is to elaborate the
detailed connection with the related work on protocol
security hierarchies. By recreating the authentication
hierarchy as defined by Lowe [26] and extended by Cre-
mers and Mauw [14], we hope the reader will gain a
stronger intuition for how to uniformly express a wide
variety of important security goals drawn from the lit-
erature.

4.2 Recreating a Hierarchy of Authentication Goals

Lowe begins his investigation by defining four types of
authentication, weak aliveness, weak agreement, non-
injective agreement, and injective agreement.1 They are
all stated from the perspective of an agent A playing
the initiator role of a protocol trying to authenticate
another agent B playing the responder role. They each
assert the existence of some protocol event given that
some behavior has occurred. There is a clear ordering
of strength among them because they demand increas-
ingly more agreement between A and B. Lowe notes
that the restriction to two party protocols and to au-
thentication of a responder by an initiator is incidental.
The definitions naturally generalize to reversing the or-
der of authentication and to multi-party protocols.

We now express each of these properties in our goal
language. Although our language is independent of the
particular protocol being considered, it does require role
position predicates for each node and parameter pred-
icates for the values at those nodes. Thus the actual
formalization of these authentication goals will depend
to some degree on the protocol. In order to remain as
general as possible, we assume a protocol which has an
initiator role and a responder role. The role position
predicates IStart(·), RStart(·) will be satisfied by the
first nodes of the initiator and responder roles respec-
tively. Similarly IDone(·) and RDone(·) will be satisfied
by their final nodes. We assume that, at the start of
each role, parameters for its own identity and that of its
peer are well defined. We use the parameter predicates
Self(·, ·) and Peer(·, ·) to represent these parameters.

1 We use the terminology of Cremers and Mauw’s [14] instead
of [26] because it makes finer distinctions that are useful for our
purposes.

10

All other parameters p are represented by predicates
Paramp(·, ·).

Most protocol goals are trivially broken when the
participants use compromised long-term keys or creden-
tials. Exactly which keys must be kept secure to achieve
certain goals will depend on the protocol. These as-
sumptions about uncompromised keys can be expressed
in our logic by naming the keys with Paramk(n, vk) and
asserting they are unavailable to the adversary with
Non(vk). We may use the Self(n,A) or Peer(n,A) pa-
rameter predicate with sk in Non(sk(A)). We use the
notation GoodKeys(n, k) to represent a conjunction of
such formulas, expressing that the relevant keys (repre-
sented by the parameters k) are not compromised. Our
goals are thus somewhat parametric in which keys are
covered in this formula.

The stronger authentication goals can naturally be
expressed by modifying the weaker ones. To avoid type-
setting large formulas that are difficult to read, we will
define new formulas in terms of the parts of previous
ones. Each goal has the form shown in Definition 1. We
use the convention that for goal Γi the conjunction on
the left of the implication is denoted by Φi. Each of the
disjuncts on the right of the implication is denoted by
Ψ ji for j between 1 and the number of disjuncts. Ψ ji in-
cludes the existential quantifier. Thus, authentication
goal Γi is expressible as Φi ⇒

∨
1≤j≤n Ψ

j
i where any re-

maining free variables are implicitly universally quan-
tified at the start of the formula. We build up larger
formulas by adding conjuncts to these parts and cap-
turing new variables under new existential quantifiers
when needed.

Expressing the goals. We start by expressing the
goals in Lowe’s hierarchy in our formalism. For the fol-
lowing discussion, we direct the reader to Table 2 which
summarizes the results. Weak aliveness, Γ1, is the per-
haps the weakest meaningful form of entity authentica-
tion. A protocol that satisfies weak aliveness guarantees
that the intended peer started the protocol at some time
in the past. It does not guarantee that the peer agrees
on the initiator’s identity, nor does it guarantee that the
the peer is acting in the right role. The next property
Γ2, weak agreement, specifies that the peer must also
agree on the initiator’s identity. This is done by adding
the relevant parameter predicates to the hypothesis Φ1

and to each of the disjuncts Ψ i1.
Non-injective agreement requires the peer to be act-

ing in the correct role (i.e. as a responder) and it re-
quires that the two parties agree on some subset V of
parameters used in their roles. We express non-injective
agreement as Γ3 which we obtain from Γ2 in two steps.
First we remove the disjunct Ψ2

2 from the conclusion
that allows the peer to act as an initiator. Then, for

each p ∈ V , we conjoin the corresponding parameter
predicate Paramp(·, ·) to both the hypothesis and con-
clusion, ensuring the variables in the second argument
are the same in both places.

The injective-agreement property is designed to en-
sure that a protocol is resistant to replay attacks in
which an adversary may record messages from a previ-
ous successful session and use them at a later time. This
can be avoided if the protocol ensures that each set of
values the initiator commits to is unique to the current
session. This injective session property is formalized as
Γ∗. Injective agreement, Γ4, is then the conjunction of
Γ3 with Γ∗. It is possible to express injective agreement
as a single goal, Γ ′4, but we believe it is more informative
to demonstrate the logical independence of agreement
and injectivity.

Lowe points out in [26] that properties Γ1 through
Γ4 do not capture the notion of recentness. In many
protocols the mechanisms to ensure the peer has been
recently active are similar to those used to ensure the
injective session property. Namely, random challenge
nonces are used to ensure both that each session has
some unique input and that the peer’s activities have
occurred after the creation of the nonce. However, re-
centness and injectivity are logically independent. One
is about the relative ordering of events, while the other
is about the uniqueness of sessions. For each of the prop-
erties defined so far, Lowe defines another version that
ensures recentness.

Recentness requires the existence of an event that is
known to have occurred not too long ago. This could be
a previous event performed by the initiator, or it could
be an external event such as a clock tick. We remain
agnostic about which event is used as a time reference.
We simply assume we know what event in the proto-
col is sufficient for this purpose and we say that such
a node satisfies the role position predicate TimeRef(·).
For each Γi we obtain a version that requires recent-
ness by modifying each of its disjuncts Ψ ji , adding the
two conjuncts TimeRef(m′)∧Preceq(m′,m). For exam-
ple, we modify Γ1, weak aliveness, into Γ5, recent weak
aliveness. Modifying Γ2, Γ3 and Γ4 analogously, yields
respectively

Γ6, recent weak agreement;
Γ7, recent non-injective agreement; and
Γ8, recent injective agreement.

We omit these from Table 2 since they are completely
analogous to Γ5.

In [14], Cremers and Mauw augment this hierarchy
in two ways, which we formalize in Table 3. First, they
choose to modify Γ1 not by ensuring agreement on both
identities, but by first ensuring that the peer is acting

11

Weak aliveness.(
IDone(n) ∧ Peer(n, r)∧

)
=⇒

(
(∃m. RStart(m) ∧ Self(m, r))∨

)
GoodKeys(n, k) (∃m. IStart(m) ∧ Self(m, r))

(Γ1)

Weak agreement.

Φ1 ∧ Self(n, i) =⇒ (Ψ1
1 ∧ Peer(m, i)) ∨ (Ψ2

1 ∧ Peer(m, i)) (Γ2)

Weak agreement: Variant.

Φ1 =⇒
(

(∃i . Ψ1
1 ∧ Self(n, i) ∧ Peer(m, i))∨

)
(∃i . Ψ2

1 ∧ Self(n, i) ∧ Peer(m, i))
(Γ ′2)

Non-injective agreement.

Φ2 ∧
∧

p∈V Paramp(n, vp) =⇒ Ψ1
2 ∧

∧
p∈V Paramp(m, vp) (Γ3)

Injective session.(
IDone(n1) ∧

∧
p∈P (init) Paramp(n1, vp)∧

)
=⇒ n1 = n2

IDone(n2) ∧
∧

p∈P (init) Paramp(n2, vp)
(Γ∗)

Injective agreement.

Γ3 ∧ Γ∗ (Γ4)

Injective agreement: Variant.(
Φ3 ∧ IDone(n′)∧

)
=⇒ Ψ1

3 ∧ n = n′∧
p∈P (init) Paramp(n

′, vp)
(Γ ′4)

Recent weak aliveness.

Φ1 =⇒
(

(∃m′ . Ψ1
1 ∧ TimeRef(m′) ∧ Preceq(m′,m))∨

)
(∃m′ . Ψ2

1 ∧ TimeRef(m′) ∧ Preceq(m′,m))
(Γ5)

Table 2 Authentication formulas in Lowe’s hierarchy

Weak aliveness in role

Φ1 =⇒ Ψ1
1 (Γ9)

Non-injective synchronization.

Φ3 =⇒ ∃m. Ψ3 ∧ NodeOrder(m,n) (Γ11)

Injective synchronization.

Γ11 ∧ Γ∗ (Γ12)

Table 3 Additional Cremers and Mauw authentication formulas

in the right role regardless of whether or not the peer
correctly knows the initiator’s identity. The result is
weak aliveness in a role, Γ9, obtained by omitting Ψ2

1

from Γ1. They also modify Γ9 to obtain

Γ10, yielding recent weak aliveness in a role, by adding
TimeRef(m′) ∧ Preceq(m′,m) to the conclusion.

Cremers and Mauw also introduce the notion of syn-
chronization which has both a non-injective and in-
jective variety. Non-injective synchronization is to be
similar to the Bellare-Rogaway notion of matching con-
versations [6] and Roscoe’s intensional security [34]. It

completely describes the intended protocol execution
given completed run of the initiator. It requires that
every transmission by the initiator precedes a match-
ing reception by the peer and vice versa, where each
corresponding pair of events agrees on the value of the
message.
GL(Π) does not talk directly about this full mes-

sage value. Instead, it talks about the parameters one-
by-one. This limited expressiveness is actually a design
target of our language: a security goal that depends
too heavily on the exact structure of messages cannot
be preserved under small syntactic changes. Since our
language is designed for cross-protocol comparisons we
have traded off expressibility for simultaneous appli-
cability of goals to several protocols. In many cases,
equalities between protocol messages can be enforced
by stating that corresponding parameters of sender and
receiver are equal. However, when they destructure the
messages in different ways, this may not suffice. In a
protocol such as pkinit in which one party transmits
a ciphertext it has encrypted, which another receives
as an opaque blob, we cannot explicitly state that this
component is unchanged.

12

Nonetheless, in many cases the specification of all
the parameters will uniquely determine the message
structure, and hence agreement on all parameters will
entail agreement on the messages. In such cases we can
formalize non-injective synchronization by modifying
Γ3 in the following way. We express the existence of
each node we expect by the corresponding role posi-
tion predicate. We express the desired ordering of these
events using the Preceq(·, ·) and Coll(·, ·) predicates.
This conjunction of predicates may be abbreviated by
NodeOrder(m,n), where n is the only node variable in
the hypothesis of Γ3. We then conjoin this to the con-
clusion Ψ3, existentially quantifying over all new node
variables m, resulting in non-injective synchronization,
Γ11. We do not add any more role parameter predicates
or equalities because we assume the set V of parameters
to agree on for Γ3 is already the entire set of parame-
ters P (init) and is enough to enforce agreement on the
value of each message of the protocol.

To express injective synchronization we simply con-
join the injective session property to non-injective syn-
chronization resulting in Γ12.

Ordering the goals by strength. Having expressed
the various goals in these hierarchies in our logical goal
language, we now demonstrate their relative strength
by implication. As we saw above, many goals are ob-
tained from others by a handful of reusable modifica-
tions. Most of these modifications involve either adding
conjuncts to the conclusion of an implication or remov-
ing disjuncts. Such modifications strengthen the im-
plication by strengthening its conclusion. The rest of
this section discusses this set of reusable modifications
to goals and demonstrates that the resulting goals are
stronger. The results are summarized in Fig. 4 where
the implications on opposite sides of each of the paral-
lelograms hold for analogous reasons.

We first work our way up the diagram vertically. In
order to see that Γ2 is stronger than Γ1 we first note
that we have obtained Γ2, in part, by adding conjuncts
to the conclusion. If this were the only modification,
it would immediately follow that Γ2 was stronger than
Γ1. However, we have also seemingly strengthened the
hypothesis by adding the conjunct Self(n, i), thereby
potentially weakening the implication. In fact, however,
it does not actually weaken the goal. We know that
Φ1 ⇔ Φ1 ∧ ∃i . Self(n, i) because we have assumed
that the self parameter is always well defined at the
first (and hence also last) node of the roles. Any skele-
ton satisfying IDone(n) has a well-defined value for the
self parameter at that node, and hence also satisfies
Self(n, i). Because of this we could have expressed Γ2

as the alternate form Γ ′2 in Table 2, making it syntacti-

Γ12

y� ��
Γ8

z� ��

Γ11

y�
Γ4

��

Γ7

z� ��

��

Γ3

��

��

Γ6

z� ��
Γ2

��

Γ5

z�

Γ10
ks

y�
Γ1 Γ9
ks

Γ1 : Weak Aliveness Γ7 : Rec. non-inj. Agrmt.
Γ2 : Weak Agrmt. Γ8 : Rec. inj. Agrmt.
Γ3 : Non-inj. Agreement Γ9 : Weak Aliveness in Role
Γ4 : Inj. Agreement Γ10 : Rec. Aliveness in Role
Γ5 : Rec. Weak Aliveness Γ11 : Non-inj. Synch
Γ6 : Rec. Weak Agrmt. Γ12 : Inj. Synch

Fig. 4 Combined hierarchy

cally evident that it is stronger than Γ1. Γ6 is stronger
than Γ5 for the same reasons.

To see that Γ3 is a stronger requirement than Γ2

we argue similarly. The consequent is strengthened by
removing one of the disjuncts and adding a conjunct to
the remainder. Again, although it looks like a strength-
ening of the antecedent, the set V is chosen to ensure
that for any p ∈ V , IDone(n) ⇒ ∃vp . Paramp(n, vp).
In order for non-injective agreement to be satisfiable,
it may be necessary to replace RStart(m) with a later
node such as RDone(m). The issue is that the respon-
der may not have learned or committed to all the rele-
vant values in V at its first node. Such a modification
only serves to further strengthen the goal because later
nodes always imply the existence of earlier nodes of the
same strand. Similarly, we conclude that Γ7 is stronger
than Γ6.

Injective agreement Γ4 is clearly stronger than non-
injective agreement Γ3 since Γ4 simply requires an ad-
ditional goal to be met. For the same reason, we can
conclude that Γ8 ⇒ Γ7 and that Γ12 ⇒ Γ11.

Γ9 strengthens Γ1 since it results from omitting one
of the disjuncts of Γ1’s conclusion. For the same reason
Γ10 ⇒ Γ5.

Γ5 is obtained from Γ1 by adding the requirement
for recency. This is done by adding conjuncts to the con-
clusion, thereby strengthening the goal. The same rea-

13

soning justifies all the parallel implications that simply
add recency to a goal.

To see that Γ3 ⇒ Γ9, we recognize that both goals
require the peer to be in the expected role, but Γ3 re-
quires more agreement among the parameters. That is,
Γ3 can be obtained from Γ9 by adding parameter predi-
cates to both the hypothesis and the conclusion. As we
argued above, the addition of these predicates to the
hypothesis does not strictly strengthen the hypothesis.
Thus the additional parameter predicates conjoined to
the conclusion can only strengthen the goal. Γ10 simi-
larly strengthens Γ5.

Finally, we argue that Γ11 is stronger than Γ7. The
conjunction NodeOrder(m,n) is typically stronger than
the conjunction TimeRef(m′)∧Preceq(m′,m), because
TimeRef(m′) is usually one of the role position predi-
cates included in NodeOrder(m,n), and Preceq(m′,m)

is one of the required orderings. Thus NodeOrder(m,n)

asserts the existence of more nodes and more order-
ings among them. This means that synchronization is
a stronger requirement than recency. Thus we see that
Γ11 ⇒ Γ7, and similarly, Γ12 ⇒ Γ8.

5 Protocols and Policies

One common source of resistance to the use of formal
verification tools is their inability to capture the wide
variety of realistic assumptions about the environment
in which a protocol operates. When a potential attack
is presented to a standards committee, it is common for
the committee to argue that the attack violates some
assumption guaranteed externally by some policy. In
Section 5.1 we use an example protocol from an ISO
standard [24] to show how we can use our goal language
to capture not only properties that a protocol must en-
force, but also limitations on the adversary that are
enforceable through policy decisions. In Section 5.2 we
discuss how a well-known flaw in the Transport Layer
Security (TLS) protocol, discovered in 2009 [33], illumi-
nates the tension that may arise when applications rely
on a protocol to provide enough information to make
local policy decisions. We show how our goal language
might help structure standards bodies’ understanding
of the root cause of such a flaw and appropriate ways
to mitigate it.

5.1 Policy-Based Constraints

The hierarchy is rather extensive, and yet it is still in-
sufficient to express many goals or properties that arise
for protocols developed as standards. In [3], Basin et al.
use Scyther to analyze the ISO/IEC 9798 standard for

P as TTP

��

A as Init
nA,A,Boo

��
•

TokenPA // •

��
•

��

TokenAB // B as Resp

��
• •

TokenBAoo

TokenPA={|nA, kAB , B|}kAP
, {|nP , kAB , A|}kBP

TokenAB={|nP , kAB , A|}kBP
, {|mA, B|}kAB

TokenBA={|nB , A|}kAB

Fig. 5 ISO/IEC 9798-2, Mechanism 5

authentication protocols. They measure the protocols
against goals in the above hierarchy and discover nu-
merous cases in which the protocols do not achieve the
goals. They then propose repairs to the protocols and
demonstrate that the repaired protocols each achieve at
least recent non-injective agreement. Interestingly, their
alterations to the protocol messages were not sufficient
to repair all the protocols. The repairs to two mech-
anisms from Part 2 of the standard [24] only achieves
the goal under the extra external assumption that some
policy is enforced. We dedicate the remainder of this
section to demonstrating how we can apply our goal
language to one of these protocols to express the ade-
quacy of the protocol repairs under such policy-based
constraints.

Figure 5 depicts the expected execution the proto-
col identified as Mechanism 5 in [24]. Two parties, A
and B, want to authenticate each other using an on-
line trusted third party (TTP) P . We assume that P
shares symmetric keys kAP and kBP with A and B re-
spectively. A, acting as initiator, begins by sending a
nonce nA together with B’s identity to P . P , acting in
the role of TTP, creates a fresh, symmetric session key
kAB to be used between A and B. The key is encrypted
separately for A and B together with the random val-
ues nA and nP and the identities of the intended peers.
A passes along P ’s encryption for B together with an-
other encryption using the session key kAB of a random
value mA and B’s identity. The responder B completes
the protocol by using kAB to encrypt a random value
nB and A’s identity.

The protocol as described does not achieve non-
injective agreement because many of the encryptions
have similar structure. This allows an adversary to com-
bine messages from two sessions in which A and B are
both acting as initiator to convince A that B is acting

14

P as TTP

��

P as Init
nA,P/A,Boo

��
•

TokenPA // •

��
•

TokenAB // B as Resp

TokenPA={|nA, kAB , B|}kAP
, {|nP , kAB , A|}kBP

TokenAB={|nP , kAB , A|}kBP
, {|mA, B|}kAB

TokenBA={|nB , A|}kAB

Fig. 6 Attack on ISO/IEC 9798-2, Mechanism 5

as responder. Basin et al. suggest including unique tags
in each of the encryptions so that such role confusions
are no longer possible. Although this change eliminates
the role-mixup attacks, the resulting protocol still does
not achieve non-injective agreement (in fact, it does not
even achieve weak aliveness).

Figure 6 displays a remaining attack on the proto-
col. In this instance P is executing both the initiator
and the TTP roles simultaneously. As initiator, P sends
the nonce and the two identities P and B. The adver-
sary swaps P ’s identity with A’s identity before deliv-
ering the message to P in the TTP role (represented
with P/A over the dotted line). As TTP, P believes the
request to be coming from A wanting to talk with B,
so he prepares encryptions for both A and B using the
long-term shared symmetric keys kAP and kBP . The
adversary can redirect this message back to P in the
initiator role. P is willing to accept this message be-
cause it believes it to be coming from A acting as TTP
and it is encrypted with the key kAP that he shares with
A. When P acting as initiator sends the final message
to B, B believes that A was active at some point which
is not true. This violates weak aliveness of A from the
responder’s point of view.

The root cause of this problem is that the second
message does not contain enough information about
who the TTP thinks is playing which role, assuming
that a principal can play both the TTP role and the
initiator role. This suggests two natural ways to address
the attack. The first is to alter the message structure to
add more detailed information about which principals
appear to be playing which roles. The second is to elim-
inate the ambiguity by forbidding any principals that
acts as TTP to also act as either initiator or respon-
der. While the first option may be desirable because it
allows for more flexible deployment scenarios, it may
be difficult for a standards committee to accept such a
drastic change to the message structure when numer-
ous implementations exist. Furthermore, the first op-

tion requires the protocol implementors to create and
distribute a patch, while the second option empowers
any enterprise that is an end user of the protocol to
protect themselves with a policy change.

Our goal language makes it straightforward to eval-
uate whether a particular proposal to amend the pro-
tocol will achieve the desired authentication goal as we
demonstrated for the case of PKINIT. But how can we
use our techniques to evaluate whether a change in lo-
cal policy will allow the protocol to achieve its goal? An
analysis of the protocol will always tell us that it does
not even achieve weak aliveness. We must capture what
the protocol does achieve and ensure that it entails a
goal that says either the protocol violates some external
policy or else it achieves non-injective agreement.

The external policy can be viewed as an extra as-
sumption we would like to make on our analysis. While
goals typically represent assumptions as conjuncts in
the antecedent, our language restricts us to using pos-
itive statements such as the fact that some event has
occurred, or some value is freshly chosen. This policy
is really a negative statement: A principal will not play
both the TTP role and another role. We can express
such requirements by negating the policy to make a
positive statement and place that in the disjunctions of
the conclusion. So if we let Φ′3 ⇒ Ψ ′3 represent the goal
of non-injective agreement with the initiator from the
responder’s point of view, then we can use the following
goal:

Φ′3 =⇒ Ψ ′3 ∨ Ψa ∨ Ψb (Γ13)

in which we let

Ψa = ∃n1, n2, v . TTPStart(n1) ∧ Self(n1, v) ∧
InitStart(n2) ∧ Self(n2, v)

Ψb = ∃n1, n2, v . TTPStart(n1) ∧ Self(n1, v) ∧
RespStart(n2) ∧ Self(n2, v).

The disjunction Ψa ∨ Ψb captures a violation of the
policy that restricts any principal that plays the TTP
role from playing either the initiator role (Ψa) or the
responder role (Ψb). Using cpsa we have verified that
the protocol achieves goal Γ13 thereby demonstrating
that such a policy, if properly enforced, can ensure the
protocol achieves non-injective agreement.

Notice that Γ13 fits only tangentially into the hier-
archy of Fig. 4. It is weaker than non-injective agree-
ment because we achieved it by weakening the conclu-
sion, adding extra disjuncts. However, it is not stronger
than any of the other goals in the hierarchy. This ex-
ample demonstrates the inadequacy of such hierarchies
in addressing the real goals and constraints that arise

15

Client Attacker Server
------ -------- ------

<--------- Handshake -------->
<===== Initial Traffic ======>

<----------------- Handshake ========================>
<=============== Client Traffic ======================>

Fig. 7 TLS renegotiation attack

in the standardization of security protocols. We believe
that combining our goal language with formal verifica-
tion tools goes a long way to offering the flexibility and
extensibility necessary to naturally express and verify
goals and policy-based constraints that arise during the
development and maintenance of protocol standards.

5.2 TLS Renegotiation

The policy in Section 5.1 is encoded in our security goal
Γ13. One aspect of that example that made it particu-
larly clean is that the policy is a global one that can be
enforced during the registration of participants. That
is not always the case. Some policy decisions may dy-
namically rely on information provided by the protocol
itself, for example when an application is relying on the
underlying protocol for certain guarantees. When a sur-
prising behavior—potentially a flaw—is discovered, we
may need to change what information is available at the
interface between the protocol and the application. The
application can then use this information to correctly
enforce a policy. We start with an example.

Transport Layer Security (TLS) [15] is a globally
deployed protocol designed to add confidentiality, au-
thentication and data integrity between communicating
applications. It is secure, scalable, and robust enough to
protect e-commerce transactions over HTTP. Despite
its success, it has been forced to evolve over time, in
part due to the discovery of various flaws in the design
logic.

One such flaw, discovered in 2009 by Marsh Ray
(see [33]), concerns renegotiating TLS parameters. It
works on the boundary between the TLS layer and the
application layer it supports. Fig. 7 is a high-level pic-
ture of the attack borrowed from [33]. The attacker
first creates a unilaterally authenticated session with
the server in the first handshake. Thus, the server au-
thenticates itself to the attacker, but not vice versa.
The attacker and server then exchange initial traffic
protected by this TLS session. Later, a renegotiation
occurs, possibly when the application at the server re-
quires mutual authentication for some action. The at-
tacker then allows the client to complete a handshake
with the server, adding and removing TLS protections.
The client’s handshake occurs in the clear (depicted by

<---> in Fig. 7), while the server’s handshake is pro-
tected by the current TLS session. The attacker has no
access to this newly negotiated session, but the server
may retroactively attribute data sent in the previous
session to the authenticated client. The server may then
perform a sensitive action in response to a request sent
by the attacker, but based on the credentials subse-
quently provided by the client.

In a typical illustration, the server is a pizza shop.
The attacker orders a pizza for delivery to his address;
then the client authenticates and orders a pizza for his
own address. Because this is (now) a bilaterally authen-
ticated connection, the server charges the orders made
in this process to the client’s account.

Which level is to blame for this attack?

– Does TLS fail to achieve a security goal that it
should achieve?

– Or should the application take responsibility? It ac-
cepts some data out of a stream that is not bilat-
erally authenticated, and lumps it with the future
data which will be bilaterally authenticated.

– Or is there shared responsibility? Perhaps TLS has
the responsibility of providing clearer indications to
the application when a change in the TLS properties
takes place, and the application has the responsibil-
ity of heeding these indications.

TLS was subsequently updated with a renegotiation ex-
tension [33]. Renegotiation now creates a cryptographic
binding between the new session and the existing ses-
sion. If a server completes a mutually authenticated
renegotiation with a client, then the earlier session was
also negotiated with the same client. However, the au-
thors of [33] also note:

While this extension mitigates the man-in-the-
middle attack described in the overview, it does
not resolve all possible problems an application
may face if it is unaware of renegotiation.

As Bhargavan et al. [7]’s recent attacks showed, the
practically important issue was not in fact resolved by
this. Perhaps future versions of TLS will simplify the
situation by eliminating renegotiation.

However, the main point stands: for applications to
use a security protocol such as TLS effectively, and take
partial responsibility for achieving reasonable policies,
some signals and commands must be shared between
TLS and the application. Formal verification—coupled
with our goal language—fits naturally here. With a lit-
tle effort the goal language can be updated to address
the multilayer nature of flaws such as this.

16

5.3 Enforcing Policies at Protocol Interfaces

The job of TLS, acting in either direction, is to take a
stream of data from an application, delivering as much
as possible of this stream to the peer application. When
the sender is authenticated to the receiver, TLS guar-
antees that the portion delivered is an initial segment of
what the authenticated sender transmitted. When the
mode offers confidentiality, no other principal should
learn about the content (beyond its length).

Naturally, these goals are subject to the usual as-
sumptions, such as that the certificate authorities are
trustworthy, that the private keys are uncompromised,
and that randomness was freshly chosen.

When renegotiation occurs, this affects what the ap-
plication should rely on. If a handshake authenticates
a client identity C, then that guarantee should apply
to the data starting when the cipher spec changes. It
continues to apply until another cipher spec change or
the end of the connection. Authentication guarantees
for the “client traffic” should definitely not apply to the
“initial traffic” of Fig. 7, which lies on the other side of
a cipher spec change.

We may regard the TLS record layer as engaging in
two types of events, namely the network-facing events
and the application-facing events. Consider the out-
bound stream of data from the application to its peer.
The network-facing events are transmission events for
messages on the network to the peer. The application-
facing events accept a stretch of data from the appli-
cation, to be transmitted to the peer via the network.
These stretches of data may be of various lengths, so
that the record layer has to break them into many TLS
records before network transmission.

For the inbound stream of data from the peer, the
network-facing events are reception events for messages
on the network from the peer. The application-facing
events deliver a stretch of data to the application. As
the record layer assembles these stretches of data from
many TLS records on the network, they may be of var-
ious lengths.

Thus, in representing the TLS record layer, we use
four kinds of node:

NetReceive(n): n is a network-facing event receiving a
record;

NetSend(n): n is a network-facing event transmitting a
record;

AppAccept(n): n is an application-facing event accept-
ing data from the application to go to the peer;

AppDeliver(n): n is an application-facing event deliv-
ering data from the peer to the application.

Several parameter predicates may apply to these nodes.
If NetReceive(n) or NetSend(n), then n certainly has

a MAC key and an encryption key, as well as sequence
number and payload data. We will not pause to formal-
ize these, nor to define the roles that these events lie
on. They are most easily formalized as protocol roles
that interact with mutable state [21,31].

When AppAccept(n) or AppDeliver(n), then three
parameter predicates that apply to n are:
AppData(n, d): n is accepting or delivering the applica-

tion data d;
AppPeer(n, p): the authenticated peer at the time n oc-

curs is p;
AppSelf(n, p): the authenticated identity of the active

principal at the time n occurs is p.
The predicates AppPeer(n, p) and AppSelf(n, p) may
not hold of any value p if the endpoint is unauthenti-
cated when n occurs.

Using these notions about the protocol behavior,
the application can express its requirements about the
security services that the protocol provides. We are in-
terested in a situation where two segments of data are
delivered to the pizza server, and it replies with a seg-
ment completing the transaction. We assume that the
application defines a method to concatenate data seg-
ments d1, d2, which we write d1ˆd2; and that it has a
way to assert that data d expresses a well-formed trans-
action Transact(d). Then the application is interested
in the situation when:

AppAccept(n1) ∧ AppAccept(n2)

∧ AppDeliver(n3) ∧∧
1≤i≤3

AppData(ni, di) ∧ Transact(d1ˆd2ˆd3).

In this situation, we certainly want it to be the case
that there is a single client c which is the peer of all
three events:
∃c . AppPeer(n1, c) ∧ AppPeer(n2, c)

∧ AppPeer(n3, c).

The authentication properties of the protocol itself may
also imply further conclusions, such as c actually having
transmitted d1ˆd2.

Thus, the goal language we have provided can be
enriched to express events at the interface between the
protocol and its application. This notation—augmented
with some application level vocabulary—allow the ap-
plication author to express the meaningful conclusions
that should hold whenever the application obtains its
security services from the protocol.

6 Comparing Protocols by Hypotheses

Up to now, we have limited ourselves to considering
only finite sets of goals G for the comparison of pro-

17

tocols. Using finite sets is helpful because Ach(Π) ∩ G
can be enumerated. The limitation of considering only
finite sets of goals is that the distinguishing power of
the induced partial order �G is limited by the size of G
(cf. Lemma 2). We may lack the imagination to ensure
G includes goals that would help distinguish protocols
in a useful way. A more flexible approach might be to
fix a set of assumptions and try to compare protocols
according to the strength of the conclusions they allow.
For example, Π2 should be considered stronger than Π1

if Π2 allows an initiator to conclude more information
about their peer’s session than Π1 allows. This insight
leads us to consider the following set of goals that all
share a common hypothesis:

H(Φ) = {Γ | hyp(Γ) = Φ}. (9)

Thus, for Γ, Γ ′ ∈ H(Φ), Γ ≤ Γ ′ iff conc(Γ ′)⇒ conc(Γ).
H(Φ) is typically not a finite set, so we can no longer
calculate Ach(Π) ∩H(Φ) by enumeration.

However, using our tool cpsa [32], we can find—
for a large, natural class of assumptions Φ—a single
strongest formula in Ach(Π) ∩H(Φ). We will call this
formula the shape analysis sentence SASΦ(Π). It serves
to summarize the whole set Ach(Π) ∩ H(Φ). The key
idea here is enrich-by-need protocol analysis. As we will
see, enrich-by-need analysis outputs such a maximally
strong formula.

Thus the sets H(Φ) are a natural companion to
enrich-by-need protocol analysis. This raises the ques-
tion of whether the analysis methods used by other
tools have similar connections to other classes of goals.

6.1 Enrich-by-Need Protocol Analysis

Our approach to protocol analysis is based on what we
call the “point-of-view principle.” Most of the security
goals we care about in protocol design and analysis con-
cern the point of view of a particular participant C. C
knows that it has sent and received certain messages
in a particular order. C may be willing to assume that
certain keys are uncompromised, which for us means
that they will be used only in accordance with the pro-
tocol in question. And C may also be willing to assume
that certain randomly chosen values will not also be
independently chosen by another participant, whether
a regular (compliant) participant including C itself on
another occasion, or an adversary.

These facts and assumptions may be formalized in a
hypothesis. The hypothesis in Eqn. 3 is an example. It
summarizes the situation in which a client has executed
a full local run; it declares the variables C, S to stand
for two of the parameters of the client run, and it adds

the assumption that the signature key sk(S) of the peer
is uncompromised.

The protocol analysis question is, given these facts
and assumptions, what follows about what may hap-
pen on the network? The answers to this question are
of two main kinds. Positive conclusions assert that some
regular participant Q has taken protocol actions. These
are authentication goals. They assert, subject to the as-
sumptions, that C’s message transmissions and recep-
tions authenticate Q as having taken corresponding ac-
tions. Negative conclusions are generally non-disclosure
assertions. They say that a value cannot be found avail-
able on the network in a particular form; often, that a
key k cannot be observed unprotected by encryption on
the network.

Skeletons and cohorts. The enrich-by-need process
starts with a representation of the hypothesis. We will
refer to these representations of behavior and assump-
tions as skeletons A. A skeleton consists of some behav-
ior of Π, i.e. some regular strands in the strand space
terminology, together with the stated assumptions.

A skeleton A for Π is a structure that provides par-
tial information about a set of Π-bundles. It consists of
a finite set of regular strands of Π, or initial segments
of them; some assumptions about which keys should
be assumed uncompromised and which should be as-
sumed to have been freshly chosen; and a partial order-
ing on the nodes of Π. A bundle B is an instance of a
skeleton A if there is a structure-preserving map (“ho-
momorphism”) from the strands of A into the regular
strands of B such that B satisfies the freshness and non-
compromise assumptions of A, and its arrows enrich the
partial ordering of A (see [20] for copious detail).

cpsa [32] is a software tool that carries out protocol
analysis in strand spaces. Given any skeleton A0 as a
starting point, cpsa provides information about the set
of all bundles B such that there is a homomorphism
from A0 into B. cpsa does this by computing a set
of skeletons {Bi}i∈I with two properties. First, each
of the skeletons Bi is a realized skeleton. By this we
mean that there is a bundle Bi such that Bi results
from Bi when we “forget” the specific adversary strands
in Bi. Second, every bundle B containing an image of A0

also contains an image of one of the Bi. We summarize
these properties by saying that {Bi}i∈I characterizes
the skeletons compatible with the starting point A0.

We start the enrich-by-need analysis with a skeleton
A0. At any point in the enrich-by-need process, we have
a set S of skeletons to work with. Initially, S = {A0}.

At each step, we select one of these skeletons A ∈ S,
and ask if the behavior of the participants recorded in it
is possible. When a participant receives a message, then
the adversary should be able to generate that message,

18

using messages that have been sent earlier, without vi-
olating the assumptions. In this case, we regard that
reception as “explained,” since we know how the ad-
versary can arrange to deliver the expected message.
We say that that particular reception is realized. When
every reception in a skeleton A is realized, we call A it-
self realized. It then represents—together with behavior
that the adversary can supply—a possible complete ex-
ecution, i.e. a bundle.

We collect the realized skeletons in a set R.
If the skeleton A ∈ S we select is not realized, then

we use a small number of rules to generate an enrich-
ment step. An enrichment step takes one unrealized re-
ception and considers how to add some or all of the
information that the adversary would need to generate
its message. It returns a cohort of skeletons: This is a
finite set {A1, . . . ,Ai} of skeletons forming a disjunctive
representation of all the ways the regular participants
can supply the necessary information to the adversary.
We update S by removing A and adding the cohort
members: S ′ = (S \ {A}) ∪ {A1, . . . ,Ai}.

As a special case, a cohort may be the empty set,
i.e. i = 0, and in this case A is discarded and nothing
replaces it. This occurs when there are no possible be-
haviors of the regular participants that would explain
the required reception. Then the skeleton A cannot con-
tribute any executions (realized skeletons).

This process may not terminate, and in fact the un-
derlying class of problems is undecidable [17]. However,
when it does terminate, it yields a finite set R of re-
alized skeletons with a crucial property: For a class of
security goals, if they have no counterexample in the
set R, then the protocol really achieves that goal [22].
Moreover, we can inspect the members of R and deter-
mine whether any of them is a counterexample.

We call the members ofR shapes, and they represent
the minimal, essentially different executions consistent
with the starting point.

Enrich-by-need analysis originates with Meadows’s
NPA [29]. Dawn Song’s Athena [35] applied the idea to
strand spaces [37]. Two systems in use currently that
use the enrich-by-need idea in a form close to what
we describe here are Scyther [14] and our cpsa [32].
See [20,22] for a comprehensive discussion, and for more
information about our terminology here.

Example: Initiator’s authentication guarantee in
pkinit. Suppose that the client C has executed a
strand of the client role in the fixed pkinit1, i.e., where
we instantiate F (C, n2) = (C, n2). Suppose also that
we are willing to assume that the authentication server
S has an uncompromised signature key sk(S). We an-
notate this assumption as sk(S) ∈ non, meaning that
sk(S) is non-compromised.

sk(S) ∈ non •
s1 ��

//

• oo

(10)

s1 ∈ Client[C, S, T, n1, n2, tC , tS , k, AK]

This is our starting point A0, depicted in (10), which
corresponds to the information expressed in formula (3)
from Section 2. C receives a message that contains the
digital signature [k, (C, n2)]sk(S), and we know that the
adversary cannot produce this because sk(S) is uncom-
promised. Thus, this second node of the local run is
unrealized.

To explain this reception, we look at the protocol to
see what ways a regular participant might create a mes-
sage of the form [k, (C, n2)]sk(S). In fact, there is only
one. Namely, the second step of the KAS role does
so. Knowing the KAS sends this signature means it
will agree on the parameters used: S, k, C, n2. However,
we do not yet know anything about the other param-
eters used in S’s strand. They could be different val-
ues t′C , T

′, n′1, TGT
′, AK ′, t′S . Thus, we obtain a cohort

containing a single skeleton A1, depicted in (11), that
includes an additional KAS strand with the specified
parameters.

sk(S) ∈ non •
s1 ��

// // •
s2��

• oo •oo

(11)

s1 ∈ Client[C, S, T, n1, n2, tC , tS , k, AK]

s2 ∈ KAS[C, S, T ′, n′1, n2, t
′
C , t
′
S , k, AK

′]

This skeleton is now already realized, because, with this
weak assumption, the adversary may be able to use C’s
private decryption key to obtain k and modify the au-
thenticator {|AK,n1, tS , T |}k as desired. The adversary
might also be able to guess k, e.g. if S uses a badly
skewed random number generator. Similarly, the com-
ponents that are not cryptographically protected are
under the power of the adversary.

We can we now re-start the analysis with two addi-
tional assumptions to eliminate these objections. First,
we add sk(C) to non. Second, we assume that S ran-
domly generates k, and we write k ∈ unique, meaning
that k is chosen at a unique position. We are uninter-
ested in the negligible probability of a collision between
k and a value chosen by another principal, even one cho-
sen by the adversary. This situation is depicted in (12).

sk(S), sk(C) ∈ non •
s1 ��

// // •
s2��

k ∈ unique • oo •oo

(12)

s1 ∈ Client[C, S, T, n1, n2, tC , tS , k, AK]

s2 ∈ KAS[C, S, T ′, n′1, n2, t
′
C , t
′
S , k, AK

′]

19

This skeleton is not realized, because with the assump-
tion on sk(C), the adversary cannot create the signed
unit [t′C , n2]sk(C); it must come from a compliant prin-
cipal. Examining the protocol, this can only be the
first node of a client strand with matching parameters
C, n2, t

′
C , i.e. a local run s0:

sk(S), sk(C) ∈ non •
s0 ��

•
s1 ��

// // •
s2��

k ∈ unique ◦ • oo •oo

(13)

s0 ∈ Client[C, S′′, T ′′, n′′1 , n2, t
′
C , t
′′
S , k
′′, AK′′]

s1 ∈ Client[C, S, T, n1, n2, tC , tS , k, AK]

s2 ∈ KAS[C, S, T ′, n′1, n2, t
′
C , t
′
S , k, AK

′]

Curiously, two possibilities now remain. The strand
s0 could be identical with s1, in which case the doubly-
primed parameters equal the unprimed ones. Or alter-
natively, s0 might be another client strand that has
by chance selected the same n2; we have not assumed
n2 ∈ unique. In this case, the doubly-primed variables
are not constrained. If we further add the assumption
that n2 ∈ unique, then s1 = s0 follows.

In all of these cases, C and S do not have to agree
on TGT , since this item is encrypted with a key shared
between S and T , and C cannot decrypt it or check any
properties about what he receives.

We have illustrated several points about enrich-by-
need protocol analysis. Authentication follows by suc-
cessive inferences about regular behavior, based on the
message components the adversary cannot build. When
two inferences are possible, the method branches, po-
tentially resulting in several outputs. Various levels of
authentication may be achieved; they depend on which
parameters principals agree on, and which parameters
may vary. Secrecy properties hold when no execution is
compatible with the secret’s disclosure.

More formally, there is a notion of homomorphism
between skeletons [20]. Suppose that we start with the
“point of view” expressed in the skeleton A0, and cpsa
terminates, providing us with the shapes C1, . . . ,Ci,
which are the minimal, essentially different executions
compatible with A0. Then for each Cj , there is a homo-
morphism Hj from A0 to Cj . Moreover, every homo-
morphism K : A0 → D from A0 to a realized skeleton D
agrees with at least one of the Hj . Specifically, we can
regard K as the result of adding more information after
one of the Hj . We mean that we can always find some
J : Cj → D where K is the composition K = J ◦Hj .

6.2 Shape Analysis Formulas

Given a skeleton, we can summarize all of the informa-
tion in it in the form of a conjunction of atomic formu-
las. We call this formula the characteristic formula for

the skeleton, and write cf(A). Thus, a cpsa run with
starting point A0 is essentially exploring the security
consequences of cf(A0).

When cpsa reports that A0 leads to the shapes
C1, . . . ,Ci, it is telling us that any formula that is true
in all of these skeletons, and is preserved by homomor-
phisms, is true in all realized skeletons D accessible from
A0. The set of formulas preserved by homomorphism
are called positive existential, and are those formulas
built from atomic formulas, ∧,∨, and ∃. By contrast,
formulas using negation ¬φ, implication φ =⇒ ψ, or
universal quantification ∀y . φ are not always preserved
by homomorphisms.

Thus, the disjunction of the characteristic formulas
of the shapes C1, . . . ,Ci tell us just what security goals
A0 leads to. However, we can be somewhat more pre-
cise. The skeleton Cj may have nodes that are not in the
image of A0, and it may involve parameters that were
not relevant in A0. Thus, A0 will not determine exactly
which values these new items take in Cj , e.g. which ses-
sion key is chosen on some local run not present in A0.
Thus, these new values should be existentially quanti-
fied. Effectively, these are all the variables that do not
appear in cf(A0). Thus, for each Cj , let yj list all the
variables in cf(Cj) that are not in cf(A0). Let x list all
the variables in cf(A0). Then this run of cpsa has vali-
dated the following formula that has the required form
of a security goal (Definition 1):

∀x . (cf(A0) =⇒
∨

1≤j≤i

∃yj . cf(Cj)) (14)

The conclusion
∨

1≤j≤i ∃yj . cf(Cj) is the strongest for-
mula that is true in all of the Cj .

We call the formula (14) the shape analysis sentence
for this run of cpsa. Since the empty disjunction is
the constantly false sentence, in the special case where
i = 0, (14) is ∀x . cf(A0) =⇒ false. That is to say, it is
∀x . ¬cf(A0).

We will frequently have need to reference particu-
lar shape analysis sentences and their various parts. We
introduce here a notation for ease of presentation. Sup-
pose the characteristic formula cf(A0) in protocol Π is
represented by the conjunction of atomic formulas Φ,
and each resulting shape is formalized by ∃yj . cf(Cj).
The shape analysis sentence (14) is called SASΦ(Π).
For the conclusion of SASΦ(Π), i.e. the conclusion of
the implication, we write SASConcΦ(Π).

20

6.3 Enrich-by-Need Compares Protocols by
Hypotheses

Fortunately, the shape analysis sentences SASΦ(Π) are
always in H(Φ), and the induced partial order �H(Φ)

has a nice property relative to SASΦ(Π).

Theorem 2 Π achieves Γ iff SASConchyp(Γ)(Π) ⇒
conc(Γ).

Proof For the forward implication, we rely on the fact
that SASConchyp(Γ)(Π) is the strongest conclusion al-
lowed from hyp(Γ) inΠ. That is, whenever hyp(Γ)⇒ χ

then SASConchyp(Γ)(Π)⇒ χ. So let χ = conc(Γ).
For the reverse implication, the assumption means

that Γ ≤ SAShyp(Γ)(Π) in the strength ordering. Also,
Π achieves SAShyp(Γ)(Π) by definition, so by Lemma 1,
Π achieves Γ . ut

This theorem says that we can completely charac-
terize Ach(Π)∩H(Φ) because it has a single maximum
element, namely SASΦ(Π). Thus, we get the following
corollary.

Corollary 1 Π1 �
H(Φ) Π2 iff Π2 satisfies SASΦ(Π1).

This means we can use cpsa to compare protocols
according to �H(Φ). We simply run the tool once to
generate SASΦ(Π1) and then check whether Π2 satisfies
SASΦ(Π1) using any semi-decision procedure for finding
counterexamples.

We can also define larger sets by considering a set P
of hypotheses and taking the union G =

⋃
Φ∈P H(Φ).

When P is finite we can run the tool once for each mem-
ber of P . We thus verify that Π1 �

G Π2, by checking
that Π2 satisfies SASΦ(Π1) for each Φ ∈ P .

We can again use the example of the variants of
pkinit to demonstrate the induced ordering. We can
let Γ be the desired security goal and run cpsa on
both fixes pkinit1 and pkinit2 starting from inputs
representing hyp(Γ). The result is that

SASConchyp(Γ)(pkinit1) = SASConchyp(Γ)(pkinit2).

Thus we find that

pkinit �H(Φ) pkinit1 ./
H(Φ) pkinit2.

This is the same ordering as for �{Γ}. In this case, in-
creasing the size of the set of goals we consider does not
help us further distinguish the protocols under consid-
eration. It does, however, tell us that the two fixes are
equally good for a larger class of goals. This assurance
would be useful for standards committees. It would al-
low to them to know that both fixes will behave the
same under adjustments to the strength of the conclu-
sion of Γ .

6.4 Comparing Protocols by Conclusions

Using the set H(Φ) uses the idea that fixing a hypothe-
sis, we can compare goals based on the strength of their
conclusions. We can also reverse that idea by fixing a
conclusion and comparing goals based on the strength
of their hypotheses. The intuition is that for two pro-
tocols that both achieve a given conclusion, we might
prefer the one that requires fewer assumptions. For ex-
ample, in order for an initiator to authenticate a respon-
der, one protocol may require that the private keys of
both parties be kept secret, while another protocol may
only require that the responder’s private key be kept
secret. This motivates the use of the following set of
goals that share a common conclusion.

C(χ) = {Γ | conc(Γ) = χ}

Thus, for Γ, Γ ′ ∈ C(χ), Γ ≤ Γ ′ if and only if
hyp(Γ) ⇒ hyp(Γ ′). In order to determine an ordering
Π1�

C(χ)Π2, we are again faced with the task of trying
to compute Ach(Πi)∩C(χ). Unfortunately, there is no
simple analog to Theorem 2. Ach(Π) ∩ C(χ) may not
have a single maximal element.

Discovering maximal elements of Ach(Π)∩H(Φ) re-
lies on a sort of deductive inference in which conclu-
sions are inferred from the hypothesis Φ. The enrich-
by-need analysis method naturally supports this type
of “forward” inference systematically determining the
strongest conclusions allowed from the hypothesis.

Discovering maximal elements of Ach(Π) ∩ C(χ)

is a type of abductive reasoning in which hypotheses
are inferred from the conclusion χ. The enrich-by-need
method is not as well suited to support this type of
“backward” inference. A better method would be one
that systematically determines weaker hypotheses that
are still sufficient to imply χ. This would be a sort of
“impoverish-as-possible” analysis method. We are un-
aware of any tools that are specifically designed to sup-
port this type of reasoning. Such a tool might enable an
analog to Theorem 2 and thus provide a simple way to
verify whether Π1 �

C(χ) Π2. This suggests a potential
area for future research.

In the absence of an impoverish-as-possible analy-
sis tool, we believe that �C(χ) is still a useful notion
that can help clarify relationships among protocol vari-
ants. For one thing, if one finds a sufficiently strong
assumption Φ to ensure χ, one can run cpsa repeat-
edly, omitting conjuncts of Φ until χ is no longer satis-
fied. Tool support apart, �C(χ) also serves to organize
the concepts in a way that enables clearer discussions
among standards committee members regarding rela-
tive trade-offs. Also, if we are able to use other means
to come up with a goal Γ ∈ C(χ) that Π1 achieves but

21

Π2 does not, then we can use Theorem 1 to demonstrate
Π1 6�C(χ)Π2.

7 Conclusion

In this paper we have presented a family of security
metrics �G for cryptographic protocols, parameterized
by sets of goals G expressed in a logical language. The
natural partial ordering on formulas induced by logical
implication yields a partial order on protocols that re-
flects which attacks are possible for a Dolev-Yao style
adversary to achieve. This ensures that protocol Π1 is
at least as strong as Π2 exactly when Π1 achieves any
security goal achieved by Π2. We showed how these
security metrics can capture and expand well-studied
security hierarchies from the literature [26,14].

The language is designed to be tool-independent, so
that any of the wide variety of protocol analysis tools
available might be used to verify that a protocol meets
a given goal. Although we rely on a well-understood
semantics of our language in the strand space formal-
ism, there should be no fundamental barriers to using
other formalisms as a semantic base. We believe this is
a step toward enabling a diverse set of analysis tools
to “speak the same language,” allowing analysts to use
different tools based on their relative strengths. This vi-
sion is mostly limited by the types of properties we have
chosen to consider and the adversary model we use to
verify them. We currently only consider trace proper-
ties. Thus, our language is not well-suited for indistin-
guishability properties (useful for privacy goals, among
others) or probabilistic properties relying on the more
complex details of a computational adversary model.
Expanding our ideas to accommodate such goals (and
the tools that verify them) is an area of future work.

We also identified the strengths of a particular style
of protocol analysis called enrich-by-need. This analysis
style is embodied by such tools as our own cpsa as well
as Scyther. With such tools we can identify the unique
strongest goal achieved by a protocol Π in a particu-
lar class of goals denoted H(Φ) that all share a com-
mon hypothesis Φ. We suspect other styles of protocol
analysis might be similarly characterized. An interest-
ing area for future investigation would be to develop an
“impoverish-as-possible” style of analysis which would
identify maximal elements achieved by Π in the set
C(χ) of goals that share a conclusion χ.

We believe this logical formulation of security goals
supported by formal verification can help the process of
standardizing cryptographic protocols. Standards bod-
ies could adopt the practice of requiring submissions to
include explicit claims of goals they achieve—written in

a formal goal language such as ours—together with evi-
dence that those goals have been formally verified with
an analysis tool. Our motivating example of pkinit
suggests that the process of explicitly including formal
security claims (even without evidence) would go a long
way toward improving the quality of published stan-
dards as suggested by Basin et al. [5]. It would force the
standards bodies to specifically delineate what proper-
ties a protocol is designed to achieve, for instance for-
mulas (4) and (7) in the case of pkinit. The result
would be standards that contain concrete artifacts that
could be independently verified by others, thereby in-
creasing the public’s confidence in the claims.

Our logical goal language could be useful even in the
absence of a formal process for its use. The precision of
the language makes it easier to understand the security
consequences of subtle changes to a protocol’s design.
This can help guide committee members by providing
explicit statements and evidence for the positive and
negative consequences of design changes, thereby mak-
ing it easier to make a case for or against a particular
design choice. We expect that, used in this way, our
goal language could make the standardization process
more transparent, with results that are more robust to
future attacks.

References

1. Martín Abadi and Cédric Fournet. Mobile values, new names,
and secure communication. In 28th ACM Symposium on
Principles of Programming Languages (POPL ’01), pages
104–115, January 2001.

2. Omar Almousa, Sebastian A. Mödersheim, Paolo Modesti,
and Luca Viganò. Typing and compositionality for security
protocols: A generalization to the geometric fragment. In
ESORICS, LNCS. Springer, September 2015.

3. David A. Basin, Cas Cremers, and Simon Meier. Provably
repairing the ISO/IEC 9798 standard for entity authentica-
tion. Journal of Computer Security, 21(6):817–846, 2013.

4. David A. Basin and Cas J. F. Cremers. Modeling and ana-
lyzing security in the presence of compromising adversaries.
In ESORICS, pages 340–356, 2010.

5. David A. Basin, Cas J. F. Cremers, Kunihiko Miyazaki, Sasa
Radomirovic, and Dai Watanabe. Improving the security of
cryptographic protocol standards. IEEE Security & Privacy,
13(3):24–31, 2015.

6. Mihir Bellare and Phillip Rogaway. Entity authentication
and key distribution. In Crypto, pages 232–249, 1993.

7. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Alfredo Pironti, and Pierre-Yves Strub. Triple hand-
shakes and cookie cutters: Breaking and fixing authentication
over TLS. In IEEE Symposium on Security and Privacy,
2014.

8. Bruno Blanchet. An efficient protocol verifier based on Pro-
log rules. In 14th Computer Security Foundations Workshop,
pages 82–96. IEEE CS Press, June 2001.

9. R. Canetti and H. Krawczyk. Analysis of key-exchange proto-
cols and their use for building secure channels. In Eurocrypt,
LNCS, pages 453–474. Springer, 2001.

22

10. Ran Canetti and Hugo Krawczyk. Universally composable
notions of key exchange and secure channels. In Eurocrypt,
LNCS, pages 337–351. Springer Verlag, 2002.

11. Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, Joe-Kai
Tsay, and Christopher Walstad. Breaking and fixing public-
key Kerberos. Inf. Comput., 206(2-4):402–424, 2008.

12. The MITRE Corporation. The common vulnerabilities and
exposures (CVE) initiative. http://cve.mitre.org.

13. The MITRE Corporation. The common weakness enumera-
tion (CWE). http://cwe.mitre.org.

14. Cas Cremers and Sjouke Mauw. Operational Semantics and
Verification of Security Protocols. Springer, 2012.

15. T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard),
August 2008. Updated by RFCs 5746, 5878, 6176.

16. Daniel J. Dougherty and Joshua D. Guttman. Decidability
for lightweight Diffie-Hellman protocols. In IEEE Symposium
on Computer Security Foundations, 2014.

17. Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre
Scedrov. Multiset rewriting and the complexity of bounded
security protocols. Journal of Computer Security, 12(2):247–
311, 2004. Initial version appeared in Workshop on Formal
Methods and Security Protocols, 1999.

18. Santiago Escobar, Catherine Meadows, and José Meseguer.
Maude-NPA: Cryptographic protocol analysis modulo equa-
tional properties. Foundations of Security Analysis and De-
sign V, pages 1–50, 2009.

19. International Organization for Standardization. ISO/IEC
29128: Information technology—security techniques—
verification of cryptographic protocols, 2011.

20. Joshua D. Guttman. Shapes: Surveying crypto protocol
runs. In Veronique Cortier and Steve Kremer, editors, For-
mal Models and Techniques for Analyzing Security Protocols,
Cryptology and Information Security Series. IOS Press, 2011.

21. Joshua D. Guttman. State and progress in strand spaces:
Proving fair exchange. Journal of Automated Reasoning,
48(2):159–195, 2012.

22. Joshua D. Guttman. Establishing and preserving protocol
security goals. Journal of Computer Security, 22(2):201–267,
2014.

23. Joshua D Guttman, Moses D Liskov, and Paul D Rowe. Se-
curity goals and evolving standards. In Security Standardis-
ation Research, pages 93–110. Springer, 2014.

24. ISO/IEC IS 9798-2, "Entity authentication mechanisms –
Part 2: Entity authentication using symmetric encipherment
algorithms", 1993.

25. Changwei Liu, Anoop Singhal, and Duminda Wijesekera.
A model towards using evidence from security events for
network attack analysis. In WOSIS 2014 - Proceedings of
the 11th International Workshop on Security in Informa-
tion Systems, Lisbon, Portugal, 27 April, 2014, pages 83–95,
2014.

26. Gavin Lowe. A hierarchy of authentication specification. In
CSFW, pages 31–44, 1997.

27. R. D. Luce and P. Suppes. Measurement, theory of. Ency-
clopedia Britannica, 15th Edition(11):739–745, 1974.

28. Robert A. Martin. Making security measurable and manage-
able. In MILCOM 2008, November 2008.

29. C. Meadows. The NRL protocol analyzer: An overview. The
Journal of Logic Programming, 26(2):113–131, 1996.

30. C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Ker-
beros Network Authentication Service (V5). RFC 4120 (Pro-
posed Standard), July 2005. Updated by RFCs 4537, 5021,
5896, 6111, 6112, 6113, 6649, 6806.

31. John D. Ramsdell, Daniel J. Dougherty, Joshua D. Guttman,
and Paul D. Rowe. A hybrid analysis for security protocols
with state. In Integrated Formal Methods, pages 272–287,
2014.

32. John D. Ramsdell and Joshua D. Guttman. CPSA: A cryp-
tographic protocol shapes analyzer, 2009. http://hackage.
haskell.org/package/cpsa.

33. E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport
Layer Security (TLS) Renegotiation Indication Extension.
RFC 5746 (Proposed Standard), February 2010.

34. A. W. Roscoe. Intensional specifications of security protocols.
In IEEE Computer Security Foundations Workshop, pages
28–38, 1996.

35. Dawn Xiaodong Song. Athena: A new efficient automated
checker for security protocol analysis. In Proceedings of the
12th IEEE Computer Security Foundations Workshop. IEEE
CS Press, June 1999.

36. Kun Sun, Sushil Jajodia, Jason Li, Yi Cheng, Wei Tang, and
Anoop Singhal. Automatic security analysis using security
metrics. In MILCOM 2011, November 2011.

37. F. Javier Thayer, Jonathan C. Herzog, and Joshua D.
Guttman. Strand spaces: Proving security protocols correct.
Journal of Computer Security, 7(2/3):191–230, 1999.

38. Thomas Y. C. Woo and Simon S. Lam. Verifying authen-
tication protocols: Methodology and example. In Proc. Int.
Conference on Network Protocols, October 1993.

39. L. Zhu and B. Tung. Public Key Cryptography for Initial
Authentication in Kerberos (PKINIT). RFC 4556 (Proposed
Standard), June 2006. Updated by RFC 6112.

23

