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Abstract under encryption and invariant under composition with ar-
bitrary messages.
In security protocol analysis, it is important to learn gen- These general theorems about the powers of the pene-

eral principles that limit the abilities of an attacker, and trator are independent of the protocols to be analyzed, so
that can be applied repeatedly to a variety of protocols. We that they can be re-used effectively for many protocols. A

introduce the notion of aitdeal—a set of messages closed typical specimen asserts that if a legitimate protocol entity

under encryption and invariant under composition with ar- never utters any message in an idéathen a penetrator

bitrary messages—to express such principles. can never utter any message/irither (Section 4). We call
In conjunction with the strand space formalism, we use these kinds of theorems “bounds on the penetrator.”
the concept ofdealsto prove bounds on a penetrator’s ca- We have applied these methods to analyze the Otway-

pabilities, independent of the security protocol being ana- Rees protocol and the Yahalom protocol [6]. In this paper
lyzed. From this we prove a number of correctness proper- (Section 5), we will use Otway-Rees to illustrate the util-
ties of the Otway Rees protocol, using these results to exdty of the penetrator bounds. Our results explain in a very
plain the limitations of the protocol. clear way exactly what the protocol establishes, and what
its fundamental limitations are.

In order to make the paper self-contained, we review
. . some of the terminology of our earlier paper [7] in the re-
1 Introduction and Review mainder of this introdu?:{ion. Paper (7]

A security protocol is a sequence of messages between1 .1 Strands
two or more parties in which encryption is used to pro-
vide authentication or to distribute cryptographic keys for Throughout the papeA will denote the set of messages
new sessions. In this paper we extend the ideas of [7],h4t can be exchanged between principals in a profotds.
in which we introduced the concept ofsrand spac@nd || refer to the elements ok asterms In a protocol, prin-
used it to formulate and prove correctness properties for thecipals can either send or receive terms. We will represent
Needham-Schroeder-Lowe protocol. sending a term as the occurrence of that term with positive

In this paper, we will develop more of the algebra of mes- sjgn, and receiving a term as its occurrence with a negative
sages. We will be more explicit about the structure that we gjgn,

need to assume on the set of messages, under the opera-

tions of encryption and message concatenation (Section 2)Definition 1.1 A signed terms a pair (o,a) witha € A

In [7], to simplify the exposition, we assumed that these and o one of the symbols-, —. We will write a signed

formed a free algebra. term as+t or —t. (£A)* is the set of finite sequences of
We will also introduce additional algebraically natural signed terms. We will denote a typical elementeh)* by

sets of messages—we call thédeals—that make it eas-  ({o1,a1), ..., (on,an) ).

ier to state and prove general facts about the powers of the

penetrator (Section 3). Aidealis a set of messages closed Definition 1.2 A strand spaces a setX with a tracemap-

pingtr: X — (£A)*.

*This work was supported by the National Security Agency ugio

US Army CECOM contractDAAB 07-96-C-E601. Appears iRroceed- 1in this paper, we will use sansserif style for sets likeA and its im-
ings, 1998 Computer Security Foundations Workshlyme 1998, Rock- portant subsets, and for the basic operatord\orin [7], bold face was
port, MA. Copyright 1998, IEEE. used for these as well as for other items.



In particular applications of the theory, the mapping tr may
fail to be injective because we may need to distinguish be-

tween various instances of the same trace. For instance, to

model authentication properties of certain protocols it may
be necessary to distinguish identical traces originating from
different principals, or to model simple replay attacks we
may need to distinguish identical traces originating from the
same principal.

Fix a strand spacE.

1. A nodeis a pair(s, i), with s € ¥ andi an integer
satisyingl < i < length(tr(s)). The set of nodes is
denoted by\. We will say the nod€s, i) belongs to
the strands. Clearly, every node belongs to a unique
strand.

2. If n = (s,i) € N then ternfn) is (tr(s)),, i.e. theith
signed term in the trace of Similarly, unsterm(n) is
((tr(s));)z2, i.e. the unsigned part of thith signed term
in the trace ok.

3. Ifny,n2 € N, n1 — ne means terrfn;) = +a and
term(ne) = —a. It means that node; sends the mes-
sageu, which may be received hys, creating a causal
link between their strands.

4. If ny,ny € N, thenn, = n, meansi;, n, occur on
the same strandwith ny = (s, i) andns = (s,i+ 1).

+a

—C = +c >

+e

Figure 1. A Bundle

Definition 1.4 If C is a bundle and € ¥, then theC height
of s, denoted heigh(s), is the largest < lengthtr(s))
such thats € £ and(s, i) € C.

C containss if height. (s) = length(tr(s)).

Clearly (s, j) € C for all j < height(s). The model in-
tentionally allows strands representing legitimate protocol
agents to have less than full height.

Definition 1.5 If s is a strand andC a bundle, theC-

It expresses the causal dependence of a later action offace of s is the restriction of tfs) to the integer interval

its predecessor.

N becomes an ordered graph with both sets of edges

ni — ng andn; = ns.
1.2 Bundles

A bundlein a strand space is a finite subgraph of the node

{1,... ,height.(s)}. A partial C-trace ofs is the restric-
tion of tr(s) to any interval{1, ... , k} for k < height(s).

Definition 1.6 Suppose thaf is a set of edges, i.e. a subset
of the union of—+ and =, and letAs be the set of nodes
incident with any edge i§.

Then<s is the transitive closure of, and <s is the
reflexive, transitive closure .

graph)\V/, for which we can regard the edges as expressingEach relation is a subset 8fs x Ns. Moreovern <s n'

the causal dependencies of the nodes.

Definition 1.3 LetC be a set of edges, and |&% be the set
of nodes incident with any edge@n C is a bundle if:

1. Cis finite.

2. If n; € N and ternin,) is negative, then there is a
uniguens such thati, — n; € C.

3. Ifn; € Ne andny = ng thenny = ny € C.
4. Cis acyclic.

We will speak of a node as being in the burd@igin fact it
isinNc.

A well-formed bundle is illustrated in Figure 1, although
this bundle does not exemplify a useful protocol.

means that there is a sequence of one or more edges (of
either kind) belonging t& leading fromn to n’. Similarly,

n <s n' means that there is a sequence of zero or more
edges belonging t6 leading fromn ton/'.

Lemma 1.7 Suppos€ is abundle. Ther¢ is a partial or-
der, i.e. areflexive, antisymmetric, transitive relation. Every
non-empty subset of the node<imas <¢-minimal mem-
bers.

When a bundl€ is understood, we will simply write.
1.3 Messages

In the remainder of this paper, we will specialize the set
of messages! and assume it has additional structure in-
tended to model message construction and message encryp-
tion. We specializé by introducing:



e AsetT C A of texts (representing the atomic mes- D. Decryption:(—K 1, —{h}g, +h).

sages), and a disjoint s&tC A of cryptographic keys. . . .
ges) ) < yptograp y Itis also possible to extend the set of penetrator traces given

e A unary operatoinv : K — K. We assume that inv  here if it is desired to model some special ability of the
maps each member of a key pair for an asymmetric penetrator, such as the ability to cryptanalyze some kinds
cryptosystem to the other, and that it maps a symmetricof encrypted messages, without any essential change to our

key to itself. overall framework.
e Two binary operators Definition 1.9 An infiltrated strand spacis a pair (X, P)
with X a strand space an® C X such that t(p) is a pene-
encr: KxA—A trator trace forp € P.
join:AxA—=A A strands € X is a penetrator strand it belongs to
P, and a node is enetrator nodéd the strand it lies on
To follow accepted notation, we will writéav(K) = K =1, is a penetrator strand. Otherwise we will call it @on-

encr(K, m) = {m} g andjoin(a, b) = a b. To minimize the penetratoor_regularstrand or nod_e. )

use of parentheses in our notation, we will implicitly asso- A hoden is aM, F, etc. node if lies on a penetrator
ciate terms on the right. Thusbec is an abbreviation of ~ Strand with a trace of kind, F, etc.

a (bc). Note that nothing is stated about the kind of encryp-
tion used here.

We will refer to the range adncr, namely the ciphertexts
of the form{h} x, asE. We will refer to the set of terms of
the forma b, asC. A term issimpleif it is an element of
KUE UT. Note that the range of encryption is included in
the simple terms.

We would not expect an infiltrated strand space to real-
ize all of the penetrator traces of typé. In that case, the
space could not model unguessable nonces. The more use-
ful spacest lack M -strands for many text values, which the
legitimate participants can use as fresh nonces.

2 Unique Readability
1.4 Infiltration ) o

When reasoning about terms, it is important to know
whether they are ambiguous, in the sense that there are dif-
ferent ways to “read” or “parse” them. We can draw conclu-
sions more effectively if portions (at least) of the term can
be read in only one way. In [7], we took the short way with

A penetrator setonsists of a set of keykp. It con-
sists of all keys initially known to the penetrator. Typically
it would contain all public keys, all private keys of penetra-

tors and all symmetric key&,,, K, initially shared be- his | inq that the algebra of e
tween the penetrator and a principal that plays by the proto-NiS ISSU€, assuming that the algebra of messages is free. In
this section, we develop a more flexible algebraic frame-

col rules. It may also contain “lost keys” that are known to : i
the penetrator, either because of the carelessness of a noH\-’ork that allows (for instance) message concatenation to be

malicious principal, or else because the pentrator has Suc_assc_)ci_ative. The conclusions of [7] remain true in this more
ceeded in some cryptanalysis. realls_tlc conte);]t. dl h f h b

The actions available to the penetrator are encoded in a Aamgm 21 ‘:}m est edcase ° ahter_m ¢ at'; can e;r(ej—
set ofpenetrator traceshat summarize his ability to discard  9279€d as a cip eriext, anc asserts (a1t can be fegarced as

messages, generate well known messages, piece messag%§'pherteXt in only one way. Axiom 2.2 deals with the de-

together, and apply cryptographic operations using keys that::omposnmn of composite terms, and their relation to other
erms.

become available to him.

Definition 1.8 A penetrator traci one of the following: Axiom 2.1 If {t}x = {t'}x thenK = K" andt = t'.
M. Text message:+t) wheret € T We will refer to this assumption as tliee encryption as-
_ sumption other authors such as Paulson [5] and Marrero et
F. Flushing: (—g) al [4] make similar assumptions.
} There exist interpretations of the theory we are present-
T. Tee:(— L . . L e .
(=9, +9, +9) ing in which this axiom is satisfied, for instance, the set of
C. Concatenation{—g, —h, +gh) formal expressions built fro{ and T using the operations
o join andencr. However, in the most common application
S. Separation into componentg-g i, +g, +h) of the theory—namely cryptography—Axiom 2.1 is false,
K. Key: (+K) whereK € Kp. because thgre are many rel_atio_ns in the alggbra of _real mes-
sages. For instance a cardinality argument immediately es-
E. Encryption:(—K, —h, +{h}xk). tablishes that there must be many distinct pairs of an input



block of plaintext and a DES key (for instance) that yield Lemma 2.6 Anya € A has widthk for exactly onel <

the same block of ciphertext. Nevertheless, a good cryp-k < co.

tosystem makes it hard to find pairs that will collide in this

way. Moreover, there should be very few differenéan-  Proor Follows immediately from Proposition 2.1

ingful texts for which there exist keys that will cause them This lemma may be used in various forms to show that

to collide, for most notions of “meaningful.” Axiom 2.1  sets of terms of certain forms are disjoint from each other.

idealizes the situation by assuming that there are none. Thisor instance, the result of concatenating an atomic text and
matches our goal, namely to determine whether protocolsa key never collides with the result of concatenating two

have weaknesses independent of the choice of cryptosystexts before any member @, which we need in treating

tem. An initial step in giving a complete answer to this the Otway-Rees protocol (Section 5).
guestion is to consider whether there would still be weak-

nesses, even if the cryptosystem is ideal. Proposition 2.7 The set of terms of the forinK is disjoint

) . L ] from the set of terms of the formh' a for all A, A’ € T,
Axiom 2.2 No simple element is i, the range ofoin. If K € K anda € A.

pa = gbwithp, g simple, therp = g anda = b.

Attacks that might exist if there are terms that may be “read”
as having more than one form are referred tdayge flaw
attackg?2]. Some type flaw attacks seem implausible, in the
sense that most implementations would not be vulnerable
Definition 2.3 a € A is exhaustedff a cannot be expressed to them, while others are more troublesome. We will not
in not the formp A for p simple. consider type flaws further in the current paper, although
there are various possible approaches to extending strand
spaces to model them.

We turn now to the question of decomposing a composite
term into a succession of simple componentse&hausted
term is one for which this is no longer possible.

Clearly any simple term is exhausted since by Axiom 2.2, it
cannot be written in the formb.

Proposition 2.4 For any terma either 3 Ideals

1. a can be expressed as - - - p h where where each;
is simple andh is exhausted. If such a representation We introduce the concept afeal for two purposes:
exists it is unique.
1. To make it easier to formulate general facts about the

2. There is a unique pair of infinite sequendes}<;, penetrator's capabilities

{hi}1<; where eachp; is simple such that =

P pr 2. As atechnical device for stating assumptions and prov-
ing facts about the subterm relationship. In our pre-

PROOF Suppose k atbtist )
vious paper, [7] we made the simplifying assumption

P prh=q1 - qnyg that the message algebra was free and so no additional
_ ) ) assumptions were necessary to guarantee results such
wherep;, ¢; are simple and < n. Applying Axiom 2.2 as Corollary 3.14 below.
repeatedly,
h=Qe1 - ang Definition 3.1 If k C K, a k-ideal of A is a subsef of A

contradicting the assumptidnis exhausted. Similarly, we suchthatforallh € I,g € AandK € k
can exclude:r < k. Thusk = n and it follows immediately

from Axiom 2.2 thatp; = ¢; andh = g¢. If there is no 1. hg,ghel.
representation of in the form stated, then for any arty
there is a unique representatioruah the formp; --- pr h 2. {h}k €L

whereh is not exhaustedi ) o ]
The smallesk-ideal containingh is denoted[A].

Definition 2.5 Leta € A and1 < &:
We now define a subterm relatian that uses the struc-

1. a has widthk iff a = py ---pg_, h where eaclp; is ture of message composition and encryption specific to Sec-

simple andh exhausted.

tion 1.3.
2. a has width+oc if a does not have a representation
p1 - pr—1 h where eachp; is simple andh is ex- Definition 3.2 h is asubtermof g, writtenh ¢ is defined
hausted. asg € Ik[h].



This definition gives a more restricted notion of subterm
then one might have expected. In particuldrz ({h}k)
unlessk already happenedto be a subternh oRestricting

Definition 3.9 If S C A, I[S] is the smallesk-ideal con-
taining S.

subterms in this way reflects an assumption about the penThe ideal structure is very simple:

etrator’s capabilities, to wit, that keys can be obtained from
cyphertext only if they are embedded in the text that was en-
crypted. This might not always be the case—for instance,
if a dictionary attack is possible—but it is the assumption
we will make in this paper. Future work within the same
framework could certainly relax the assumption.

Proposition 3.3 C is a transitive, reflexive relation. More-
over, ifh,g € Aand K € K, then

1. hC hgandg C hg.
2. hC {h}K

PrRooOF Clearlyh € Ik[h], soh C h. If ¢ C ¢, then
g’ € Ik[g]. If in additionh C g, theng € Ik[h], so by the
definitionsik[g] C Ik[h]. Thereforey’ € Ik[h].

If h,g € AandK € K, then clearlyhg,gh,{h}K €
Ik[h]. N

Axiom 3.4 If t is a simple term ang h € Iy}, then either
g € Ip[t] or h € Iplt].

Axiom35 If K €K, t € T,e€ Eandc e C.
el K.
elZt.
Kt
clf K.
clZt.

It also follows thatt 7 K, although this fact is not needed
here.

o 0 w0 dp R

Lemma 3.6 The set¥, T, E andC are pairwise disjoint.

PROOF Sincet L t the result follows from immediately
from Axioms 3.5 and 2.2.

Definition 3.7 Suppos&k C K. s € A is a k-subterm of
t € A, writtens Cy tiff t € I[s].

If s Cy t, then we use the expressistis a visible subterm
of ¢.

Proposition 3.8 Cy is a transitive, reflexive relation. More-
over,h Cy g impliesh C g.

PROOFE To provery is a transitive, reflexive relation, see
the proof of Proposition 3.3. Ik Cy g theng € Ik [h] C
Ik[h] soh C g as assertedll

Proposition 3.10If S C A, I[S] = U, cg Ik[7]-

PROOFE The property of being &-ideal is equivalent to
closure under the mappings — za, * — ax and

x +— {z}y for k& € k. Thus the union ok-ideals is a
k-ideal. Thus|J, ¢ I[z] is a k-ideal which containsS.

Clearly, ¢ g Ix[z] C Ik[S]. B

Lemma3.1lllet So = S, Sit1 = {{g9}x : g €
Iy[S;], K € k}. ThenI, [S] = U, Ip[S;].

PrROOF. By induction,S; C I[S], solJ, Iy[S;] C I[S].
In the other direction| J, I[S;] is clearly ak-ideal which
containsS. &

Proposition 3.12 Suppose C A, and everys € S is sim-
ple. If g h € I[S] then eitherg € I [S] or h € I[S].

PROOF In virtue of the previous lemmayh € Iy[S;] for
somei. By Proposition 3.10¢g h € Ip[z] for somez € S;.
This z is simple, as eitheir = 0, in which caseS; = S,

or elsei = j + 1, in which case eaclk € S; is of the
form {h}x, and hence simple. Thus by Axiom 3.4, either
g € Iy[xz] orh € Iy[x].

Proposition 3.13 Supposds € K; S C A; and for every
s € S, s is simple and is not of the forqy } . If {h}x €
I [S], thenh € L [S].

PrROOF AssumeK € K, {h}x € I[S]andh & I[S].
Let I' be the set differencéc[S] \ {{h}x }. Clearly
S C I, sinceS does not contain anything encrypted with
outermost keyK. Moreoverl’ is ak-ideal: Sinceli[S]
is already an ideal andh} is not of the formab, I’
clearly satisfies thgoin closure condition for ideals. If
{h}k = {h}k for hy € I, then by Axiom 2.1 (free
encryption)h = hy € I' C I[S] a contradiction. Thug'
is an ideal which containS. This contradicts the definition
of I[S] as the smallest ideal which contaifisll

In Proposition 3.135 may contain a terrdg} .+ where
K' # K andg in turn contains subterms encryptedin

Corollary 3.14 SupposeX # K' and{h'}x C {h}k.
Then{h'} k C h.

PROOF. The assumption meaks} x € Ix[{h'} k], which
by the Proposition implied € Ik[{h'} k']

Proposition 3.15 Supposd( € K; S C A; and everys €
S is simple and is not of the fordy} k. If {h}x € L[S]
for K € K, thenK € k.
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Figure 2. Entry Point for I

The proof is similar to the proof of Proposition 3.13.
PROOFR AssumeK € K, {h}k € I[S] andK ¢ k. Asin
the preceding proposition, lét = I, [S] \ {{h}x }. For
the same reason as befofeC I’ and’ satisfies thgoin
closure condition for ideals. Moreover, by free encryption,
{h}K is not of the form{h'} i+ forany K’ € k. ThusI'is

an ideal which containS. This contradicts the definition of
I[S]. |

4 Origination and Honesty

Definition 4.1 Supposes is a strand space) the set of
nodes of. An unsigned tern originatesonn € A iff:
term(n) is positive;t C term(n); and wheneven' precedes
n on the same strand, 7 term(n’). An unsigned termis
uniquely originatingff ¢ originates on a unique € \.

Definition 4.2 A nodem is anentry pointfor I C A if and
only if term(m) is positive, terrin) € I and for all nodes
m' which preceden on the same strand, tefm') ¢ I.

We sometimes writen’ =T m to mean thain' precedes
m on the same strand.

Proposition 4.3 Suppos€ is a bundle oveA. If m is min-
imal in {m € C : term(m) € I}, thenm is an entry point
for I.

PROOEF Ifterm(m) = —h, then by Definition 1.3 Clause 2,
there is a noden’ € C with term(m') = +h, violating
minimality. If m’ =% m and ternfm') € I, then using
Definition 1.3 Clause 3 repeatedly,’ € C, again contra-
dicting minimality. B

Definition 4.4 A setl C A is honestelative to a bundl&€
if and only if whenever a penetrator noglés an entry point
for I, pis anM node or aK node.

Thus, I is honest relative td if the penetrator can
achieve entry intd only by a lucky guess: either he ut-
ters the right nonce or other text in a lucky node, or he
utters the right key in a lucki node. He does not deduce

Theorem 4.5 Suppos€ is a bundle ove\; S C T UK;
k C K;andK C S Uk™!. ThenI[S] is honest.

PROOF LetI = I[S]. Becausd N K = S N K, we may
inferK\ I = K\ S C k1. Also, sinceS C T UK, the
setS contains nothing encrypted and no concatenations, so
Propositions 3.12 and 3.13 can be applied.

Supposen is a penetrator node and an entry pointfor
We now consider the various kinds of strands on which a
penetrator node can occur. By the definition of entry point,
m cannot be on a strand of kirklor kind T. Consider now
the remaining cases:

C. m is on a strand with tracé—g, —h,+ hg). Since
hg € I, by Proposition 3.12, one af, h must be inl,
contradicting the definition of entry point.

S. m is on a strand with tracé—hg,+h,+g). Since
term(m) must be positivern is either the second or third
node of the strand, so eithére I org € I. By the ideal
propertyh g € I, contradicting the definition of entry point.

D. m belongs to a strand with trace
(- Ky ', —{h}k,,+h). By the assumption thatn is
an entry pointfod, K, ' ¢ I. Hence,K, * ¢ S. However,
K C Suk™!. Thereforek;' € k™!, soK, € k. By
the k-ideal property ofl, {h}k, € I, contradicting the

definition of entry point.

E. m belongs to a strand with trace
(=K',—h,+{h}k). By assumption{h}x € I.
By Proposition 3.13h € I, contradicting the definition of
entry point.

The only remaining possibilities are thatis on a strand
of kind M or of kindK as assertedl

In our analysis of Otway-Rees, we use two corollaries of
this main result. The first allows us to conclude (in some
situations) that if a key is transmitted that is not originally
known to the penetrator, then a regular (i.e. non-penetrator)
node has provided the entry point.

Corollary 4.6 Suppos€ is a bundle,K = S U k! and
SNKp = 0. If term(m) € I[S] for somem € C, then for
some regular node € C, n is an entry point fody[S].

PROOF Supposen is minimal in{n € C : termn) €
I[S]}. By Proposition 4.3m is an entry point for[S].
Since by assumptiom is not regular (and so must be a pen-
etrator node), Theorem 4.5 impliesis either a penetrator

it via his abilities to decrypt and encrypt, or to concatenate node of kindM or of kindK.

and separate.

However, sinc& = SUk™!, S C K. Hencel[S]NT =

Our main theorem interrelates the structure of ideals with (), som is not of kindM. BecauseS N Kp = 0, m is not of

the possible cases for a penetrator strand.

kindK. l



Where
1. M, = MAB{N,MAB}g,,.
2. My=MAB{N,MAB}x,, {NyMAB},..
3. Mz =M{NoKaB}kas {No KaB}Kps-

4. My =M{N,Kap}i,s.

Figure 3. Message Exchange in Otway-Rees

The second corollary gives a condition under which en-

cryption guarantees a non-penetrator origin.

Corollary 4.7 Suppos€ is a bundle;K = SUk™!; SN
Kp = 0; and no regular nodes C is an entry point for
I[S]. Then any term of the fordy } x for K € S does not
originate on a penetrator strand.

ProOFE By Corollary 4.6, for every noden € C,
termim) ¢ I = I[S]. Suppose, = {g}k for K € S
originates on a penetrator strand By inspectionyn can-
not occur on a penetrator strand of kiRdT, K, M, C or S.
Consider the remaining cases:

E. m occurs on a strand with trage- Ky, —h, +{h}x,)-
Now Ky ¢ I and soK, # K. Since{g}x T {h}k,,
Corollary 3.14 implieg g} x C h, contradicting the defini-
tion of entry point.

D. m belongs to a strand with trace
(—Ko ', —{h}k,,+h). If {g}x C h, then
{9}k T {h}k,, contradicting the definition of entry
point. &

5 Otway-Rees: The Protocol

This protocol has three roles: initiator, responder, and
server. The goal of the protocol is to mutually authenticate

To provide a mathematical model of this protocol, we
further refine the assumptions on the algebra

e AsetTphameC T of names.

e AmappingK : Thame— K. Thisisintended to denote
the mapping which associates to each principal the key
it shares with the server. In the literature on this pro-
tocol this mapping is usually written using subscripts
K(A) = K4s. We assume the mapping— K ag is
injective. We also assumk 45 = K;é, i.e. that the
protocol is using symmetric cryptography.

We will adopt some conventions on variables for the re-
mainder of this section:

e VariablesA, B range ovell name
e VariablesK, K' range ovek;

e Variables N, M (or the same letters decorated with
subscripts) range ovar \ Thame i.€. those texts that
are not names.

Other letters such a§ and H range over all ofA. We
would emphasize thaV, is just a variable, having no reli-
able connection tal, whereads 45 is the result of applying
the functionK to the argumentl. Thus, the latter reliably
refers to the long term key shared betwetandsS.

e Init[4, B, N, M, K] is the set of strands € ¥ whose
trace is

(+MAB{NMAB}g,,,— M{N K}k,
Yinit is the union of the range of Init.

e RespA,B,N,M, K, H, H'] is defined wheiV [/ H;
its value then is the set of strandsdnwhose trace is
(- MABH,
+ MABH{NM AB}k,s,
— MH'{N K}k,
+ M H')

Zrespis the union of the range of Resp.

e SenfA, B, N,, Ny, M, K] is defined ifK & Kp, K ¢
{Kas : A € Tnames andK = K !; its value then is
the set of strands iR whose trace is:

(- MAB{N,M AB}g,, {Ny M AB} .,
+ M{No K}r,o {No K}Kps)

initiator and responder and to distribute a session key gen-

erated by a server. See Figure 3.

Yservis the union of the range of Serv.



The conditionN [z H in the definition of a responder
strand ensures that the nongamust originate on the strand
RespA, B,N, M, K, H, H'] itself. A protocol participant
cannot inspect the contents Hf to enforce this condition,
since under normal operation of the protodéljs cypher-

is an element ofy[S]. By 3.10, this implies that one of
the keysK, K45, Kps is a subterm of terfan). Now

no regular node contains any key of the foiix s as a
subterm. In fact the only keys which occur as subterms of
term(m ) for m regular, are the session keys emanating from

text inaccessible to the participant. Rather, we assume thah server. But by assumption the set of such keys is disjoint

this condition is enforced by a probabilistic mechanism.

Lemma5.1If f(¥) N f(T') # 0, then’d = &', whenf is
one of the mappingSery, Init, Resp

Lemma 5.2 The setsXsery, Zinit, Zresp are pairwise dis-
joint.

PrRoOOF It suffices to prove the sets of traces are disjoint.
Originator traces begin with a positive term. The second

from the set of keys of the forrk( x 5. It thus follows K
must be a subterm of teifm).

If m is a positive regular node on a strandhenkK C
term(m) implies either:

1l s € Eserv andm
session key of; or

(s,2), in which caseK is the

2. s € Respx, *, %, %, %, H,x|,m = (s,2), andK C H.

term of of a responder trace has width at least 4, whereadn case 2y is not an entry point fot [S], becaused C

for a server trace the width is exactly 3.

Definition 5.3 AnOtway-Rees strand spaisean infiltrated
strand space such thats = YservU Zinit U ZrespU P.

This union is disjoint, by Lemma 5.2 and the observation

thatP contains no strands of the same forntasnJXinit U
Eresp

Fix an Otway-Rees strand spaceverA.

We sometimes find it convenient to use theto
indicate union over some indices.
RGSQA, B,Ny, M, K, x, *] =

|J Resp4, B, Ny, M, K, H, H']
H,H'

6 Otway-Rees: Secrecy

We first prove that session keys distributed by the server
cannot be disclosed unless the penetrator possesses one
the long-term keys used in the run. We show that a sessior’that we will need

key can never occur in a form in which it is not encrypted
by the participants’ long-term keys.

Theorem 6.1 Suppos€ is a bundle inX; A, B € Tname
K is uniquely originating;K 45, Kps € Kp; and ssery €
SenfA, B, N,, Ny, M, K] hasC-height 2.

LetS = {Kas,Kps,K} andk = K\ S. For every
nodem € C, term(m) ¢ I [K].

PrOOE By Proposition 3.10, it suffices to prove the
stronger statement that for every nodeterm(m) ¢ Iy[S].
SinceSNKp = 0,k =k ' andK = kU S, by Corol-
lary 4.6 it suffices to show that no regular nodés an entry
point for I, [S].

We will argue by contradiction and assumas a regular
node which is an entry point fdi[S]. Sincem is an entry
point for Ix[S], by the definitions, it follows that ter(m)

(s, 1), which is a preceding negative node.

So consider case 1. By the unique origination/of
s = sserw SO terntm) = M {Ny K}k, {No K} Ky BY
Proposition 3.12, either

1. M € IK[S], or
2. {N, K}k, € I[S], or

3. {Nb K}KBS S Ik[S].

Thus for instance But the first is impossible by Axiom 3.5; the second and

third are impossible by Proposition 3.18.

7 Otway-Rees: Authentication

In this section we will prove the authentication guaran-
tees that Otway-Rees provides to its initiator and responder.
It is also possible to prove that the protocol provides au-
thentication guarantees to the server [6], but we will not do
86 here. We first “import” the consequence of Corollary 4.6
to prove the authentication goals.

Proposition 7.1 Consider a bundl€ in . SupposeX €
Thamelis such thatK x s ¢ Kp. Then no term of the form
{9}k« for X € TnhameCan originate on a penetrator node
inC.

PROOF LetS = {Kxs} andk = K. To apply Corol-
lary 4.7, we must check that no regular node is an entry
point for Ix[S], or equivalently, thaf{ x5 does not origi-
nate on any regular node.

A key K originates on a regular node only if it is
a session keyK originating on a server strand €
Senfx, *, %, %, K, x, x]. However, by the definition aEser,
the session kel is never a long term ke x .

Hence, we may apply Corollary 4.7 fp[.S], so any term
{9} k< can only originate on a regular nodi.



Proposition 7.2 If {H} k. ; originates on a regular strand
s, then:

1. Ifs S Eserv, thenH = N K.
2. IfS € Einit, thenH = NMXC fOI’ X,C € Tname
3. IfS € Eresp thenH = NMCX fOI’ X,C € Tname

PrROOFE By the definition of originating (Definition 4.1), if
the term{ H } k. , originates onn, thenm is positive.

If s € Zipit thenm = (s,1). Thus terngm) is of the
formM AB{N M A B}k,.. The only encrypted subterm
of this term,{N M AB}k,., is of form 2.

If s € Yresp then the positive nodes ofare (s,2) and
(s,4). The encrypted subterms ¢f,2) have plaintext of
forms 2 and 3 respectively, while the encrypted subterm of
(s,4) has form 1.

A similar argument holds if € Yser. B

Corollary 7.3 Suppose is a regular strand of.
1. If {N K}, originates ons, then either

e se€SenfA,X,N,N', M, K]
e se€SenX,B,N' N, M, K]

for someA, B, N', M. In either case the term origi-
nates on the nodg, 2) and K originates ons.

. If{N M A B}k, originates ons, with A # B then
e s € Init[A,B,N, M, K]

for someK. The term originates on the node, 1)
and N originates ons.

. If{N M A B}k, originates ons, with A # B then
e s c RespA,B,N,M,K,H, H']

for someK, H, H'. The term originates on the node
(s,2) and N originates ons.

PROOF. Sinces is regulars € YservU Zipit U Zresp Apply
Propositions 7.2 and 2.1
7.1 Initiator's Guarantee

The following theorem asserts that if a bundle contains a

strands € Yjsit, then under reasonable assumptions, there

are regular strandgesp € Yrespandssery € Yserv Which
agree on the initiator, responder, ahvalues.

Theorem 7.4 Suppos€ is a bundle in¥; A # B; N, is
uniquely originating irC; and K 45, Kps & Kp.

If s € Init[4, B, N,,, M, K] hasC-height 2, then there
are regular strands

o sresp € RespA, B, Ny, M, %, %, x| of C-height at least
2.

e sserv € SenA, B, N,, Ny, M, K] of C-height 2.
PrRoOOFE The assumption of the theorem means

(+ MAB{N,M AB}k,.,
- M{NEK}KAS>

is theC-trace of a strand.

SinceK 45 ¢ Kp, by Proposition 7.1y N, K } k , , Orig-
inates on a regular node th By Corollary 7.3, this node
belongs to a stranesery Which satisfies one of the condi-
tions:

1. Sserv € Ser\{A,X,Na,N,Ml,K]
2. Sserv € Ser\:{X,A,N,Na,Ml,K]

whereX € Thame andN, M; € T. Since(ssen,2) € C,
sservhasC-height 2.

If conditon 1 holds, {N,M; AX}k, C
term({ssery, 1)). By Proposition 7.1,{N, M1 AX }k,,
originates on a regular strand, and by Corollary 7.3,
N, originates on the same strand. By the unique
origination of N, s; = s. ThusM; = M andX = B, and
Sserv € Ser\{A,B,Na,N, M,K]

By Proposition 7.1{ N M A B}k, originates on a reg-
ular node inC. By Corollary 7.3, this node is the sec-
ond on a strandresp € RespA, B, N, M, , x,%]. Since
(sresp 2) € C, it follows sresphasC-height at least 2.

Suppose that condition 2 holds instead. Then
{N,M; X A}k, is a subterm of terf{ssery, 1)). By
Proposition 7.1{N, M; X A}k, originates on a regular
strands;, and by Corollary 7.3, originates on the same
strands; . By the unique origination oN,, s; = s. Hence
by Corollary 7.3{N, M; X A}k ,s = {N. M1 AB}k,,
soA = B, contradicting an assumptioll

Remarks. Even though the intention of the protocol de-
sign is to haveB receive H {N, M AB}g,, from

A there is no way to prevent a penetrator from replacing
{N, M A B}k, with garbage. Moreover a penetrator can
prevent the output of the server from reachi®gThus, we
cannot show thaB hasC-height> 2.

7.2 Responder's Guarantee

The responder can rest assured that if a bundle contains a
strands € Yresp then under familiar assumptions there are
regular strandsijnit € Yinit andssery € Xsery Which agree
on the initiator, responder, and values. Its proof is very
similar to the proof of Theorem 7.4.



Theorem 7.5 Suppos€ is a bundle inX; A # B; Ny is
uniquely originating inC; and K 45, Kps & Kp.

If s € ResjA,B,N,, M, K, H, H'] has C-height at
least 3, then there are regular strands

e sinit € Init[A, B, x, M, ] of C-height at least 1.
e sservE SenjA, B, x, Ny, M, K| of C-height 2.

PROOF The assumption of the proposition means ¢he
trace ofs contains at least:

(- MABH,
+ MABH{N,MAB}g,..
— M H'{Ny K}icps)

SinceKps ¢ Kp, by Proposition 7.1{ Ny K } i, ; Orig-
inates on a regular node (h By Corollary 7.3, this node
belongs to a strangsen,Which satisfies one of the following
two conditions:

1. Sserv € Ser\{B,X, Nb,N, Ml,K]
2. Sserv € Ser\{X,B,N, Nb,Ml,K]

whereX € Thame andN, M; € T. Since(ssen,2) € C,
Sserv haSC-helght 2.

If condition 1 holds, then{N,M;BX}k,, L
(sservy 1). By Proposition 7.1{N, M; B X}, . origi-
nates on a regular strarg, and by Corollary 7.3N, orig-
inates on the strangy. By the unique origination ofVy,

s = S1. Hence{Nb My BX}KBS = {Nb My AB}KBS'
so thatB = A, contradicting an assumption.

Suppose that condition 2 holds instead. Again,
{Ny My X B}k,s C (sser1). By Proposition 7.1,
{Ny M, X B}k, originates on a regular strarg, and by
Corollary 7.3,N, originates on the strand . By the unique
origination of Ny, s; = s. Thus,M; = M andX = A,
andSser\/E Ser\{A, B, N, Nb; M, K]

By Proposition 7.1{ N M A B}, originates on a reg-
ular node inC. By Corollary 7.3, this node belongs to a
strandsiniy € Init[A, B, N, M, %]. sinit hasC-height at least
1.

Remarks. As inthe previoustheorem there are some pen-

does not contaiV,. Hence,s; may not be an origination
point for IV, and we can no longer conclude that= s.

Indeed, the BAN modification also requires a weakening
of Theorem 7.4, as we can no longer infer that the responder
and the server strands will agree on the responder’s nonce
Np.

7.3 The Missing Guarantee

The authentication theorems do not establish something
that we had expected they would, namely that if a buddle
contains complete initiator and responder strands, then they
agree on the session key distributed.

That is, one cannot strengthen Theorem 7.4
by replacing the asterisk by to obtain sresp €
RespA, B, Ny, M, K, x, ]. Nor can one strengthen
Theorem 7.5 by replacing an asterisk By to obtain
sinit € Init[A, B,*, M, K]. The reason is that there is a
counterexample, a bundle (illustrated in Figure 4) in
which each player has a complete strandCinand they
agree ond, B, andM, but they do not agree ofi.

Although this protocol has been studied very carefully in
the past (e.g. [1, 3, 5]), this weakness appears not to be ex-
plicit in the literature. For instance, the BAN authors [1,
Section 4] suggest the contrary, that the two participants
at the end each believe of a (single) kEy g that it is a
good shared key fod and B. The authors comment that
neither principal can know whether the key is known to
the other, but this is presumably because neither principal
knows whether the other has completed his strand. Paul-
son [5], despite his very detailed argument, does not com-
ment on this point.

Presumably this protocol weakness is not serious, as no
shared keys are disclosed. However, it serves to illustrate
the subtleties that remain poorly understood even in very
familiar protocols.

8 Discussion

This paper, an extension of [7], has served two purposes.

First, we have developed new algebraic machinery—
the notion of ideal—to supplement the strand space idea,
and to prove general, re-usable bounds on the penetrator

etrator behaviors that cannot be prevented. For instance th€Sections 3—-4). Our methods exploit two partial orderings,

penetrator could take the encrypted session key kthig
supposed to pass on tband throw it away. Hence, we can
not show that the initiator’s strand hésheight> 1.

More significantly, the above argument makes vividly
clear why the BAN modification to Otway-Rees [1, Sec-
tion 4] might fail, as was shown by Mao and Boyd [3]. In
that modification the noncév, is outside the encryption.
Thoughi it is still true, when condition 2 holds, that the term
{M; X B}k, originates on a regular strasg, this term
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namely the subterm relation between terms and the
relation between nodes. Inductive characteristics of these
orderings are formulated via the notion of an ideal in the
case ofZ, and via a least element principle in the cas&of

In addition, the strand space machinery, together with our
treatment of unique origination, provides great power for
localizing the crucial steps in potential attacks. One knows
on which strand a particular event must occur, and the form
of the term at the relevant node. This gives finer grained



M,

Where

o o~ WDN

.M, = MAB{N,MAB}g,,.

My =MAB{N,MAB}g,, {NyMAB},..
M;=MA{NyKa}Kkas {No KaB}K5s-

- Mz = MA{N. Ky g}ras {No Kyp}kps-

My =M{N,Kap}tk,s-

M= M N, Kb

Figure 4. An Otway-Rees Weakness: Mismatched Keys
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control over the analysis than other methods seem to us td7] F. Javier Thayer Fabrega, Jonathan C. Herzog, and

provide.

Second, we have used our methods to provide simple and
revealing proofs about a particular protocol (Sections 5-7).
These proofs show that even in the case of a very well-
studied protocol, there remain fine points that have not been
understood.

The specific algebraic properties we have considered are
still elementary. They are applied under assumptions (such
as “free encryption”) that are still restrictive. However, it is
likely that the approach can be used in the case of message
algebras with less restrictive assumptions.
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