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Abstract

In security protocol analysis, it is important to learn gen-
eral principles that limit the abilities of an attacker, and
that can be applied repeatedly to a variety of protocols. We
introduce the notion of anideal—a set of messages closed
under encryption and invariant under composition with ar-
bitrary messages—to express such principles.

In conjunction with the strand space formalism, we use
the concept ofidealsto prove bounds on a penetrator’s ca-
pabilities, independent of the security protocol being ana-
lyzed. From this we prove a number of correctness proper-
ties of the Otway Rees protocol, using these results to ex-
plain the limitations of the protocol.

1 Introduction and Review

A security protocol is a sequence of messages between
two or more parties in which encryption is used to pro-
vide authentication or to distribute cryptographic keys for
new sessions. In this paper we extend the ideas of [7],
in which we introduced the concept of astrand spaceand
used it to formulate and prove correctness properties for the
Needham-Schroeder-Lowe protocol.

In this paper, we will develop more of the algebra of mes-
sages. We will be more explicit about the structure that we
need to assume on the set of messages, under the opera-
tions of encryption and message concatenation (Section 2).
In [7], to simplify the exposition, we assumed that these
formed a free algebra.

We will also introduce additional algebraically natural
sets of messages—we call themideals—that make it eas-
ier to state and prove general facts about the powers of the
penetrator (Section 3). Anideal is a set of messages closed�This work was supported by the National Security Agency through
US Army CECOM contractDAAB 07-96-C-E601. Appears inProceed-
ings, 1998 Computer Security Foundations Workshop, June 1998, Rock-
port, MA. Copyright 1998, IEEE.

under encryption and invariant under composition with ar-
bitrary messages.

These general theorems about the powers of the pene-
trator are independent of the protocols to be analyzed, so
that they can be re-used effectively for many protocols. A
typical specimen asserts that if a legitimate protocol entity
never utters any message in an idealI , then a penetrator
can never utter any message inI either (Section 4). We call
these kinds of theorems “bounds on the penetrator.”

We have applied these methods to analyze the Otway-
Rees protocol and the Yahalom protocol [6]. In this paper
(Section 5), we will use Otway-Rees to illustrate the util-
ity of the penetrator bounds. Our results explain in a very
clear way exactly what the protocol establishes, and what
its fundamental limitations are.

In order to make the paper self-contained, we review
some of the terminology of our earlier paper [7] in the re-
mainder of this introduction.

1.1 Strands

Throughout the paper,A will denote the set of messages
that can be exchanged between principals in a protocol.1 We
will refer to the elements ofA asterms. In a protocol, prin-
cipals can either send or receive terms. We will represent
sending a term as the occurrence of that term with positive
sign, and receiving a term as its occurrence with a negative
sign.

Definition 1.1 A signed termis a pair h�; ai with a 2 A
and � one of the symbols+;�. We will write a signed
term as+t or �t. (�A)� is the set of finite sequences of
signed terms. We will denote a typical element of(�A)� byh h�1; a1i; : : : ; h�n; ani i.
Definition 1.2 A strand spaceis a set� with a tracemap-
ping tr : �! (�A)�.

1In this paper, we will use asansserif style for sets likeA and its im-
portant subsets, and for the basic operators onA. In [7], bold face was
used for these as well as for other items.
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In particular applications of the theory, the mapping tr may
fail to be injective because we may need to distinguish be-
tween various instances of the same trace. For instance, to
model authentication properties of certain protocols it may
be necessary to distinguish identical traces originating from
different principals, or to model simple replay attacks we
may need to distinguish identical traces originating from the
same principal.

Fix a strand space�.

1. A nodeis a pairhs; ii, with s 2 � and i an integer
satisying1 � i � length(tr(s)). The set of nodes is
denoted byN . We will say the nodehs; ii belongs to
the strands. Clearly, every node belongs to a unique
strand.

2. If n = hs; ii 2 N then term(n) is (tr(s))i, i.e. theith
signed term in the trace ofs. Similarly, unsterm(n) is((tr(s))i)2, i.e. the unsigned part of theith signed term
in the trace ofs.

3. If n1; n2 2 N , n1 ! n2 means term(n1) = +a and
term(n2) = �a. It means that noden1 sends the mes-
sagea, which may be received byn2, creating a causal
link between their strands.

4. If n1; n2 2 N , thenn1 ) n2 meansn1; n2 occur on
the same strands with n1 = hs; ii andn2 = hs; i+1i.
It expresses the causal dependence of a later action on
its predecessor.N becomes an ordered graph with both sets of edgesn1 ! n2 andn1 ) n2.

1.2 Bundles

A bundlein a strand space is a finite subgraph of the node
graphN , for which we can regard the edges as expressing
the causal dependencies of the nodes.

Definition 1.3 LetC be a set of edges, and letNC be the set
of nodes incident with any edge inC. C is a bundle if:

1. C is finite.

2. If n1 2 NC and term(n1) is negative, then there is a
uniquen2 such thatn2 ! n1 2 C.

3. If n1 2 NC andn2 ) n1 thenn2 ) n1 2 C.

4. C is acyclic.

We will speak of a node as being in the bundleC if in fact it
is inNC .

A well-formed bundle is illustrated in Figure 1, although
this bundle does not exemplify a useful protocol.

+a - �a +b�c � +c�w - �c�w�d�w � +d�w+e�wwwwwwww - �e�w�f�
wwwwwwwwwwwwwwwwwwwww � +f�w+g�w

Figure 1. A Bundle

Definition 1.4 If C is a bundle ands 2 �, then theC height
of s, denoted heightC(s), is the largesti � length(tr(s))
such thats 2 � andhs; ii 2 C.C containss if heightC(s) = length(tr(s)).
Clearly hs; ji 2 C for all j � heightC(s). The model in-
tentionally allows strands representing legitimate protocol
agents to have less than full height.

Definition 1.5 If s is a strand andC a bundle, theC-
trace ofs is the restriction of tr(s) to the integer intervalf1; : : : ; heightC(s)g. A partial C-trace ofs is the restric-
tion of tr(s) to any intervalf1; : : : ; kg for k � heightC(s).
Definition 1.6 Suppose thatS is a set of edges, i.e. a subset
of the union of! and), and letNS be the set of nodes
incident with any edge inS.

Then�S is the transitive closure ofS, and�S is the
reflexive, transitive closure ofS.

Each relation is a subset ofNS �NS . Moreover,n �S n0
means that there is a sequence of one or more edges (of
either kind) belonging toS leading fromn to n0. Similarly,n �S n0 means that there is a sequence of zero or more
edges belonging toS leading fromn to n0.
Lemma 1.7 SupposeC is a bundle. Then�C is a partial or-
der, i.e. a reflexive, antisymmetric, transitive relation. Every
non-empty subset of the nodes inC has�C-minimal mem-
bers.

When a bundleC is understood, we will simply write�.

1.3 Messages

In the remainder of this paper, we will specialize the set
of messagesA and assume it has additional structure in-
tended to model message construction and message encryp-
tion. We specializeA by introducing:
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� A setT � A of texts (representing the atomic mes-
sages), and a disjoint setK � A of cryptographic keys.� A unary operatorinv : K ! K. We assume that inv
maps each member of a key pair for an asymmetric
cryptosystem to the other, and that it maps a symmetric
key to itself.� Two binary operatorsencr : K� A! Ajoin : A� A! A

To follow accepted notation, we will write:inv(K) = K�1,encr(K;m) = fmgK andjoin(a; b) = a b. To minimize the
use of parentheses in our notation, we will implicitly asso-
ciate terms on the right. Thusa b c is an abbreviation ofa (b c). Note that nothing is stated about the kind of encryp-
tion used here.

We will refer to the range ofencr, namely the ciphertexts
of the formfhgK , asE. We will refer to the set of terms of
the forma b, asC. A term issimpleif it is an element ofK [ E [ T. Note that the range of encryption is included in
the simple terms.

1.4 Infiltration

A penetrator setconsists of a set of keysKP . It con-
sists of all keys initially known to the penetrator. Typically
it would contain all public keys, all private keys of penetra-
tors and all symmetric keysKpx;Kxp initially shared be-
tween the penetrator and a principal that plays by the proto-
col rules. It may also contain “lost keys” that are known to
the penetrator, either because of the carelessness of a non-
malicious principal, or else because the pentrator has suc-
ceeded in some cryptanalysis.

The actions available to the penetrator are encoded in a
set ofpenetrator tracesthat summarize his ability to discard
messages, generate well known messages, piece messages
together, and apply cryptographic operations using keys that
become available to him.

Definition 1.8 A penetrator traceis one of the following:

M. Text message:h+ti wheret 2 T
F. Flushing:h�gi
T. Tee:h�g; +g; +gi
C. Concatenation:h�g; �h; +g hi
S. Separation into components:h�g h; +g; +hi
K. Key: h+Ki whereK 2 KP .

E. Encryption:h�K; �h; +fhgKi.

D. Decryption:h�K�1; �fhgK ; +hi.
It is also possible to extend the set of penetrator traces given
here if it is desired to model some special ability of the
penetrator, such as the ability to cryptanalyze some kinds
of encrypted messages, without any essential change to our
overall framework.

Definition 1.9 An infiltrated strand spaceis a pair (�;P)
with� a strand space andP � � such that tr(p) is a pene-
trator trace forp 2 P .

A strands 2 � is a penetrator strandif it belongs toP , and a node is apenetrator nodeif the strand it lies on
is a penetrator strand. Otherwise we will call it anon-
penetratoror regularstrand or node.

A noden is a M , F, etc. node ifn lies on a penetrator
strand with a trace of kindM , F, etc.

We would not expect an infiltrated strand space to real-
ize all of the penetrator traces of typeM . In that case, the
space could not model unguessable nonces. The more use-
ful spaces� lackM -strands for many text values, which the
legitimate participants can use as fresh nonces.

2 Unique Readability

When reasoning about terms, it is important to know
whether they are ambiguous, in the sense that there are dif-
ferent ways to “read” or “parse” them. We can draw conclu-
sions more effectively if portions (at least) of the term can
be read in only one way. In [7], we took the short way with
this issue, assuming that the algebra of messages is free. In
this section, we develop a more flexible algebraic frame-
work that allows (for instance) message concatenation to be
associative. The conclusions of [7] remain true in this more
realistic context.

Axiom 2.1 handles the case of a term that can be re-
garded as a ciphertext, and asserts that it can be regarded as
a ciphertext in only one way. Axiom 2.2 deals with the de-
composition of composite terms, and their relation to other
terms.

Axiom 2.1 If ftgK = ft0gK0 thenK = K 0 andt = t0.
We will refer to this assumption as thefree encryption as-
sumption; other authors such as Paulson [5] and Marrero et
al [4] make similar assumptions.

There exist interpretations of the theory we are present-
ing in which this axiom is satisfied, for instance, the set of
formal expressions built fromK andT using the operationsjoin andencr. However, in the most common application
of the theory—namely cryptography—Axiom 2.1 is false,
because there are many relations in the algebra of real mes-
sages. For instance a cardinality argument immediately es-
tablishes that there must be many distinct pairs of an input
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block of plaintext and a DES key (for instance) that yield
the same block of ciphertext. Nevertheless, a good cryp-
tosystem makes it hard to find pairs that will collide in this
way. Moreover, there should be very few differentmean-
ingful texts for which there exist keys that will cause them
to collide, for most notions of “meaningful.” Axiom 2.1
idealizes the situation by assuming that there are none. This
matches our goal, namely to determine whether protocols
have weaknesses independent of the choice of cryptosys-
tem. An initial step in giving a complete answer to this
question is to consider whether there would still be weak-
nesses, even if the cryptosystem is ideal.

Axiom 2.2 No simple element is inC, the range ofjoin. Ifp a = q b with p; q simple, thenp = q anda = b.
We turn now to the question of decomposing a composite
term into a succession of simple components. Anexhausted
term is one for which this is no longer possible.

Definition 2.3 a 2 A is exhaustediff a cannot be expressed
in not the formp h for p simple.

Clearly any simple term is exhausted since by Axiom 2.2, it
cannot be written in the forma b.
Proposition 2.4 For any terma either

1. a can be expressed asp1 � � � pk h where where eachpi
is simple andh is exhausted. If such a representation
exists it is unique.

2. There is a unique pair of infinite sequencesfpig1�i,fhig1�i where eachpi is simple such thata =p1 � � � pk hk.

PROOF. Supposep1 � � � pk h = q1 � � � qn g
wherepi; qj are simple andk < n. Applying Axiom 2.2
repeatedly, h = qk+1 � � � qn g
contradicting the assumptionh is exhausted. Similarly, we
can excluden < k. Thusk = n and it follows immediately
from Axiom 2.2 thatpi = qi andh = g. If there is no
representation ofa in the form stated, then for any anyk
there is a unique representation ofa in the formp1 � � � pk h
whereh is not exhausted.�
Definition 2.5 Leta 2 A and1 � k:

1. a has widthk iff a = p1 � � � pk�1 h where eachpi is
simple andh exhausted.

2. a has width+1 if a does not have a representationp1 � � � pk�1 h where eachpi is simple andh is ex-
hausted.

Lemma 2.6 Any a 2 A has widthk for exactly one1 �k �1.

PROOF. Follows immediately from Proposition 2.4.�
This lemma may be used in various forms to show that

sets of terms of certain forms are disjoint from each other.
For instance, the result of concatenating an atomic text and
a key never collides with the result of concatenating two
texts before any member ofA, which we need in treating
the Otway-Rees protocol (Section 5).

Proposition 2.7 The set of terms of the formhK is disjoint
from the set of terms of the formhh0 a for all h; h0 2 T,K 2 K anda 2 A.

Attacks that might exist if there are terms that may be “read”
as having more than one form are referred to astype flaw
attacks[2]. Some type flaw attacks seem implausible, in the
sense that most implementations would not be vulnerable
to them, while others are more troublesome. We will not
consider type flaws further in the current paper, although
there are various possible approaches to extending strand
spaces to model them.

3 Ideals

We introduce the concept ofideal for two purposes:

1. To make it easier to formulate general facts about the
penetrator’s capabilities.

2. As a technical device for stating assumptions and prov-
ing facts about the subterm relationship. In our pre-
vious paper, [7] we made the simplifying assumption
that the message algebra was free and so no additional
assumptions were necessary to guarantee results such
as Corollary 3.14 below.

Definition 3.1 If k � K, a k-ideal ofA is a subsetI of A
such that for allh 2 I , g 2 A andK 2 k

1. h g; g h 2 I .

2. fhgK 2 I .

The smallestk-ideal containingh is denotedIk[h].
We now define a subterm relation@ that uses the struc-
ture of message composition and encryption specific to Sec-
tion 1.3.

Definition 3.2 h is asubtermof g, writtenh @ g is defined
asg 2 IK[h].
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This definition gives a more restricted notion of subterm
then one might have expected. In particular,K 6@ (fhgK)
unlessK already happened to be a subterm ofh. Restricting
subterms in this way reflects an assumption about the pen-
etrator’s capabilities, to wit, that keys can be obtained from
cyphertext only if they are embedded in the text that was en-
crypted. This might not always be the case—for instance,
if a dictionary attack is possible—but it is the assumption
we will make in this paper. Future work within the same
framework could certainly relax the assumption.

Proposition 3.3 @ is a transitive, reflexive relation. More-
over, ifh; g 2 A andK 2 K, then

1. h @ h g andg @ h g.

2. h @ fhgK .

PROOF. Clearlyh 2 IK[h], soh @ h. If g @ g0, theng0 2 IK[g]. If in additionh @ g, theng 2 IK[h], so by the
definitionsIK[g] � IK[h]. Thereforeg0 2 IK[h].

If h; g 2 A andK 2 K, then clearlyh g; g h; fhgK 2IK[h]. �
Axiom 3.4 If t is a simple term andg h 2 I;[t] then eitherg 2 I;[t] or h 2 I;[t].
Axiom 3.5 If K 2 K, t 2 T , e 2 E andc 2 C.

1. e 6@ K.

2. e 6@ t.
3. K 6@ t.
4. c 6@ K.

5. c 6@ t.
It also follows thatt 6@ K, although this fact is not needed
here.

Lemma 3.6 The setsK, T, E andC are pairwise disjoint.

PROOF. Sincet @ t the result follows from immediately
from Axioms 3.5 and 2.2.

Definition 3.7 Supposek � K. s 2 A is a k-subterm oft 2 A, writtens @k t iff t 2 Ik[s].
If s @; t, then we use the expressions is a visible subterm
of t.
Proposition 3.8 @k is a transitive, reflexive relation. More-
over,h @k g impliesh @ g.

PROOF. To prove@k is a transitive, reflexive relation, see
the proof of Proposition 3.3. Ifh @k g theng 2 Ik[h] �IK[h] soh @ g as asserted.�

Definition 3.9 If S � A, Ik[S] is the smallestk-ideal con-
tainingS.

The ideal structure is very simple:

Proposition 3.10 If S � A, Ik[S] = Sx2S Ik[x].
PROOF. The property of being ak-ideal is equivalent to
closure under the mappingsx 7! x a, x 7! a x andx 7! fxgk for k 2 k. Thus the union ofk-ideals is ak-ideal. Thus

Sx2S Ik[x] is a k-ideal which containsS.
Clearly

Sx2S Ik[x] � Ik[S]. �
Lemma 3.11 Let S0 = S, Si+1 = ffggK : g 2I;[Si];K 2 kg. ThenIk[S] = Si I;[Si].
PROOF. By induction,Si � Ik[S], so

Si I;[Si] � Ik[S].
In the other direction,

Si I;[Si] is clearly ak-ideal which
containsS. �
Proposition 3.12 SupposeS � A, and everys 2 S is sim-
ple. If g h 2 Ik[S] then eitherg 2 Ik[S] or h 2 Ik[S].
PROOF. In virtue of the previous lemma,g h 2 I;[Si] for
somei. By Proposition 3.10,g h 2 I;[x] for somex 2 Si.
This x is simple, as eitheri = 0, in which caseSi = S,
or elsei = j + 1, in which case eachx 2 Si is of the
form fhgK , and hence simple. Thus by Axiom 3.4, eitherg 2 I;[x] or h 2 I;[x].
Proposition 3.13 SupposeK 2 K; S � A; and for everys 2 S, s is simple and is not of the formfggK. If fhgK 2Ik[S], thenh 2 Ik[S].
PROOF. AssumeK 2 K, fhgK 2 Ik[S] andh 62 Ik[S].
Let I 0 be the set differenceIk[S] n f fhgK g. ClearlyS � I 0, sinceS does not contain anything encrypted with
outermost keyK. MoreoverI 0 is a k-ideal: SinceIk[S]
is already an ideal andfhgK is not of the forma b, I 0
clearly satisfies thejoin closure condition for ideals. IffhgK = fh1gK0 for h1 2 I 0, then by Axiom 2.1 (free
encryption),h = h1 2 I 0 � Ik[S] a contradiction. ThusI 0
is an ideal which containsS. This contradicts the definition
of Ik[S] as the smallest ideal which containsS. �

In Proposition 3.13,S may contain a termfggK0 whereK 0 6= K andg in turn contains subterms encrypted inK.

Corollary 3.14 SupposeK 6= K 0 and fh0gK0 @ fhgK .
Thenfh0gK0 @ h.

PROOF. The assumption meansfhgK 2 IK[fh0gK0 ], which
by the Proposition impliesh 2 IK[fh0gK0 ].
Proposition 3.15 SupposeK 2 K; S � A; and everys 2S is simple and is not of the formfggK . If fhgK 2 Ik[S]
for K 2 K, thenK 2 k.
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Figure 2. Entry Point for I

The proof is similar to the proof of Proposition 3.13.
PROOF. AssumeK 2 K, fhgK 2 Ik[S] andK 62 k. As in
the preceding proposition, letI 0 = Ik[S] n f fhgK g. For
the same reason as before,S � I 0 andI 0 satisfies thejoin
closure condition for ideals. Moreover, by free encryption,fhgK is not of the formfh0gK0 for anyK 0 2 k. ThusI 0 is
an ideal which containsS. This contradicts the definition ofIk[S]. �
4 Origination and Honesty

Definition 4.1 Suppose� is a strand space,N the set of
nodes of�. An unsigned termt originateson n 2 N iff:
term(n) is positive;t @ term(n); and whenevern0 precedesn on the same strand,t 6@ term(n0). An unsigned termt is
uniquely originatingiff t originates on a uniquen 2 N .

Definition 4.2 A nodem is anentry pointfor I � A if and
only if term(m) is positive, term(m) 2 I and for all nodesm0 which precedem on the same strand, term(m0) 62 I .

We sometimes writem0 )+ m to mean thatm0 precedesm on the same strand.

Proposition 4.3 SupposeC is a bundle overA. If m is min-
imal in fm 2 C : term(m) 2 Ig, thenm is an entry point
for I .

PROOF. If term(m) = �h, then by Definition 1.3 Clause 2,
there is a nodem0 2 C with term(m0) = +h, violating
minimality. If m0 )+ m and term(m0) 2 I , then using
Definition 1.3 Clause 3 repeatedly,m0 2 C, again contra-
dicting minimality.�
Definition 4.4 A setI � A is honestrelative to a bundleC
if and only if whenever a penetrator nodep is an entry point
for I , p is anM node or aK node.

Thus, I is honest relative toC if the penetrator can
achieve entry intoI only by a lucky guess: either he ut-
ters the right nonce or other text in a luckyM node, or he
utters the right key in a luckyK node. He does not deduce
it via his abilities to decrypt and encrypt, or to concatenate
and separate.

Our main theorem interrelates the structure of ideals with
the possible cases for a penetrator strand.

Theorem 4.5 SupposeC is a bundle overA; S � T [ K;k � K; andK � S [ k�1. ThenIk[S] is honest.

PROOF. Let I = Ik[S]. BecauseI \ K = S \ K, we may
infer K n I = K n S � k�1. Also, sinceS � T [ K, the
setS contains nothing encrypted and no concatenations, so
Propositions 3.12 and 3.13 can be applied.

Supposem is a penetrator node and an entry point forI .
We now consider the various kinds of strands on which a
penetrator node can occur. By the definition of entry point,m cannot be on a strand of kindF or kindT. Consider now
the remaining cases:

C. m is on a strand with traceh�g;�h;+h gi. Sinceh g 2 I , by Proposition 3.12, one ofg; h must be inI ,
contradicting the definition of entry point.

S. m is on a strand with traceh�h g;+h;+gi. Since
term(m) must be positive,m is either the second or third
node of the strand, so eitherh 2 I or g 2 I . By the ideal
property,h g 2 I , contradicting the definition of entry point.

D. m belongs to a strand with traceh�K�10 ;�fhgK0 ;+hi. By the assumption thatm is
an entry point forI ,K�10 62 I . Hence,K�10 62 S. However,K � S [ k�1. ThereforeK�10 2 k�1, soK0 2 k. By
the k-ideal property ofI , fhgK0 2 I , contradicting the
definition of entry point.

E. m belongs to a strand with traceh�K 0;�h;+ fhgK0i. By assumptionfhgK0 2 I .
By Proposition 3.13,h 2 I , contradicting the definition of
entry point.

The only remaining possibilities are thatm is on a strand
of kind M or of kindK as asserted.�

In our analysis of Otway-Rees, we use two corollaries of
this main result. The first allows us to conclude (in some
situations) that if a key is transmitted that is not originally
known to the penetrator, then a regular (i.e. non-penetrator)
node has provided the entry point.

Corollary 4.6 SupposeC is a bundle,K = S [ k�1 andS \ KP = ;. If term(m) 2 Ik[S] for somem 2 C, then for
some regular noden 2 C, n is an entry point forIk[S].
PROOF. Supposem is minimal in fn 2 C : term(n) 2Ik[S]g. By Proposition 4.3,m is an entry point forIk[S].
Since by assumptionm is not regular (and so must be a pen-
etrator node), Theorem 4.5 impliesm is either a penetrator
node of kindM or of kindK .

However, sinceK = S[k�1, S � K. HenceIk[S]\T =;, som is not of kindM . BecauseS \ KP = ;,m is not of
kind K .�
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Where

1. M1 = M AB fNaM ABgKAS .

2. M2 = M AB fNaM ABgKAS fNbM ABgKBS .

3. M3 = M fNaKABgKAS fNbKABgKBS .

4. M4 = M fNaKABgKAS .

Figure 3. Message Exchange in Otway-Rees

The second corollary gives a condition under which en-
cryption guarantees a non-penetrator origin.

Corollary 4.7 SupposeC is a bundle;K = S [ k�1; S \KP = ;; and no regular node2 C is an entry point forIk[S]. Then any term of the formfggK for K 2 S does not
originate on a penetrator strand.

PROOF. By Corollary 4.6, for every nodem 2 C,
term(m) 62 I = Ik[S]. Supposet1 = fggK for K 2 S
originates on a penetrator strandm. By inspection,m can-
not occur on a penetrator strand of kindF, T, K , M , C or S.
Consider the remaining cases:

E. m occurs on a strand with traceh�K0;�h;+fhgK0i.
Now K0 62 I and soK0 6= K. SincefggK @ fhgK0 ,
Corollary 3.14 impliesfggK @ h, contradicting the defini-
tion of entry point.

D. m belongs to a strand with traceh�K0�1;�fhgK0 ;+hi: If fggK @ h, thenfggK @ fhgK0 , contradicting the definition of entry
point.�
5 Otway-Rees: The Protocol

This protocol has three roles: initiator, responder, and
server. The goal of the protocol is to mutually authenticate
initiator and responder and to distribute a session key gen-
erated by a server. See Figure 3.

To provide a mathematical model of this protocol, we
further refine the assumptions on the algebraA.� A setTname� T of names.� A mappingK : Tname! K. This is intended to denote

the mapping which associates to each principal the key
it shares with the server. In the literature on this pro-
tocol this mapping is usually written using subscriptsK(A) = KAS : We assume the mappingA 7! KAS is
injective. We also assumeKAS = K�1AS , i.e. that the
protocol is using symmetric cryptography.

We will adopt some conventions on variables for the re-
mainder of this section:� VariablesA;B range overTname;� VariablesK;K 0 range overK;� VariablesN;M (or the same letters decorated with

subscripts) range overT n Tname, i.e. those texts that
are not names.

Other letters such asG andH range over all ofA. We
would emphasize thatNa is just a variable, having no reli-
able connection toA, whereasKAS is the result of applying
the functionK to the argumentA. Thus, the latter reliably
refers to the long term key shared betweenA andS.� Init[A;B;N;M;K] is the set of strandss 2 � whose

trace ish+M AB fN M ABgKAS ;�M fN KgKASi�init is the union of the range of Init.� Resp[A;B;N;M;K;H;H 0] is defined whenN 6@ H ;
its value then is the set of strands in� whose trace ish � M ABH;+ M ABH fNM ABgKBS ;� M H 0 fN KgKBS ;+ M H 0i�resp is the union of the range of Resp.� Serv[A;B;Na; Nb;M;K] is defined ifK 62 KP , K 62fKAS : A 2 Tnameg andK = K�1; its value then is
the set of strands in� whose trace is:h � M AB fNaM ABgKAS fNbM ABgKBS ;+ M fNaKgKAS fNbKgKBSi�serv is the union of the range of Serv.
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The conditionN 6@ H in the definition of a responder
strand ensures that the nonceN must originate on the strand
Resp[A;B;N;M;K;H;H 0] itself. A protocol participant
cannot inspect the contents ofH to enforce this condition,
since under normal operation of the protocol,H is cypher-
text inaccessible to the participant. Rather, we assume that
this condition is enforced by a probabilistic mechanism.

Lemma 5.1 If f(~v) \ f(~v0) 6= ;, then~v = ~v0, whenf is
one of the mappingsServ; Init;Resp.

Lemma 5.2 The sets�serv;�init ;�resp are pairwise dis-
joint.

PROOF. It suffices to prove the sets of traces are disjoint.
Originator traces begin with a positive term. The second
term of of a responder trace has width at least 4, whereas
for a server trace the width is exactly 3.

Definition 5.3 AnOtway-Rees strand spaceis an infiltrated
strand space� such that� = �serv[ �init [ �resp[ P .

This union is disjoint, by Lemma 5.2 and the observation
thatP contains no strands of the same form as�serv[�init[�resp.

Fix an Otway-Rees strand space� overA.
We sometimes find it convenient to use the� to

indicate union over some indices. Thus for instance
Resp[A;B;Nb;M;K; �; �] =[H;H0 Resp[A;B;Nb;M;K;H;H 0]
6 Otway-Rees: Secrecy

We first prove that session keys distributed by the server
cannot be disclosed unless the penetrator possesses one of
the long-term keys used in the run. We show that a session
key can never occur in a form in which it is not encrypted
by the participants’ long-term keys.

Theorem 6.1 SupposeC is a bundle in�; A;B 2 Tname;K is uniquely originating;KAS ;KBS 62 KP ; and sserv 2
Serv[A;B;Na; Nb;M;K] hasC-height 2.

Let S = fKAS ;KBS;Kg and k = K n S. For every
nodem 2 C, term(m) 62 Ik[K].
PROOF. By Proposition 3.10, it suffices to prove the
stronger statement that for every nodem, term(m) 62 Ik[S].
SinceS \ KP = ; , k = k�1 andK = k [ S, by Corol-
lary 4.6 it suffices to show that no regular nodem is an entry
point forIk[S].

We will argue by contradiction and assumem is a regular
node which is an entry point forIk[S]. Sincem is an entry
point for Ik[S], by the definitions, it follows that term(m)

is an element ofIk[S]. By 3.10, this implies that one of
the keysK, KAS , KBS is a subterm of term(m). Now
no regular node contains any key of the formKXS as a
subterm. In fact the only keys which occur as subterms of
term(m) form regular, are the session keys emanating from
a server. But by assumption the set of such keys is disjoint
from the set of keys of the formKXS . It thus followsK
must be a subterm of term(m).

If m is a positive regular node on a strands, thenK @
term(m) implies either:

1. s 2 �serv andm = hs; 2i, in which caseK is the
session key ofs; or

2. s 2 Resp[�; �; �; �; �; H; �],m = hs; 2i, andK @ H .

In case 2,m is not an entry point forIk[S], becauseH @hs; 1i, which is a preceding negative node.
So consider case 1. By the unique origination ofK,s = sserv, so term(m) = M fNaKgKAS fNbKgKBS . By

Proposition 3.12, either

1. M 2 Ik[S], or

2. fNaKgKAS 2 Ik[S], or

3. fNbKgKBS 2 Ik[S].
But the first is impossible by Axiom 3.5; the second and
third are impossible by Proposition 3.15.�
7 Otway-Rees: Authentication

In this section we will prove the authentication guaran-
tees that Otway-Rees provides to its initiator and responder.
It is also possible to prove that the protocol provides au-
thentication guarantees to the server [6], but we will not do
so here. We first “import” the consequence of Corollary 4.6
that we will need to prove the authentication goals.

Proposition 7.1 Consider a bundleC in �. SupposeX 2Tname is such thatKXS 62 KP . Then no term of the formfggKXS for X 2 Tnamecan originate on a penetrator node
in C.

PROOF. Let S = fKXSg andk = K. To apply Corol-
lary 4.7, we must check that no regular node is an entry
point for IK[S], or equivalently, thatKXS does not origi-
nate on any regular node.

A key K originates on a regular node only if it is
a session keyK originating on a server strands 2
Serv[�; �; �; �;K; �; �]. However, by the definition of�serv,
the session keyK is never a long term keyKXS.

Hence, we may apply Corollary 4.7 toIK[S], so any termfggKXS can only originate on a regular node.�
8



Proposition 7.2 If fHgKXS originates on a regular strands, then:

1. If s 2 �serv, thenH = N K.

2. If s 2 �init , thenH = NM X C for X;C 2 Tname.

3. If s 2 �resp, thenH = N M CX for X;C 2 Tname.

PROOF. By the definition of originating (Definition 4.1), if
the termfHgKXS originates onm, thenm is positive.

If s 2 �init thenm = hs; 1i. Thus term(m) is of the
formM AB fNM ABgKAS . The only encrypted subterm
of this term,fNM ABgKAS , is of form 2.

If s 2 �resp, then the positive nodes ofs arehs; 2i andhs; 4i. The encrypted subterms ofhs; 2i have plaintext of
forms 2 and 3 respectively, while the encrypted subterm ofhs; 4i has form 1.

A similar argument holds ifs 2 �serv. �
Corollary 7.3 Supposes is a regular strand of�.

1. If fN KgKXS originates ons, then either� s 2 Serv[A;X;N;N 0;M;K]� s 2 Serv[X;B;N 0; N;M;K]
for someA;B;N 0;M . In either case the term origi-
nates on the nodehs; 2i andK originates ons.

2. If fNM ABgKAS originates ons, withA 6= B then� s 2 Init[A;B;N;M;K]
for someK. The term originates on the nodehs; 1i
andN originates ons.

3. If fNM ABgKBS originates ons, withA 6= B then� s 2 Resp[A;B;N;M;K;H;H 0]
for someK;H;H 0. The term originates on the nodehs; 2i andN originates ons.

PROOF. Sinces is regular,s 2 �serv[�init [�resp. Apply
Propositions 7.2 and 2.7.�
7.1 Initiator’s Guarantee

The following theorem asserts that if a bundle contains a
strands 2 �init , then under reasonable assumptions, there
are regular strandssresp 2 �resp andsserv 2 �serv which
agree on the initiator, responder, andM values.

Theorem 7.4 SupposeC is a bundle in�; A 6= B; Na is
uniquely originating inC; andKAS ;KBS 62 KP .

If s 2 Init[A;B;Na;M;K] hasC-height 2, then there
are regular strands

� sresp 2 Resp[A;B;Nb;M; �; �; �] of C-height at least
2.� sserv2 Serv[A;B;Na; Nb;M;K] of C-height 2.

PROOF. The assumption of the theorem meansh+ M AB fNaM ABgKAS ;� M fNaKgKASi
is theC-trace of a strands.

SinceKAS 62 KP , by Proposition 7.1,fNaKgKAS orig-
inates on a regular node inC. By Corollary 7.3, this node
belongs to a strandsserv which satisfies one of the condi-
tions:

1. sserv2 Serv[A;X;Na; N;M1;K]
2. sserv2 Serv[X;A;N;Na;M1;K]

whereX 2 Tname, andN;M1 2 T. Sincehsserv; 2i 2 C,sservhasC-height 2.
If condition 1 holds, fNaM1AXgKAS @

term(hsserv; 1i). By Proposition 7.1,fNaM1AXgKAS
originates on a regular strands1, and by Corollary 7.3,Na originates on the same strands1. By the unique
origination ofNa, s1 = s. ThusM1 =M andX = B, andsserv2 Serv[A;B;Na; N;M;K].

By Proposition 7.1,fNM ABgKBS originates on a reg-
ular node inC. By Corollary 7.3, this node is the sec-
ond on a strandsresp 2 Resp[A;B;N;M; �; �; �]. Sincehsresp; 2i 2 C, it follows sresphasC-height at least 2.

Suppose that condition 2 holds instead. ThenfNaM1X AgKAS is a subterm of term(hsserv; 1i). By
Proposition 7.1,fNaM1X AgKAS originates on a regular
strands1, and by Corollary 7.3,Na originates on the same
strands1. By the unique origination ofNa, s1 = s. Hence
by Corollary 7.3,fNaM1X AgKAS = fNaM1ABgKAS ,
soA = B, contradicting an assumption.�
Remarks. Even though the intention of the protocol de-
sign is to haveB receiveH = fNaM ABgKAS fromA there is no way to prevent a penetrator from replacingfNaM ABgKAS with garbage. Moreover a penetrator can
prevent the output of the server from reachingB. Thus, we
cannot show thatB hasC-height> 2.

7.2 Responder’s Guarantee

The responder can rest assured that if a bundle contains a
strands 2 �resp, then under familiar assumptions there are
regular strandssinit 2 �init andsserv 2 �serv which agree
on the initiator, responder, andM values. Its proof is very
similar to the proof of Theorem 7.4.
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Theorem 7.5 SupposeC is a bundle in�; A 6= B; Nb is
uniquely originating inC; andKAS ;KBS 62 KP .

If s 2 Resp[A;B;Nb;M;K;H;H 0] has C-height at
least 3, then there are regular strands� sinit 2 Init[A;B; �;M; �] of C-height at least 1.� sserv2 Serv[A;B; �; Nb;M;K] of C-height 2.

PROOF. The assumption of the proposition means theC-
trace ofs contains at least:h � M ABH;+ M ABH fNbM ABgKBS;� MH 0 fNbKgKBSi

SinceKBS 62 KP , by Proposition 7.1,fNbKgKBS orig-
inates on a regular node inC. By Corollary 7.3, this node
belongs to a strandsservwhich satisfies one of the following
two conditions:

1. sserv2 Serv[B;X;Nb; N;M1;K]
2. sserv2 Serv[X;B;N;Nb;M1;K]

whereX 2 Tname, andN;M1 2 T. Sincehsserv; 2i 2 C,sservhasC-height 2.
If condition 1 holds, thenfNbM1BXgKBS @hsserv; 1i. By Proposition 7.1,fNbM1BXgKBS origi-

nates on a regular strands1, and by Corollary 7.3,Nb orig-
inates on the strands1. By the unique origination ofNb,s = s1. HencefNbM1BXgKBS = fNbM1ABgKBS ,
so thatB = A, contradicting an assumption.

Suppose that condition 2 holds instead. Again,fNbM1X BgKBS @ hsserv; 1i. By Proposition 7.1,fNbM1X BgKBS originates on a regular strands1, and by
Corollary 7.3,Nb originates on the strands1. By the unique
origination ofNb, s1 = s. Thus,M1 = M andX = A,
andsserv2 Serv[A;B;N;Nb;M;K].

By Proposition 7.1,fNM ABgKAS originates on a reg-
ular node inC. By Corollary 7.3, this node belongs to a
strandsinit 2 Init[A;B;N;M; �]. sinit hasC-height at least
1.�
Remarks. As in the previous theorem there are some pen-
etrator behaviors that cannot be prevented. For instance the
penetrator could take the encrypted session key thatB is
supposed to pass on toA and throw it away. Hence, we can
not show that the initiator’s strand hasC-height> 1.

More significantly, the above argument makes vividly
clear why the BAN modification to Otway-Rees [1, Sec-
tion 4] might fail, as was shown by Mao and Boyd [3]. In
that modification the nonceNb is outside the encryption.
Though it is still true, when condition 2 holds, that the termfM1X BgKBS originates on a regular strands1, this term

does not containNb. Hence,s1 may not be an origination
point forNb, and we can no longer conclude thats1 = s.

Indeed, the BAN modification also requires a weakening
of Theorem 7.4, as we can no longer infer that the responder
and the server strands will agree on the responder’s nonceNb.
7.3 The Missing Guarantee

The authentication theorems do not establish something
that we had expected they would, namely that if a bundleC
contains complete initiator and responder strands, then they
agree on the session key distributed.

That is, one cannot strengthen Theorem 7.4
by replacing the asterisk byK to obtain sresp 2
Resp[A;B;Nb;M;K; �; �]. Nor can one strengthen
Theorem 7.5 by replacing an asterisk byK to obtainsinit 2 Init[A;B; �;M;K]. The reason is that there is a
counterexample, a bundleC (illustrated in Figure 4) in
which each player has a complete strand inC, and they
agree onA, B, andM , but they do not agree onK.

Although this protocol has been studied very carefully in
the past (e.g. [1, 3, 5]), this weakness appears not to be ex-
plicit in the literature. For instance, the BAN authors [1,
Section 4] suggest the contrary, that the two participants
at the end each believe of a (single) keyKAB that it is a
good shared key forA andB. The authors comment that
neither principal can know whether the key is known to
the other, but this is presumably because neither principal
knows whether the other has completed his strand. Paul-
son [5], despite his very detailed argument, does not com-
ment on this point.

Presumably this protocol weakness is not serious, as no
shared keys are disclosed. However, it serves to illustrate
the subtleties that remain poorly understood even in very
familiar protocols.

8 Discussion

This paper, an extension of [7], has served two purposes.
First, we have developed new algebraic machinery—

the notion of ideal—to supplement the strand space idea,
and to prove general, re-usable bounds on the penetrator
(Sections 3–4). Our methods exploit two partial orderings,
namely the subterm relation@ between terms and the�
relation between nodes. Inductive characteristics of these
orderings are formulated via the notion of an ideal in the
case of@, and via a least element principle in the case of�.
In addition, the strand space machinery, together with our
treatment of unique origination, provides great power for
localizing the crucial steps in potential attacks. One knows
on which strand a particular event must occur, and the form
of the term at the relevant node. This gives finer grained
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Where

1. M1 = M AB fNaM ABgKAS .

2. M2 = M AB fNaM ABgKAS fNbM ABgKBS .

3. M3 = M fNaKABgKAS fNbKABgKBS .

4. M 03 = M fNaK 0ABgKAS fNbK 0ABgKBS .

5. M4 = M fNaKABgKAS .

6. M 04 = M fNaK 0ABgKAS .

Figure 4. An Otway-Rees Weakness: Mismatched Keys
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control over the analysis than other methods seem to us to
provide.

Second, we have used our methods to provide simple and
revealing proofs about a particular protocol (Sections 5–7).
These proofs show that even in the case of a very well-
studied protocol, there remain fine points that have not been
understood.

The specific algebraic properties we have considered are
still elementary. They are applied under assumptions (such
as “free encryption”) that are still restrictive. However, it is
likely that the approach can be used in the case of message
algebras with less restrictive assumptions.
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