
Establishing and Preserving Protocol Security

Goals ∗

Joshua D. Guttman

October 8, 2013

Abstract

We take a model-theoretic viewpoint on security goals and how to es-
tablish them. The models are (possibly fragmentary) executions. Security
goals such as authentication and confidentiality are geometric sequents,
i.e. implications Φ −→ Ψ where Φ and Ψ are built from atomic formulas
without negations, implications, or universal quantifiers.

Security goals are then statements about homomorphisms, where the
source is a minimal (fragmentary) model of the antecedent Φ. If every ho-
momorphism to a non-fragmentary, complete execution factors through a
model in which Ψ is satisfied, then the goal is achieved. One can vali-
date security goals via a process of information enrichment. We call this
approach enrich-by-need protocol analysis.

This idea also clarifies protocol transformation. A protocol transforma-
tion preserves security goals when it preserves the form of the information
enrichment process. We formalize this idea using simulation relations be-
tween labeled transition systems.

Contents
1 Introduction 2

1.1 Some approaches to protocol analysis . 3
1.2 Our key ideas . 4
1.3 Strands, Bundles, Fragments . 11
1.4 Security Goals . 20

2 Enrich-by-Need Protocol Analysis 23
2.1 Forms of Search . 23
2.2 Cohorts . 25
2.3 Axiomatizing Enrich-by-need . 26
2.4 Some example transition systems . 28

3 Protocol Transformations 31
3.1 Some Protocol Transformations . 32
3.2 Transformations and Homomorphisms . 34
3.3 Preservation via PSLTSs . 38
3.4 Example: Piggybacking Secrets . 39

4 Languages for Security Goals 42
4.1 Security Goals: Some Examples . 42
4.2 The Security Goal Language of a Protocol . 46
4.3 Characteristic Fragments and Formulas . 51
4.4 Preserving Goal Formulas . 58

∗Supported by the National Science Foundation under grant CNS-0952287. This paper
combines and expands the material of [34, 35, 36].

1

Version of October 8, 2013 2

Yet why not say what happens?
– “Epilogue,” R. Lowell

1 Introduction

We focus in this paper on enrich-by-need protocol analysis. This is a style
of symbolic analysis for security protocols in which the analysis proceeds by
exploring fragments of possible executions. It aims to build a representative
catalog of all the essentially different things that can happen when a protocol
can execute. Since a protocol has infinitely many different executions (if we
count executions in which any n separate sessions have occurred), enrich-by-
need protocol analysis catalogs only the minimal, essentially different portions
of large executions.

We regard all executions as being models, i.e. first order structures over
a particular signature. Some of these models represent complete executions,
containing enough information to explain every event included. For instance, for
every event in which a message is received, some event is already contained in the
structure in which that message was sent. Other structures are incomplete, since
some events may be unexplained. We will call all these structures fragments,
and the self-contained ones realized fragments. Our representative catalog of
executions should contain only realized fragments, and it should offer suitable
substructures for all larger executions.

Enrich-by-need protocol analysis is a search. Starting with a small structure
F , we systematically explore its homomorphic images, gradually adding infor-
mation. The catalog is composed of the smallest realized fragments E such that
there is a homomorphism from F into E .

Transformations and soundness. This search helps us understand proto-
col refinement and transformation. Since protocols are rarely designed from
scratch, designers are always working new messages into existing protocols, or
piggybacking new message ingredients, or using existing protocols as subproto-
cols.

Some of these transformations, when applied to a protocol satisfying some
security goals of interest, yield protocols that no longer satisfy these goals. They
are unsound transformations relative to these goals. Other transformations are
sound relative to the goals, since the resulting protocol will always satisfy the
goals that the input protocol did. A transformation from Π1 to Π2 is sound for
a set S of goal formulas if Π2 achieves all of the goals in S that Π1 achieves.

Viewing protocol analysis as a search gives a way to separate sound and
unsound protocol transformations. Since the search process for each protocol
forms a labeled transition system (lts) on fragments, we can ask whether one
of these ltss simulates another. A translation from Π1 to Π2 is sound if the
lts for Π1 simulates the lts for Π2, and the latter can progress whenever the
former can.

Version of October 8, 2013 3

To justify this as a method for showing protocol soundness, however, we
must exhibit a language of security goals. We must then show that all formulas
of this language, or at least all those of suitable logical form, are achieved by
Π2 if they were achieved by Π1.

Logical form of protocol security goals. We thus examine the confiden-
tiality and authentication goals that protocols are designed to achieve. They
form a fairly wide palette in practical terms, but (formalizing confidentiality as
non-disclosure rather than as indistinguishability) they have a logical form in
common. Namely, they are implications between positive-existential formulas.
This means that they have the form

∀x . (Φ −→ Ψ) (1)

where the formulas Φ,Ψ may use ∧,∨, and ∃, but not ¬, −→ , or ∀. The
observation that authentication and confidentiality goals take this form has a
long prehistory. However, the remainder of the paper shows that this logical
form marks a boundary between goals that can be established by enrich-by-need
protocol analysis, and those which—like indistinguishability results—require an
essentially different method.

Protocol verification as a search. We regard the implication of Eqn. 1 as
determining a search. Eqn. 1 is achieved if, starting out with fragments that
satisfy Φ, and exploring their homomorphic images, we always find that Ψ must
become satisfied before any realized fragment (complete execution) is encoun-
tered. Once it is satisfied, Ψ will remain satisfied in all further homomorphic
images. Indeed, positive existential formulas are precisely the ones that are pre-
served under homomorphisms. This ensures that every complete execution that
satisfies Φ will also satisfy Ψ. Thus, protocol verification may be implemented
as a search through fragments, progressing via homomorphisms.

The main content of this paper is to provide an integrated account of se-
curity goals and their model theory that leads to this conclusion about sound
protocol transformations. Indeed, a single-protocol result on evaluating goals
via search turns out to follow immediately from this soundness theorem for
transformations. It is simply the instance for the identity transformation from
Π1 to itself.

1.1 Some approaches to protocol analysis

Putting aside approaches motivated by ideas in computational cryptography,
and considering only symbolic methods, there are several main approaches to
protocol analysis. Perhaps the most direct is theorem proving, following Paul-
son [53]. One constructs a theory expressing assumptions about what can hap-
pen in a run of a protocol, and proves theorems about these runs. We followed
that approach in our original strand space work [62, 39], although in a new

Version of October 8, 2013 4

model, and without mechanizing the theorem proving, as Paulson did in Is-
abelle. A second approach is to construct a theory of the adversary’s abilities,
interacting with the regular protocol participants. If this theory includes at
least as much as the adversary can actually do, and there is no proof that the
adversary can construct a counterexample to a goal, then the protocol in fact
meets that goal. This method underlies ProVerif [9], which constructs a set of
Horn clauses over-approximating what the adversary can do; if resolution us-
ing these and the goal does not find a contradiction, then the goal is satisfied.
This approach may also be represented fruitfully via type-checking [1, 28, 29].
Selinger developed the adversary-centered approach in a more model-theoretic
form [59]; Goubault-Larrecq [30] subsequently used this idea to automatically
extract proofs that can be mechanically checked.

Another approach works directly with representations of protocol executions,
or partial executions. If protocols are represented within a process calculus, then
their executions are traces for the process terms; this approach dates back to
Casper [45]. Thus, a model-checker can examine the transition system that
generates them systematically, at least for small numbers of replications of the
protocol roles, seeking misbehaviors. Alternatively, for bounded numbers of
sessions, one can explore the possible executions using symbolic constraints, to
observe whether misbehavior is possible [2, 27, 50, 58].

Our enrich-by-need method is a variant that applies to unbounded num-
bers of sessions. Given a partial execution, (i.e. a fragment, in our current
vocabulary), one adds additional behaviors of protocol participants whenever
this would help to complete the fragment to a full execution (i.e. a realized
fragment). The enrich-by-need approach may not terminate, as the underlying
class of problems in undecidable [25].

Enrich-by-need dates back to Millen [49] and Meadows [48], and is still at
the center of Meadows’s approach [26]. Song invented a form of enrich-by-need
adapted to strand spaces in Athena [60]. It was subsequently redeveloped by
Cremers in Scyther [17]. Their approach introduces both regular behavior and
adversary behavior as needed to explain message receptions that are already
present in a fragment. Alternatively, CPSA [56], cf. [23, 37], uses the authen-
tication test idea. The authentication tests are designed to factor out the ad-
versary behaviors. Thus, CPSA works exclusively with skeletons, i.e. fragments
containing no adversary actions.

The core goal of this paper is a logical treatment of enrich-by-need protocol
analysis in strand spaces, focusing on how it represents and establishes security
goal formulas, with an application to protocol transformation. We will formulate
our contributions in more specific terms at the end of Section 1.2 (see p. 9).

1.2 Our key ideas

We start by illustrating our key ideas with the simplest possible examples.

Version of October 8, 2013 5

Init Resp

• //

��
{|N |}pk(B) {|N |}pk(B)

// •
��

• Noo N •oo

Figure 1: Protocol HD

The Protocol HD. HD, one of
the simplest possible authentica-
tion protocols, is a half-duplex,
authentication-only subprotocol of
Needham-Schroeder [51]. It is shown
with the roles written vertically in
Fig. 1. HD gives the initiator an au-
thentication guarantee that the re-

sponder has participated; it gives the responder no guarantee. HD does not
establish any shared secret. The left half of the figure shows the initiator role,
first transmitting the encrypted message for B and then receiving the freed
nonce N . The right half shows the responder role, first receiving the encrypted
message and then freeing and transmitting N . A local run of HD is any instance
of either one of these roles, using any values for the parameters N,B.

The protocol analysis process. To formalize authentication for HD, we
consider a fragment of an execution in which there has been a local run of the
initiator. In Fig. 2, we display schematically the result of plugging certain values
into roles, which we treat as templates, now written vertically. Let us assume
that B’s private decryption key pk(B)

−1
is uncompromised, meaning that it

will be used only in accordance with this protocol. We will also assume that in
this run, N was successfully chosen as fresh and unguessable. We write these
assumptions N ∈ unique and pk(B)

−1 ∈ non for reasons we will describe in
Section 1.3. The fragmentary execution we have just described is shown on the
left of Fig. 2 as F . It is, however, clearly incomplete. The value N is sent inside
an encryption when first created, and then is observed to have escaped from
that container. The adversary cannot expect to come up with it independently;
that is part of the assumption N ∈ unique. The adversary cannot expect to
extract it from {|N |}pk(B); that is the assumption pk(B)

−1 ∈ non.
Therefore a compliant participant must have received the message {|N |}pk(B),

and extracted N . In the protocol HD, this happens in only one way, namely in
a local run of the responder. The result of adding this is shown on the right
side of Fig. 2 as E .

F : •
��

//

• oo

H·→ E : •
��

// // •
��

• oo •oo

Init[B,N] Init[B,N] Resp[B,N]

N ∈ unique, pk(B)−1 ∈ non N ∈ unique, pk(B)−1 ∈ non

Figure 2: HD Authentication Guarantee

Version of October 8, 2013 6

This chain of reasoning summarizes how cpsa analyzes HD [56]. It shows
that any execution that has at least the structure shown on the left side has also
at least the structure shown on the right side. This is an authentication result;
the initiator’s reception of N authenticates that the responder B has received
the encryption with N and extracted it. This process shows four suggestive
characteristics:

1. The map H is a structure preserving map H : F·→ E , and we will introduce
a notion of homomorphism that covers it (Defn. 1.6).

2. H is more specifically a “problem-solution step.” There is a problem in F ,
namely to explain how N escapes from the encryption {|N |}pk(B). In this
example, there is only one way to solve the problem, but in other examples
that are several alternative solutions. We regard problem-solution steps
as forming a labeled transition system. The nodes of the lts are F , E ,
etc. The labels represent the problems. When there are several potential
solutions, the lts branches.

Since there are different ways to organize the problem-solution process
(e.g. cpsa uses a different idea from Athena and Scyther [60, 17]), we
axiomatize the relevant properties of a problem-solution lts in Defn. 2.4.

3. After solving this problem, there are no others to solve. We say that E is
realized. However, many steps may be needed before reaching a realized
diagram.

4. The authentication result that this process establishes is an implication.
It says that if the structure on the left is observed, then all the structure
on the right must in fact be present. This formula would say,

if the initiator has taken both steps, in a local run with parameters B
and N , and pk(B)

−1 ∈ non, and N ∈ unique,

then there exist both steps of a responder local run using the same pa-
rameters.

This formula talks about the roles, and their parameters, and some prop-
erties of them, though it never says anything specific about the form of
the messages. The forms of the messages are determined automatically
by the protocol definition.

Cor. 4.18 formalizes the way that search in a problem-solution lts can
determine whether a protocol achieves a security goal of this kind.

Transformations and soundness. Our essential insight into protocol trans-
formation is that an incremental design process—transforming simpler protocols
into more complex ones—is sound when it preserves the structure of the source
protocol’s problem-solution lts. Security goals will be preserved when the form
of the protocol analysis process is preserved; the lts is the embodiment of this
protocol analysis process.

Version of October 8, 2013 7

{|AˆNa|}pk(B) {|NaˆNb|}pk(A)

��

{|Nb|}pk(B)

init • +3

OO

• +3 •

OO

resp • +3 • +3

��

•

{|AˆNa|}pk(B)

OO

{|NaˆNb|}pk(A) {|Nb|}pk(B)

OO

Figure 3: Needham-Schroeder Protocol NS

To illustrate that point, we now introduce a more complex protocol that
reuses the ideas of HD.

Needham-Schroeder and Needham-Schroeder-Lowe. We can view the
Needham-Schroeder [51] and Needham-Schroeder-Lowe [44] protocols as elab-
orations of the HD pattern. They consist of two roles, an initiator role and a
responder role, which use public key cryptography to agree on a pair of fresh
secret values. A session key for an encrypted conversation may be formed by
combining them, for instance by hashing their concatenation. The messages
are shown in Fig. 3, where the roles are written horizontally to save space; aˆb
means the pair of a and b.

Lowe’s corrected NSL is identical, except that the responder’s name B ap-
pears in the second message, which takes the form {|NaˆNbˆB|}pk(A).

The parameters of each of these roles are A,B,Na, Nb, of which the first two
are principal names and the last two are nonces.

Lifting an analysis. We may superimpose HD on top of NS in two natural
ways. First, we may associate the HD initiator with the first two steps of the
NS initiator, and the HD responder with the first two steps of the responder.
In this mapping, transmissions are mapped to transmissions, and receptions are
mapped to receptions. This mapping seems to explain the authentication that
NS offers to the initiator.

Alternatively, we may associate the HD initiator with the second and third
steps of the NS responder. The HD responder will map to the second and
third steps of the NS initiator. This mapping also respects the direction of
transmission and reception events.

We will explore the first of these two mappings now. The HD treatment
of N seems to explain how NS uses Na to achieve some authentication for the
initiator. In the first case, it seems to explain how NS uses Nb to achieve some
authentication for the responder. Indeed, we can “lift” the fragment F from
Fig. 2 to NS using either of our mappings. In the first mapping, we obtain the
form shown in Fig. 4. On the left, we have simply copied the contents of Fig. 2,

Version of October 8, 2013 8

F ′ : •
��

//

• oo

H·→ E ′ : •
��

// // •
��

• oo •oo

Init[A,B,N,Nb] Init[A,B,N,Nb] Resp[A,B,N,N ′b]

N ∈ unique, pk(B)−1 ∈ non N ∈ unique, pk(B)−1 ∈ non

Figure 4: NS Initiator Authentication, lifting Fig. 2

adjusting the HD initiator run to become the first two nodes of an incomplete
NS initiator run. We have left the parameter instances B,N unchanged. For
the additional parameters of the NS initiator role, we have chosen unused, un-
constrained values. The assumptions N ∈ unique, pk(B)−1 ∈ non are likewise
carried over unchanged. On the right, we have done the same with both lo-
cal runs. In particular, the responder strand has an unconstrained parameter,
for which we have chosen the unused value N ′b, making no assumption that
Nb = N ′b.

Curiously, Fig. 4 may also be interpreted directly as a problem-solution step
in NS. Fragment F ′ has a problem, namely to explain how N is received in the
second node outside the encryption {|AˆN |}pk(B), having been sent in this form
only. The adversary cannot achieve this on his own, since the decryption key
is assumed uncompromised, pk(B)−1 ∈ non. The protocol provides only one
way that a compliant principal with extract N from an encryption of the form
{|AˆN |}pk(B), namely the responder’s transmission. The form shown in E ′ is
thus the most general way to solve this problem.

This phenomenon, that the result of lifting a problem-solution step should
yield a problem-solution step in the transformed protocol is the core observation
in our treatment of sound transformations. We formalize it in terms of the ltss
of the two protocols. If Π1 is the source protocol and Π2 is the target protocol,
we want two properties to hold:

1. When a configuration in Π1 has a problem and therefore needs a solution,
the lifted configuration in Π2 should have a corresponding problem;

2. Given corresponding problems, each solution in Π2 should be the lifting
of some solution in Π1.

The first says that Π2 should provide enough problems; the latter says that it
should solve them only in corresponding ways. The first is a progress condition
on the lifted lts; the latter says that the original lts should be able to simulate
the behavior of the lifted lts, at least with regard to corresponding problems.
(See Thm. 3.9.)

Version of October 8, 2013 9

Π2 may of course pose additional problems that will also have to be solved
before possible executions are found. In this case, the lower left node receives
the message {|N ˆN ′b|}KA

, while the lower right node has sent {|N ˆNb|}KA
, so

a problem remains: Is N ′b 6= Nb possible? Another problem-solution step will
show that—with the assumptions shown—it is. One solution to this problem is
stipulate that K−1

A is compromised. The other solution is to equate N ′b = Nb.

The security goal language for a protocol. There is one other major
layer in this paper, as motivated by characteristic 4, p. 6. That is to provide a
logical formalism to express the security goals of authentication, confidentiality,
forward secrecy, etc. This language needs to be selected so that the goals can be
expressed in forms that will respect protocol transformations. The example we
have just considered tells us that the goal language should focus on transmission
and reception events, and their parameters. It should remain mute on the forms
of messages, since we would like to allow message forms to change as much as
possible in protocol transformations. Indeed, what we have just learnt is that
it is the problems and solutions that must be preserved, for soundness, not
necessarily the forms of messages. The resulting languages GL(Π) match very
well with the lts of problems and solutions (as formalized in Cor. 4.18), and with
the idea that sound protocol transformations should lift analyses (Thm. 4.23).

Reifying the protocol analysis activity into ltss, and explaining relations
between protocols using them, are new in this paper.

Although our results help us avoid verifying the transformed protocol di-
rectly, they also have a deeper value. They suggest design principles for incre-
mental construction of protocols. We expect future work to lead to syntactic
conditions that imply that a transformation preserves security goals. Proto-
col design, now a hit-or-miss activity requiring experience and ingenuity, could
become a more predictable and possibly tool-supported process.

Our contributions. We offer three contributions.

1. We consider and define enrich-by-need protocol analysis (see Def. 2.4) as a
kind of labeled transition system in which the states are fragments. This
lts formalizes the activity of analysis, rather than the behavior of the
protocol itself. Thm. 2.5 shows the adequacy of this view to provide a
catalog of possible executions; it states that any lts of this kind in fact
covers all executions.

2. A treatment of protocol transformations (Def. 3.2) leads to Thm. 3.9. This
theorem relates the lts for analyzing the source protocol to the lts for
analyzing the target protocol. When the source lts simulates the target
lts, with liveness for the target, then the catalog of executions in the
source protocol covers the possible executions of the target (modulo the
transformation).

A strength of this treatment is that Thm. 2.5 is a special case of Thm. 3.9,
namely the case in which the transformation is the identity.

Version of October 8, 2013 10

3. We introduce a first order language of predicate calculus GL(Π) for each
protocol Π. Authentication and confidentiality properties and many re-
lated security goals are expressed in the formulas of GL(Π) of the logical
form of Eqn. 1.

Cor. 4.18 shows that any formula of this form is achieved by a protocol Π if
and only if it is satisfied in a catalog generated as in Thm. 2.5. Moreover,
Thm. 3.9’s condition ensures that security goal formulas are preserved by
transformations (Thm. 4.23).

Thus, Defs. 2.4, 3.2 and Thms. 2.5, 3.9 form the technical core of the first half
of the paper, and Thms. 4.18 and 4.23 are central to the second half.

Some related work. The safe protocol transformation problem is not new.
As an idea for protocol design, it goes back at least to Bird et al. [7]. In a key
special case, “protocol composition,” it dates from the 1990s [43, e.g.]. In the
protocol composition case, roles of Π1 also appear unchanged as roles of Π2.
Since Π2 may also have additional roles not in the image of Π2, composition is
thus effectively the case in which Π1 ⊆ Π2. While there has been an extensive
literature devoted to this special case, the more general type of transformation
discussed here has seen very little progress. Our view is that the effects of a syn-
tactic change in message structure on protocol behavior are very hard to predict
(given an active adversary model). This has made it hard to reason about the
full notion of transformation, as opposed to the special case of composition. We
have introduced the pslts as a representation of the protocol analysis problem
to tame this complexity.

Focusing then on protocol composition, it has been very successfully treated
in a cryptographic model. A strong form of composition is reactive simulata-
bility [54, 5] or universal composability [12]; weaker forms may still be crypto-
graphically justified [21].

In the symbolic model, we previously provided a widely applicable and prac-
tically useful criterion [38, 32]. Cortier et al.’s criterion is in some ways broader
but in other ways narrower than ours [14]; cf. [3]. Our [33] covers the union
of [38, 14, 3]. From one point of view, the contribution of the present paper is
to generalize [33] beyond the composition case.

The Protocol Composition Logic PCL considers refinements that preserve
security goals [20, Thms. 4.4, 4.8]. A specific proof of a goal formula relies on
particular invariants. If a protocol refinement introduces no actions falsifying
these invariants, it preserves the security goal. Although PCL was designed to
support richer forms of transformation, the existing results are essentially con-
fined to the composition case. [20]’s “parallel” and “sequential” composition
amounts to Π1 ⊆ Π2. Their “per-goal, per-proof” criterion for protocol trans-
formation is related to an early technique of ours [61]. Datta et al.’s “protocol
refinement using templates” [19] suggested many of our examples.

By contrast with Distributed Temporal Logic [11], GL(Π) is intended to be
less expressive about the forms of messages. We wanted to focus only on what
is retained under transformation, which concerns the role parameters rather

Version of October 8, 2013 11

than the forms of the messages. Nevertheless, our logic, unlike DTL, being a
quantified logic, satisfaction is undecidable.

Hui and Lowe [41] discuss a more restricted type of transformation, in which
the structure of the roles is unchanged; a simplifying transformation simply
reduces the complexity of the messages. Since their transformations are fault-
preserving, their converse will be goal-preserving. However, their proof methods
are very different from ours, working on traces one-by-one. Lowe and Auty [47]
refine protocols to concrete messages starting from formulas in a Hoare-like
logic that represent the effect of messages. Maffei et al. [4] express the effects
of messages by abstract tags, and provide constraints on instantiating the tags
by concrete messages.

“Protocol compilers” are (generally notional) algorithms to transform their
input. Some start with a crypto-free protocol, and transform it into a protocol
meeting security goals [15, 6]. Others transform a protocol secure in a weak
adversary model into protocols satisfying those goals with a multi-session, active
adversary [42].

Structure of this paper. After reprising the strand space terminology in
Section 1.3, we devote Section 2 to clarifying the enrich-by-need approach. Pro-
tocol transformations form the focus of Section 3. Section 4 is devoted to goals
and the languages we express them in; Section 4.1 gives examples, and argues
that our languages are suited to expressing the bulk of properties (putting aside
indistinguishability properties, which do not fit this framework). Section 4.2
introduces the first order languages of goals explicitly, and provides their se-
mantics. Implicit in our examples are the notions of a characteristic formula
for a fragment, and a characteristic fragment for a formula. We introduce these
notions in Section 4.3. Finally, Section 4.4 shows that security goals are pre-
served under the transformations that we claim to be sound.

1.3 Strands, Bundles, Fragments

We here summarize oft-used strand space vocabulary, and introduce the new
notion of a fragment. As a familiar example, we use the Needham-Schroeder pro-
tocol [51]. For more information about strands and protocol analysis, see [37].

An Algebra of Messages. In this paper, we will regard the messages as
forming an algebra ALG. Many alternatives to this particular message algebra
are possible. ALG is an order-sorted algebra with the following six sorts. The
first five are disjoint subsets of the last:

principal names, used to name protocol participants;

nonces, used when a principal chooses a value intended to be fresh;

data, used to represent payloads and other auxiliary message components;

symmetric keys, for ciphers;

Version of October 8, 2013 12

asymmetric keys, used for asymmetric operations such as public key cryp-
tography and digital signatures;

messages, a top sort which includes all values in ALG. We will refer to the
primitive values of sort message as indeterminates; they are like alge-
braic indeterminates, and may be replaced by any message.

ALG populates each of these sorts with an infinite supply of primitive values.
We assume that asymmetric keys are equipped with an inverse operation,

such that (K−1)−1 = K. Two asymmetric keys form a key pair if they are
inverses of each other.

We extend the asymmetric keys by the two constructors, pk(A) and privk(A)
which for any principal name A, returns a distinct asymmetric key disjoint from
the parameters. They represent A’s public encryption key and private signature
key, respectively. Their inverses are respectively A’s private decryption key and
the public verification key for A’s signed messages. It is easy to augment these
constructors with others, e.g. for the symmetric long term key shared between
two participants in a shared-key protocol such as Kerberos. We write these key
constructors in sans serif font.

These values—apart from the indeterminates—are the basic values. That is,
a basic value is a name, nonce, or datum, or else a symmetric or asymmetric key.
These keys include both parameters and also the range of a key constructor.

The algebra of messages ALG is built from the basic values and indetermi-
nates by the following operations, which act freely:

tagged pairing, the pair of t0 and t1 tagged with tag being written tag t0 ˆt1;

encryption, the encryption of t0 using t1 being written {|t0|}t1 ;

hashing, the hash of t being written hash(t); and

digital signature, the digital signature of t0 using t1 being written [[t0]]t1 .

The tags tag are chosen from some infinite set TAGS, which is disjoint from
ALG. We assume that there is a distinguished tag nil, and we write nil t0 ˆt1
omitting the tag as t0 ˆt1. Tags act like constants, ensuring that tag1 t0 ˆt1 and
tag2 t2 ˆt3 never have any common instances, unless tag1 = tag2. We always
omit tags in examples, unless we need to prevent different syntactic units from
unifying, as for instance in the first transformation in Section 3.4.

We extend the key inverse operation to all messages by stipulating that if t is
any message other than an asymmetric key, then t−1 = t. The encryption {|t1|}t2
is a symmetric encryption if t2 is a symmetric key, meaning that t2

−1 = t2 may
also be used to decrypt a message of this form.

For uniformity, we often regard a hash hash(t) as if it were the encryption
of a well-known value v using t as a key, i.e. {|v|}t. We also often regard a
digital signature [[t0]]t1 as a pair {|hash(t0)|}t1 ˆt0 of an encrypted hash with the
message t0. To verify the signature means to decrypt the first component and
check that the result matches the hash of the second component. With these

Version of October 8, 2013 13

representations in mind, we will often ignore digital signatures and hashes in
proofs below, concentrating only on encryptions and pairs.

Substitutions α are sort-respecting functions from parameters to ALG. A
substitution maps indeterminates to any messages in ALG; it maps nonces,
data, and key parameters to values of the same sorts. The action of α on a
message t, producing α(t), is defined by extending it homomorphically through
the operators of t, subject to the rule that (K−1)−1 = K. We emphasize that

α(tag1 t0 ˆt1) = tag1 α(t0)ˆα(t1),

meaning that substitutions always leave tags unchanged.
This algebra has the most general unifier (mgu) property [57]: If two mes-

sages t0, t1 have a common instance α(t0) = α(t1), then there is a most general
solution α0. This means that α0(t0) = α0(t1), and for every common instance
γ(t0) = γ(t1), there exists a β such that γ = β ◦ α0.

Ingredients and Origination. We use a notion of message contents that
covers the plaintext but not the key in an encryption. We write v (“is an
ingredient of”) for the smallest reflexive, transitive relation such that:

1. t1 v (tag t1 ˆt2) and t2 v (tag t1 ˆt2);

2. t1 v {|t1|}t2 .

By contrast, t2 6v {|t1|}t2 unless (anomalously) t2 v t1.
We say that t originates on a node n if n is a transmission node, and t v

msg(n), and for all n0, if n0 ⇒+ n, then t 6v msg(n).
We occasionally write � for the smallest reflexive, transitive relation that

is closed under the rules for v and also:

3. t� {|t0|}t.

Both� and v are subrelations of the usual relation of occurring in, defined via
the inductive generation of the messages. For instance, A occurs in privk(A)−1,
but A 6� privk(A)−1. In fact, if a, b are basic values, then a� b implies a = b.

Strands via Needham-Schroeder. For the sake of simplicity, we will use the
familiar Needham-Schroeder [51] and Needham-Schroeder-Lowe [44] protocols.
(See Fig. 3.)

The parameters of each of these roles are the basic values A,B,Na, Nb, of
which the first two are principal names and the last two are nonces.

Each row of bullets, connected by double arrows • ⇒ • · · · is a strand,
representing the sequence of message transmissions and receptions in a single
local session of the protocol. The direction of the associated single arrow →
distinguishes transmissions from receptions. The message patterns (written here
on the top and bottom lines) indicate contents to be sent or received. We write
msg(n) for the message sent or received on the node n, while dmsg(n) is its

Version of October 8, 2013 14

direction and message, which we write +t for transmission of t and −t for
reception of t.

We write s ↓ i to refer to the ith node of the strand s. We assume that
messages, strands, and nodes all form pairwise disjoint sets.

We regard each of the two strands in Fig. 3 separately as a template. The
instances of the template are the sequences of messages we obtain if we fill in
suitable values in place of its parameters A,B,Na, and Nb. As an example,
we could replace these parameters with the values C,C,N1, and N2; in this
case, the strand would represent an execution in which a principal C intends to
interact with itself as peer, although it may use different nonces in its activities
as initiator and responder. The instances are called strands also; a strand
serving as template is called a role.

We assume that the parameters such as A,B,Na, Nb are written in a fixed
order for any particular role. The instances of a role are all the strands that
result by applying substitutions α that specify, for each parameter v, what value
α(v) to replace it with.

We often label a strand with the notation Init[A,B,Na, Nb], indicating what
role it is an instance of, and the parameters, or what values have been substi-
tuted for the parameters. Two strands Init[A,B,Na, Nb] and Resp[C,D,Na, N

′
b]

have the same value selected for the third parameter, but different values for
the remaining parameters.

We also assume that every protocol contains one special role that we will
call the listener role. The listener role consists of a single reception node • x←
which can receive any message as an instance of the indeterminate parameter
x. The purpose of a listener strand is to witness for the fact that the message
x was available to be received. For instance, if the message y was intended

to be a secret, then the listener strand • y←, which instantiates the listener
role with this message y, witnesses for the fact that message y was available
as transmitted without any cryptographic protection. Thus, they are useful for
expressing confidentiality goals.

A particular execution may include any number of instances of one of these
roles, or of their initial segments, e.g. the first two nodes of the initiator or
responder role. And it may contain the same or a different number of instances—
with the same or different values plugged in—of the other role. These non-
adversary strands, in which a compliant principal follows the protocol, are called
regular strands.

Definition 1.1 Π is a protocol iff Π is a finite set of strands ρ, called the roles
of the protocol, including the listener role.

We assume that if x is an indeterminate (parameter of message type) and
x occurs in a transmission node ρ ↓ i, then for some reception node ρ ↓ j with
j < i, x v msg(ρ ↓ j). That is, parameters of unconstrained message type are
acquired on reception nodes.

Π also associates two sets of parameters of base sort with a role ρ, called
role unique(ρ) and role non(ρ).

Version of October 8, 2013 15

• a→ t1

��

t2

��

{|t1|}t2

• +3 • +3 •

OO

• +3 • +3 •
��

{|t1|}t2

OO

t2
−1

OO

t1

t1

��

t2

��

tag t1 ˆt2

• +3 • +3 •

OO

• +3 • +3

��

•
��

tag t1 ˆt2

OO

t1 t2

Figure 5: Adversary Roles: Generate basic value; encrypt and decrypt; concate-
nate and separate

We use role unique(ρ) and role non(ρ) in defining when a partial execution (“frag-
ment”) is permitted under the protocol Π (Defn. 1.5).

Fix a protocol Π such as Needham-Schroeder for the rest of this section. NS
and all the protocols we discuss here use role unique(ρ) = role non(ρ) = ∅. If
ρ ∈ Π is a role, then params(ρ) is the set of parameters occurring in ρ.

The Adversary. An execution may also contain various instances of certain
adversary roles that codify the basic abilities of the adversary.

The adversary (see Fig. 5) may originate a basic value a, in a one-node

strand • a→. It may also engage in a three-node strand that receives a value t1
to be used as plaintext; then a value t2 to be used as encryption key; and then
transmits the encryption {|t1|}t2 . Another adversary role receives an encrypted
value and its corresponding decryption key, after which it transmits the enclosed
plaintext. The decryption key corresponding to K—written K−1—is equal to
K if K is a symmetric cryptographic key. If K is one member of an asymmetric
key pair, then K−1 is the other key in this pair. We call these encryption and
decryption strands. In the middle column of Fig. 5, the upper strand is an
encryption strand, and the lower strand is a decryption strand.

Adversary strands can also pair together two received messages, using any
tagname tag; or, having received a tagged pair, transmit each piece separately.
In the right column of Fig. 5, the upper strand is a pairing strand, and the lower
strand is a separation strand.

The adversary can also produce a digital signature given the signature key
and the message to sign, and can verify a signature and retrieve the signed mes-
sage. It can generate a hash for a given message. We could add strands similar
to those shown for these purposes. If we choose to encode those operations by
encryption and pairing, then hashing and signature can be represented using
the strands shown in Fig. 5.

Bundles. An execution is pieced together from a finite set of these regular
and adversary strands (or their initial segments). Two nodes may be connected

Version of October 8, 2013 16

with a single arrow • → • when the former transmits a message, and the latter
receives the same message directly from it. This leads to the notion of bundle,
meaning a causally well founded graph built using strands:

Definition 1.2 Let G = 〈N ,→G,⇒G〉 be a finite, directed acyclic graph with
E =→G ∪ ⇒G, where (i) n1 ⇒G n2 implies n1 ⇒ n2, i.e. that n1, n2 are
successive nodes on the same strand n1 = s ↓ i and n2 = s ↓ i+ 1; and (ii)
n1 →G n2 implies that n1 is a transmission node, n2 is a reception node, and
msg(n1) = msg(n2).
G is a bundle if:

1. If n1 ⇒ n2, and n2 ∈ N , then n1 ∈ N and n1 ⇒G n2; and

2. If n2 is a reception node, there exists a unique n1 ∈ N such that n1 →G n2.

G is an open bundle if:

1. If n1 ⇒ n2, and n2 ∈ N , then n1 ∈ N and n1 ⇒G n2; and

2. If n2 is a reception node, there is at most one n1 ∈ N such that n1 →G n2.

If G is a bundle or open bundle, then �G is the causal partial order of reach-
ability, defined to equal (→G ∪ ⇒G)∗, and ≺G is the strict partial order (→G

∪ ⇒G)+.

The principle of bundle induction is crucial for all reasoning about protocols:

Proposition 1.3 Suppose that B = 〈N ,→G,⇒G〉 is a bundle, and S ⊆ N is a
non-empty set of nodes. Then S contains �B-minimal elements.

We often write n ∈ G when we mean n ∈ N , where G = 〈N ,→G,⇒G〉. If every
node n on a strand s is in G, then we say that s has full height in G. The
G-height of s is the number of nodes on s that are in G.

For an example bundle, see Fig. 6, in which however for want of space we
have not written out the adversary strands in full. The necessary adversary
strands are shown separately in Fig. 7. In each part of Fig. 7, four strands
are shown. Two are of length 1, and represent the adversary transmitting to
himself keys he knows, namely his own private decryption key pk(C)−1 and B’s
public encryption key pk(B). The other two strands are first a decryption strand
and then an encryption strand. This is typical of the way that the primitive
adversary strands fit together to build up useful attacks.

A message t originates at a node n, as we mentioned before, if n is a trans-
mission, t v msg(n), but t 6v msg(n′) for any earlier n′ ⇒+ n. Thus, t originates
at n if n transmits t, and t was neither transmitted nor received earlier along
the strand of n. We regard a basic value a as occurring freshly in a bundle B if
it originates at just one node of B. In this case, a was chosen by a participant,
without having the bad luck that any other principal selected the same value
independently. We call a basic value a uniquely originating in B if there exists
exactly one node n ∈ B such that a originates at n.

Version of October 8, 2013 17

•
{|AˆNa|}pk(C) //

��

•
��
•

{|AˆNa|}pk(B) // •
��

•
��

•
{|Na ˆNb|}pk(A)oo

��

•
{|Nb|}pk(C) // •

��
•

{|Nb|}pk(B) // •

Figure 6: A Bundle in the NS Protocol, with adversary actions compressed

{|AˆNa|}pk(C)// •
��

•
pk(C)−1

// •
��
• AˆNa // •

��
•

pk(B)
// •
��
•
{|AˆNa|}pk(B)//

{|Nb|}pk(C)// •
��

•
pk(C)−1

// •
��
• Nb // •

��
•

pk(B)
// •
��
•
{|Nb|}pk(B)//

Figure 7: Adversary strands for Fig. 6

A key is regarded as uncompromised in B if it originates nowhere. We call
a basic value a non-originating in B if there exists no node n ∈ B such that a
originates at n. It may still be used in B even if it does not originate anywhere,
since the regular strands may receive and send messages encrypted by K or
K−1, thus using K for encryption and decryption (resp.).

We use the terms non-originating and uniquely originating only in the case
of basic values a, not compound values tag t1 ˆt2 or {|t|}K . Identifying non-
originating keys with uncompromised ones is justified by this proposition:

Proposition 1.4 Suppose that B is a bundle, and n ∈ B. If t v msg(n), then
there exists an m ∈ B such that t originates on m. Cf. [62].

Suppose K is non-originating in bundle B. There is no encryption strand
of full height in B which transmits any message of the form {|t|}K . There is
no decryption strand of full height in B which receives any message of the form
{|t|}K−1 and transmits t.

Fragments. In protocol analysis, our aim is to find out what the protocol
allows to happen in its bundles. However, to carry out protocol analysis con-
veniently, we would like to work with objects that are incomplete executions.
We can then fill them in gradually to infer representatives of the different kinds
of protocol executions (bundles). We will call these objects fragments. Previ-
ous authors have called similar objects semibundles [60], open bundles [16], and

Version of October 8, 2013 18

patterns [17]. Our skeletons, of which much more later, are also related [37].
Although a fragment need not contain enough transmission events to be

causally well-founded, it does impose constraints on what events may be added
to obtain a relevant completing bundle. These are ordering constraints, which
may impose an ordering on nodes that are not yet connected by a path; and
origination constraints, i.e. that some basic values must remain at most uniquely
originating, and that some must remain non-originating.

Definition 1.5 Let G = 〈N ,→G,⇒G〉 be an open bundle. Let �⊆ N ×N be
a partial order on the nodes. Let unique, non be finite sets of basic values.
F = 〈G,�, unique, non〉 is a fragment iff:

1. (→G ∪ ⇒G) ⊆�;

2. If a ∈ unique then:

(a) For some node n ∈ N , a v msg(n);

(b) If a originates at node n0 ∈ N , then

i. if a also originates at node n1 ∈ N , then n0 = n1;

ii. if a v msg(n1) for n1 ∈ N , then n0 � n1;

3. If a ∈ non, then:

(a) For some node n ∈ N , a� msg(n) or a−1 � msg(n);

(b) For all nodes n ∈ N , a 6v msg(n);

A fragment F = 〈G,�, unique, non〉 is realized if G is a bundle.
Let Π be a protocol. F is a Π-fragment if F is a fragment, and

1. if a regular strand s has nodes in nodes(F), then s = α(ρ), for some
substitution α and some role ρ ∈ Π;

2. if a ∈ role unique(ρ), and n = α(ρ) ↓ i ∈ nodes(F), and α(a) occurs in
msg(n), then α(a) ∈ unique(F); and

3. if a ∈ role non(ρ), and n = α(ρ) ↓ i ∈ nodes(F), and α(a) occurs in
msg(n), then α(a) ∈ non(F).

Since ⇒G is completely determined by N , we will often write a fragment
〈〈N ,→G,⇒G〉,�, unique, non〉 in the form 〈N ,→G,�, unique, non〉. We will also
write nodes(F) to refer to the set N of nodes, and regnodes(F) to refer to the
nodes that are regular, not adversary, nodes.

If F is a fragment, then the set params(F) of parameters of F contains all
the images of parameters of roles ρ ∈ Π that F uses. That is:

params(F) = {α(a) : (α(ρ) ↓ i) ∈ nodes(F) ∧ a occurs in ρ ↓ i}.

Version of October 8, 2013 19

Homomorphisms between fragments. A homomorphism is a structure-
preserving map. In our case, we represent a homomorphism between fragments
by two components, namely a substitution to be applied to the messages and a
map from the nodes of the source to nodes of the target. The substitution deter-
mines the message on a target node, given the message on a source node. Since
substitutions always leave tag names tag unchanged, tag names are preserved
under homomorphisms.

Definition 1.6 Let F1,F2 be fragments, with F1 = 〈N1,→1,�1, unique1, non1〉
and F2 = 〈N2,→2,�2, unique2, non2〉. Let α be a substitution; and let f be a
map f : nodes(F1)→ nodes(F2). Then H = (f, α) is a homomorphism if:

1. n is a transmission node or respectively a reception node iff f(n) is;

2. α(msg(n)) = msg(f(n));

3. n1 ⇒ n2 implies f(n1)⇒ f(n2);

4. m1 ⇒ f(n2) implies for some n1, m1 = f(n1) and n1 ⇒ n2;

5. n1 →1 n2 implies f(n1)→2 f(n2);

6. n1 �1 n2 implies f(n1) �2 f(n2);

7. α(unique1) ⊆ unique2;

8. α(non1) ⊆ non2; and

9. If a ∈ unique1 and a originates at n1 ∈ N1, then α(a) originates at f(n1).

We write H : F1 ·→ F2 when H is a homomorphism from F1 to F2.
When α, α′ agree on all the parameters appearing in F1, then [f, α] = [f, α′];

i.e., [f, α] is the equivalence class of pairs under this relation.
We sometimes use H to refer to its components, writing (e.g.) H(n) to

mean f(n) or H ◦ β to mean α ◦ β, when H = [f, α] and n ∈ nodes(F).
H = [f, α] is an inclusion map if f is the identity function. In this case, α

is also the identity, i.e. H = [Idnodes(F), Idmsgs(F)].
F is a subfragment of E if there is an inclusion H : F ·→ E.
H is an isomorphism if there is a homomorphism K such that K ◦H = Id.
When H = [f, α] : F1 ·→ F2, and f is an injective function from nodes(F1)

to nodes(F2), then we call H node-injective, and write H : F1 ·→ ni F2

The identity on a fragment F is always a homomorphism from it to itself, and
the composition of two homomorphisms is a homomorphism.

Isomorphisms (or homomorphisms generally) depend only on the part of a
strand that is actually in a fragment. Suppose, for instance, that a fragment
F contains the first i nodes of a strand s, and these nodes send and receive
(respectively) the same messages that are sent and received on the first i nodes
of another strand r. The strands s and r may however do incompatible things
after their first i nodes. Suppose F ′ results from F when we surgically excise

Version of October 8, 2013 20

the nodes of s, and implant the corresponding nodes of r in their place. Then
this operation is an isomorphism from F to F ′, even if the i+ 1st node of s is
incompatible with the i+ 1st node of r.

In this sense, a fragment is only sensitive to the transmit/receive behavior
of the nodes that lie within it. The fragment is not sensitive to what role these
nodes were instantiated from. In the example above, s and r may be instantiated
from different roles, which behave differently after the first i nodes, but this role
may differ in isomorphic fragments.

In particular, when a protocol allows branching behavior, it has different
runs that exhibit compatible behavior up until the branch point, after which
those runs may involve incompatible forms of message. In this semantics, a
strand s that has not yet reached the branch point represents both possible
kinds of extension. In particular, it may have homomorphic images in which s
is mapped to instances of both of the longer roles.

1.4 Security Goals

The notion of homomorphism is central to our approach to representing security
goals. A security goal such as an authentication goal may be represented by one
(or a few) homomorphisms. Indeed, we can regard Fig. 2 as specifying a security
goal, one which HD enforces. In particular, we can regard Fig. 2 as saying that
any execution (bundle or realized fragment) B that contains an instance of F
actually contains a full instance of E .

We interpret “B contains an instance of F” as meaning that there is a homo-
morphism J : F ·→ B. The force of Fig. 2 is in fact that this homomorphism must
also locate the additional structure mentioned in E inside B. More precisely, the
homomorphism J is compatible with H in that we can regard J as “starting
off” as indicated by H, i.e. that there is a homomorphism K : E ·→ B such that
J is the same as first doing H to incorporate the structure that E indicates must
be present, and then applying K to add the rest of the information found in B.
So J = K ◦H.

We will say in this case that J : F ·→ B factors through H.
Thus, we can express a security goal in a diagram showing a homomorphism

H, meaning that whenever B is a realized fragment and there is a homomorphism
J from the source F of H to B, then J must factor through H. An adversary
who wants to create counterexamples to a (claimed) security goal is then trying
to exhibit a realized fragment B and a homomorphism J : F ·→ B such that J
does not factor through H. That is, it does not exhibit the structure shown in
E , embedded into B in any way compatible with H.

For instance, Fig. 8 expresses an authentication property that one might
hope NS would enforce. The white space in the diagram of E is, so to speak,
pregnant, not empty. The goal is making an assertion about the possibly much
larger execution B, in which there may be many runs of the protocol. Some
of these may be sessions between A and B; others, between one of them and a
new principal C, possibly compromised; and yet others between new principals.
Keys in these other executions may be compromised or not, and nonces may be

Version of October 8, 2013 21

F0 : // •
��
•
��

oo

// •

H0·→ E0 : •
��

// // •
��

•
��

oo •
��

oo

• // // •

Resp[A,B,Na, Nb] Init[A,B,Na, Nb] Resp[A,B,Na, Nb]

Nb ∈ unique, pk(A)−1 ∈ non Nb ∈ unique, pk(A)−1 ∈ non

Figure 8: Responder’s Authentication Guarantee

F1 : // •
��
•
��

oo

// •

H1·→ E1 : •
��

// // •
��

•
��

oo •
��

oo

• // // •

Resp[A,B,Na, Nb] Init[A,B′, Na, Nb] Resp[A,B,Na, Nb]

Nb ∈ unique, pk(A)−1 ∈ non Nb ∈ unique, pk(A)−1 ∈ non

Figure 9: Responder’s Weak Authentication Guarantee

sometimes freshly chosen and sometimes stale. Some sessions may be incomplete
and some local runs unmatched. What Fig. 8 asserts is that these other sessions
make no difference: No matter what goes wrong elsewhere, on the assumptions
shown in F , the desired behavior shown in E is sure—at least—to be present.

However, Fig. 6 shows that it does not. We may interpret Fig. 6 as a fragment
B by specifying non = {pk(A)−1} and unique = {Nb}. Then there is certainly
a homomorphism embedding F0 into B, but it does not factor through H0. H0

makes the two strands agree on the parameter B, whereas in B they do not
agree on that. By contrast, B is not a counterexample to the weaker security
goal shown in Fig. 9. Indeed, for every realized fragment in NS, any instance of
the structure F1 is in fact part of an instance of the structure E1.

Many important security goals can be expressed in essentially this form. One
important generalization is to specify a number of homomorphisms. Suppose
that F is a fragment, and I is some index set, and we are given a family of
homomorphisms {Hi}i∈I in which all of the homomorphisms have the same
source fragment F . Then {Hi}i∈I represents a security goal that permits a
homomorphism J : F ·→ B to factor through any of the Hi. In particular, if

Version of October 8, 2013 22

F : // •
��

• Nboo •
��

oo

// •

6·→ ·

Resp[A,B,Na, Nb]

Nb ∈ unique, pk(A)−1, pk(B)−1 ∈ non

Figure 10: Secrecy for Responder’s Nonce

Hi : F ·→ Ei, then the structure given in F must be present in one of the forms
Ei in any realized fragment B. The protocol may allow any of these situations
to arise. Thus, a goal of this form is essentially disjunctive, and we will explain
in Section 4 how this relates to implications with disjunctive conclusion.

In practice, the most important index set is I = ∅. In this case, the security
goal says that every homomorphism J : F ·→ B to a realized fragment factors
through some member of the empty set, i.e. that there are no such J . That is,
the behavior shown in F can never occur in any execution. This corresponds to
the fact that the disjunction with zero disjuncts is the constant, falsehood.

We often express secrecy goals this way, but showing some behavior together

with a listener strand • N←. If this cannot be enriched to form a complete
execution, that means that the behavior in question is incompatible with N
being disclosed on the network. Thus, N will remain secret. The NSL secrecy
goal for the responder’s nonce Nb is shown in Fig. 10. By the symbol 6·→ ·, we
mean to convey the empty family, i.e. that there is no realized fragment D such
that F·→D.

Many security goals may be expressed in this form. They include such prop-
erties as recency, in which the target fragment contains ordering information;
implicit authentication [8, 24], in which the source fragment contains multiple
strands, and the target equates some of their parameters; forward secrecy in two
flavors [24]; and a variety of injective agreement [46], in which multiple sessions
of the same role are equated.

We summarize this treatment of security goals in a definition:

Definition 1.7 1. {Hi}i∈I is a family of homomorphisms based in F iff,
for each i ∈ I, Hi : F ·→ Ei is a homomorphism from the same source
fragment F .

2. Let {Hi}i∈I be a family of homomorphisms based in F .

Π enforces {Hi}i∈I iff every homomorphism from F to a realized Π-
fragment D factors through some Hi.

Version of October 8, 2013 23

That is Π enforces {Hi}i∈I iff, for every realized Π-fragment B and homomor-
phism J : F ·→ B, there exists an i ∈ I and a homomorphism K : Ei ·→ B such
that J = K ◦Hi.

In Section 4.2, we will give an alternative but compatible account of security
goals as first order logical formulas, specifically as universally quantified impli-
cations of the form of Eqn. 1 with positive existential antecedent and conclusion.

2 Enrich-by-Need Protocol Analysis

The enrich-by-need idea in protocol analysis is a method for exploring the pos-
sible executions of a protocol. One starts with some fragment of interest, F0.
One then explores its homomorphic images by taking “small steps,” i.e. homo-
morphisms that add a small amount of information at a time. The purpose
of the exploration is to find realized fragments; these realized fragments show
“what can happen” in executions that have a portion of the form given in F0.

2.1 Forms of Search

There are two main approaches to generating cohorts. The first introduces
adversary strands. The second avoids them entirely, and works only with skele-
tons, i.e. fragments containing no adversary strands. To formulate the two
approaches, we will use the notion of a component :

Definition 2.1 Suppose that a message t0 is not a pair, but either a basic value,
an encryption, a digital signature, or a hash. In keeping with our convention of
representing digital signatures and hashes via encryptions, we will assume t0 is
either a basic value or an encryption.

Then t0 is a component of a message t1 iff either (i) t0 = t1, or else (ii) there
exist t2, t3 and tag such that t1 = tag t2 ˆt3 and t0 is (recursively) a component
of either t2 or t3.

So the components of t1 result from it by unpairing until we reach non-pairs.
Components are the important ingredients in messages, since an adversary with
the right components can always pair and unpair to build the desired messages.

Direct backward search. One method, pursued by Athena and Scyther [60,
17], and related to NPA [48], is to consider, for each component in a reception
node, which nodes could have transmitted it previously.

Suppose n1 ∈ F is a reception node, and c is a component of msg(n1). If c
is not a component of any transmission node n0 ∈ F with n0 �F n1, then F
cannot possibly be realized. In fact, not fragment that differs from F by adding
0 or more adversary pairing and unpairing strands can be realized.

Thus, the pair n1, c indicates a problem in F that must be solved by adding
some other kind of information before F can become realized. This problem
has several kinds of possible solution, in which we would

Version of October 8, 2013 24

1. Apply a substitution α to F , which unifies c with some component trans-
mitted earlier;

2. Add an instance of a protocol role, transmitting the component c;

3. Add an adversary encryption strand that transmits c, if it is an encryption;
or

4. Add an adversary decryption strand that transmits c by decrypting it (or
a pair of which it is a component) from some larger encrypted unit e. This
is relevant only when e is an ingredient in some message transmitted on a
regular node of some Π-strand [52, 13, 39].

These four groups of possibilities together cover the ways that F can be en-
riched to solve the problem n1, c. We call this method “direct backward search”
because—for each component c received—it searches for transmission nodes ear-
lier in time that would have sent c. It is thus directly motivated by the idea
that every component received must previously have been sent.

Authentication Test Search. An alternative way to generate information-
increasing steps is the authentication test method [39, 23]. This approach uses
only skeletons, meaning fragments that are free of adversary actions. A skeleton
also eschews communication edges →, using only the precedence order and the
strand relation ⇒ to constrain the relations among nodes:

Definition 2.2 A fragment F = 〈G,�, unique, non〉 is a skeleton iff nodes(G) =
regnodes(G) and →G= ∅.
F = 〈G,�, unique, non〉 is a realized skeleton iff there exists a G′ such that

regnodes(G) = regnodes(G′) and F ′ = 〈G′,�, unique, non〉 is a realized fragment.
That is, F ′ differs from F only in adversary nodes and →.

We generally write A,B, etc. for skeletons.
Here we consider a basic value c ∈ unique(A) or else an encryption c. We

choose a reception node n1 ∈ A such that c v msg(n1). We also choose a set of
encryptions S. Suppose:

• If {|t|}K ∈ S, then K−1 is not a component of any node m �A n1.

• If n0 ≺A n1, then any path within msg(n0) that leads to an occurrence of
c either traverses a member of S or enters the key of an encryption. (In
this case, we say that c is found only within S in nodes before n1.)

• There is a path to an occurrence of c within msg(n1) that traverses no
member of S and never enters the key of any encryption. (We say that c
is found outside S in n1.)

Under these conditions, n1, c, S is an unsolved authentication test in A. The
“test” is to explain how c got outside the encryptions S, as it did, so as to be
received as it was in msg(n1). S here may be the empty set, in which case the

Version of October 8, 2013 25

test is to explain how c was transmitted at all. We call S an escape set, since
the test is to explain how c has escaped from the encryptions in S.

To solve an unsolved test n1, c, S, we may enrich the skeleton A in the
following ways:

1. If there is a substitution α such that α(c) is found only within α(S) in
α(msg(n1)), then applying α makes the test disappear.

2. Adding a listener node for a key K−1 such that {|t|}K ∈ S to A explains
c’s escape, as the adversary can hear K−1 and use it to decrypt {|t|}K .

3. Adding a regular transmission node m1 in which c is found outside S
explains c’s escape also, if c was found only within S in all earlier nodes
m0 ⇒+ m1 on the same strand.

See [37] for a more precise description and various examples, and [56] to see
how this idea is implemented in the protocol tool cpsa. In this method, the
problems are the unsolved authentication tests.

2.2 Cohorts

Whether implemented by direct backward search or by the authentication test
method, enrich-by-need protocol analysis turns on the notion of a cohort. Given
a problem ` in F , i.e. either ` is a pair n1, c, where c is a component received
on n1 but not transmitted earlier, or ` is an unsolved test n1, c, S, a cohort for
` is a family of homomorphisms {Hi}i∈I based in F such that:

• If Hi : F ·→ Ei, then the image of ` is solved in Ei.

• If K : F ·→ D, where D is realized, then K = J ◦Hi for some J and i ∈ I.

A cohort for ` is thus a set of maximally general ways of solving `.
As a special case, a cohort for ` could be the empty set of homomorphisms.

When this happens, we have learnt that there are no realized fragments D
accessible from F . We express this by saying that F is dead : No homomorphism
can lead to a realized fragment.

Search via Cohorts. The cohort idea immediately explains enrich-by need
as a form of search. Starting from an initial fragment, generally a skeleton A,
we look for a problem ` in it. If there is none, we can immediately construct a
realized fragment from it. Otherwise, we choose a problem ` and construct the
cohort for it. We build a directed graph rooted at A using the homomorphisms
making up this cohort as edges.

At any stage, we choose a fragment on the fringe of the directed graph. If it
is realized, we need not consider it further. If we find a problem and construct
a cohort, we add those edges to the graph. If this cohort is empty, we mark the
fragment as dead. Otherwise, the cohort helps us extend the fringe.

In some cases, the search terminates with a graph in which the fringe con-
sists only of dead and realized fragments. Then the paths from A to realized

Version of October 8, 2013 26

fragments determine a family of homomorphisms based in A. We can apply
Thm. 4.17 to this family to decide whether a goal G is achieved. We may also
apply Cor. 4.19 to construct a strongest goal formula for the starting point A.

If the search does not terminate, we may still falsify a goal G, if a path
leads to a counterexample to the conclusion of G. Observe that as long as
cohort generation is recursively enumerable, the existence of a counterexample
to a goal G with role-specific premise φ is recursively enumerable. Thus, the
relation Π achieves G is co-r.e.

2.3 Axiomatizing Enrich-by-need

Homomorphisms determine a preorder, not a partial order, since J ◦ H is not

always an isomorphism when F H·→ E J·→ F . However, if H,J map distinct
nodes of their sources injectively to distinct nodes of their targets, then J ◦H is
an isomorphism. These node-injective homomorphisms H : F ·→ ni E determine
a partial order ≤ni on fragments to within isomorphism.

Lemma 2.3 ([37, Lemma 3.11]) ≤ni is a well-founded partial order. Indeed,
for every E, there are only finitely many non-isomorphic F such that F ≤ni E.

When F ≤ni E ≤ni F , F and E are isomorphic.

Enrich-by-need protocol analysis is a search through part of the preorder ·→ .
Skeletons A0 determine starting points for the search; protocol analysis then
seeks realized fragments D such that A·→ D. Both cpsa and Scyther implement
this search. Scyther computes a set of fragments which have a minimality
property [18]. cpsa computes a set of representative realized skeletons we call
shapes [56]. Within the set of all realized B such that A ·→ B, the shapes are
the minimal ones in the node-injective ordering ≤ni [23].

cpsa’s test-and-solution steps form a labeled transition system, where A0
`
;

A1 means that A0 has an unsolved test described by the label `, and A1 contains
one solution to this test. The lts ; is a subrelation of ·→ . Indeed, most of
the search process works in the partial order ≤ni . cpsa’s search separates into
two phases. After an initial non-node-injective step, all of its test-solving takes
place in the node-injective ordering (see [37, Thm. 6.5]). Scyther’s steps are
also node-injective.1

Rather than specialize our results for cpsa, or Scyther, we axiomatize the
crucial properties of problem-and-solution ltss. This has an additional advan-
tage. Namely, we can choose very small ltss; they need only be large enough to
model the steps in a single enrich-by-need search. These are often finite, indeed,
often very small, ltss, as we will illustrate in an example below (Section 2.4).

We let S be a set of fragments and Λ be a set of labels. When modeling
cpsa, a typical label ` ∈ Λ is of the form n1, c, S, defining an unsolved authenti-
cation test. When modeling Scyther, typical ` take the form n1, c, representing
a component c that is received without having previously been sent as a compo-
nent. The transition relation implements the cohorts. For every ` of these forms,

1Personal communication with C. Cremers.

Version of October 8, 2013 27

{Ei : F
`
; Ei} defines the cohort solving the problem `. Strictly speaking, the

homomorphisms, not their targets Ei are the members of the cohorts. However,
in practice, Hi is recoverable from the triple E , `, Ei. Thus, we will freely allow
ourselves to pass from these triples to the homomorphisms themselves.

We also include one special value dead ∈ Λ. When the cohort for F and a

particular problem is empty, so that F is dead, we will in fact write F dead
; F .

Thus, a dead fragment stutters, and only a realized fragment is a terminal node
in our transition system.

Definition 2.4 Suppose given S, a set of fragments, dead ∈ Λ, and a ternary
relation · ·; · ⊆ S × Λ× S such that F ; E implies F ·→ E.

(S,Λ,;) is a problem-solution lts or pslts iff:

1. If F ∈ S, then F is realized iff there is no E such that F ; E;

2. If F dead
; E, then F = E and there is no realized D such that F ·→ D;

3. If J : F ·→ D from an unrealized F to a realized D, then:

(a) if F `
; ·, then there exists E ′ s.t. F `

; E ′, and J = F H·→ E ′ K·→ D;

(b) if F = F0 ; · · ·; Fi ; · · · is an infinite ;-path, then for some i,
Fi 6·→ D.

Let S(;) = {F : ∃ E . F ; E} ∪ {E : ∃F . F ; E}.

We tacitly assume (e.g. in 3a) that the homomorphism H can be recovered from

F `
; E . Thus, when ; is iterated and we have F

σ

;∗ E for some sequence of
labels σ, then there is a definite H : F ·→ E corresponding to σ.

We may write H
F `

; E
for the homomorphism recovered from F `

; E , or Hσ

for the homomorphism for the path σ = F0
`1
; · · · · · · `k; Fk.

There is great freedom in defining psltss. For one thing, we have mentioned
that cpsa and Scyther construct them using different ideas [56, 17]. Moreover,
a pslts may cover a very small finite set S of fragments; in particular, it may
cover only a particular starting point and the fragments we traverse to reach
realized fragments. In simple cases, with cpsa, this may be just a few, or in
complicated cases hundreds.

We often use cpsa on a number of starting points; it is effectively construct-
ing a pslts containing that set of skeletons and those generated from them by
a sequence of tests.

Theorem 2.5 Suppose that · ·; · is a pslts, and F0 ∈ S(;). If F0 ·→ ni D
where D is realized, then there exists a realized E such that F0 ;

∗ E and E·→ niD.

Proof. Let Ξ be the set of all sequences

F0
`1
; F1 ; · · · ; Fk−1

`k
; Fk

Version of October 8, 2013 28

starting at F0 such that for each i ≤ k, Fi ·→ D. Ξ 6= ∅ because it contains the
trivial sequence F0. By Def. 2.4, Clause 3b, there are maximal sequences in Ξ.

So let p = F0
`1
; F1 ; · · · ; Fk−1

`k
; Fk be maximal.

We claim that Fk is realized. Otherwise, there must be some transition

Fk
`
; C. Moreover, ` 6= dead, since then there is no realized fragment B such

that Fk ·→ B, so Fk 6·→ D, contradicting p ∈ Ξ.

Thus, if Fk is unrealized, there is a non-dead label ` such that Fk
`
; ·.

Hence, by clause 3a, there exists E ′ s.t. Fk
`
; E ′, and F·→E ′·→D. Hence,

p
`
; E ′ ∈ Ξ, contradicting the maximality of p. ut

Thm. 2.5 is related to the view of security goals that we have described in
Section 1.4, summarized in Defn. 1.7. It suggests a semi-algorithm for checking
whether a protocol enforces a goal.

In particular, suppose that we are interested in a security goal G = {Hi}i∈I ,
which is a family of homomorphisms based in F . We can check whether G
holds by exploring a pslts that includes F . As the search reaches any realized
fragment D, we have to check whether the map F;∗ D factors through at
least one of the Hi. If not, we have obtained a counterexample to the goal,
namely the realized skeleton D. Otherwise, we continue. If we complete the
exploration of the fragments accessible from F within the pslts without finding
a counterexample, then the protocol enforces the goal.

2.4 Some example transition systems

As an example, consider the protocol HD. We may take the set of fragments
S to contain the two skeletons F , E shown in Fig. 2, p. 5. The relation · ·; ·
contains the a triple F `

; E . cpsa represents this ` with the unexplained,
lower node of F , the fresh nonce N , and the encryption {|N |}pk(B) that N was
transmitted within. This tiny, two-fragment pslts satisfies the axioms.

We consider in more detail a pslts which includes the starting points for
authentication for the NSL initiator and responder (Figs. 11–12). Each starting
point consists of a skeleton (A, D) which contains a strand of that role, together
with the assumption that the nonce originating on that role is uniquely orig-
inating. In the case of the responder, we assume that the initiator’s private
key is non-originating; in the case of the initiator, the natural assumption is
that both private keys are non-originating [62]. This set S of skeletons contains
the six members A,B,C,C′,D,E; its transition relation ; contains only four
transitions. Indeed, in this analysis, there are no dead transitions. The cohort
; B`2C,C′ contains two transitions, while the cohorts for `1 and `3 are each
singletons. This pslts represents the NSL authentication analyses, as analysis
with cpsa confirms.2 One can regard cpsa as computing this finite pslts as a

2cpsa in fact eliminates C′. It adds nothing, because the homomorphism A ·→ C′ actually
factors through A ·→ C. See URL http://web.cs.wpi.edu/~guttman/transformations/nsl.

xhtml for the analysis.

http://web.cs.wpi.edu/~guttman/transformations/nsl.xhtml
http://web.cs.wpi.edu/~guttman/transformations/nsl.xhtml

Version of October 8, 2013 29

•
��

//

n1
oo

A

`1
; •

��

// // •
��

n1
oo •oo

B

`2
; •

��

// // •
��

n1
oo •oo

C

[A,B,Na, Nb] [A,B,Na, Nb] [A,B,Na, N
′
b] [A,B,Na, Nb] [A,B,Na, Nb]

Na ∈ unique, pk(B)−1 pk(A)−1 ∈ non

B `2
; •

��

// // •
��

// •
��

n1
oo •oo •oo

C′

[A,B,Na, Nb] [A,B,Na, N
′
b] [A,B,Na, Nb]

Na ∈ unique, pk(B)−1 pk(A)−1 ∈ non

Figure 11: NSL Authentication for the initiator

•
��
oo

•
��

//

n2• oo D

`3
; •

��

oo •
��

oo

•
��

// // •
��

• oo •oo E

[A,B,Na, Nb] [A,B,Na, Nb] [A,B,Na, Nb]

Nb ∈ unique, pk(A)−1 ∈ non

Figure 12: NSL Authentication for the responder

Version of October 8, 2013 30

Label Critical value Node Escape set members
`1 Na n1 {|AˆNa|}pk(B)

`2 Na n1 {|AˆNa|}pk(B), and

{|NaˆN ˆB|}pk(A), for all N 6= Nb

`3 Nb n2 {|NaˆNbˆB|}pk(A)

Table 1: Labels for the NSL authentication pslts
9/29/13 Needham-Schroeder-Lowe Public-Key Protocol

file://localhost/Users/guttman/drona/documentation/papers/scm/goals_and_transformations/xtnded/cpsa/nsl.xhtml#k16 6/27

13

1112

13

12

10

119

9

8765

(defprotocol nsl basic
 (defrole init
 (vars (a b name) (n1 n2 text))
 (trace (send (enc n1 a (pubk b))) (recv (enc n1 n2 b (pubk a)))
 (send (enc n2 (pubk b)))))
 (defrole resp
 (vars (b a name) (n2 n1 text))
 (trace (recv (enc n1 a (pubk b))) (send (enc n1 n2 b (pubk a)))
 (recv (enc n2 (pubk b)))))
 (comment "Needham-Schroeder"))

Item 5, Child: 6.
Figure 14: lts cpsa generates analyzing Fig. 13

substructure of the infinite pslts of all NSL skeletons, tests, and their solution
cohorts.

The labels `i are notationally a bit complex. We present them in Table 1.
Labels `1 and `2 are both explaining how Na can be received in node n1. In
`1, which concerns A, Na has been sent only in the single form {|AˆNa|}pk(B),
whereas in B it has also been transmitted inside the encryption {|NaˆN ′bˆB|}pk(A).
Label `2 uses as its escape set {|AˆNa|}pk(B) together with all messages of the
form {|NaˆN ˆB|}pk(A), for any choice N 6= Nb for the nonce N . This escape set
ensures that the protocol actions that transport Na into useful new messages in
fact associate it with the desired nonce Nb in the message {|NaˆNbˆB|}pk(A).
cpsa does not work with infinite escape sets such as this one, but retains in-
formation about the original starting point instead. This causes it to provide
essentially the same results.

Label `3 concerns Nb, and explaining how it can be received in n2 of D, when
it has only been sent in the form {|NaˆNbˆB|}pk(A).

Naturally, this pslts does not tell us everything that we might like to know

• // •

[A,B,Na, ∗] [Na]

Na ∈ unique

K−1
A ,K−1

B ∈ non

Figure 13: Initiator’s
secrecy query

about NSL; for instance, it says nothing about se-
crecy. Other questions may be resolved by using cpsa
to construct other psltss. They may be larger; for
instance, the pslts cpsa constructs for the initia-
tor’s secrecy goal contains nine distinct skeletons, and
the one for the responder’s secrecy goal contains five.
Fig. 13 shows the starting point for the search for the
initiator’s secrecy goal. The first node of an initia-
tor strand uses the nonce Na, subject to the assump-
tions that Na ∈ unique and K−1

A ,K−1
B ∈ non. It also

Version of October 8, 2013 31

contains a listener node that purportedly receives Na
without cryptographic protection. cpsa, in searching

for all ways to realize this starting point, encounters empty cohorts which entail
that that the starting point is unrealizable. The graph of cpsa’s search steps
appears in Fig. 14. Italicized terminal nodes are duplicates of nodes explored
elsewhere. The terminal nodes shown in red (when printed in color) are dead

skeletons A dead
; A.

cpsa can perform successful analyses exploring hundreds or sometimes thou-
sands of skeletons.

3 Protocol Transformations

Protocol design is an art of reuse. A few basic patterns for achieving authen-
tication and confidentiality—despite actively malicious parties—are adapted to
many new contexts. Designers combine these patterns, piggy-backing values
on top of them, to solve many problems. The transformations modify message
structure; add new transmissions or receptions on a given role; and add entirely
new roles. Constructing protocols may be difficult, particularly for interactions
involving more than two participants: Some data values may be shared among
subsets of the participants, while remaining hidden from the other participants.
Designers use existing protocols as heuristics for parts of the protocol, welding
the parts cleverly together, so that the transformed protocol preserves the goals
achieved by the components, while achieving additional goals.

Our goal here is not to make this cleverness unnecessary, but to explain it
semantically. This explanation is contained in Thm. 3.9. It concerns fragments,
homomorphisms between them, and psltss for source protocol and transformed
protocol. These psltss formalize relations between the activity of protocol
analysis in the two protocols. It in turn will lead in Section 4.4 to Thm. 4.23;
that results justifies inferring that a transformed protocol satisfies some security
goals, in the sense of logical formulas, when the source protocol did.

We start by considering a number of examples, which motivate a definition
of protocol transformation. This is a rather inclusive notion, which includes
many unsound transformations. Its technical motivation is that transformations
as defined here form a full and faithful functor, transforming skeletons and
homomorphisms of the source protocol to skeletons and transformations of the
target protocol.

In this regard, skeletons—having no adversary behavior—are more canonical
than fragments in general. It would require additional machinery to extend the
methods given here to fragments in general. It is hard to translate the adversary
strands except by the syntactic forms of the messages they send and receive.
By contrast, a regular strand s can be identified by giving a role ρ that it
instantiates, and the substitution α such that s = α(ρ), as in Defn. 3.4. We will
thus concentrate on skeletons, leaving it to future work with greater focus on
syntactic forms to integrate the remaining fragments into our picture.

We start first with some example protocol transformations, introducing a

Version of October 8, 2013 32

definition (Section 3.1). We then prove that transformations yield full and
faithful functors on skeletons (Section 3.2). In Section 3.3, we give Thm. 3.9,
generalizing Thm. 2.5. Some examples of sound transformations that piggyback
messages follow in 3.4.

3.1 Some Protocol Transformations

We have already described the protocol HD, defined in Fig. 1. We mentioned
two transformations where HD is the source protocol and NS is the target pro-
tocol. First, we can associate the HD initiator with the first two nodes of the
NS initiator, letting the nonce N represent the NS initiator’s nonce Na. In this
transformation, we associate the HD responder with the NS responder, which
receives an encrypted form of the initiator’s nonce on its first node, and retrans-
mits that value outside that encryption in its second node.

Alternatively, we can associate the HD initiator with the second and third
nodes of the NS responder, letting the nonce N represent the NS responder’s
nonce Nb. Now, we will associate the HD responder with the NS initiator,
which receives an encrypted form of the responder’s nonce on its second node,
and retransmits that value outside that encryption in its third node. The HD
responder receives the nonceN , and this is associated with the nonceNb received
by the NS initiator.

This suggests that a protocol transformation T with source protocol Π1 and
target protocol Π2 should consist of a map that:

• sends each source protocol role ρ1 ∈ Π1 to a target protocol role ρ2 ∈ Π2;

• associates each node along role ρ1 with a node along ρ2; and

• sends each parameter a of role ρ1 to a parameter b of ρ2.

Evidently the nodes must be associated in a way that preserves their order,
since otherwise an execution of the source protocol might not correspond to
an execution of the target. Also, a transmission node in the source protocol
must correspond to a transmission node in the target protocol, and likewise for
receptions. Otherwise, again, executions will remain meaningful.

The Yes-or-No Protocol. The Yes-or-No Protocol YN allows a Questioner
to ask a question Q, to which the Answerer gives a private, authenticated reply;
YN is constructed by two transformations of HD. In YN, the question and
answer should each remain secret. Indeed, the protocol should prevent even
an adversary who has guessed the question from determining what answer was
given. The Questioner authenticates the Answerer as supplying an answer.

The Questioner chooses two random nonces, and encrypts them, together
with the question. The Answerer releases the first of the two nonces Y to
indicate a yes, and the second N to indicate a no. No adversary learns anything,
since whichever nonce was released, the questioner was equally likely to have
used it in the other position.

Version of October 8, 2013 33

QAf •
��

+3 • •
��

+3 • QNg

{|QˆY ˆN |}pk(A) Y

OO

{|QˆY ˆN |}pk(A) N

OO

{|QˆY ˆN |}pk(A)

��

Y {|QˆY ˆN |}pk(A)

��

N

AnAf • +3 •

OO

• +3 •

OO

AnNg

Figure 15: The Yes-or-No Protocol YN

The protocol has four roles (Fig. 15). One describes the behavior of a Ques-
tioner receiving an affirmative answer. The second describes the behavior of a
Questioner receiving a negative answer. The remaining two describe the behav-
ior of an Answerer providing an affirmative and respectively negative answer.
Which of the two nonces has been released tells the Questioner which reply the
Answerer has made.

The protocol is interesting partly because it is an example of a protocol that
exhibits branching behaviors. Any instance of the first node of the QAf role is
also an instance of the first node of the QNg role. A partial execution which
has only reached this step is of both forms. The same is true of the roles AnAf
and AfNg.

We can view either half of this diagram as a transformation of the protocol
HD. In transforming HD to the left (affirmative) half of YN, we send the initiator
role to QAf, and the responder role to AnAf. The HD nonce N will be associated
with the affirmative YN nonce Y . The principal name B is associated with A.

In transforming HD to the right (negative) half of YN, we send the initiator
role to QNg, and the responder role to AnNg. The HD nonceN is now associated
with the affirmative YN nonce Y , and B is associated with A.

This example illustrates the use of a substitution γ to correlate the right
parameters of the two protocols. Different substitutions are needed in different
transformation, even if they have the same source and target protocols.

Mutually Authenticated Yes-or-No Protocol. As a final example, we
present a mutually authenticated version of YN. Here, the Answerer starts by
giving the Questioner a nonce R to use when asking a question. The presence of

A
{|RˆA|}B //

��

B

��
•

u} rrr
rrrrrr
rrr

!)L
LLL

LL
LLL

LLL
•

{|RˆQˆY ˆN ˆB|}Aoo

u} rrr
rrrrrr
rrr

!)L
LLL

LL

LLL
LLL

•

Y

66•

N

55• •

Figure 16: Answering Questions with YN+

this R identifies the question
Q as originating with B; it is
a sort of ticket enabling B to
ask a question of A. Perhaps
A will charge for the service.

There is a transformation
from YN to YN+ in which we
map AnAf and AnNg to the
two roles shown on the left
side and QAf and QNg to the

Version of October 8, 2013 34

two on the right side. The
two nodes of each source pro-
tocol role are mapped to the

second and third node of the YN+ roles. There is a transformation from HD
directly to YN+, in which the initiator’s first node is mapped to A’s first node,
which sends the ticket, and the initiator’s second node goes to A’s second node,
with maps from the responder to B’s role.

We may also view YN+ in two ways as the target of a transformation from
NS or NSL. We can map the NS initiator to the affirmative answer role or to
the negative answer role. We respectively map the NS responder strand to the
question role receiving the affirmative answer, or to the question role receiving
the negative answer. If we take these transformations as having source NSL,
they are certainly not sound for the NSL secrecy goals, because YN+ discloses
B’s nonces, which NSL does not.

3.2 Transformations and Homomorphisms

In our approach, homomorphisms between fragments (and especially skeletons)
are fundamental. Hence, we introduce a definition of transformation that is
designed just to respect homomorphisms. Within this broad class of roughly
reasonable operations, we will later seek a separate condition that ensures that
security goals are preserved.

Definition 3.1 A substitution γ is suitable for ρ1, ρ2 iff for some set X such
that Params(ρ1) ⊆ X, γ is a bijection between X and Params(ρ2).

So, γ is injective going forward from parameters of ρ1, and on a set of other
values that it maps to the remaining parameters of ρ2. When γ is suitable, we
can apply its inverse to ρ2; if e.g. α(ρ1) is an instance of ρ1, then α(γ−1(ρ2)) is
a corresponding instance of ρ2.

Definition 3.2 (Transformation) Suppose T maps each role ρ1 ∈ Π1 to a
triple ρ2, g, γ, where ρ2 ∈ Π2, g : N+ → N+, and γ is a substitution suitable for
ρ1, ρ2. T is a protocol transformation iff:

1. g is order-preserving and g(length(ρ1)) ≤ length(ρ2);

2. ρ1 ↓ i is a transmission (or resp. reception) node iff ρ2 ↓ g(i) is;

3. For all parameters x to role ρ1 and j ≤ g(i):

(a) if γ(x) originates on ρ2 ↓ j, then there exists a k ≤ i such that x
originates on ρ1 ↓ k; and

(b) if γ(x) v msg(ρ2 ↓ j), then there exists a k ≤ i such that x v
msg(ρ1 ↓ k).

4. Let ρ1, σ1 ∈ Π1, let T (σ1) = σ2, h, δ, and let α, β be substitutions. If, for
every j up to i, dmsg(α(ρ1) ↓ j) = dmsg(β(σ1) ↓ j), then:

Version of October 8, 2013 35

(a) g(j) = h(j) for all j ≤ i;
(b) There exist α′, β′ that agree with α, β on the parameters of ρ1, σ1

respectively, where for all j up to h(i),

dmsg(α′(γ−1(ρ2)) ↓ j) = dmsg(β′(δ−1(σ2)) ↓ j).

When T is a protocol transformation from Π1 to Π2, we write T : Π1 → Π2.

The first two clauses say that T should preserve order and direction (send
vs. receive). The third clause says that T should reflect where parameters
originate and where they are ingredients.

The last clause says that when the same strand can be viewed (up to height
i) as an instance of either ρ1 or σ1, then the transformation handles it the same
no matter which way we view it. In strand spaces, branching behaviors are
represented in this way, namely as roles that agree up to the branch point, but
disagree thereafter. This clause ensures that commitment to one branch cannot
occur earlier in the target of a transformation that it does in the source.

These conditions are preserved under composition:

Lemma 3.3 Suppose that T1 : Π1 → Π2 and T2 : Π2 → Π3. Let us write T2 ◦T1

for the function that maps ρ1 ∈ Π1 to

ρ3, (g3 ◦ g2), (γ3 ◦ γ2),

where T1(ρ1) = ρ2, g2, γ2 and T2(ρ2) = ρ3, g3, γ3. Then T2 ◦ T1 : Π1 → Π3.

Each skeleton A contains nodes from a finite number of regular strands s.
If it contains any nodes from s, it contains exactly the nodes s ↓ j, where
1 ≤ j ≤ i, for some i which we call the height of s in A. Moreover, each regular
strand s is of the form α(ρ) for at least one role ρ and substitution α. Thus,
we can always represent the nodes of a skeleton as a set of triples ρ, α, i, each
of which represents {(α(ρ) ↓ j) : 1 ≤ j ≤ i}; we avoid representing the nodes
of any strand repeatedly. If a set S of triples yields nodes(A), we will call S a
role-substitution representation of nodes(A).

Notice that if α, α′ differ only on parameters that do not appear in A, then
replacing ρ, α, i by ρ, α′, i in a role-substitution representation of nodes(A) yields
another role-substitution representation of nodes(A).

Definition 3.4 Assume T : Π1 → Π2. When T (ρ1) = ρ2, g, γ, define

liftT (α(ρ1) ↓ j) = α(γ−1(ρ2)) ↓ g(j).

That is, we first apply the inverse of γ to find how to apply α to ρ2; we then
take the g(j)th node of the resulting strand.

Hence, if S is a set of triples ρ, α, i, define liftT (S) to be the set of triples:

{(ρ2, α ◦ γ−1, g(i)) : (ρ1, α, i) ∈ S and T (ρ1) = ρ2, g, γ}.

Let A be a Π1-skeleton, and let C be a Π2-skeleton. C is a T -lifting of A, written
C ∈ liftsT (A), if:

Version of October 8, 2013 36

1. There is a role-substitution representation S of nodes(A) such that liftT (S)
is a role-substitution representation of nodes(B);

2. For all m,n ∈ nodes(A), m �A n implies liftT (m) �B liftT (n);

3. uniqueA ⊆ uniqueB;

4. nonA ⊆ nonB.

We concentrate on skeletons in this section, because, while the lifting we have
just defined has a canonical effect on skeletons, it does not determine how we
should transform adversary strands. Those can be treated only using a far more
syntactic approach to message translation. It is far from clear that protocol
transformations as we have defined them always extend in a canonical way to
adversary strands. Thus, we avoid fragments that are not skeletons.

Below, we write strands(A) for the set of strands s with A-height i ≥ 1,
i.e. the set of strands that have nodes in A.

Lemma 3.5 Let A be a Π1-skeleton, and T : Π1 → Π2.

1. There are ≤ni -minimal members C1 of liftsT (A).

2. Suppose that

s1 = α(ρ1) ∈ strands(A) and

s2 = β(σ1) ∈ strands(A), where

liftT (s1) = α(γ−1(ρ2)) ∈ strands(C1) and

liftT (s2) = β(δ−1(σ2)) ∈ strands(C1)

Let a be a parameter of ρ2, and b be a parameter of σ2 that are not in the
images of the parameters of ρ1 under γ and σ1 under δ. Then:

(a) α(a) and β(b) are both parameters;

(b) α(a) = β(b) implies ρ2 and σ2 are the same, and a and b are also
same.

Proof. 1. For each strand s ∈ strands(A), letting s = α(ρ1), construct C0 by
selecting an instance λ(s) = βs(ρ2), of height g(i), where the instantiation βs as-
sociates not-yet-used parameters with each parameter of ρ2. Let unique(λ(s)) =
βs(role unique(ρ2)) be the role-unique of ρ2 under βs, and let non(λ(s)) =
βs(role non(ρ2)) be the role-non of ρ2 under βs. Define uniqueC0

, nonC0
to be

the minimal possible sets, i.e.

uniqueC0
=

⋃
s∈A

unique(λ(s))

nonC0
=

⋃
s∈A

non(λ(s)).

Version of October 8, 2013 37

Define n0 �C0 n1 iff n0 ⇒+ n1.
The resulting object C0 is a Π2-skeleton: The conditions on the nodes and

ordering are immediate from the definitions. Moreover, Definition 3.2, Clause 3b
ensures that any node in C0 in which a ∈ nonC0

appears as an ingredient is an
image of a node in A in which it already appeared as an ingredient. Thus, the
condition on non-origination holds is satisfied in C0 because it was satisfied in
A. Similarly, Definition 3.2, Clause 3a ensures that any node in C0 in which
a ∈ uniqueC0

originates is an image of a node in A in which it already originated.
Thus, the unique origination condition holds in C0 because it held in A.

There is a node-injective homomorphismHC : C0·→ niC for each C ∈ liftsT (A).
Using these homomorphisms, apply Lemma 4.15, clause 3 repeatedly, once

for each pair of nodes λ(n), λ(m) such that n �A m. Use Lemma 4.15, clause 1
repeatedly, once for each βs ◦ γ−1(a) and α(a) where (i) s ∈ strands(A); (ii)
s = α(ρ1); (iii) a is a parameter to ρ1; and (iv) T (ρ1) = ρ2, g, γ.

At every stage, the resulting skeleton has a node-injective homomorphism
to every skeleton in liftsT (A). When we are finished, the resulting skeleton C1

is in liftsT (A). Thus, it is ≤ni -minimal within liftsT (A).

2. The statement is true for C0, and it remains true under each step of apply-
ing Lemma 4.15, clause 1, which affect only the parameters γ(c) where c is a
parameter of ρ1. ut

Since A≤ni B≤ni A implies that A,B are isomorphic, we may define T (A):

Definition 3.6 T (A) is the ≤ni -minimal member of liftsT (A), which is unique
to within isomorphism.

The following theorem justifies our definition of transformations.

Theorem 3.7 Let T : Π1 → Π2.

1. If H : A·→B is a Π1-homomorphism, there is a Π2-homomorphism G : T (A)·→
T (B) such that, for every n ∈ nodes(A),

liftT (H(n)) = G(liftT (n)).

Moreover, if G and G′ both satisfy this property, then they differ by an
isomorphism I, i.e. G′ = I ◦G. G is node-injective iff H is.

2. If instead G : T (A) ·→ T (B), then there is an H : A ·→ B such that G =
F (H). H is unique to within isomorphism.

T (A)
G // T (B)

A H //
liftT
OO

B
liftT
OO

Proof. 1. Let H = f, β. Viewing the image of strands(A)
under f , each of those strands is of the form β(α(ρ1)), for
some ρ1 and α, where the strand in strands(A) is of the
form α(ρ1). Thus, each strand in T (A) is of the form
α(γ(ρ2)−1), where T (ρ1) = ρ2, g, γ. Thus, we can use homomorphism G with
node function and substitution

liftT ◦ f ◦ liftT−1 and β.

Version of October 8, 2013 38

This construction is canonical, and is node-injective if f is.

2. If G = f, β, then
lift−1

T ◦ f ◦ liftT and β

work for H. ut

3.3 Preservation via PSLTSs

Let Φ ∈ GL(Π1) be role-specific, and let GΦ be the set of goals of the form
∀~x . (Φ −→ Ψ), as Ψ varies over positive existential formulas.

To show that the goals GΦ are preserved under a transformation T : Π1 →
Π2, we would like to exhibit a pslts for Π1 that contains cfrag(Φ), and a pslts
for Π2 that contains T (cfrag(Φ)). If these psltss match up, then all the goals
GΦ will be preserved. In this subsection, we will define what “match up” means
here, and we will prove a structural theorem that relates the how the two psltss
reach realized skeletons. It generalizes Thm. 2.5, at least for skeletons; Thm. 2.5
covers the case of the identity transformation Id : Π1 → Π1.

One degree of freedom concerns the labels. We care little about their struc-
ture. We assume simply that each pslts comes with its labels Λ1,Λ2, each
containing the distinguished label dead. We allow a map between the labels as
a relabeling function if it respects the dead. We also need the relevant notions
of progress and simulation:

Definition 3.8 Let ∆: Λ1 → Λ2 be a function between the Λi, and let T : Π1 →
Π2 be a protocol transformation. Let ;1 be a pslts on Π1 using labels Λ1; let
;2 be a pslts on Π2 using labels Λ2.

1. ∆ is a relabeling function iff ∆−1({dead}) = {dead}.

Let ∆ be a relabeling function.

2. T,∆ preserve progress for ;1 and ;2 iff, for every ` ∈ Λ, A `
;1 ·

implies T (A)
∆(`)
;2 ·.

3. ;1 simulates ;2 under T,∆ iff: T (A)
`′
;2 B′ and `′ = ∆(`) entails ∃B

s.t. B′ = T (B) and A `
;1 B.

Theorem 3.9 (Preservation) Let ∆: Λ1 → Λ2 be a relabeling function and
let T : Π1 → Π2 be a protocol transformation. Let ;1 and ;2 be psltss for Π1

and Π2 resp., with A0 ∈ S(;1) and T (A0) ∈ S(;2). Suppose that:

1. T,∆ preserve progress for ;1, ;2;

2. ;1 simulates ;2 under T,∆.

For every Π2-realized C, if H : T (A0) ·→ C,
there is a Π1-realized Ak ∈ Skel(Π1) such that

A0 ;
∗
1 Ak, and H factors through T (Ak).

T (A0)

H

((
K
// T (Ak)

J
// C

A0
///o/o/o/o/o Ak

Version of October 8, 2013 39

Proof. Let Σ be the set of ;1 paths σ of the form:

A0
`1
;1 · · ·

`i
;1 Ai

`i+1
;1 · · ·

`j
;1 Aj

starting at A0. Let ΣH be the set of σ ∈ Σ such that, for some J : T (Aj) ·→ C,
we have H = J ◦Hσ. These σ are the ones that never diverge from H. ΣH is
non-empty since the empty path is in it.

By Defn. 2.4, Clause 3b, there are maximal members in ΣH , i.e. σ1 such
that no extension σ_1 ` is in ΣH .

So let σ1 be maximal in ΣH , where A0

σ1

;∗1 Aj . By construction, T (Hσ1) : T (A0)·→
T (Aj), and H = J ◦Hσ1

. So we need only check that Aj is realized.
However, if Aj is not realized, then by Defn. 2.4, Clause 1, there is a label

` and skeleton Aj+1 such that Aj
`

;1 Aj+1. By progress (assumption 1),

T (Aj)
∆(`)
;2 T (Aj+1), so T (Aj) is unrealized.

Moreover, ` 6= dead: If T (Aj)
dead
;2 T (Aj+1), then Defn. 2.4, Clause 2 con-

tradicts the assumption that J : T (Aj) ·→ C.

Using Clause 3a, there is in fact a E ′ such that T (Aj)
∆(`)
;2 E ′ and J =

T (Aj)
H`·→ E ′ K·→ C. That is, H∆(`) : T (Aj) ·→ E ′ is the member of the ∆(`)

cohort compatible with J . So by simulation (assumption 2), it follows that

there is a B such that T (B) = E ′ and Aj
`

;1 B. So in fact

A0
`1
;1 · · ·

`i
;1 Ai

`i+1
;1 · · ·

`j
;1 Aj

`
;1 B

is also in ΣH , contradicting the maximality of σ. Hence, Aj is realized. ut

The proof of Thm. 2.5 is essentially this proof, letting T,∆ be the identity.

3.4 Example: Piggybacking Secrets

We now illustrate the power of this result by providing a generic transforma-
tion, i.e. an infinite family of transformations. It uses NSL as a key agreement
method to offer authentication and confidentiality services to transport a pay-
load message v0 between the participants. The payload here is a simple, basic
data value. We offer two versions of this protocol, one (which we will call Πi)
in which the initiator sends v0 to the responder, and another (Πr) in which the
responder sends it to the initiator. These protocols inherit the authentication
properties of NSL, and secrecy for the nonces Na, Nb. They provide secrecy for
v0 by sending it encrypted, using hash(NaˆNb) as the key. The association of
v0 with Na, Nb ensures its authenticity also.

We then consider the protocols Πi
t,Π

r
t that result when we insert a message

t in place of v0. The message t may contain many simple data values instead
of just one. It may also package them in any message format, e.g. with nested
encryptions. We limit our claims here to the case where t does not contain any
nonces (which might unify with the nonces Na, Nb of the key agreement phase).

Version of October 8, 2013 40

{|AˆNa|}pk(B) {|NaˆNbˆB|}pk(A)

��

{|Nb|}pk(B) {|v0|}hash(Na ˆNb)

• +3

OO

• +3 •

OO

+3 •

OO

• +3 • +3

��

• +3 •

{|AˆNa|}pk(B)

OO

{|NaˆNbˆB|}pk(A) {|Nb|}pk(B)

OO

{|x|}hash(Na ˆNb)

OO

Figure 17: Πi: NSL with encrypted message transport

We claim that in this case, the protocols Πi
t,Π

r
t preserve the goals of Πi and Πr

respectively. We also have some empirical evidence to support this: We have
tested a variety of instances, and find that cpsa emits results that are exactly
parallel for all of them.

This piggy-backing idea can also be extended to a sequence of messages,
essentially justifying the properties of the jth message by using a node index
function g that maps the fourth message of Πr to the jth of the target protocol.
We will not discuss that further here, however.

NSL key agreement, with message transport. Let Πi be a variant of
NSL in which there is an additional, final message. This message consists of a
basic value v0 of sort data, encrypted using a key created by hashing the two
nonces for this session: hash(NaˆNb). The initiator sends a message of the
form {|v0|}hash(Na ˆNb), and the responder is willing to receive any message of
the form {|x|}hash(Na ˆNb) where x is a variable of sort message (Fig. 17). Πr

is the corresponding protocol in which the last message is transmitted by the
responder and received by the initiator.

We have an obvious “inclusion” transformation T i : NSL→ Πi. It maps the
NSL initiator strand to the initiator strand of Πi, and the responder strand to
the responder strand. The node index functions are the identity, and the sub-
stitutions γ are also the identity function. We have a corresponding “inclusion”
transformation T r : NSL→ Πr.

For a set of starting points for NSL, including authentication claims for
the two parties, and secrecy for the nonces Na, Nb, we observe that the whole
cpsa analysis uses only tests in which the critical values are always the nonces
Na, Nb. Since Πi and Πr provide no new message transmissions containing
nonces as ingredients, it is immediate that the simulation condition of Thm. 3.9
is met. The liveness condition holds simply because the syntactic structure of
the encryptions is unchanged.

This protocol enjoys the usual authentication and secrecy properties of NSL.
In addition, it ensures secrecy for the data value v0 ∈ unique, assuming that
the initiator has chosen the nonce Na ∈ unique, and the long term private keys
K−1
A ,K−1

B ∈ non.

Version of October 8, 2013 41

Piggybacking messages. We now define a family of protocols. Each one
differs from Πi only in the last message transmitted by the initiator, which may
be replaced by any message that may contain arbitrary values of sort data, but
has no nonces N as ingredients. For each message t such that there is no nonce
N v t, let Πi

t be the result of replacing the initiator’s last message by t.
The message t may contain several data values. Πi

t provides confidential
transport for them all by piggybacking them all on the message {|v0|}hash(Na ˆNb).

To prove this, consider a particular data value d v t. Let the transformation
Td,t : Πi → Πi

t map the initiator role of Πi to the initiator role of Πi
t, using

the identity function on node indices, and using the substitution γ = [v0 7→ d].
It acts as the identity on the responder role. We can check that this is a
transformation; in particular, Clause 4, which is the only one that sometimes
requires care, is vacuously satisfied because the two different roles start with a
transmission and a reception, and therefore have no common instances.

To define a function ∆ on labels, map {|v0|}hash(Na ˆNb) to {|t|}hash(Na ˆNb),
and map all other occurrences of v0 to d. We extend this to all other mes-
sages homomorphically. Thus, the critical value and escape set of a test are
transformed by this function ∆.

For every pslts
`

;1 and Πi-skeleton A, T (A) will be
∆(`)
;2 -live if A is

`
;1 -

live.3 For, T (A) has the same nodes as A with the additional nested message
structure t in place of v0. This skeleton cannot be realized unless A is.

Indeed, no authentication test in T (A) can have additional outcomes beyond
the lifted results for A. These tests always concern messages encrypted with KA,
KB , or hash(NaˆNb). None of these values can be disclosed, in any skeleton
that respects our assumptions K−1

A ,K−1
B ∈ non, Na ∈ unique. Moreover, Πi and

Πi
t produce messages with ingredient Na in exactly the same way. Neither ever

removes any ingredient from an encryption with key hash(NaˆNb).
We have confirmed these claims by tests with cpsa. They show that with

a variety of messages t containing no nonces as ingredients, cpsa carries out
exactly the same sequence of tests as t varies. Textual diffs on its output confirm
that it emits the same results for each of these tests, with only the expected
changes in the message contents. The sizes and order of the generated cohorts
agree. cpsa behaves differently if Na v t, although the confidentiality results
appear to hold in this case also.

The protocol Πr, in which the responder transmits {|v0|}hash(Na ˆNb) and the
initiator receives {|x|}hash(Na ˆNb), behaves very similarly. For each message t
such that there is no nonce N v t, we can form Πr

t , and we have a similar
family of transformations Td,t : Πr → Πr

t .
4

3Figs. 11–12 show the authentication analysis lts for NSL with secrecy information in
Figs. 13–14, which may be useful for visualizing ;1 .

4cpsa inputs and outputs for NSL, Πi, Πr, and three protocols of each of the forms Πi
t

and Πr
t are available at http://web.cs.wpi.edu/~guttman/transformations/tr_cpsa.tgz.

Diffs between the protocols Πi and the sample Πi
t show that all tests are chosen in exactly

corresponding ways, and produce exactly corresponding cohorts. Likewise for Πr.

http://web.cs.wpi.edu/~guttman/transformations/tr_cpsa.tgz

Version of October 8, 2013 42

4 Languages for Security Goals

We now consider languages of first order predicate logic. We introduce these
languages to make our two main claims precise. One is that the Thm. 2.5 codifies
a method (a possibly non-terminating algorithm) for determining whether a
protocol meets security goals. The second is that Thm. 3.9 gives a criterion
on protocol transformations, ensuring that security goals achieved by a source
protocol will hold for the result of the transformation.

From a foundational point of view it is striking that the methods of the
previous sections lead to preservation of truth for a broad class of formulas of a
sharply well-defined syntactic form.

For this, we need languages in which to express the security goals for proto-
cols. We introduce those languages in this section. The security goals are the
formulas of the form

∀x . (Φ −→ Ψ) (2)

where the formulas Φ,Ψ may use ∧,∨, and ∃, but not ¬, −→ , or ∀. In fact,
we focus on those in which Φ is “role-specific,” a kind of typing constraint
given in Def. 4.12, although this is a light condition. For each protocol Π, we
provide a language for its security goals GL(Π). Each protocol transformation
T : Π1 → Π2 determines a translation from GL(Π1) to GL(Π2).

In designing these languages, we have adhered to three principles:

1. The vocabulary of GL(Π) should be derived directly from the roles and
parameters of Π, and from the fragment structuring properties such as �,
uo, and non.

2. The formulas of GL(Π) should not describe the forms of the messages sent
and received by the roles of Π, but should reflect only the parameters of
the roles. This makes it easy for the formulas to be preserved under trans-
formations, which may change the syntactic structures of the messages in
use.

3. We will adhere to a pure first order logic, with no numbers or other data
types that are extraneous to the protocols and their execution. This makes
the metalogic of the languages GL(Π) very simple, with no unnecessary
expressiveness due to these data types.

We start by showing that many security properties can in fact be expressed
using our restricted means.

4.1 Security Goals: Some Examples

In this section, we will examine some examples of security properties, showing
that they may be viewed as implications of the form of Eqn. 2. These examples
will also clarify the underlying signature of the language of security goals.

We will set aside distinguishability properties. A distinguishability property
is about the relation between different executions. To distinguish a real value

Version of October 8, 2013 43

r from a randomly chosen fake value f (for instance) the adversary considers
whether—among executions compatible with his observations—those that use
r are more probable than those using f . This is not a property that is true or
false in any one execution; rather, it is a property about the set of executions
(with a distribution on that set). Thus, we cannot give a semantic treatment of
distinguishability properties by considering individual executions of a protocol
as models.

Indeed, our study in this paper is essentially defined as what we can establish
about protocols by the formulas that are true in each individual execution,
viewed as a model in the sense of first order logic.

This includes authentication; confidentiality in the sense of non-disclosure
of values; and related properties of a single execution. Indeed, many relevant
security goals can be expressed easily in statements of the form of Eqn. 2. They
include forward secrecy, and resistance to attacks in which the adversary gets a
regular participant to re-adopt an old, now-compromised key. They also include
resistance to impersonation attacks, in which the adversary impersonates B to A
when B’s long term secrets are not compromised, although A’s own secrets are.
Implicit authentication, an important goal of some Diffie-Hellman protocols, is
also of this form [24].

In this section, we will illustrate several of these properties, thereby explain-
ing the vocabulary we work with, and how executions satisfy or provide coun-
terexamples to formulas using that vocabulary. We use the Needham-Schroeder
and Needham-Schroeder-Lowe protocols as our example protocols. We will also
translate our diagrams into formulas, thereby introducing the protocol goal lan-
guages GL(NS) and GL(NSL).

Authentication. We discuss the authentication goal from Fig. 8, p. 21. There
is a similar goal starting from an initiator strand, which extends the step shown
in Fig. 4. Fig. 8 expresses the claim that—starting from the fragment on the
left, containing just a responder strand and assuming freshness for Nb and non-
compromise for pk(A)−1—every execution exhibits at least the structure shown
in the fragment on the right. More formally, every homomorphism J : F ·→ D,
where D is any realized fragment, factors through H. In particular, there exists
some K : E ·→ D such that J = K ◦H.

So any execution D which contains a responder strand with a fresh nonce and
uncompromised peer also contains an initiator strand; moreover, the initiator
strand and responder strand agree on the respective values for their parameters.

This security goal is not achieved by NS; indeed, Fig. 6 shows a counterex-
ample (p. 6). The map that embeds F into Fig. 6 cannot factor through the H
in Fig. 8. The initiator strand in Fig. 6 contains the parameter C for its peer, in
contrast to the responder’s parameter B. But in E0, we already have these two
strands agreeing on the name of the responder. Hence, in every homomorphic
image of E0, the two strands still agree on this parameter. Lowe’s corrected
protocol NSL [44] does achieve the goal, though.

We express this authentication goal as a formula by writing out the contents

Version of October 8, 2013 44

of the two fragments in Fig. 8 in formulas. The fragment F0 on the left contains
a responder strand, with assumptions on two of its parameters. We will also
mention its other parameters, because we will use them soon. Since a fragment
containing the third node n will necessarily contain n’s predecessors, we can
simply say that the third node appears, thereby entailing that it also has two
predecessors. However, we would like to mention the second node m, because
we will assert that the nonce Nb originates uniquely at m. Thus, this formula
characterizes F0:

RespThd(n) ∧ RespScd(m) ∧ Coll(m,n) ∧
Peer(m, a) ∧ Self(m, b) ∧ MyNonce(m, c) ∧ YourNonce(m, d) ∧ (3)

Non(inv(pk(a))) ∧ UnqAt(m, c).

Here, n,m are variables that in this formula refer to nodes; a, b are variables
that refer to principal names; and c, d are variables that refer to nonce values.
The first two atomic formulas say that n,m are a third node of a responder
strand and a second node of one. Coll(m,n) says that they are “collinear” in
the sense of lying on the same strand. The next line describes their parameters.
The parameter a represents the peer of n, and b represents its own identity. The
nonce c is the one chosen on the strand itself, and d is the one received on the
first message. The last line expresses the assumptions on the key and nonce,
namely that my nonce is uniquely originating and originates at node m, and
that your private decryption key is non-originating.

All this is still true in E0 on the right, which also contains an initiator strand
with matching parameters. We write this (incorporating Eqn. 3) in the form:

(3) ∧ InitThd(n′) ∧
Self(n′, a) ∧ Peer(n′, b) ∧ YourNonce(n′, c) ∧ MyNonce(n′, d) (4)

In particular, the security goal expressed in Fig. 8 is an implication, namely:

(3) −→ ∃n′ . (4) (5)

Observe that this formula is not valid in all fragments; for instance, its hypoth-
esis is satisfied in F0, but its conclusion is not. However, can we make a realized
fragment that satisfies Eqn. 3, but without also satisfying Eqn. 4?

If so, Π achieves the goal in Fig. 8. NSL achieves it, though not NS.
NS does achieve something, namely the weaker authentication goal shown

in Fig. 9, p. 21. There is only one difference between Fig. 8 and Fig. 9, namely
that the initiator’s intended peer is any B′, not necessarily the same B. Fig. 9
yields the formula

(3) −→ ∃n′, b′ . (7) (6)

where the conclusion uses the weakened formula:

(3) ∧ InitThd(n′) ∧
Self(n′, a) ∧ Peer(n′, b′) ∧ YourNonce(n′, c) ∧ MyNonce(n′, d) (7)

Version of October 8, 2013 45

in which the peer b′ may be different from b. This is too weak a goal if the
protocol is also intended to preserve the secrecy of the nonces Na, Nb, as we
consider next.

Secrecy Goals. To express secrecy goals, we make use of listener strands.
We have assumed that every protocol contains a particular role, the listener
role, which consists of a single reception node, receiving a message x, i.e. • x←.
To express that a value such as Nb may be compromised in a given situation,

we simply instantiate the listener role, and add a listener strand • Nb← to the
fragment representing that situation.

Having formed a fragment F by adding a listener strand to express the
compromise, we can assert that secrecy is preserved by saying that F does not
extend to a realized fragment. That is, if D is any realized fragment, then
F6·→D.

As an example, Fig. 10, p. 22, shows a fragment F containing a responder
strand, with the assumptions that both private decryption keys are uncompro-
mised, and that the nonce is freshly chosen and unguessable. By the symbol
6·→ ·, we mean to convey that there is no realized fragment D such that F·→D.

This security goal is in fact not achieved by NS, as Figs. 6–7 illustrate. That

is, if we add a listener strand • Nb← to those figures, then we can clearly connect
that strand to the middle transmission node on the right side of Fig. 7. This
shows a way to map F into a realized fragment.

However, NSL does achieve the goal F 6·→ ·.
The essential difference between an authentication goal and a secrecy (“non-

disclosure”) goal is not the listener strand. Rather, it is the number 0. An
authentication goal identifies a fragment F and 1 or more homomorphisms
H1, . . . ,Hk. It asserts that any homomorphism from F to a realized factors
through one of the Hi. A non-disclosure goal is simply the case k = 0, in which
homomorphism from F to a realized fragment factors through a member of the
empty set of homomorphisms; i.e. there are none.

In fact, there are useful non-disclosure goals that do not involve listener
strands. For instance, in a three-party protocol such as the Electronic Payment
via Money Order protocol epmo [40], two participants may agree on a value
that should not be disclosed, neither to an outsider nor to the third party. The
non-disclosure to an outsider is natural to express via a listener strand. The
non-disclosure to the third party may be expressed by adding strands for this
party with the sensitive value as one of the parameters. If these fragments do
not extend to realized fragments, then the third party can not end up receiving
the sensitive value in any execution.

Using the predicate Lsn(`) to say that ` is a listener node, and Hear(`, c) to
say that the value heard on ` is c, we may express the content of the fragment
F in Fig. 10 (again incorporating Eqn. 3) in the form:

(3) ∧ Lsn(`) ∧ Hear(`, c) ∧ Non(inv(pk(b))) (8)

and the secrecy goal has this as its premise, and asserts that it cannot occur.

Version of October 8, 2013 46

Its conclusion is the empty disjunction ⊥.

(8) −→ ⊥. (9)

It is achieved in NSL but not NS. That is, Eqn. 8 is satisfied in no realized
fragment for NSL.

4.2 The Security Goal Language of a Protocol

Our next task is to define a language GL(Π) in classical first order logic with
equality for each protocol Π, to express goals like those considered in Section 4.1.
The diagrammatic goals are all expressed by implications between geometric
formulas of GL(Π), i.e. by formulas of the form of Eqn. 2. This allows us
to verify and falsify them by exploring the homomorphisms from a particular
fragment F , observing the forms of realized fragment that they lead to.

We design our language not to express too much. We would like some
protocol transformations to be able to preserve the security goals of a source
protocol. Since these transformations may change the forms of the messages, we
will set up GL(Π) so that it does not describe the forms of the messages. Since a
transformation may add message transmissions and receptions, we ensure that
GL(Π) expresses the main facts about nodes without needing to state their
positions on strands. Instead, GL(Π) talks about which events on which regular
roles have occurred, and which values were the instances of the parameters.

In addition, it has predicates to express the precedence ordering, and the
unique and non properties, and equality, but not much more.

Our language concerns only the nodes and their parameters and the relations
among them. It does not specifically talk about strands; it says only that some
nodes lie on the same strand as each other (they are “collinear”).

Given any formula of the form of Eqn. 2, we can use α-renaming, quantifier
rules, and the rules for disjunction on the left and conjunction on the right to
transform it to a set of formulas of the form:

∀x . (φ −→ (∃y1 . ψ1) ∨ (∃y2 . ψ2) ∨ . . . ∨ (∃yj . ψj)) (10)

where: (i) φ and each ψi is a conjunction of atomic formulas, and (ii) x and each
yi are disjoint lists of variables. Null and unary disjunctions (j = 0 or j = 1)
are permitted, where the null disjunction ⊥ is the constantly false formula. For
this reason, we will focus in this section on formulas (10).

We formulate GL(Π) as a single-sorted logic, since that is notationally sim-
pler. In an implementation, such as the one by Ramsdell for CPSA [55], one
would prefer instead a multi-sorted (or preferably order-sorted) logic; however,
that would not simplify anything considered here.
GL(Π) says nothing about the structure of Π’s messages, so it can express

goals that are preserved when message structure is transformed. It classifies
nodes by which action they are, on which role, and how they instantiate the
role’s parameters.

Version of October 8, 2013 47

Functions: pk(a) sk(a) inv(k)
lts(a, b)

Relations: Preceq(m,n) Coll(m,n) =
Unq(v) UnqAt(n, v) Non(v)

Table 2: Protocol-independent vocabulary of the languages GL(Π)

The vocabulary of the language GL(Π) has two parts. One part is indepen-
dent of Π, and is present in the language for every Π.

It includes functions that relate principals to their keys, and keys to their
inverses. GL(Π) contains function symbols pk(a), sk(a), and inv(k), for a’s
public encryption key; a’s private signature key; and the inverse of a key k,
i.e. the other member of an asymmetric key pair. This part of the language
can easily be extended, e.g. with a function symbol lts(a, b) that takes two
principal names as arguments, returning their long-term shared symmetric key,
since some protocols such as Kerberos use one. We write these functions, as all
the (non-variable) vocabulary of the goal language, in typewriter font, as shown
in Table 2.

The protocol-independent part also includes the predicate symbols shown
in Table 2. Preceq(m,n) expresses that node m precedes node n. Coll(m,n)
expresses that nodes m and n lie on the same strand. Unq(v) expresses that
the basic value v originates uniquely. UnqAt(n, v) expresses that the basic value
v originates uniquely, and originates at the node n. Non(v) expresses the non-
origination of the basic value v. As always, = is equality. All protocol languages
use this vocabulary to express structural properties of fragments.

The protocol-specific vocabulary consists of two kinds of predicates. Role
position predicates R(n) assert that node n is a node lying at a particular
position on a strand that is an instance of that regular role. For instance,
RespFirst(n) could assert that n is an instance of the first node of a responder
role, which means that it receives a message of the form {|AˆNa|}KB

for some
values of the parameters.

The second kind of predicate concerns the values of the parameters. A
parameter predicate P (n, v) asserts that node n is formed by instantiating a
particular parameter of its role with the value v. The same parameter predicate
may be used for different roles, so long as—whenever a node may be viewed
as lying on instances of two different roles—it satisfies the same parameter
predicates no matter of which role it is viewed as an instance.

Example 1. GL(NS) includes the protocol-independent vocabulary. Its protocol-
specific vocabulary includes the role position predicates:

InitFst(n) InitScd(n) InitThd(n)
RespFst(n) RespScd(n) RespThd(n)

Lsn(n),

Version of October 8, 2013 48

meaning that n is the first, second, or third node on an initiator or responder
strand (resp.), and that n is the reception node on a listener strand, which
we assume present in all protocols. Only the regular roles of the protocol, not
the adversary roles, are expressed here. GL(NS) also includes the parameter
predicates:

Self(n, v) Peer(n, v)
MyNonce(n, v) YourNonce(n, v)

Hear(n, v).

The predicates Self, Peer express the name of the current principal, and of its
intended communication partner. MyNonce, YourNonce express the value of the
nonce created on this strand, and of the one received purportedly from the peer.
Hear relates a listener node to the message it hears.

In the fragment F shown on the left in Fig. 8, the upper node n satisfies
RespFst(n), the middle node satisfies RespScd(n), and the lower node satisfies
RespThd(n). The upper node n and the name v = A satisfy Peer(n, v), while n
and v = B satisfy Self(n, v). The upper node n and the nonce v = Na satisfy
the parameter predicate YourNonce(n, v). There is no v such that this n and v
satisfy MyNonce(n, v), since my nonce has not yet been chosen at the time of n.
However, the middle node m and the nonce v = Nb do satisfy MyNonce(m, v).

Example 2. The language GL(NSL) of the protocol NSL can be identical with
the language GL(NS). After all, it too has initiator and responder roles, each
of length three, with exactly the same parameters, as well as the listener role.
One of the messages on the roles is different, but, since the parameters are the
same, this necessitates no change in the language itself.

Semantics of GL(Π). Suppose that Π is a protocol, with language GL(Π).
We will assume that there is a pair of tables τr, τp such that—for every role ρ ∈ Π
and integer i up to the length of ρ—τr(ρ, i) gives the role position predicate for
the ith position on instances of ρ. Thus, for instance, in NS, we have τr(Init, 1)
is InitFst and τr(Resp, 2) is RespScd, etc. We assume that τr is injective.

Moreover, τp gives the parameter predicate for a particular role and parame-
ter. For instance, in NS, τp(Init, A) is Self and τp(Init, Na) is MyNonce. However,
τp(Resp, A) is Peer and τp(Resp, Na) is YourNonce. We do not assume that τp
is injective, although we do assume that when τp(ρ, a) = τp(ρ

′, b), if any strand
can be regarded as an instance of both ρ and ρ′, then it has the same instance
for a in ρ in the first case as for b in ρ′ in the second. This makes the defini-
tion of satisfaction (Defn. 4.2) unambiguous. The tables τr, τp match roles and
parameters of Π with the vocabulary of GL(Π). The tables for of GL(NS) are
shown in Table 3.

Before defining satisfaction, we introduce some helpful notation. Recall that
s ↓ j is the jth node along strand s.

Definition 4.1 If ρ ∈ Π is a role of protocol Π, then instances(ρ) is the set of

Version of October 8, 2013 49

τr 1 2 3
Init InitFst InitScd InitThd

Resp RespFst RespScd RespThd

τp A B Na Nb

Init Self Peer MyNonce YourNonce

Resp Peer Self YourNonce MyNonce

Table 3: τr and τp for GL(NS)

instances of ρ, i.e.

instances(ρ) = {α(ρ) : α is a substitution}.

The (larger) set of strands that agree with a member of instances(ρ) on the first
i nodes, in having the same directed message for each, is defined:

instances(ρ|i) = {s : ∃r ∈ instances(ρ) . ∀j ≤ i . dmsg(s ↓ j) = dmsg(r ↓ j)}.

So instances(ρ|i) contains a strand if that strand behaves like a run of ρ so
long as only i events have occurred.

If s ∈ instances(ρ|i), then match(s, ρ, i) is the substitution that causes the
first i nodes of s to match the first i nodes of ρ; i.e. match(s, ρ, i) = α iff α is
the most general substitution (if any exists) such that

∀j ≤ i . dmsg(s ↓ j) = dmsg(r ↓ j).

We can now define satisfaction completely traditionally in the manner of Tarski.
Observe that we distinguish variable assignments η : Var → nodes(F) ∪ ALG,
which assign values to variables, from substitutions α, which are essentially
homomorphisms from the message algebra ALG to itself. However, in H ◦ η
these notions can be meaningfully composed, sending each variable not to a
message value or node in the source of H, but rather the corresponding value
in the target.

Definition 4.2 Suppose F = 〈N ,→E ,�, unique, non〉 is a fragment, and η is a
map from variables to values which are either messages in the message algebra
ALG or else nodes of F .

If x is a variable of GL(Π), then η(x) is just the result of applying the map
η to the variable x. If t is a compound term pk(t′), sk(t′), or inv(t′), then η(t)

is pk(η(t′)), privk(η(t′)), or η(t′)
−1

resp., when the latter is well-defined, and is
undefined otherwise.5

We define satisfaction F , η |= φ for compound formulas using the standard
Tarski clauses. For atomic formulas, we stipulate the clauses in Table 4. Any
atomic formula containing t is false if η(t) is undefined.

The table τp is well formed only if all choices of ρ, a, i satisfying Conditions 1–2
in the clause for ParamPred yield the same outcome.

5We use typewriter font for the syntactic constants, and sans serif for the functions in the
models that interpret them.

Version of October 8, 2013 50

F , η |= t = t′ iff η(t) = η(t′);
F , η |= Preceq(t, t′) iff η(t) � η(t′);
F , η |= Coll(t, t′) iff η(t)⇒∗ η(t′) or η(t′)⇒∗ η(t);
F , η |= Unq(t) iff η(t) ∈ unique;
F , η |= Non(t) iff η(t) ∈ non;
F , η |= UnqAt(t′, t) iff η(t) ∈ unique and η(t′) = s ↓ i where

s ↓ i ∈ nodes(F) and η(t) originates at s ↓ i;

F , η |= RolePosition(t) iff, letting τr(ρ, i) = RolePosition, we have:

1. η(t) = s ↓ i where s ↓ i ∈ nodes(F);

2. s ∈ instances(ρ|i);

F , η |= ParamPred(t, t′) iff, letting τp(ρ, a) = ParamPred, we have:

1. η(t) = s ↓ i where s ↓ i ∈ nodes(F);

2. match(s, ρ, i) = α

3. α(a) = η(t′).

Table 4: Clauses for satisfaction

Observe in this definition that the formulas satisfied for F , η depend only
on the nodes within F . What a strand would do “after” the part in F never
changes the truth value of any atomic formula. Indeed:

Lemma 4.3 Let φ be a positive existential formula, and let H : F ·→ E. If
F , η |= φ then E , (H ◦ η) |= φ.

Proof. Recall that the function symbols of GLΠ contain only the key function
symbols pk(a), sk(a), and inv(k).

For the protocol-independent vocabulary, preservation of atomic formulas is
immediate from the definition of homomorphism.

If F , η |= RolePosition(t), then, letting s ↓ i = η(t), there is an α and
an r = α(ρ) such that ∀j ≤ i . dmsg(s ↓ j) = dmsg(r ↓ j). Hence, letting
r′ = H ◦ α(ρ), we have ∀j ≤ i . H(dmsg(s ↓ j)) = dmsg(r′ ↓ j). So E , H ◦ η |=
RolePosition(t).

If F , η |= ParamPred(t, t′), then there is a ρ and a a satisfying Clauses 1–3.
Applying H, the clauses are also satisfied for (H ◦ η)(t) = H(s ↓ i).

If satisfaction for Φ,Ψ is preserved under H, then so is satisfaction for Φ∧Ψ,
Φ ∨Ψ, and ∃x . Φ. ut

Φ entails Ψ if for all Π-fragments F , F , η |= Φ implies F , η |= Ψ. Φ and Ψ are
equivalent if each entails the other. Two variable assignments η, θ agree on a
set of variables V, written η ∼V θ, if η(x) = θ(x) for every variable x ∈ V. We
write fv(Φ) for the free variables of Φ, and write η ∼Φ θ to mean η ∼fv(Φ) θ.

Version of October 8, 2013 51

Definition 4.4 Let Π be a protocol, and let G ∈ GL(Π) be a closed formula of
the form (10). Π achieves the goal G if, for every realized fragment D, D |= G.

4.3 Characteristic Fragments and Formulas

Each of the fragments in Figs. 8–10 is a structure for GL(NS). Looking at each
one, we can read off a formula that characterizes it. For instance, for fragment
F in 8, we had the formula Eqn 3.

This suggests the idea of a characteristic formula: A conjunction of atomic
formulas Φ is a characteristic formula for F if Φ is a logically strongest conjunc-
tion of atoms that is true in F . To define characteristic formulas, we start with
the familiar logical notion of “diagram,” relative to a variable assignment that
covers the values relevant to F .

Definition 4.5 Suppose F is a Π-fragment, and let S = nodes(F)∪Params(F)
be the set containing all its nodes and the message parameters to its strands. Let
η be a variable assignment which is injective and covers S, i.e. S ⊆ range(η),
and let V be the inverse image of S under η. Let D be the set of atomic formulas
φ of GL(Π) such that fv(φ) ⊆ V and F , η |= φ.

Because V is finite, D is finite.
The η-diagram of F , written δη(F), is the conjunction

∧
D.

Whenever we write δη(F), we assume that η is injective and covers S = nodes(F)∪
Params(F). When η is irrelevant, we omit it and write δ(F).

The diagram of F is a strongest formula that is true of F . In particular, any
other true atomic formula ψ is a consequence of δ(F), as long as we specify the
meanings of any additional variables in ψ:

Lemma 4.6 Let V = fv(δη(F)). Suppose that η ∼V θ, and F , θ |= ψ. Then
there is a finite set of equations ti = yi where fv(ti) ⊆ V and yi 6∈ V such that:

1. F , θ |=
∧

(ti = yi); and

2. δη(F) ∧
∧

(ti = yi) entails ψ.

Proof. If F , θ |= ψ, where ψ is R(s1, . . . , sn), then 〈θ(s1), . . . , θ(sn)〉 is in the
extension of R in F . If y ∈ fv(si), then θ(y) is either a node, a parameter, or
the result of applying a key function f to a parameter a. In the first two cases,
θ(y) is also in the range of η, say η(x), so use the equation x = y. In the last
case, a is in the range of η, say η(x), so use the equation f(x) = y. ut
A characteristic formula is any formula equivalent to the diagram:

Definition 4.7 A conjunction of atomic formulas Φ is a characteristic formula
for F via η, written Φ ∈ cformη(F), if Φ is equivalent to δη(F).

As examples, each of the formulas we mentioned in Section 4.1 as giving the
“content” of one of our fragments is a characteristic formula for it. This is the
reason why we repeated the content of the characteristic formula for the left
hand fragments F in the right hand fragments E , so that the latter would be a
self-contained characteristic formula. Using the definitions:

Version of October 8, 2013 52

Lemma 4.8 If Φ,Ψ ∈ cformη(E), then Φ and Ψ are equivalent.
If Φ ∈ cformη(E) and Ψ ∈ cformθ(E), then their existential closures ∃x . Φ

and ∃y . Ψ are equivalent.

A characteristic formula may be quite a lot shorter than δη(F). It does not need
to mention nodes on a strand earlier than the last one in nodes(F), nor say that
they are collinear with it and precede it, nor repeat that their parameters agree
with those on the later node of the same strand. Nor do we need to include both
Unq(v) and UnqAt(n, v). We prefer the former when n is an initial transmission
node, since any ingredient of its message must originate there. Otherwise, the
latter is more informative, so we use that.

Eqn. 3 and the fragment F on the left of Fig. 8 have a very strong rela-
tion. Any fragment that is a homomorphic image of F will satisfy Eqn. 3, by
Lemma 4.3. Indeed, conversely, any fragment that satisfies Eqn. 3 will be a
homomorphic image of F . That is because it must have a responder strand
(including all three nodes) with freshly chosen nonce and uncompromised peer,
to satisfy Eqn. 3. Given the third of these nodes, and its parameters, we know
just how to build the homomorphism. We call F a characteristic fragment
for Eqn. 3, because being a homomorphic image of F characterizes whether a
fragment satisfies Eqn. 3.

Definition 4.9 E is a characteristic fragment for Φ via variable assignment η
iff for every F and assignment θ,

F , θ |= Φ iff there exists a unique H : E ·→ F such that (H ◦ η) ∼Φ θ. (11)

Lemma 4.10 If E and F are characteristic fragments for Φ via η and θ resp.,
then there is an isomorphism H : E ·→ F such that H ◦ η ∼Φ θ.

Proof. Since E is a characteristic fragment and F , θ |= Φ, there is a homomor-
phism H. However, since F is a characteristic fragment, there is a homomor-
phism K : F ·→ E . Since there is only one homomorphisms E ·→ E satisfying
Eqn. 11, and the identity is one, K ◦H must also be the identity. So H is an
isomorphism. ut

Because of Lemma 4.10, we can regard characteristic fragment as a partial
function from conjunctions of atoms to fragments (to within isomorphism). We
write cfragη(Φ) for this partial function. When we say cfragη(Φ) = E , we mean
that it is well-defined, and has value E .

Characteristic fragments and characteristic formulas are connected à la Ga-
lois: When F is a characteristic fragment for a formula Φ, and Φ′ is a charac-
teristic formula for F , then Φ and Φ′ are equivalent. When Φ is a characteristic
formula for F , and E is a characteristic fragment for Φ, then E ·→ F .6

Taking a characteristic formula may discard some information, because GL(Π)
is of limited expressiveness, but taking a characteristic fragment does not.

6Indeed, this map is injective on the nodes, so that F ·→ ni E.

Version of October 8, 2013 53

cfrag(cform(F)) may be properly less informative than F , in the sense that
the homomorphism cfrag(cform(F)) ·→ F is not an isomorphism.

To take the simplest case, suppose that F contains only • {|a|}K← . Then
cform(F) is just Lsn(n) ∧ Hear(n, v), since GL(Π) has no way to say that v is
actually an encryption, rather than any other message. Thus, the characteristic
fragment is • x←, where x is an indeterminate that can be replaced by any
message. In particular, α = x 7→ {|a|}K determines the non-isomorphism from

• x← to • {|a|}K← .

Lemma 4.11 1. If Φ ∈ cformη(F) and cfragθ(Φ) = E, then E ·→ F .

2. When cfragη(Φ) = F and Ψ ∈ cformη(F), then Ψ is equivalent to Φ.

Proof. 1. When Φ ∈ cformη(F), by the definition, F , η |= Φ. Hence if
cfragθ(Φ) = E is well-defined, the definition of characteristic fragment says that
H : E ·→ F exists, where η ∼Φ (H ◦ θ).

2. (a) Ψ entails Φ, because the latter is a conjunction of atomic formulas all
satisfied in F , and Lemma 4.6 ensures that δη(F) entails each of them.

(b) Conversely, we claim Φ entails Ψ: Let ψ be any conjunct of the latter.
F , η |= ψ by the definition of cform. Therefore E , H◦η |= ψ whenever H : F ·→ E .
However, these E , θ are precisely the satisfying interpretations of Φ, by the
definition of cfrag. Thus, ψ is satisfied whenever Φ is. ut

Role-specific Formulas. In fact, cform(F) yields a formula of a special, well-
typed kind, ensuring that cfrag(cform(F)) is actually well-defined. We call for-
mulas like this role-specific formulas.

Definition 4.12 Let Φ be a conjunction of atomic formulas.
A variable n ∈ fv(Φ) is a node variable in Φ if it occurs in some conjunct

of Φ as the argument to a role position predicate RolePosition(n).
A variable v ∈ fv(Φ) is a message variable in Φ if it occurs in the second

argument of a parameter predicate ParamPred(n, v).
Φ is role-specific iff

1. its node variables and message variables partition fv(Φ);

2. only message variables appear as argument to a key function, Unq, Non,
or in the second position of UnqAt; and

3. only node variables appear (a) as arguments to Preceq or Coll, or (b) as
the first argument to UnqAt or a parameter predicate.

All of the characteristic formulas in Section 4.1 are role-specific.

Lemma 4.13 Let Φ be role-specific, with F , η |= Φ. If x is a node variable of
Φ, then η(x) ∈ nodes(F). If x is a message variable of Φ, then η(x) ∈ ALG.

For all skeletons A, δη(A) is role-specific.

Version of October 8, 2013 54

Proof. 1. From the definitions.
2. If A is a skeleton, it has no adversary nodes. So every node n ∈ nodes(A)

satisfies some role position predicate, which therefore appears in δη(A). Ev-
ery parameter satisfies some parameter predicate with one of these nodes. By
the construction of η in Defn. 4.5, this partitions the variables in δη(A). The
remaining conditions follow from the type constraints in the definition of satis-
faction. ut

δη(F) is typically not role-specific for non-skeletons F . For instance, consider a
fragment containing two adversary nodes n,m transmitting basic values, with
n � m. Then δη(F) contains atomic formulas involving Preceq, but no role
predicates that say what regular roles m,n belong to.

Lemma 4.14 Let Φ be a role-specific conjunction of atomic formulas. F , η |= Φ
iff skeleton(F), η |= Φ.

Proof. From right to left, the implication holds because the identity is a
homomorphism skeleton(F) ·→ F .

From left to right, the implication holds because η(x) is a regular node or a
parameter to some regular node, for every x ∈ fv(Φ). Thus, any fact involving
x is preserved in skeleton(F). ut

We now prove that cfrag(Φ) is well-defined for role-specific Φ. However, to do
so, we will need slightly adapted versions of the lemmas [37, Lemmas 3.14–3.15].
A map f is universal in some set of maps F if f ∈ F and, for every f ′ ∈ F ,
there is exactly one g such that f ′ is of the form f ′ = g ◦ f .

Lemma 4.15 Suppose that H : F ·→ E.

1. Suppose that H(a) = H(b) for a, b ∈ ALG. The set of homomorphisms
{K : F ·→ E ′ : K(a) = K(b)} has a universal member K0.

2. Suppose that H(n) = H(m) for n,m ∈ nodes(F). The set of homomor-
phisms {K : F ·→ E ′ : K(n) = K(m)} has a universal member K0.

3. Suppose that H(n) �E H(m) for n,m ∈ nodes(F). The set of homomor-
phisms {K : F ·→ E ′ : K(n) �E′ K(m)} has a universal member K0.

4. Suppose that H(a) ∈ unique(E). The set of homomorphisms {K : F ·→
E ′ : K(a) ∈ unique(E ′)} has a universal member K0.

We will not re-prove this lemma here; adapting the proofs is routine.

Theorem 4.16 If a satisfiable conjunction Φ of atomic formulas is role-specific,
then cfragη(Φ) is well-defined, and is a skeleton, for some η.

Proof. We will assume that Φ is in left-associated form ((φ1 ∧ φ2) ∧ . . .) ∧ φj ,
and that the leftmost occurrence of a node variable is a role position predicate,
and the leftmost occurrence of a message variable is a parameter predicate. We
work by induction on j.

Version of October 8, 2013 55

Base case, j = 0. In this case, Φ is the vacuously true empty conjunction, and
its characteristic fragment is the empty fragment with nodes = ∅, etc. There is
in fact exactly one homomorphism from the empty fragment to any fragment,
so it satisfies the condition for cfrag(Φ). Indeed, it is a skeleton. The variable
assignment η can be any injective assignment.

Induction step. Here we assume that cfragη(Φ) = A is well-defined, and a
skeleton, and we consider the satisfiable, role-specific formula Φ ∧ φj . Since
Φ ∧ φj is satisfiable, there is a fragment F such that F , θ |= Φ ∧ φj . By
Lemma 4.14, skeleton(F), θ |= Φ ∧ φj . Since cfragη(Φ) = A, there is a (unique)
H such that H : A ·→ skeleton(F), and θ ∼Φ H ◦ η.

Since we have H, we may apply the clauses of Lemma 4.15 to H. The
universality of the maps they guarantee is what ensures that their result is
universal for the extended formula Φ ∧ φj . We take cases on the form of φj :

φj is Preceq(m,n): By role-specificity, η(m) and η(n) are nodes in A. Thus,
the desired skeleton B is the target of the homomorphism K of clause 3.

φj is Coll(m,n): By role-specificity, η(m) and η(n) are nodes in A, of the forms
s ↓ k and s′ ↓ `. Assuming w.l.o.g. that k ≤ `, apply clause 2 to s ↓ k and
s′ ↓ k.

φj is Unq(t): Adding η(t) to unique(A), and using clause 4 yields a universal
result.

φj is Non(t): Adding η(t) to non(A) yields the desired result.

φj is UnqAt(n, t): By role-specificity, η(n) is a node in A. Since H(η(t)) ∈
unique(F), it is a basic value. Let p be a path to an occurrence of H(η(t))
within msg(H(η(n))) as an ingredient (i.e., not as an encryption key); and
let p′ be the longest prefix of p that is a path within η(t). If a is the
value occurring at p′ in msg(η(n)), H(a) = H(η(t)). Thus, we may apply
clause 1.

φj is s = t: If η(s), η(t) ∈ ALG, we apply clause 1. Otherwise, by role-specificity,
they are both nodes in node(A). Hence, we may apply clause 2.

φj is RolePos(n): If n ∈ fv(Φ), then there is also an earlier conjunct RolePos′(n)
by role-specificity. If RolePos = τr(ρ, i), then RolePos′ = τr(ρ

′, i), and
we can apply clause 2 i times, once for each of the nodes up to η(n).

If instead n 6∈ fv(Φ), then we make a copy of ρ instantiating its parameters
with values not yet used in A to form strand s, and we put nodes(B) =
nodes(A)∪ {s ↓ k : k ≤ i}. To form η′, we map n 7→ (s ↓ i), and for fv(Φ),
η′ agrees with η.

φj is ParamPred(n, t): There is an earlier conjunct RolePos(n), by role speci-
ficity. Since Φ ∧ φj is satisfiable, there are ρ, i, a such that RolePos =
τr(ρ, i) and ParamPred = τp(ρ, a). Let v be the value of parameter a in
node η(n).

Version of October 8, 2013 56

If t is a variable x 6∈ fv(Φ), then leave A unchanged and let η′ be η with
x 7→ v.

If t ∈ fv(Φ) or if t is g(x) where x ∈ fv(Φ) and g is a key function, then
apply clause 1 to η(t) and v.

If t is g(x) where x 6∈ fv(Φ), then let η′ be η with x 7→ b, where b is a new
parameter of sort principal name. Now apply clause 1 to η′(t) and v.

Each inductive case also determines a variable assignment θ for the formula. ut
By Lemma 4.13 and Thm. 4.16, we can always assume that cfrag(Φ) is defined
when Φ ∈ cform(A). Even if Φ is not itself of the right syntactic form, it is
equivalent to something of the right form, and we will always assume that a
role-specific form has been chosen.

Goal formulas and families of homomorphisms are now equivalent now in the
following sense, using “achievement” and “enforcement.” Achievement means
that the closed formula is true in every realized fragment; enforcement means
that every homomorphism to a realized skeleton factors through some member
of the family (Defns. 1.7 and 4.4).

Our assumption in this theorem that each ψi entails φ is not a significant
restriction. Since φ is already available as a hypothesis in the goal formula,
we could replace any ψi that did not meet this assumption by φ ∧ ψi without
changing the meaning of the formula. Indeed, in case ψi is a characteristic
formula, it is already of this form, as we illustrated in Section 4.1.

Theorem 4.17 Let Π be a protocol and let G ∈ GL(Π) be a formula

∀x . (φ −→ (∃y1 . ψ1) ∨ (∃y2 . ψ2) ∨ . . . ∨ (∃yj . ψj)),

where φ, ψi are satisfiable and role-specific, and each ψi entails φ. Then there
exists a family of homomorphisms

Hi : cfrag(φ) ·→ cfrag(ψi)

based in cfrag(φ) such that

Π achieves G iff Π enforces {Hi}1≤i≤j.

Proof. By Thm. 4.16, cfragη(φ) and each cfragθi(ψi) is a well-defined skeleton.
Since ψi entails φ, the latter is satisfied in cfragθi(ψi). Since cfragη(φ) is a
characteristic fragment, there is a homomorphism Hi : cfragη(φ) ·→ cfragθi(ψi)
such that θi ∼φ Hi ◦ η. We use the family {Hi}1≤i≤j of these homomorphisms.

1. Suppose that Π achieves G and D is a realized Π-fragment. We must
show that if there is a homomorphism K : cfragη(φ) ·→ D, then K factors
through one of the Hi.

If K : cfragη(φ) ·→ D, then D, (K ◦ η) |= φ. Since G is satisfied, one of
the disjuncts ∃yi . ψi must be satisfied too, i.e. D, (K ◦ η) |= ∃yi . ψi.
Thus, for some ζ that differs from K ◦ η only on yi we have D, ζ |=
ψi. Since cfragθi(ψi) is a characteristic fragment, we have the desired
J : cfragθi(ψi) ·→ D such that ζ ∼ψi

J ◦Hi ◦ η.

Version of October 8, 2013 57

2. Suppose that every homomorphism from cfragη(φ) to a realized D factors
through one of the Hi. We must show that D satisfies G.

Suppose that ζ is a variable assignment. If D, ζ 6|= φ, then D, ζ |= φ −→∨
i ψi. So assume D, ζ |= φ. By the definition of characteristic fragment,

there is a K : cfragη(φ) ·→ D such that ζ ∼φ K ◦ η. Factoring K = J ◦Hi,
we have ζ ∼φ J ◦ (Hi ◦ η). So ζ ∼φ J ◦ θi, whence D, ζ |= ∃yi . ψi. ut

Combining this with Thm. 2.5, we have:

Corollary 4.18 Let φ be role specific, and let G be ∀x . (φ −→
∨
i ∃yi . ψi).

Let · ·; · be a pslts, and cfragη(φ) ∈ S(;). Then Π achieves G iff, for every
sufficiently long path

σ = cfragη(φ)
`1
; · · · · · · `k; Ek,

either (i) `k = dead, or else (ii) Ek is realized and, for some i,

Ek, (Hσ ◦ η) |= ∃yi . ψi.

Proof. For each realized D, let σD be a path cfragη(φ);∗ E where E is real-
ized and cfragη(φ)·→E·→D. Apply Thm. 4.17 to the (possibly infinite) family
{HσD}D. ut

Another corollary, due originally to Ramsdell [55, Thm. 2], works in the
opposite direction, constructing a formula from a family that Π enforces:

Corollary 4.19 Let {Hi : A ·→ Ei}1≤i≤j be a family of homomorphisms based
in a skeleton A = cfragη(φ). Let θi = Hi ◦ η; let ψi = cformθi(Ei); and let
yi = fv(ψi) \ fv(φ).

If Π enforces {Hi}1≤i≤j, then Π achieves goal formula

φ −→
∨

1≤i≤j

∃yi . ψi. (12)

Proof. Applying Thm. 4.17 to Formula 12 as G, we generate a family

{Ki : cfragη(φ) ·→ cfragθi(ψi)}1≤i≤j ;

Thm. 4.17 tells us that it suffices for us to show that Π enforces {Ki}1≤i≤j . By
Lemma 4.11, for each i there is an Li such that Li : cfragθi(ψi) ·→ Ei. Moreover,
by the uniqueness in the definition of characteristic fragment, Hi = Li ◦Ki.

Suppose now that D is realized and M : A ·→ D. Since Π enforces {Hi}1≤i≤j ,
M factors through some Hi, i.e. M = J ◦Hi. But now M = J ◦ (Li ◦Ki), so
by associativity M factors through Ki. So Π enforces {Ki}1≤i≤j . ut

In Thm. 4.17 and Cor. 4.19, the finiteness of the index set I = {i : 1 ≤ i ≤ j}
is fundamentally irrelevant. If we enrich GL(Π) to allow infinitary disjunctions,
then the corresponding results hold for infinite I also, by the same arguments.

Version of October 8, 2013 58

4.4 Preserving Goal Formulas

Each T : Π1 → Π2 determines a translation from role specific goal formulas φ of
GL(Π1) into GL(Π2). We define this translation in the simplest possible way,
going through φ one atomic formula at a time and replacing some of the pred-
icate symbols. We use the tables τr and τp for the two languages to determine
how to do this replacement.

By the definition of role specific, Defn. 4.12, if a variable v occurs in φ, then
it is either a node variable or a message variable. A node variable appears in
some role position predicate R(v), and a message variable occurs as the second
argument to a parameter predicate P (n, v).

If R is a role position predicate, then we say that the role position location
of R is (ρ, i) if in the table τr for GL(Π), the entry for (ρ, i) is R. Given φ and
a node variable n in φ, we will say that its role position location in φ is (ρ, i)
if the leftmost role position predicate in φ containing n is R(n), and the role
position location of R is (ρ, i).

If P (n, t) is an atomic formula where P is a parameter predicate and n is a
variable, then we say that P (n, t) has role parameter (ρ, a) in φ if:

• n has role position location (ρ, i) in φ, for some i; and

• in the table τp for GL(Π), the entry for (ρ, a) is P .

If P (t′, t) has a non-variable t′ in the first position, then t′ is the result of a key
function, and the formula P (t′, t) will be false in all interpretations.

Definition 4.20 Let T : Π1 → Π2. The T -translation of a role specific formula
φ is the result of replacing each predicate symbol R within it according to the
following rules:

• If R belongs to the protocol-independent vocabulary =, Preceq, Coll, Unq,
UnqAt(n, v), Non(v), then it is unchanged.

• Suppose R is a role position predicate, and the role position location of R
is (ρ1, i), and let T (ρ1) = ρ2, g, γ.

Replace R with R′, which is the entry in τr for GL(Π2) for ρ2 and g(i).

• Suppose that R is a parameter predicate, and appears in the form R(n, t).
Let R(n, t) have parameter (ρ, a) in φ, and let T (ρ1) = ρ2, g, γ.

Replace R with R′, which is the entry in τp for GL(Π2) for ρ2 and γ(a).

• Suppose that R is a parameter predicate, and appears in the form R(t′, t),
where t′ is not a variable. Then it will be false.

Replace R with any R′ where R′ is a parameter predicate in GL(Π2).

We write T (φ) for the result of this process.
If ∀~x . (φ −→

∨
i ∃~yi . ψi) is a goal formula Γ with role specific φ, we write

T (Γ) for the formula ∀~x . (T (φ) −→
∨
i ∃~yi . T (ψi)).

Version of October 8, 2013 59

We may tacitly repeat the hypothesis φ when it would be convenient: so T (Γ)
means ∀~x . (T (φ) −→

∨
i ∃~yi . T (φ ∧ ψi)), when the ψi are not role specific.

T (φ) is role specific when φ is, and T (Γ) is a goal formula when Γ is.

Definition 4.21 Let T : Π1 → Π2 and A ∈ Skel(Π1), and let η be a variable
assignment η : Var→ nodes(A) ∪ ALG. Let liftT lift nodes(A) to nodes(T (A)).

The extension of η for A, T is the function which, for a variable x, returns
η(x) if the latter is in ALG, and returns liftT (η(x)) if η(x) ∈ nodes(A).

When A, T are clear, we write η for the extension of η for A, T .

Lemma 4.22 Let T : Π1 → Π2, A ∈ Skel(Π1), B ∈ Skel(Π2), and let φ ∈
GL(Π1) be a satisfiable, role-specific conjunction of atomic formulas.

1. cfrag(T (φ)) exists.

2. If A, η |= φ, then T (A), η |= T (φ).

3. If B, θ |= T (φ) and cfragη(φ) = A, then there exists a J : T (A) ·→ B such
that θ ∼φ J ◦ η.

4. T (cfrag(φ)) = cfrag(T (φ)).

Proof. 1. As observed, T (φ) is role specific, so Thm. 4.16 applies.

2. By induction on the structure of the conjunction φ. Essentially, one checks
that Defn. 4.20 matches Defn. 3.4.

3. Define J = [f, α]: For f , let f(η(x)) = θ(x), observing that every strand in
A has a node in range(η), whence every strand in T (A) has a node in range(η).
For α, let a be any parameter of A. Hence, there is some s = β(ρ1) and
b ∈ Params(ρ1) such that a = β(b). Letting f(s) = δ(ρ2), set α(γ(b)) = δ(γ(b)),
where as usual T (ρ1) = ρ2, g, γ.

4. By the previous clause, we have a J : T (cfrag(φ)) ·→ cfrag(T (φ)).
By clause 2, T (cfrag(φ)), η |= T (φ). Thus, Def. 4.9 entails that there is a

K : cfrag(T (φ)) ·→ T (cfrag(φ)). Hence, by the uniqueness in Def. 4.9, J ◦K = Id.
Hence, T (cfrag(φ)) and cfrag(T (φ)) are isomorphic. ut

We now turn to our last main theorem.

Theorem 4.23 (Goal Preservation) Let φ be a role specific conjunction of
atomic formulas. Let ∆: Λ1 → Λ2 be a relabeling function and let T : Π1 → Π2

be a protocol transformation. Let ;1 and ;2 be psltss for Π1 and Π2 resp.,
with cfrag(φ) ∈ S(;1) and T (cfrag(φ)) ∈ S(;2). Suppose

1. T,∆ preserve progress for ;1, ;2;

2. ;1 simulates ;2 under T,∆.

Then for every security goal Γ = ∀x . φ −→
∨
i ∃~yi . ψi, if Π1 achieves Γ, then

Π2 achieves T (Γ).

Version of October 8, 2013 60

Proof. T (Γ) = ∀x . T (φ) −→
∨
i ∃~yi . T (ψi).

Suppose that C is any realized Π2-skeleton, and θ is a variable assignment
into nodes(C) ∪ ALG. If C, θ 6|= T (φ), then C, θ |= T (φ) −→

∨
i ∃~yi . T (ψi).

So suppose C, θ |= T (φ). By Defn. 4.9, there is an H : cfragη(T (φ)) ·→ C,
and θ ∼φ H ◦ η. Moreover,

cfragη(T (φ)) = T (cfragη(φ)),

by Lemma 4.22, Clause 4. So we may apply Thm. 3.9: There is a Π1-realized

B such that cfragη(φ)
σ

;∗1 B, and, for K = T (Hσ),

T (cfragη(φ))
K·→ T (B)

J·→ C.

If Π1 achieves Γ, then for some i, ψi is satisfied in B, i.e. B, ζ |= ψi where
ζ ∼φ (Hσ ◦η). Hence, T (B), ζ |= T (ψi). Moreover, ζ ∼T (φ) (K ◦η). Since homo-
morphisms preserve satisfaction for positive existential formulas (Lemma 4.3),
C, J ◦ ζ |= T (ψi), where J ◦ ζ ∼T (φ) (H ◦ η). ut

Continuing the examples Πi,Πr of Section 3.4, the inclusion transformations
T i : NSL→ Πi and T r : NSL→ Πr immediately ensures that the authentication
and secrecy formulas that cpsa establishes for NSL hold for Πi,Πr. On the same
assumptions, together with Non(v), where v is the data payload parameter, we
can check that v remains secret. I.e. if Lsn(`) ∧ Hear(`, v), then ⊥ follows.

With this result in hand, Thm 4.23 now entails that the same formula holds
of any of the piggybacked data values in any of the family of protocols Πi

t and Πr
t .

This wholesale justification of a class of secrecy properties is a new contribution
of this work.

Future work. We leave a major gap: What syntactic property of T : Π1 →
Π2 ensures that T preserves security goals? A clue comes from the “disjoint
encryption” property [38, 33], cf. [47, 14]. Consider a map E from all encrypted
units used by Π1 to a subset of the encrypted units of Π2. Π2 should create
an encryption α(E(e)) on node n only if n = F (n0) and n0 creates α(e) in
Π1. Likewise, Π2 should remove an ingredient from α(E(e)) only on a node
n = F (n0) where n0 removes an ingredient from α(e) in Π1.

Tool support is also required. cpsa generates some pslts transition rela-
tions. We then construct others, and the simulations, by hand. A variant of
cpsa that would explore two protocols in tandem would be of great interest.

Acknowledgments, and an apology. Thanks to Dan Dougherty, Dusko
Pavlovic, John Ramsdell, Gabrielle Raymond, Paul Rowe, and Javier Thayer.
I presented early versions of this material at FCS-ARPSA-WITS in 2008 and
in Darmstadt in 2010. Thanks to Siraj Sayani and Soumentra Ghosal, whose
hospitality I enjoyed in Coonoor while writing a key part of this paper.

The apology is due to Robert Lowell, who wrote, “Yet why not say what
happened?” My version emphasizes our desire to find the generic range of pos-
sibilities rather than—his concern—the specifics of a recalled lived experience.

Version of October 8, 2013 61

References

[1] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy
types and logic programs. Journal of the ACM, 52(1):102–146, January 2005.

[2] Roberto M. Amadio and Denis Lugiez. On the reachability problem in crypto-
graphic protocols. In Concur, number 1877 in LNCS, pages 380–394, 2000.

[3] S. Andova, C.J.F. Cremers, K. Gjøsteen, S. Mauw, S.F. Mjølsnes, and
S. Radomirović. Sufficient conditions for composing security protocols. Infor-
mation and Computation, 2007.

[4] Michael Backes, Agostino Cortesi, Riccardo Focardi, and Matteo Maffei. A cal-
culus of challenges and responses. In FMSE ’07: ACM Workshop on Formal
methods in Security Engineering, pages 51–60, New York, NY, USA, 2007. ACM.

[5] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A universally compos-
able cryptographic library. Available at http://eprint.iacr.org/2003/015/,
January 2003.

[6] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet,
and James J. Leifer. Cryptographic protocol synthesis and verification for multi-
party sessions. In IEEE Computer Security Foundations Symposium, 2009.

[7] R. Bird, I. Gopal, A. Herzberg, P. A. Janson, S. Kutten, R. Mulva, and M. Yung.
Systematic design of a family of attack-resistant authentication protocols. IEEE
Journal on Selected Areas in Communications, 11(5):679–693, 1993.

[8] Simon Blake-Wilson and Alfred Menezes. Authenticated Diffe-Hellman key agree-
ment protocols. In Selected Areas in Cryptography, pages 630–630. Springer, 1999.

[9] Bruno Blanchet. An efficient protocol verifier based on Prolog rules. In 14th
Computer Security Foundations Workshop, pages 82–96. IEEE CS Press, June
2001.

[10] Dan Boneh. The decision Diffie-Hellman problem. Algorithmic Number Theory,
pages 48–63, 1998.

[11] C. Caleiro, L. Vigano, and D. Basin. Relating strand spaces and distributed
temporal logic for security protocol analysis. Logic Journal of IGPL, 13(6):637,
2005.

[12] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Technical Report 2000/067, IACR, October 2001. Appeared in FOCS,
2001.

[13] Edmund Clarke, Somesh Jha, and Will Marrero. Using state space exploration
and a natural deduction style message derivation engine to verify security pro-
tocols. In Proceedings, IFIP Working Conference on Programming Concepts and
Methods (Procomet), 1998.

[14] Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune. Safely composing
security protocols. In Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS’07), LNCS. Springer, December 2007.

[15] Véronique Cortier, Bogdan Warinschi, and Eugen Zalinescu. Synthesizing secure
protocols. In ESORICS: European Symposium On Research In Computer Secu-
rity, volume 4734 of Lecture Notes in Computer Science, pages 406–421. Springer,
2007.

Version of October 8, 2013 62

[16] Federico Crazzolara and Glynn Winskel. Composing strand spaces. In Pro-
ceedings, Foundations of Software Technology and Theoretical Computer Science,
number 2556 in LNCS, pages 97–108, Kanpur, December 2002. Springer Verlag.

[17] Cas J.F. Cremers. Unbounded verification, falsification, and characterization of
security protocols by pattern refinement. In ACM Conference on Computer and
Communications Security (CCS), pages 119–128, New York, NY, USA, 2008.
ACM.

[18] C.J.F. Cremers. Scyther - Semantics and Verification of Security Protocols. Ph.D.
dissertation, Eindhoven University of Technology, 2006.

[19] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. Abstraction
and refinement in protocol derivation. In IEEE Computer Security Foundations
Workshop. IEEE CS Press, 2004.

[20] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A deriva-
tion system and compositional logic for security protocols. Journal of Computer
Security, 13(3):423–482, 2005.

[21] Anupam Datta, Ante Derek, John C. Mitchell, and Bogdan Warinschi. Com-
putationally sound compositional logic for key exchange protocols. In Computer
Security Foundations Workshop, pages 321–334, 2006.

[22] Dorothy Denning and G. Sacco. Timestamps in key distribution protocols. Com-
munications of the ACM, 24(8), August 1981.

[23] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for
shapes in cryptographic protocols. In Tools and Algorithms for Construction and
Analysis of Systems (TACAS), number 4424 in LNCS, pages 523–538, 2007.

[24] Daniel J. Dougherty and Joshua D. Guttman. Symbolic protocol analysis for
Diffie-Hellman. Arxiv preprint arXiv:1202.2168, 2012. At http://arxiv.org/

abs/1202.2168v1.

[25] Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset
rewriting and the complexity of bounded security protocols. Journal of Computer
Security, 12(2):247–311, 2004. Initial version appeared in Workshop on Formal
Methods and Security Protocols, 1999.

[26] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. Foundations of Security
Analysis and Design V, pages 1–50, 2009.

[27] Marcelo Fiore and Mart́ın Abadi. Computing symbolic models for verifying cryp-
tographic protocols. In Computer Security Foundations Workshop, June 2001.

[28] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security proto-
cols. Journal of Computer Security, 11(4):451–521, 2003.

[29] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. Journal of Computer Security, 12(3/4):435–484, 2004.

[30] Jean Goubault-Larrecq. Towards producing formally checkable security proofs,
automatically. In Computer Security Foundations Workshop, pages 224–238,
2008.

[31] Joshua D. Guttman. Key compromise and the authentication tests. Electronic
Notes in Theoretical Computer Science, 47, 2001. Editor, M. Mislove. URL http:

//www.elsevier.nl/locate/entcs/volume47.html, 21 pages.

http://arxiv.org/abs/1202.2168v1
http://arxiv.org/abs/1202.2168v1
http://www.elsevier.nl/locate/entcs/volume47.html
http://www.elsevier.nl/locate/entcs/volume47.html

Version of October 8, 2013 63

[32] Joshua D. Guttman. Authentication tests and disjoint encryption: a design
method for security protocols. Journal of Computer Security, 12(3/4):409–433,
2004.

[33] Joshua D. Guttman. Cryptographic protocol composition via the authentication
tests. In Luca de Alfaro, editor, Foundations of Software Science and Computation
Structures (FOSSACS), number 5504 in LNCS, pages 303–317. Springer, March
2009.

[34] Joshua D. Guttman. Security theorems via model theory. EXPRESS: Expres-
siveness in Concurrency (EPTCS), 8:51, 2009. doi:10.4204/EPTCS.8.5.

[35] Joshua D. Guttman. Transformations between cryptographic protocols. In
P. Degano and L. Viganò, editors, Automated Reasoning in Security Protocol
Analysis, and Workshop on Issues in the Theory of Security (ARSPA-WITS),
number 5511 in LNCS, pages 107–123. Springer, 2009.

[36] Joshua D. Guttman. Security goals and protocol transformations. In Sebastian
Mödersheim and Catuscia Palamidessi, editors, Tosca: Theory of Security and
Applications, LNCS. Springer, March 2011.

[37] Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique
Cortier and Steve Kremer, editors, Formal Models and Techniques for Analyzing
Security Protocols, Cryptology and Information Security Series. IOS Press, 2011.

[38] Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint
encryption. In Computer Security Foundations Workshop. IEEE CS Press, 2000.

[39] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, June 2002.

[40] Joshua D. Guttman, F. Javier Thayer, Jay A. Carlson, Jonathan C. Herzog,
John D. Ramsdell, and Brian T. Sniffen. Trust management in strand spaces: A
rely-guarantee method. In David Schmidt, editor, Programming Languages and
Systems: 13th European Symposium on Programming, number 2986 in LNCS,
pages 325–339. Springer, 2004.

[41] Mei Lin Hui and Gavin Lowe. Fault-preserving simplifying transformations for
security protocols. Journal of Computer Security, 9(1/2):3–46, 2001.

[42] Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. J. Cryptology, 20(1):85–113, 2007.

[43] John Kelsey, Bruce Schneier, and David Wagner. Protocol interactions and the
chosen protocol attack. In Security Protocols Workshop. Springer, 1998.

[44] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proceeedings of tacas, volume 1055 of LNCS, pages 147–166,
1996.

[45] Gavin Lowe. Casper: A compiler for the analysis of security protocols. In 10th
Computer Security Foundations Workshop Proceedings, pages 18–30. IEEE CS
Press, 1997.

[46] Gavin Lowe. A hierarchy of authentication specifications. In 10th Computer
Security Foundations Workshop Proceedings, pages 31–43. IEEE CS Press, 1997.

[47] Gavin Lowe and Michael Auty. A calculus for security protocol development.
Technical report, Oxford University Computing Laboratory, March 2007.

Version of October 8, 2013 64

[48] C. Meadows. The NRL protocol analyzer: An overview. The Journal of Logic
Programming, 26(2):113–131, 1996.

[49] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol security
analysis. IEEE Transactions on Software Engineering, 13(2):274–288, February
1987.

[50] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In CCS, pages 166–175. ACM, 2001.

[51] Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. CACM, 21(12), December 1978.

[52] Lawrence C. Paulson. Proving properties of security protocols by induction. In
10th IEEE Computer Security Foundations Workshop, pages 70–83. IEEE CS
Press, 1997.

[53] Lawrence C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 1998. Also Report 443, Cambridge University
Computer Lab.

[54] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation
of secure reactive systems. In Proceedings, Seventh ACM Conference of Commu-
nication and Computer Security. ACM, November 2000.

[55] John D. Ramsdell. Deducing security goals from shape analysis sentences. The
MITRE Corporation, April 2012. http://arxiv.org/abs/1204.0480.

[56] John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol
shapes analyzer, 2009. http://hackage.haskell.org/package/cpsa.

[57] John D. Ramsdell, Joshua D. Guttman, Moses D. Liskov, and Paul D. Rowe.
The CPSA Specification: A Reduction System for Searching for Shapes in Crypto-
graphic Protocols. The MITRE Corporation, 2009. In http://hackage.haskell.

org/package/cpsa source distribution, doc directory.

[58] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with finite number
of sessions is NP-complete. In Computer Security Foundations Workshop, pages
174–, 2001.

[59] Peter Selinger. Models for an adversary-centric protocol logic. Electr. Notes
Theor. Comput. Sci., 55(1), 2001.

[60] Dawn Xiaodong Song. Athena: a new efficient automated checker for security pro-
tocol analysis. In Proceedings of the 12th IEEE Computer Security Foundations
Workshop. IEEE CS Press, June 1999.

[61] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Mixed strand
spaces. In Proceedings of the 12th IEEE Computer Security Foundations Work-
shop. IEEE CS Press, June 1999.

[62] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230,
1999.

http://arxiv.org/abs/1204.0480
http://hackage.haskell.org/package/cpsa
http://hackage.haskell.org/package/cpsa
http://hackage.haskell.org/package/cpsa

	Introduction
	Some approaches to protocol analysis
	Our key ideas
	Strands, Bundles, Fragments
	Security Goals

	Enrich-by-Need Protocol Analysis
	Forms of Search
	Cohorts
	Axiomatizing Enrich-by-need
	Some example transition systems

	Protocol Transformations
	Some Protocol Transformations
	Transformations and Homomorphisms
	Preservation via PSLTSs
	Example: Piggybacking Secrets

	Languages for Security Goals
	Security Goals: Some Examples
	The Security Goal Language of a Protocol
	Characteristic Fragments and Formulas
	Preserving Goal Formulas

