
Security Goals and Protocol Transformations?

Joshua D. Guttman

Worcester Polytechnic Institute

Abstract. Cryptographic protocol designers work incrementally. Hav-
ing achieved some goals for confidentiality and authentication in a pro-
tocol Π1, they transform it to a richer Π2 to achieve new goals.
But do the original goals still hold? More precisely, if a goal formula Γ
holds whenever Π1 runs against an adversary, does a translation of Γ
hold whenever Π2 runs against it?
We prove that a transformation preserves goal formulas if a labeled tran-
sition system for analyzing Π1 simulates a portion of an lts for analyzing
Π2, while preserving progress in that portion.
Thus, we examine the process of analyzing a protocol Π. We use ltss
that describe our activity when analyzing Π, not that of the princi-
pals executing Π. Each analysis step considers—for an observed message
reception—what earlier transmissions would explain it. The lts then
contains a transition from a fragmentary execution containing the recep-
tion to a richer one containing an explaining transmission. The strand
space protocol analysis tool cpsa generates some of the ltss used.

1 Introduction

Protocol design is an art of reuse. A few basic patterns for achieving authen-
tication and confidentiality—despite actively malicious parties—are frequently
adapted to new contexts. Designers combine these patterns, piggy-backing values
on top of them, to solve many problems. The transformations modify message
structure; add new transmissions or receptions on a given role; and add entirely
new roles. Constructing protocols may be difficult, particularly for interactions
involving more than two participants: Some data values may be shared among
subsets of the participants, while remaining hidden from the other participants.
Designers use existing protocols as heuristics for parts of the protocol, welding
the parts cleverly together, so that the transformed protocol preserves the goals
achieved by the components, while achieving additional goals.

Our goal here is not to make this cleverness unnecessary, but to explain it se-
mantically. Thm. 2 justifies inferring that a transformed protocol satisfies some
security goals, when the source protocol did. Although a logical result about
models of protocol behavior and the formulas they satisfy, it is a corollary of a
logic-free theorem (Thm. 1). The latter concerns only fragments of protocol ex-
ecutions (called skeletons), the information-preserving maps (homomorphisms)
between them, and some labeled transition systems. These ltss formalize the
? Supported by the National Science Foundation under grant CNS-0952287.

activity of protocol analysis. Reifying the protocol analysis activity into ltss,
and explaining relations between protocols using them, are new in this paper.

Although these results help us avoid verifying the transformed protocol di-
rectly, they also have a deeper value. They suggest design principles for incre-
mental construction of protocols. We expect future work to lead to syntactic
conditions that imply that a transformation preserves security goals. Protocol
design, now a hit-or-miss activity requiring experience and ingenuity, could be-
come a more predictable and possibly tool-supported process.

Structure of this paper. Section 2 introduces two protocols, with two trans-
formations between them, motivating a definition of transformation (Def. 2).
Section 3 analyzes these protocols, illustrating how a transformation can preserve
the activity of protocol analysis. Section 4 axiomatizes these analysis activities,
representing them as labeled transition systems. A simulation-plus-progress re-
lation on ltss ensures that a transformation does not create counterexamples to
security goals (Section 5). Section 6 defines classical first order languages L(Π),
and defines security goal translations. We lift Thm. 1 to satisfaction of goals
(Thm. 2) in Section 7, and comment on related and future work.

Strand Spaces. We work within the strand space theory [18]. A strand is the
sequence of message transmissions and message receptions executed by a single
principal in a single protocol session. Transmission and reception events jointly
are nodes. We will write strands, either horizontally or vertically, as sequences
of bullets connected by double arrows: • ⇒ •. (See [18, Sec. 2.4].)

A protocol Π consists of a finite set of strands, called the roles of the
protocol, possibly annotated with some trust assumptions that we will not need
here. We give each Π a “listener” role, consisting of a single node receiving a
message t, which can witness for the disclosure of t. An instance of a role ρ ∈ Π
results from choosing values from some reasonable algebra M of messages for ρ’s
parameters. We formalize this choice by applying a substitution α to ρ, where
a substitution α means a homomorphism from M to itself. The strand α(ρ)
is the sequence of transmissions and receptions in which each message in ρ is
instantiated according to α. That is, each parameter x appearing in ρ is replaced
by α(x). Each strand α(ρ) is a regular behavior of some principal in Π, i.e. a
local session in which the principal complies with Π. (See [18, Sec. 2.5].)

A fragmentary execution, called a skeleton, consists of a number of regular
strands of Π, or their initial segments. A skeleton A consists of its regular nodes,
equipped with (i) a partial ordering �A, akin to the Lamport causal ordering [22];
(ii) some assumptions unique(A) about freshly chosen values; and (iii) some
assumptions non(A) about uncompromised long term keys. (See [18, Def. 3.1].)

A skeleton A is realized if, whenever n is a reception node in A, an adver-
sary can obtain or construct its message t, without violating the assumptions
unique(A) and non(A). No value assumed freshly chosen should equal a guessed or
independently chosen value. No long term key assumed uncompromised should
be used by the adversary. (See [18, Defs. 3.2–4].) A realized skeleton is a full
execution. When node n receives t, then the adversary obtains t, or can derive
it using transmissions prior to n in the partial ordering �A.

2

Any skeleton A represents a set of realized skeletons B. These are the exe-
cutions in which at least the transmissions and receptions in A have occurred,
possibly made more specific by a substitution α, and node ordering extends
�A. Moreover, the assumptions α(unique(A)) and α(non(A))—i.e. the images of
unique(A) and non(A) under α—must be satisfied.

Definition 1. The concatenation of two messages t0 and t1 is t0ˆt1, and the
(asymmetric) encryption of t using the public encryption key of B is {|t|}pk(B).

The ith node along a strand s, starting from 1, is s ↓ i.
We write t0 v t1 to mean that message t0 is an ingredient in t1, i.e. that

t0 is a subterm of t1 considering plaintexts but not the keys used to prepare
encryptions. That is, v is the smallest reflexive transitive relation such that
t0 v {|t0|}K ; t0 v t0ˆt1, and t1 v t0ˆt1. The key K used in an encryption {|t0|}K
is not an ingredient of it, however, unless it was an ingredient of t0 (contrary to
good practice). For instance, Nb v {|NbˆB|}pk(A), but pk(A) 6v {|NbˆB|}pk(A).

A message t0 originates at a node n iff n is a transmission node, t0 v
msg(n), and for all m such that m ⇒+ n, t0 6v msg(m). Thus, t0 originates at
n when it was transmitted as an ingredient, but was neither transmitted nor
received earlier on the same strand.

If ρ ∈ Π is a role of protocol Π, then instances(ρ) is the set of instances of
ρ, i.e. the set {α(ρ) : α is a substitution}. The (larger) set of strands that agree
with a member of instances(ρ) on the first i nodes is defined: instances(ρ|i) =
{s : ∃r ∈ instances(ρ) .∀j ≤ i . s ↓ j = r ↓ j}. So instances(ρ|i) contains a strand
if it is indistinguishable from a run of ρ while only i events have occurred. If
r ∈ instances(ρ) agrees with s up to i, then r is an instances(ρ|i)-witness for s.

2 Some Protocol Transformations

Init •
��

+3 •

{|N |}pk(B) N

OO

{|N ′|}pk(B′)

��
N ′

Resp • +3 •

OO

Fig. 1. Protocol HD

The Protocol HD. HD, one of the sim-
plest possible authentication protocols, is a
half-duplex, authentication-only subprotocol of
Needham-Schroeder [24]. It is shown in Fig. 1.
HD gives the initiator an authentication guaran-
tee that the responder has participated; it gives
the responder no guarantee. HD does not establish
any shared secret. The top half of the figure shows
the initiator role, first transmitting the encrypted
message for B and then receiving the freed nonce
N . The bottom half shows the responder role, first
receiving the encrypted message and then freeing

and transmitting N ′. A regular strand of HD is any instance of either one of
these roles, using any values for the parameters N,B,N ′, B′. We do not show
the listener role in this or other protocol diagrams, since it is always present,
and simply passively receives a message t.

A skeleton A over HD contains any number of these regular strands, and se-
lects sets of freshness and non-compromise assumptions unique(A) and non(A).

3

A is realized if an adversary can synthesize the message received on each recep-
tion node, using messages transmitted earlier relative to �A, without violating
the assumptions unique(A) and non(A).

The Yes-or-No Protocol. The Yes-or-No Protocol YN allows a Questioner to
ask a question, to which the Answerer gives a private, authenticated reply; YN
is constructed by two transformations of HD. In YN, the question and answer
should each remain secret. Indeed, the protocol should prevent even an adversary
who has guessed the question from determining what answer was given. The
Questioner authenticates the Answerer as supplying an answer. The Questioner
chooses two random nonces, and encrypts them, together with the question. The
Answerer releases the first of the two nonces to indicate a yes, and the second to
indicate a no. No adversary learns anything, since whichever nonce was released,
the questioner was equally likely to have used it in the other position.

The protocol has four roles (Fig. 2). One describes the behavior of a Ques-

QAf •
��

+3 • •
��

+3 • QNg

{|Q1 ˆY1 ˆN1|}pk(B1) Y1

OO

{|Q2 ˆY2 ˆN2|}pk(B2) N2

OO

{|Q3 ˆY3 ˆN3|}pk(B3)

��
Y3 {|Q4 ˆY4 ˆN4|}pk(B4)

��
N4

AnAf • +3 •

OO

• +3 •

OO

AnNg

Fig. 2. The Yes-or-No Protocol YN

tioner receiving an affirmative answer. The second describes the behavior of a
Questioner receiving a negative answer. The remaining two describe the behavior
of an Answerer providing an affirmative and respectively negative answer.

We can view either half of this diagram as a transformation of the protocol
HD. We first rename the nonces N,N ′ of HD to the affirmative nonces Y1, Y3,
to view the left half in this way. We would rename N,N ′ to the negative nonces
N2, N4 for the right half. Before formalizing the transformations, we formalize
these renamings as substitutions (homomorphisms) on the message algebra M.
The renamings, yielding respectively the protocols α1(HD) and α2(HD), are:

α1 = [N 7→ Y1, N
′ 7→ Y3, B 7→ B1, B

′ 7→ B3] and
α2 = [N 7→ N2, N

′ 7→ N4, B 7→ B2, B
′ 7→ B4]

We could alternatively incorporate substitutions such as α1, α2 into the trans-
formations themselves, but at the cost of complicating the already subtle Def. 2.

Protocol Transformations. By a protocol transformation from a source pro-
tocol Π1 to a target protocol Π2, we mean a map from nodes on roles of Π1 to
nodes on roles of Π2. The images of nodes of a single role ρ1 ∈ Π1 all lie along a
single role ρ2 ∈ Π2, so we formalize this with two components: one which selects

4

the correct ρ2, and another which is a function g that maps the index of a node
on ρ1 to the index of its image along ρ2. Thus:

F1 : α1(HD)→ YN sends Init to the Questioner’s Affirmative role QAf. The first
node of Init—the transmission node—is associated with the first node of
QAf, and the second nodes are associated. F1 sends Resp to the Answerer’s
Affirmative role AnAf, preserving node indices.
So F1(Init) = (QAf, Id) and F1(Resp) = (AnAf, Id).

F2 : α2(HD)→ YN acts similarly, with negative target roles. It sends Init to the
Questioner’s Negative role QNg. It sends Resp to the Answerer’s Negative
role AnNg. In both, F2 preserves node indices, so F2(Init) = (QNg, Id), and
F2(Resp) = (AnNg, Id).

These node index functions g are the identity Id, but other transformations use
non-identity gs. For instance, if one principal in YN sent a message before the
messages shown, which the other received before the messages shown, then we
would alter F1, F2 to use λi . i+ 1 to increment each node index.

Our examples have several properties. The node index mapping functions are
order-preserving, and the transformations also preserve the direction of the nodes
(transmission vs. reception). The transmission node n of the HD initiator origi-
nates the value N and this value—as renamed by α1—also originates on F1(n)
(see Def. 1). The reception node m of the HD responder receives N v msg(m),
and we also have α1(N) v msg(F1(m)). Thus, F1 preserves the originated values
and the ingredients of nodes. Similarly, F2 preserves these properties of α2(N).

These properties, with one other, define a protocol transformation. This last
property is vacuously true of F1, F2. It concerns branching, as for instance, in a
transformation F : YN→ Π, QAf and QNg branch after a first node in common.
It says that the result in the target Π should not commit to either branch until
the source behaviors have committed by diverging from each other.

Definition 2 (Transformation). Suppose F maps each role ρ1 ∈ Π1 to a pair
ρ2, g, where ρ2 ∈ Π2 and g : N+ → N+. F is a protocol transformation iff:

1. g is order-preserving and g(length(ρ1)) ≤ length(ρ2);
2. ρ1 ↓ i is a transmission (or resp. reception) node iff ρ2 ↓ g(i) is;
3. Whenever x v msg(ρ1 ↓ i), there exists a j ≤ g(i) such that x v msg(ρ2 ↓ j);
4. Whenever x originates on ρ1 ↓ i, for some j ≤ g(i), x originates on ρ2 ↓ j;
5. Suppose that ρ1 and σ1 ∈ Π1 have a common instance up to i, i.e. α(ρ1) ∈

instances(σ1|i). Let F (σ1) = σ2, h. Then we have g(j) = h(j) for all j ≤ i.
Moreover, α(ρ2) ∈ instances(σ2|h(i)).

3 Security Analysis of HD and YN

Security analysis aims to find what must have happened—or must not have
happened—if a certain situation has arisen. In the case of HD, the relevant
analysis considers what must have happened, when there has been a local session

5

of the initiator role. If its nonce N was freshly chosen, and B’s private decryption
key was uncompromised, what can we be sure has happened?

cpsa [26] is a software tool to answer such questions. It starts with an ob-
ject representing the situation—namely a skeleton A (cf. p. 3)—and generates
enriched skeletons to represent all the complete executions compatible with the
starting point A. In each step it takes, cpsa locates an unsolved test, some re-
ception node that cannot be explained by adversary activity, given the regular
(non-adversarial) activity currently present in the skeleton. For each alternate
piece of regular activity that could help explain the current skeleton, cpsa con-
structs an enriched skeleton; the search branches to explore those enrichments.
When every reception node is explained, and the skeleton is realized, cpsa has
found a leaf in the search (“a shape”).

cpsa implements a labeled transition system. The nodes are skeletons. There
is a transition A `

; Bi if Bi is one of the alternate enrichments that explains
a test ` unsolved in A. All of the Bi that provide alternate solutions to ` are
successors of A with the same label `. A label ` indicates some unexplained
behavior in A that prevents it from being realized; each Bi offers a different
potential way to fix `. Given a protocol Π, security analysis for authentication
and confidentiality goals involving the situation A0 consists of exploring the
portion of the lts for Π accessible from A0.

Analyzing HD. In HD, the relevant starting skeleton is A0, shown on the left
in Fig. 3, where the assumptions—that N was freshly chosen and B’s decryp-

A0 •
��

{|N|}pk(B)//

• Noo

; •

��

{|N|}pk(B)// ≺
{|N|}pk(B) // •

��
• �Noo •Noo

A1

Fig. 3. Goal met by HD, with unique = {N}, non = {pk(B)−1}

tion key is uncompromised—are shown in the caption. cpsa identifies the lower
reception node as unexplained, given the assumptions: how did N escape from
the encryption {|N |}pk(B)? It can be solved in only one way, namely, a responder
strand can extract N and retransmit it as shown. The result of this step, A1, is
now realized, i.e. fully explained.

Since every realized skeleton that enriches A0 must solve this test, it must
be an enrichment of A1. In every situation in which an initiator has acted as in
A0, a responder has had a corresponding local session. This is A’s authentication
guarantee, telling A that B has participated in the session.

Transforming our Analysis under F1, F2. Each transformation F : Π1 7→
Π2 determines a map that lifts any skeleton A of the protocol Π1 to a corre-
sponding skeleton F (A) of Π2. In particular, suppose A contains the first j nodes

6

of a strand s, and s is an instance of a role ρ1 ∈ Π1. Thus, for some substitu-
tion β, s = β(ρ1). When F (ρ1) = (ρ2, g), then F (A) should contain the first
g(j) nodes of a strand F (s). It should be an instance of ρ2 ∈ Π2. Specifically
F (s) = β′(ρ2), where β′ agrees with β on all the parameters appearing in the
first j nodes of ρ1. The remaining parameters of ρ2 are assigned new values,
chosen to be distinct from any of the other values selected for F (A). Since β′

depends on all of A, it would be more accurate to write FA(s) rather than F (s),
although we will not do so.

If we apply first α1 and then F1 mechanically to Fig. 3, we obtain the upper

B0 •
��

{|Q1 ˆY1 ˆN1|}pk(B1)//

•
Y1oo

; •

��

{|Q1 ˆY1 ˆN1|}pk(B1)// ≺
{|Q3 ˆY1 ˆN3|}pk(B1)// •

��
• �

Y1oo •
Y1oo

B1

; •

��

{|Q1 ˆY1 ˆN1|}pk(B1)// ≺
{|Q1 ˆY1 ˆN1|}pk(B1)// •

��
• �

Y1oo •
Y1oo

B2

Fig. 4. A goal met by YN, with unique = {Y1}, non = {pk(B1)−1}

two skeletons in Fig. 4. In B0, the lower node, which is the image of the unsolved
test node of A0, is itself an unsolved test node. Moreover, the new strand in B1

is the image of the one solution in HD. However, B1 is not realized. There is
only one way to complete the search for a realized skeleton, namely to identify
corresponding parameters in the questioner and answerer strands of B1, setting
Q3 = Q1 and N3 = N1. The result is B2.

cpsa generates B2 from B0 in one step, which factors through B1: To realize
B0, one must add the information present in B1, and also the additional informa-
tion that Q3 = Q1 and N3 = N1. In any YN scenario in which B0 has occurred,
the information in B1 also holds. Thus, the security analysis of HD has given us
sound conclusions about YN. We now formalize this relation.

4 What is Protocol Analysis?

In our examples, we started with skeletons A0,B0. They were not large enough
to be realized, i.e. to be executions that could really happen without any extra
regular behavior. We then enriched them to the realized skeletons A1,B2.

Homomorphisms. These enrichments are examples of homomorphisms among
skeletons [18, Def. 3.6]. A homomorphism H : A ·→ B between skeletons of Π
transforms messages in a structure-respecting way, mapping transmission nodes

7

to transmission nodes and reception nodes to reception nodes. A homomorphism
must preserve the ordering relations of the source, and it must preserve its fresh-
ness and non-compromise assumptions. It is an information-preserving map.

Homomorphisms determine a preorder, not a partial order, since A H·→ B J·→ A
does not imply that J ◦ H is an isomorphism. However, if H,J map distinct
nodes of their sources injectively to distinct nodes of their targets, then J ◦H is
an isomorphism (under reasonable assumptions about the algebra of messages).
Thus, these node-injective homomorphisms H : A·→niB determine a partial order
≤ni on skeletons to within isomorphism.

Lemma 1 ([18, Lemma 3.11]). ≤ni is a well-founded partial order. Indeed,
for every B, there are only finitely many non-isomorphic A such that A≤ni B.

Protocol analysis: A search through ·→. Protocol analysis is a search
through part of the preorder ·→. Skeletons A0 determine starting points for
the search; protocol analysis then seeks realized skeletons C such that A ·→ C.
cpsa computes a set of representative realized skeletons we call shapes. Within
the set of all realized B such that A ·→ B, the shapes are the minimal ones in
the node-injective ordering ≤ni [13]. cpsa’s test-and-solution steps form a la-
beled transition system, where A0

`
; A1 means that A0 has an unsolved test

described by the label `, and A1 contains one solution to this test. Figs. 3 and 4
give examples of test-and-solution steps. The lts ; is a subrelation of ·→.

Indeed, most of the search process works in the partial order ≤ni . Although
cpsa’s implementation is somewhat different, its search could be separated into
two phases. After an initial non-node-injective step, all of its test-solving could
take place in the node-injective ordering (see [18, Thm. 6.5]).

Core Idea of this Paper. If F : Π1 7→ Π2, the portion of the lts for Π1

accessible from A0 may simulate the portion of the lts for Π2 accessible from
the Π2 skeleton F (A0). Since the labels on the two transition systems may
differ, in finding the successful simulation, we freely choose a relabeling function
∆ mapping Π1 labels to Π2 labels. A simulation using ∆ progresses iff, whenever
a Π1 skeleton A can take some `-transition, the Π2 skeleton F (A) can take some
∆(`) transition. If for some ∆, we have a simulation that progresses, then F
preserves all security goals concerning the starting situation A0.

We axiomatize the crucial properties of test-and-solution ltss, rather than
defining one as a function of Π. This has two advantages. First, we can establish
goal preservation using finite, often very small, ltss. Second, particularly for Π2,
we can use a finer lts (as in Fig. 4) or a coarser one than cpsa would generate.

Definition 3. Let S be a set of skeletons, and dead ∈ Λ. A ternary relation
· ·; · ⊆ S × Λ× S is a test-and-solution lts or tlts for S,Λ iff:

1. If A ∈ S, then: there exists a B such that A ; B iff A is not realized;
2. If A `

; B, then:
(a) If ` = dead, then A = B and there is no realized C such that A ·→ C;
(b) If ` 6= dead, then A≤ni B and B 6≤niA;

8

(c) For every homomorphism J : A ·→C from A to a realized C, there exists

some B′ such that A `
; B′, and J = K ◦H, where A H·→ B′ K·→ C.

Let S(;) = {A : ∃B .A ; B} ∪ {B : ∃A .A ; B}.

Our tltss have the finite image property, i.e. {B : A `
; B} is finite for all A, `.

The non-dead labels in our applications are triples c, E, n1, where c is a value
received in a new, unexplained form in the node n1. “Unexplained” because in
n1 c is not contained within a set of encryptions E. We call E an “escape set,”
since c has escaped from the protection of the encryptions E before reaching n1.

In Fig. 3, c is the nonce N . E is the singleton set { {|N |}pk(B) }, which is the
one form in which N has been seen. The node n1 is the lower (reception) node
of A0, in which N is suddenly received outside of its encrypted form in E.

For both steps in Fig. 4, c is the nonce Y1, and E is the singleton set
{ {|Q1ˆY1ˆN1|}pk(B1) }, which is the one form in which Nb has been seen prior to
the test nodes n1. In the first step, the test node n1 is the lower (reception) node
of B0, in which Y1 is suddenly received outside of its encrypted form in E. In the
second step, the test node n1 is the upper right (reception) node in B1, in which
Y1 is received packaged with the (possibly distinct) values Q3, N3. The protocol
provides no way to perform this repackaging if Q3 6= Q1 or N3 6= N1, so the
only possible explanation is to equate them. Non-singleton Es arise naturally in
protocols that use a nonce repeatedly, for successive authentication steps.

Lemma 2. Suppose that · ·; · is a tlts, and A ∈ S(;). If A ·→ni C where C
is realized, then there exists a realized B such that A ; ∗ B and B ·→ni C.

This lemma is an instance of Thm. 1, and can be proved by specializing its proof.

Homomorphisms and Transformations. Homomorphisms are preserved by
protocol transformations (Def. 2). Writing Skel(Πi) for the set of skeletons over
Πi, F : Π1 → Π2 determines an image operation Skel(Π1) → Skel(Π2). The
image operation supplies new values for Π2 role parameters that do not appear
in their Π1 preimages, using some convention. We write F (A) for A’s image.

Lemma 3 ([17]). Suppose that F : Π1 → Π2 is a protocol transformation.

1. If H : A ·→ B, for A,B ∈ Skel(Π1), there is a unique F (H) : F (A) ·→ F (B)
that commutes with the image operation.

2. If G : F (A) ·→ F (B) is any homomorphism between skeletons of this form,
then G = F (H) for some H : A ·→ B.

3. If D ∈ Skel(Π2), then {A : F (A)≤ni D} has a ≤ni -maximum in Skel(Π1).

5 The Preservation Theorem

Preserving protocol goals is about tltss for the two protocols. Assume a rela-
beling function ∆ : Λ(Π1) → Λ(Π2). The Skel(Π1) argument determines what
parameters in A to avoid, when choosing new role parameters.

9

Definition 4. 1. F,∆ preserve progress for ;1 and ;2 iff: (a) ` = dead iff

∆(`) = dead, and (b) for every ` ∈ Λ, A `
;1 implies F (A)

∆(`)
;2 .

2. Lts ;1 simulates ;2 under F,∆ iff: whenever F (A) `′
;2 B′ and `′ = ∆(`),

then there exists a B s.t. B′ = F (B) and A `
;1 B.

If F,∆ preserve progress, A ∈ S(;1) implies F (A) ∈ S(;2). There may be
many `′ ∈ Λ(Π2) outside ran(∆), for instance the second step in Fig. 4. In F1, F2,
∆ is determined directly from Fi; in other cases, ∆(`) can use a larger escape
set E than the näıve choice suggested by F .

Theorem 1 Let F : Π1 → Π2, and ∆ : Λ(Π1) → Λ(Π2). Let ;1 and ;2 be
tltss with A ∈ S(;1) ⊆ Skel(Π1) and S(;2) ⊆ Skel(Π2). Suppose that:

1. F,∆ preserve progress for ;1 and ;2;
2. ;1 simulates ;2 under F,∆.

For every Π2-realized C, if H : F (A)·→niC, there
is a Π1-realized B such that A ;1 ∗ B, and the
accompanying diagram commutes.

F (A)

H

''
K

// F (B)
J

// C

A ///o/o/o/o B

Proof. We use induction on the set {D : F (A)≤ni D≤ni C}, since by Lemma 1,
there are only finitely many non-isomorphic D≤ni C, and thus only finitely many
s.t. F (A)≤ni D≤ni C.

A dead: If A dead
;1 , then by progress, F (A) dead

;2 contrary to Def. 3, Clause 2a.
A realized: If A is realized, it is the desired B, with K = IdF (A) and J = H.

Otherwise, for some ` 6= dead, A `
;1 . By progress, F (A)

∆(`)
;2 . By Def. 3,

Cl. 2c, H factors through some member of {E : F (A)
∆(`)
;2 E}, say E0. By

simulation, E0 = F (A′) for some A′ with A `
;1 A′. By Defn. 3, Cl. 2b,

F (A)≤ni F (A′) but F (A′) 6≤niF (A).
Hence, the following proper inclusion eliminates an isomorphism class:

{D : F (A′)≤ni D≤ni C} ({D : F (A)≤ni D≤ni C};
i.e. the cardinality (modulo isomorphism) is reduced. Thus, we can apply
the induction hypothesis to A′ in place of A. ut

Lemma 2 is the special case of Thm. 1 in which F,∆ are the identity functions.
Although Thm. 1 is not about logical formulas, it has a corollary about

security goal formulas for Π1. If the Π2-realized C is a counterexample to a Π1

goal formula, then the Π1-realized B will also be a counterexample to that goal.

6 The Language L(Π) of a Protocol Π

L(Π) is a classical first order language with equality [16].1 A formula

∀x . (φ ⊃ ∃y . ψ1 ∨ . . . ∨ ψj) (1)
1 Although the syntax is simplified from [16], L(Π)’s expressiveness is unchanged.

10

is a security goal if (i) φ and each ψi is a conjunction of atomic formulas, (ii) x
and y are disjoint lists of variables, and (iii) all variables free in any ψi but not
in φ is free in y. Null and unary disjunctions (j = 0 or j = 1) are permitted,
where the null disjunction ⊥ is the constantly false formula.

Since L(Π) says nothing about the structure of Π’s messages, it can express
goals that are preserved when message structure is transformed. It describes
nodes by their role, their index along the role, and the role’s parameters.
L(Π) contains function symbols pk(a), sk(a), and inv(a), for a’s public en-

cryption key; a’s private signature key; and the inverse member of a key pair.

Example 1: L(HD). L(HD) shares some vocabulary with the other L(Π):

Prec(m,n) Unq(v) UnqAt(n, v) Non(v)

expressing node precedence; unique origination of v; unique origination of v at
the node n; and non-origination of v. Its protocol-specific relations are:

AtPos1(s, n) AtPos2(s, n) Init(s) Resp(s) Lsn(s)
Peer(s, b) Self(s, b) Nonce(s, v) Hear(s, v)

The predicates AtPos1 and AtPos2 say that a node n lies at the first or second
position (resp.) on strand s. Init and Resp say that a strand s is an initiator
or responder strand (resp.). Lsn(s) says that s is a listener strand, a purely
receptive strand that can witness that a value is disclosed. Peer says that s’s
name parameter is b, if s is an initiator strand. This name refers to s’s intended
partner. Self says that s’s name parameter is b, if s is a responder strand. This
name refers to the active party in this strand, the owner of the decryption key.
We use Nonce to say that v is the nonce in either type of strand s. Hear says
that s has received the value v, if s is a listener strand. The skeleton A0 of Fig. 3
satisfies the formula Φ0 =

Init(s) ∧ AtPos1(s, n) ∧ AtPos2(s,m) ∧ Peer(s, b)
∧ Nonce(s, v) ∧ Non(inv(pk(b))) ∧ UnqAt(n, v),

when we assign s to the initiator strand shown; assign n and m to its first and
second nodes resp.; assign b to the name B; and assign v to nonce N . If Φ1 =

Resp(s′) ∧ AtPos1(s′, n′) ∧ AtPos2(s′,m′) ∧ Self(s′, b)
∧ Nonce(s′, v) ∧ Prec(n, n′) ∧ Prec(m′,m),

then A1 satisfies Φ0 ∧ Φ1, when we (additionally) assign s′ to the responder
strand shown, and n′,m′ to its first and second nodes resp. The variables b, v
are not primed in Φ1, expressing the agreement of the initiator and responder
strands on these parameters. So Φ0 ⊃ Φ1 is an authentication goal.

Although HD does not achieve any confidentiality goal, we would express it
with a null conclusion, and with the Lsn and Hear predicates in the hypothesis.
Letting ⊥ be the vacuously false null disjunction:

(Init(s) ∧ AtPos1(s, n) ∧ Peer(s, b)
Nonce(s, v) ∧ Non(inv(pk(b))) ∧ UnqAt(n, v)
Lsn(s′) ∧ AtPos1(s′, n′) ∧ Hear(n′, b)) ⊃ ⊥

11

would express the secrecy of b.

L(Π) in General. In the previous paragraphs, we created an intuitive relation
between a particular protocol Π and the predicates of its language. To do the
same thing more generally, we will use a table τ .

The table τ should associate a distinct one place predicate with each role.
For HD, τ mapped the initiator role to the Init predicate and the responder
role to Resp. These are the role predicates. We also have τ associate each pair
of a role and parameter of that role to a two place predicate. For HD, τ mapped
the initiator role and the parameter N to the predicate Nonce; it also maps the
responder role and N ′ to Nonce. These are the parameter predicates. We require
(i) role predicates and parameter predicates are disjoint, and (ii) τ maps different
parameters of the same role to different parameter predicates. For precision, we
could write Lτ (Π) for the language determined by a particular choice of τ , but
the choice of τ makes no semantically relevant difference in security goals.

We add k position predicates AtPos1(s, n), . . ., AtPosk(s, n), where k is the
length of the longest role in Π. L(Π) contains these position predicates, the
shared predicates Prec, Unq, UnqAt, Non, and the predicates in the range of τ .

Classical Semantics of L(Π). Fix a message algebra M. Each skeleton A
for Π determines a model for L(Π) where the domain contains the messages in
M together with the strands and nodes of A. Given an assignment η mapping
free variables to values in the domain, the value η(v) of any term v, involving
variables and functions symbols such as pk, etc., is determined by η and M. The
satisfaction conditions for the predicates are:

A |=η Prec(n, n′) iff η(n) ≺A η(n′);
A |=η Non(v) iff η(v) ∈ nonA;
A |=η Uniq(v) iff η(v) ∈ uniqueA;
A |=η UniqAt(n, a) iff η(v) ∈ uniqueA and η(v) originates at η(n) in A;
A |=η AtPosk(s, n) iff η(n) ∈ nodesA and η(n) = η(s) ↓ k;
A |=η RolePred(s) iff for some j > 0, nodesA contains exactly j nodes of η(s),

and η(s) ∈ instances(ρ|j), where τ(ρ) is RolePred;
A |=η ParamPred(s, v) iff for some j > 0, nodesA contains exactly j nodes of

η(s), and η(s) ∈ instances(ρ|j), and for every instances(ρ|j)-witness α(ρ) for
η(s) has α(a) = η(v), where τ(ρ, a) is ParamPred.

The definition ensures that A |=η φ[s] is never sensitive to the part of η(s) outside
A. As in Def. 2, Clause 5, L(Π) is insensitive to not-yet-executed branch points.

This definition also justifies our claims about Φ0 and Φ0 ∧ Φ1 above. Φ0 is
satisfied in both A0 and A1. Indeed, because Φ0 is a conjunction of atoms, it will
be satisfied in every homomorphic image of A0. Specifically, if H : A0 ·→C, then
composing H with the variable assignment η, we have C |=H◦η Φ0. Moreover,
this is exact: If C |=θ Φ0, then for some H : A0 ·→ C, θ = H ◦ η.

Definition 5. A, η is a Φ-characteristic pair iff (i) A |=η Φ and (ii), for all B, θ,
if B |=θ Φ implies ∃!H . H : A ·→ B and for all x ∈ fv(Φ), θ(x) = (H ◦ η)(x).

A is a Φ-characteristic skeleton iff some A, η is a Φ-characteristic pair.

12

We write A, η = cp(Φ) for the characteristic pair and A = cs(Φ) for the charac-
teristic skeleton, when they exist, since they are unique to within isomorphism.
A0 is the characteristic skeleton of Φ0, i.e. A0 = cs(Φ0), and A1 = cs(Φ0∧Φ1). In
Fig. 3, since every H : A0 ·→ C to a realized skeleton factors through A0 ; A1,
we have demonstrated the goal Γ1 =

∀s, n,m, b, v . (Φ0 ⊃ ∃s′, n′,m′ . Φ1). (2)

Role-Specific Formulas. A variable s appearing in a role predicate in φ, or
as the first argument to a position predicate or a role parameter predicate, is
called a strand variable in φ. A variable n appearing as the second argument to
a role position predicate, or either argument to an order predicate, or the first
argument to an UnqAt predicate, is called a node variable.

A conjunction of atoms φ is role specific if strand and node variables are
disjoint; every strand variable appears in exactly one role predicate; and every
node variable appears in exactly one position predicate. Φ0 and Φ0 ∧Φ1 are role
specific, but Φ1 alone is not. Node variables m,n occur in no position predicate
in Φ1. By associativity and commutativity, a role specific φ can be rewritten so
every leftmost subformula is role specific. That is, φ is equivalent to φ0 ∧ ψ1

where φ0 is role specific, and if φ0 is a conjunction φ1 ∧ ψ1, then φ1 satisfies
the same property recursively. This holds because the role predicate for s can
precede position and parameter predicates for it, and the position predicate for
n can precede Pred and UnqAt predicates for it. As in [16, Thm. 5.2]:

Lemma 4. If φ is role specific, the characteristic skeleton cs(φ) is defined.

If Γ is a goal formula as in Eqn. (1), then we say that Γ is role specific if φ is,
and each of the conjunctions φ ∧ ψi is, where 1 ≤ i ≤ j.

Example 2: L(YN). The language L(YN), like L(HD), has the position pred-
icates AtPos1(s, n) and AtPos2(s, n). It has five role predicates, namely QAf(s),
QNg(s), AnAf(s), AnNg(s), and Lsn(s). Again expressing an intended peer via
Peer(s, b), and an actual identity via Self(s, b), we have five parameter predi-
cates:

Quest(s, q), YesVal(s, v), NoVal(s, v), Peer(s, b), Self(s, b).

Protocol Transformations and Language Translations. Each F : Π1 →
Π2 determines a translation TrF (·) between role specific goal formulas of L(Π1)
and L(Π2). We translate conjunctions by translating each conjunct. Let F (ρ1) =
(ρ2, g). The order and assumption predicates are translated verbatim. For the
remaining predicates, we use the tables τ1 and τ2.

RolePred1(s): If RolePred1 is τ1(ρ1), translate it to τ2(ρ2).
PosPredi(s, n): Because the formula is role specific, there is a single conjunct

RolePred1(s) with the same s. If RolePred1 is τ1(ρ1), then letting the index
j = g(i), the result is PosPredj(s, n).

13

ParamName1(s, t): Again, there is a single conjunct RolePred1(s) with this s,
by role specificity. Let RolePred1 be τ1(ρ1), and ParamName1 be τ1(ρ1, a).
Select the predicate ParamName2 to be τ2(ρ2, a).
If either (i) a does not appear in ρ2, or (ii) for all parameters a of ρ1,
ParamName1 is not τ1(ρ1, a), then the result is vacuously true: s = s ∧ t = t.

If φ∧ψi is role specific, TrφF (ψ) translates ψi the same way, using conjuncts of φ
to provide the specification of the roles. We have ensured that fv(TrF (φ)) = fv(φ)
and fv(TrφF (ψ)) = fv(ψ). So, let TrF (∀x . (φ ⊃ ∃y . ψ1 ∨ . . . ∨ ψk)) be

∀x . (TrF (φ) ⊃ ∃y . TrφF (ψ1)∨ . . . ∨ TrφF (ψk)). (3)

For the goal formula Γ1 describing Fig. 3, TrF1(Γ1) is:

∀s, n,m, b, v . (QAf(s) ∧ AtPos1(s, n) ∧ AtPos2(s,m) ∧ Peer(s, b)
∧ Non(inv(pk(b))) ∧ YesVal(s, v) ∧ UnqAt(n, v)

⊃ ∃s′, n′,m′ . AnAf(s′) ∧ AtPos1(s′, n′) ∧ AtPos2(s′,m′) ∧ Self(s′, b)
∧ YesVal(s′, v) ∧ Prec(n, n′) ∧ Prec(m′,m)).

If η is an variable assignment taking values in A, define η to be the corresponding
assignment taking values in F (A). In particular, η agrees with η for variables
whose value is a message. For variables whose value is a strand or node, we have
η(v) = F (η(v)), so that η is the composition of η with the “image” map from A
to F (A).

Lemma 5. 1. If A |=η φ, then F (A) |=η TrF (φ).
2. If A |=η φ ∧ ψ, then F (A) |=η TrφF (ψ).
3. If B |=θ TrF (φ) and cp(φ) = A, η, then there exists a J such that

J : F (cs(φ)) ·→ B, and θ agrees with J ◦ η on fv(φ).
4. If φ is role specific, then cs(TrF (φ)) exists, and F (cs(φ)) = cs(TrF (φ)).

Proof. 1. We left-associate conjunctions, so that when φ is φ1∧φ2, φ2 is atomic.
We also assume that φ is written in the order defined before Lemma 4, so every
leftmost subformula of φ is also role specific. We use structural induction on φ.
Base case: If φ is the trivially true conjunction with 0 conjuncts, then TrF (φ)
is also the null conjunction, which is true in every structure.
Induction step: Let φ be φ1∧φ2, where the claim holds for φ1, and φ2 is atomic.
When φ2 uses Prec, Unq, UnqAt, Non, or =, the claim follows from the definitions.

If φ2 is a role predicate RoleName(s), η(s) is a strand with at least one node
in A, and all of its nodes in A agree with an initial segment of an instance of
the associated role ρ1. Thus, its F -image in F (A) has at least g(1) nodes in A
and all of its nodes in A agree with an initial segment of an instance of the
corresponding role ρ2. Hence F (A) |=η TrF (φ2). Position predicates are similar.

Let φ2 be a parameter predicate ParamName(s, t). Since φ is role specific, there
is just one RoleName(s) with the same s in φ1, and A |=η RoleName(s). Thus,
TrF (φ2) is the F -corresponding parameter name predicate, and the F -image of
η(s) has the same parameter η(t). Hence, F (A) |=η TrF (φ2).

14

2. TrF (φ ∧ ψ) entails TrφF (ψ), and Clause 1 implies F (A) |=η TrF (φ ∧ ψ).
3. By Lemma 4, cs(φ) exists. By the properties of cs [16], each strand with

nodes in A is η(s) for some distinct s in a role predicate in φ. If A contains i nodes
of η(s), then there is a node position predicate for i, s, and some n. Moreover,
each parameter to the associated role ρ takes an atom or indeterminate as its
value in η(s), not a concatenation or encryption.

We will construct a J : F (cs(φ)) ·→B. J = [φ, α] is defined: φ(η(s)) = θ(s). If
a is a parameter to η(s), then α(a) is the corresponding parameter to θ(s). By
the universality of cs(φ) and of F (A), J = [φ, α] is a homomorphism.

4. By the syntax, TrF (φ) is role specific, so Lemma 4 implies cs(TrF (φ))
exists. By the previous clause, J : F (cs(φ)) ·→ cs(TrF (φ)).

By clause 1, F (cs(φ)) |=η TrF (φ). Thus, Def. 5 entails that K : cs(TrF (φ)) ·→
F (cs(φ)). Hence, by the uniqueness in Def. 5, J ◦K = Id. Hence, F (cs(φ)) and
cs(TrF (φ)) are isomorphic. ut

7 Preserving Security Goal Formulas

Π achieves a goal formula Γ iff, for all realized Π-skeletons C, C |= Γ .

Theorem 2 Let F : Π1 → Π2, and let φ be goal specific with A = cs(φ).
Suppose Π1 achieves the goal Γ = ∀x . (φ ⊃ ∃y . ψ1 ∨ . . . ψj), and assume

there exists a ∆ and tltss ;1 and ;2 as in Thm. 1, i.e. A ∈ S(;1) and

1. F,∆ preserve progress for ;1 and ;2;
2. ;1 simulates ;2 under F,∆.

Then Π2 achieves TrF (Γ).

Proof. TrF (Γ) is ∀x . (TrF (φ) ⊃ ∃y . TrφF (ψ1)∨ . . .TrφF (ψj)). Suppose that C
is any Π2-realized skeleton and θ is a variable assignment.

If C 6|=θ TrF (φ), then C |=θ TrF (φ) ⊃ TrφF (ψ1)∨ . . .TrφF (ψj).
So suppose C |=θ TrF (φ). By Lemma 5, Clause 4, cp(TrF (φ)) = F (A), η. By

Def. 5, there exists H : F (A) ·→ C, and θ |̀ x = (H ◦ η) |̀ x.

Case 1. Suppose that H is node-injective. By Thm. 1, there is a Π1-realized B
such that A ;1 ∗ B and, for some J,K, F (A)

K·→ni F (B)
J·→ni C. By Lemma 3,

Clause 2, K = F (L) for some L : A ·→ B. Thus, B |=L◦η φ.
Since, by assumption, Π1 achieves Γ , it follows that B |=ζ ψi, for some ψi and

some ζ s.t. ζ |̀ x = (L◦ η) |̀ x. By Lemma 5, Clause 2, we can lift this to F (B), so
that F (B) |=ζ TrφF (ψi). Quantifying existentially, F (B) |=F (L)◦ζ ∃y . TrφF (ψi).

Applying J and using K = F (L), we have C |=J◦(K◦ζ) ∃y . TrφF (ψi). Since

J ◦K = H and θ |̀ x = (H ◦ ζ) |̀ x, we have C |=θ ∃y . TrφF (ψi).

Case 2. H is not node-injective. By [18, Thm. 6.5], there is a K0 : F (A) ·→D that
is universal among homomorphisms equating the nodes that H equates, and for
some node-injective H0, H = H0 ◦K0. Apply Case 1 to H0 and D. ut

15

Related Work The safe protocol transformation problem is not new. As an
idea for protocol design, it goes back at least to Bird et al. [5]. In a key special
case, “protocol composition,” it dates from the 1990s [21, e.g.]. In the proto-
col composition case, roles of Π1 also appear unchanged as roles of Π2. Since
Π2 may also have additional roles not in the image of Π2, composition is thus
effectively the case in which Π1 ⊆ Π2. While there has been an extensive lit-
erature devoted to this special case, the more general type of transformation
discussed here has seen very little progress. Our view is that the effects of a syn-
tactic change in message structure on protocol behavior are very hard to predict
(given an active adversary model). This has made it hard to reason about the
full notion of transformation, as opposed to the special case of composition. We
have introduced the tlts as a representation of the protocol analysis problem
to tame this complexity.

Focusing then on protocol composition, it has been very successfully treated
in a cryptographic model. A strong form of composition is reactive simulatabil-
ity [25, 3] or universal composability [7]; weaker forms may still be cryptograph-
ically justified [12].

In the symbolic model, we previously provided a widely applicable and prac-
tically useful criterion [19, 14]. Cortier et al.’s criterion is in some ways broader
but in other ways narrower than ours [8]; cf. [1]. Our [15] covers the union of [19,
8, 1]. From one point of view, the contribution of the present paper is to gener-
alize [15] beyond the composition case.

The Protocol Composition Logic PCL considers refinements that preserve
security goals [11, Thms. 4.4, 4.8]. A specific proof of a goal formula relies on
particular invariants. If a protocol refinement introduces no actions falsifying
these invariants, it preserves the security goal. Although PCL was designed to
support richer forms of transformation, the existing results are essentially con-
fined to the composition case. [11]’s “parallel” and “sequential” composition
amounts to Π1 ⊆ Π2. Datta et al.’s “protocol refinement using templates” [10]
suggested many of our examples.

By contrast with Distributed Temporal Logic [6], L(Π) is intended to be less
expressive about the forms of messages. We wanted to focus only on what is
retained under transformation, which concerns the role parameters rather than
the forms of the messages. Nevertheless, our logic, unlike DTL, being a quantified
logic, satisfaction is undecidable.

Lowe and Auty [23] refine protocols to concrete messages starting from for-
mulas in a Hoare-like logic that represent the effect of messages. Maffei et al. [2]
express the effects of messages by abstract tags, and provide constraints on in-
stantiating the tags by concrete messages.

“Protocol compilers” transform their input automatically. Some start with a
crypto-free protocol, and transform it into a protocol meeting security goals [9,
4]. Others transform a protocol secure in a weak adversary model into protocols
satisfying those goals with multi-session, active adversary [20].

Future work. We leave a major gap: What syntactic property of F : Π1 →
Π2 ensures that F preserves security goals? A clue comes from the “disjoint

16

encryption” property [19, 15], cf. [23, 8]. Consider a map E from all encrypted
units used by Π1 to a subset of the encrypted units of Π2. Π2 should create
an encryption α(E(e)) on node n only if n = F (n0) and n0 creates α(e) in
Π1. Likewise, Π2 should remove an ingredient from α(E(e)) only on a node
n = F (n0) where n0 removes an ingredient from α(e) in Π1.

Tool support is also required. cpsa generates some tlts transition relations.
We then construct others, and the simulations, by hand. A variant of cpsa that
would explore two protocols in tandem would be of great interest.

Acknowledgments. I am grateful to Dan Dougherty, Dusko Pavlovic, John
Ramsdell, Paul Rowe, and Javier Thayer. The simplification of L(Π) vs. [16]
arose from a conversation with Ramsdell. Early versions of some of this material
were presented at FCS-ARPSA-WITS in 2008 and in Darmstadt in 2010.

Thanks to Siraj Sayani and Soumentra Ghosal, whose hospitality I enjoyed
in Coonoor while writing a good part of this paper.

References

1. S. Andova, C.J.F. Cremers, K. Gjøsteen, S. Mauw, S.F. Mjølsnes, and
S. Radomirović. Sufficient conditions for composing security protocols. Infor-
mation and Computation, 2007.

2. Michael Backes, Agostino Cortesi, Riccardo Focardi, and Matteo Maffei. A calculus
of challenges and responses. In FMSE ’07: ACM Workshop on Formal methods in
Security Engineering, pages 51–60, New York, NY, USA, 2007. ACM.

3. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A universally composable
cryptographic library. Available at http://eprint.iacr.org/2003/015/, 2003.

4. Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and
James J. Leifer. Cryptographic protocol synthesis and verification for multiparty
sessions. In IEEE Computer Security Foundations Symposium, 2009.

5. R. Bird, I. Gopal, A. Herzberg, P. A. Janson, S. Kutten, R. Mulva, and M. Yung.
Systematic design of a family of attack-resistant authentication protocols. IEEE
Journal on Selected Areas in Communications, 11(5):679–693, 1993.

6. C. Caleiro, L. Vigano, and D. Basin. Relating strand spaces and distributed tem-
poral logic for security protocol analysis. Logic Journal of IGPL, 13(6):637, 2005.

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Report 2000/067, International Association for Cryptographic Research,
October 2001. Extended Abstract appeared in proceedings of the 42nd Symposium
on Foundations of Computer Science (FOCS), 2001.

8. Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune. Safely composing
security protocols. In V. Arvind and Sanjiva Prasad, editors, Proceedings of the
27th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’07), LNCS, New Delhi, India, December 2007. Springer.

9. Véronique Cortier, Bogdan Warinschi, and Eugen Zalinescu. Synthesizing secure
protocols. In ESORICS: European Symposium On Research In Computer Security,
volume 4734 of Lecture Notes in Computer Science, pages 406–421. Springer, 2007.

10. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. Abstraction
and refinement in protocol derivation. In IEEE Computer Security Foundations
Workshop. IEEE CS Press, 2004.

17

11. Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A deriva-
tion system and compositional logic for security protocols. Journal of Computer
Security, 13(3):423–482, 2005.

12. Anupam Datta, Ante Derek, John C. Mitchell, and Bogdan Warinschi. Compu-
tationally sound compositional logic for key exchange protocols. In Computer
Security Foundations Workshop, pages 321–334, 2006.

13. Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for
shapes in cryptographic protocols. In Tools and Algorithms for Construction and
Analysis of Systems (TACAS), number 4424 in LNCS, pages 523–538, 2007.

14. Joshua D. Guttman. Authentication tests and disjoint encryption: a design method
for security protocols. Journal of Computer Security, 12(3/4):409–433, 2004.

15. Joshua D. Guttman. Cryptographic protocol composition via the authentication
tests. In Luca de Alfaro, editor, Foundations of Software Science and Computation
Structures (FOSSACS), number 5504 in LNCS, pages 303–317. Springer, 2009.

16. Joshua D. Guttman. Security theorems via model theory. EXPRESS: Expressive-
ness in Concurrency (EPTCS), 8:51, 2009. doi:10.4204/EPTCS.8.5.

17. Joshua D. Guttman. Transformations between cryptographic protocols. In
P. Degano and L. Viganò, editors, Automated Reasoning in Security Protocol Anal-
ysis, and Workshop on Issues in the Theory of Security (ARSPA-WITS), number
5511 in LNCS, pages 107–123. Springer, 2009.

18. Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, Cryptology and Information Security Series. IOS Press, 2011.

19. Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint
encryption. In Computer Security Foundations Workshop. IEEE CS Press, 2000.

20. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. J. Cryptology, 20(1):85–113, 2007.

21. John Kelsey, Bruce Schneier, and David Wagner. Protocol interactions and the
chosen protocol attack. In Security Protocols Workshop. Springer, 1998.

22. Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
CACM, 21(7):558–565, 1978.

23. Gavin Lowe and Michael Auty. A calculus for security protocol development.
Technical report, Oxford University Computing Laboratory, March 2007.

24. Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. CACM, 21(12), December 1978.

25. Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of
secure reactive systems. In Proceedings, Seventh ACM Conference of Communica-
tion and Computer Security. ACM, November 2000.

26. John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol
shapes analyzer. In Hackage. The MITRE Corporation, 2009. http://hackage.

haskell.org/package/cpsa; see esp. doc subdirectory.

18

