
Establishing and Preserving Protocol Security

Goals ∗

Joshua D. Guttman

November 5, 2012

Abstract

We take a model-theoretic viewpoint on security goals and how to es-
tablish them. The models are (possibly fragmentary) executions. Security
goals such as authentication and confidentiality are implications over the
geometric fragment of predicate logic, i.e. implications Φ −→ Ψ where
Φ and Ψ are built from atomic formulas without negations, implications,
or universal quantifiers.

Security goals are then essentially statements about homomorphisms
where the source is a minimal (fragmentary) model of the antecedent
Φ. If every homomorphism to a model representing a non-fragmentary,
complete execution factors through a model in which Ψ is satisfied, then
the goal is achieved. This idea suggests validating security goals via a
process of information enrichment.

This idea also clarifies protocol transformation. A protocol transforma-
tion preserves security goals when it preserves the form of the information
enrichment process. We formalize this idea using simulation relations be-
tween labeled transition systems.

1 Introduction

We focus here on the security goals of cryptographic protocols, namely the
properties that they try to achieve to protect their participants. We will examine
a variety of actual protocol goals, observing that they share a common logical
form. This logical form justifies a particular type of search that is capable of
establishing a security goal, or providing counterexamples. The nature of this
search also suggests a way to prove that some protocol transformations preserve
security goals.

∗Supported by the National Science Foundation under grant CNS-0952287. This paper
combines and expands the material of [34, 35, 36].

1

Version of November 5, 2012 2

Logical form of protocol security goals. First, we will examine the confi-
dentiality and authentication goals that protocols are designed to achieve. They
form a fairly wide palette in practical terms, but (formalizing confidentiality as
non-disclosure rather than as indistinguishability) they have a logical form in
common. Namely, they are implications between positive-existential formulas.
This means that they have the form

∀x . (Φ −→ Ψ) (1)

where the formulas Φ,Ψ may use ∧,∨, and ∃, but not ¬, −→ , or ∀. The
observation that authentication and confidentiality goals take this form has a
long prehistory. However, the remainder of the paper shows that this logical
form marks a boundary between goals that can be established using particular
kinds of protocol analysis, and those which—like indistinguishability results—
require an essentially different method.

Protocol analysis as a search. This logical form suggests our second topic.
We regard the implication of Eqn. 1 as suggesting a search. We consider struc-
tures, i.e. first order models, over a particular signature. Some of these models
represent complete executions, containing enough information to explain ev-
ery event included. For instance, for every event in which a message is received,
some event is already contained in the structure in which that message was sent.
Other structures are incomplete, since some events may be unexplained. We will
call these structures fragments, and the self-contained ones realized fragments.

From the point of view of this search, Eqn. 1 is achieved if, starting out
with fragments that satisfy Φ, and exploring their homomorphic images, we
always find that Ψ must become satisfied before any realized fragment (complete
execution) is encountered. This ensures that every complete execution that
satisfies Φ will also satisfy Ψ. Thus, protocol verification may be implemented
as a search through fragments, moving through their homomorphic images.

Transformations and soundness. This search is informative for under-
standing protocol refinement and transformation. Since protocols are rarely
designed from scratch, designers are always working new messages into existing
protocols, or piggybacking new message ingredients, or using existing protocols
as subprotocols.

Some of these transformations, when applied to a protocol satisfying some
security goals of interest, yield protocols that no longer satisfy these goals. They
are unsound transformations relative to these goals. Other transformations are
sound relative to the goals, since the resulting protocol will always satisfy the
goals that the input protocol did. A transformation from Π1 to Π2 is sound for
a set S of goal formulas if Π2 achieves all of the goals in S that Π1 achieves.

Viewing protocol analysis as a search gives a way to separate sound and
unsound protocol transformations. Since the search process for each protocol
forms a labeled transition system (lts) on fragments, we can ask whether one
of these ltss simulates another. A translation from Π1 to Π2 is sound if the

Version of November 5, 2012 3

lts for Π1 simulates the lts for Π2, and the latter can progress whenever the
former can.

The main content of this paper is to provide an integrated account of se-
curity goals and their model theory that leads to this conclusion about sound
protocol transformations. Indeed, the single-protocol result on evaluating goals
via search turns out to follow immediately from this soundness theorem for
transformations. It is simply the instance for the identity transformation from
Π1 to itself.

1.1 Some approaches to protocol analysis

Putting aside approaches motivated by ideas in computational cryptography,
and considering only symbolic methods, there are several main approaches to
protocol analysis. Perhaps the most direct is theorem proving, following Paul-
son [51]. One constructs a theory expressing assumptions about what can hap-
pen in a run of a protocol, and proves theorems about these runs. We followed
that approach in our original strand space work [59, 39], although in a new
model, and without mechanizing the theorem proving, as Paulson did in Is-
abelle. A second approach is to construct a theory of the adversary’s abilities,
interacting with the regular protocol participants. If this theory includes at
least as much as the adversary can actually do, and there is no proof that the
adversary can construct a counterexample to a goal, then the protocol in fact
meets that goal. This method underlies ProVerif [9], which constructs a set of
Horn clauses over-approximating what the adversary can do; if resolution us-
ing these and the goal does not find a contradiction, then the goal is satisfied.
This approach may also be represented fruitfully via type-checking [1, 28, 29].
Selinger developed the adversary-centered approach in a more model-theoretic
form [57]; Goubault-Larrecq [30] subsequently used this idea to automatically
extract proofs that can be mechanically checked.

Another approach works directly with representations of protocol executions,
or partial executions. If protocols are represented within a process calculus,
then their executions are traces for the process terms. Thus, a model-checker
can examine these traces systematically, at least for small numbers of replica-
tions of the protocol roles, seeking misbehaviors. This approach dates back to
Casper [43]. Alternatively, for bounded numbers of sessions, one can explore the
possible executions using symbolic constraints, to observe whether misbehavior
is possible [2, 27, 48, 56].

A variant of this approach applies to unbounded numbers of sessions. We will
call it the enrich-by-need method. Given a partial execution, (i.e. a fragment, in
our current vocabulary), one adds additional behaviors of protocol participants
whenever this would help to complete the fragment to a full execution (i.e. a
realized fragment). The enrich-by-need approach may not terminate, as the
underlying class of problems in undecidable [25].

Enrich-by-need dates back to Millen [47] and Meadows [46], and is still at
the center of Meadows’s approach [26]. Song invented a form of enrich-by-need
adapted to strand spaces in Athena [58]. It was subsequently redeveloped by

Version of November 5, 2012 4

Cremers in Scyther [17]. Their approach introduces both regular behavior and
adversary behavior as needed to explain message receptions that are already
present in a fragment. Alternatively, CPSA [54], cf. [23, 37], uses the authen-
tication test idea. The authentication tests are designed to factor out the ad-
versary behaviors. Thus, CPSA works exclusively with skeletons, i.e. fragments
containing no adversary actions.

The core goal of this paper is to give a logical treatment of enrich-by-need
protocol analysis in strand spaces, focusing on how it represents and establishes
security goal formulas, with an application to protocol transformation.

1.2 Our key ideas

We start by illustrating our key ideas with the simplest possible examples.

Init •
��

+3 •

{|N |}pk(B) N

OO

{|N |}pk(B)

��

N

Resp • +3 •

OO

Figure 1: Protocol HD

The Protocol HD. HD, one of the sim-
plest possible authentication protocols, is a
half-duplex, authentication-only subprotocol of
Needham-Schroeder [49]. It is shown in Fig. 1.
HD gives the initiator an authentication guaran-
tee that the responder has participated; it gives
the responder no guarantee. HD does not estab-
lish any shared secret. The top half of the fig-
ure shows the initiator role, first transmitting the
encrypted message for B and then receiving the
freed nonce N . The bottom half shows the re-

sponder role, first receiving the encrypted message and then freeing and trans-
mitting N . A local run of HD is any instance of either one of these roles, using
any values for the parameters N,B.

Protocol analysis as a search. To formalize authentication for HD, we
consider a fragment of an execution in which there has been a local run of
the initiator. In Fig. 2, we display schematically the result of plugging certain
values into roles, which we treat as templates. Let us assume that B’s private
decryption key pk(B)

−1
is uncompromised, meaning that it will be used only

in accordance with this protocol. We will also assume that in this run, N
was successfully chosen as fresh and unguessable. We write these assumptions
N ∈ unique and pk(B)

−1 ∈ non for reasons we will describe in Section 2. The
fragmentary execution we have just described is shown on the left of Fig. 2 as
F . It is, however, clearly incomplete. The value N is sent inside an encryption
when first created, and then is observed to have escaped from that container.
The adversary cannot expect to come up with it independently; that is part of
the assumption N ∈ unique. The adversary cannot expect to extract it from
{|N |}pk(B); that is the assumption pk(B)

−1 ∈ non.
Therefore a compliant participant must have received the message {|N |}pk(B),

and extracted N . In the protocol HD, this happens in only one way, namely in

Version of November 5, 2012 5

F : •
��

//

• oo

H·→ E : •
��

// // •
��

• oo •oo

Init[B,N] Init[B,N] Resp[B,N]

N ∈ unique, pk(B)−1 ∈ non N ∈ unique, pk(B)−1 ∈ non

Figure 2: HD Authentication Guarantee

a local run of the responder. The result of adding this is shown on the right
side of Fig. 2 as E .

This chain of reasoning summarizes how cpsa analyzes HD [54]. It shows
that any execution that has at least the structure shown on the left side has also
at least the structure shown on the right side. This is an authentication result;
the initiator’s reception of N authenticates that the responder B has received
the encryption with N and extracted it. This process shows four suggestive
characteristics:

1. The map H is a structure preserving map H : F·→ E , and we will introduce
a notion of homomorphism that covers it (Defn. 2.6).

2. H is more specifically a “problem-solution step.” There is a problem in F ,
namely to explain how N escapes from the encryption {|N |}pk(B). In this
example, there is only one way to solve the problem, but in other examples
that are several alternative solutions. We regard problem-solution steps
as forming a labeled transition system. The nodes of the lts are F , E ,
etc. The labels represent the problems. When there are several potential
solutions, the lts branches.

Since there are different ways to organize the problem-solution process
(e.g. cpsa uses a different idea from Athena and Scyther [58, 17]), we
axiomatize the relevant properties of a problem-solution lts in Defn. 6.3.

3. After solving this problem, there are no others to solve. We say that E is
realized. However, many steps may be needed before reaching a realized
diagram.

4. The authentication result that this process establishes is an implication.
It says that if the structure on the left is observed, then all the structure
on the right must in fact be present. This formula would say,

if the initiator has taken both steps, in a local run with parameters B
and N , and pk(B)

−1 ∈ non, and N ∈ unique,

then there exist both steps of a responder local run using the same pa-
rameters.

Version of November 5, 2012 6

{|AˆNa|}pk(B) {|NaˆNb|}pk(A)

��

{|Nb|}pk(B)

init • +3

OO

• +3 •

OO

resp • +3 • +3

��

•

{|AˆNa|}pk(B)

OO

{|NaˆNb|}pk(A) {|Nb|}pk(B)

OO

Figure 3: Needham-Schroeder Protocol NS

This formula talks about the roles, and their parameters, and some prop-
erties of them, though it never says anything specific about the form of
the messages. The forms of the messages are determined automatically
by the protocol definition.

Cor. 6.5 formalizes the way that search in a problem-solution lts can determine
whether a protocol achieves a security goal of this kind.

Transformations and soundness. Our essential insight into protocol trans-
formation is that an incremental design process—transforming simpler protocols
into more complex ones—is sound when it preserves the structure of the source
protocol’s problem-solution lts. Security goals will be preserved when the form
of the protocol analysis process is preserved; the lts is the embodiment of this
protocol analysis process.

To illustrate that point, we now introduce a more complex protocol that
reuses the ideas of HD.

Needham-Schroeder and Needham-Schroeder-Lowe. We can view the
Needham-Schroeder [49] and Needham-Schroeder-Lowe [42] protocols as elab-
orations of the HD pattern. They consist of two roles, an initiator role and a
responder role, which use public key cryptography to agree on a pair of fresh
secret values. A session key for an encrypted conversation may be formed by
combining them, for instance by hashing their concatenation. The messages
exchanged in the protocol take the forms shown in Fig. 3. Lowe’s corrected
protocol NSL is identical, except that the responder’s name B appears in the
second message, which therefore takes the form {|NaˆNbˆB|}pk(A).

The parameters of each of these roles are A,B,Na, Nb, of which the first two
are principal names and the last two are nonces.

Lifting an analysis. We may superimpose HD on top of NS in two natural
ways. First, we may associate the HD initiator with the first two steps of the
NS initiator, and the HD responder with the first two steps of the responder.

Version of November 5, 2012 7

F ′ : •
��

//

• oo

H·→ E ′ : •
��

// // •
��

• oo •oo

Init[A,B,N,Nb] Init[A,B,N,Nb] Resp[A,B,N,N ′b]

N ∈ unique, pk(B)−1 ∈ non N ∈ unique, pk(B)−1 ∈ non

Figure 4: NS Initiator Authentication, lifting Fig. 2

In this mapping, transmissions are mapped to transmissions, and receptions are
mapped to receptions. This mapping seems to explain the authentication that
NS offers to the initiator.

Alternatively, we may associate the HD initiator with the second and third
steps of the NS responder. The HD responder will map to the second and
third steps of the NS initiator. This mapping also respects the direction of
transmission and reception events.

We will explore the first of these two mappings now. The HD treatment
of N seems to explain how NS uses Na to achieve some authentication for the
initiator. In the first case, it seems to explain how NS uses Nb to achieve some
authentication for the responder. Indeed, we can “lift” the fragment F from
Fig. 2 to NS using either of our mappings. In the first mapping, we obtain the
form shown in Fig. 4. On the left, we have simply copied the contents of Fig. 2,
adjusting the HD initiator run to become the first two nodes of an incomplete
NS initiator run. We have left the parameter instances B,N unchanged. For
the additional parameters of the NS initiator role, we have chosen unused, un-
constrained values. The assumptions N ∈ unique, pk(B)−1 ∈ non are likewise
carried over unchanged. On the right, we have done the same with both lo-
cal runs. In particular, the responder strand has an unconstrained parameter,
for which we have chosen the unused value N ′b, making no assumption that
Nb = N ′b.

Curiously, Fig. 4 may also be interpreted directly as a problem-solution step
in NS. Fragment F ′ has a problem, namely to explain how N is received in the
second node outside the encryption {|AˆN |}pk(B), having been sent in this form
only. The adversary cannot achieve this on his own, since the decryption key
is assumed uncompromised, pk(B)−1 ∈ non. The protocol provides only one
way that a compliant principal with extract N from an encryption of the form
{|AˆN |}pk(B), namely the responder’s transmission. The form shown in E ′ is
thus the most general way to solve this problem.

This phenomenon, that the result of lifting a problem-solution step should
yield a problem-solution step in the transformed protocol is the core observation

Version of November 5, 2012 8

in our treatment of sound transformations. We formalize it in terms of the ltss
of the two protocols. If Π1 is the source protocol and Π2 is the target protocol,
we want two properties to hold:

1. When a configuration in Π1 has a problem and therefore needs a solution,
the lifted configuration in Π2 should have a corresponding problem;

2. Given corresponding problems, each solution in Π2 should be the lifting
of some solution in Π1.

The first says that Π2 should provide enough problems; the latter says that it
should solve them only in corresponding ways. The first is a progress condition
on the lifted lts; the latter says that the original lts should be able to simulate
the behavior of the lifted lts, at least with regard to corresponding problems.
Π2 may of course pose additional problems that will also have to be solved
before possible executions are found. (See Thm. 7.8.)

There is one other major layer in this paper, as motivated by characteris-
tic 4, p. 5. That is to provide a logical formalism to express the security goals of
authentication, confidentiality, forward secrecy, etc. This language needs to be
selected so that the goals can be expressed in forms that will respect protocol
transformations. The example we have just considered tells us that the goal
language should focus on transmission and reception events, and their param-
eters. It should remain mute on the forms of messages, since we would like
to allow message forms to change as much as possible in protocol transforma-
tions. Indeed, what we have just learnt is that it is the problems and solutions
that must be preserved, for soundness, not necessarily the forms of messages.
The resulting languages GL(Π) match very well with the lts of problems and
solutions (as formalized in Cor. 6.5), and with the idea that sound protocol
transformations should lift analyses (Thm. 7.12).

Reifying the protocol analysis activity into ltss, and explaining relations
between protocols using them, are new in this paper.

Although our results help us avoid verifying the transformed protocol di-
rectly, they also have a deeper value. They suggest design principles for incre-
mental construction of protocols. We expect future work to lead to syntactic
conditions that imply that a transformation preserves security goals. Proto-
col design, now a hit-or-miss activity requiring experience and ingenuity, could
become a more predictable and possibly tool-supported process.

Structure of this paper. We start (Section 2) by introducing the terminol-
ogy for the strand space model on which we will rely, illustrating it with the
familiar Needham-Schroeder and Needham-Schroeder-Lowe protocols. In Sec-
tion 3, we survey a wide variety of security goals, including various flavors of
confidentiality and authentication, showing how they can be viewed as falling
into the form of Eqn. 1, and illustrating the central role of homomorphisms in
formulating security goals.

Section 4 introduces the first order languages of goals explicitly, and provides
their semantics. Implicit in our examples are the notions of a characteristic for-

Version of November 5, 2012 9

mula for a fragment, and a characteristic fragment for a formula. We introduce
these notions in Section 5. With this in hand, we can justify enrich-by-need
protocol analysis as a method for resolving security goals of the form given in
Eqn. 1 (Section 6). We complete our program with a study of protocol trans-
formations in Section 7. Some retrospective comments on what we have found,
and its relation to other results, and found in Section 8.

2 Strands, Bundles, Fragments

We here summarize oft-used strand space vocabulary, and introduce the new
notion of a fragment. As a familiar example, we use the Needham-Schroeder pro-
tocol [49]. For more information about strands and protocol analysis, see [37].

An Algebra of Messages. In this paper, we will regard the messages as
forming an algebra ALG. Many alternatives to this particular message algebra
are possible. ALG is an order-sorted algebra with the following six sorts. The
first five are disjoint subsets of the last:

principal names, used to name protocol participants;

nonces, used when a principal chooses a value intended to be fresh;

data, used to represent payloads and other auxiliary message components;

symmetric keys, for ciphers;

asymmetric keys, used for asymmetric operations such as public key cryp-
tography and digital signatures;

messages, a top sort which includes all values in ALG.

ALG populates each of these sorts with an infinite supply of primitive values.
We will refer to the primitive values of sort message

We assume that asymmetric keys are equipped with an inverse operation,
such that (K−1)−1 = K. Two asymmetric keys form a key pair if they are
inverses of each other.

We extend the asymmetric keys by the two constructors, pk(A) and privk(A)
which for any principal name A, returns a distinct asymmetric key disjoint from
the parameters. They represent A’s public encryption key and private signature
key, respectively. Their inverses are respectively A’s private decryption key and
the public verification key for A’s signed messages. It is easy to augment these
constructors with others, e.g. for the symmetric long term key shared between
two participants in a shared-key protocol such as Kerberos. We write these key
constructors in sans serif font.

These values—apart from the indeterminates—are the basic values. That is,
a basic value is a name, nonce, or datum, or else a symmetric or asymmetric key.
These keys include both parameters and also the range of a key constructor.

Version of November 5, 2012 10

The algebra of messages ALG is built from the basic values and indetermi-
nates by the following operations, which act freely:

pairing, the pair of t0 and t1 being written t0 ˆt1;

encryption, the encryption of t0 using t1 being written {|t0|}t1 ;

hashing, the hash of t being written hash(t); and

digital signature, the digital signature of t0 using t1 being written [[t0]]t1 .

We extend the key inverse operation to all messages by stipulating that if t is
any message other than an asymmetric key, then t−1 = t. The encryption {|t1|}t2
is a symmetric encryption if t2 is a symmetric key, meaning that t2

−1 = t2 may
also be used to decrypt a message of this form.

We will assume for now that some public key infrastructure allows each
principal to determine the other’s public encryption key.

For uniformity, we often regard a hash hash(t) as if it were the hash of a well-
known value v using t as a key, i.e. {|v|}t. We also often regard a digital signature
[[t0]]t1 as a pair {|hash(t0)|}t1 ˆt0 of an encrypted hash with the message t0. To
verify the signature means to decrypt the first component and check that the
result matches the hash of the second component. With these representations
in mind, we will often ignore digital signatures and hashes in proofs below,
concentrating only on encryptions and pairs.

Substitutions α are functions on parameters. A substitution maps indeter-
minates to any messages in ALG; it maps nonces, data, and key parameters to
values of the same sorts. The action of α on a message t, producing α(t), is
defined by extending it homomorphically through the operators of t, subject to
the rule that (K−1)−1 = K.

This algebra has the most general unifier (mgu) property [55]: If two mes-
sages t0, t1 have a common instance α(t0) = α(t1), then there is a most general
solution α0. This means that α0(t0) = α0(t1), and for every common instance
γ(t0) = γ(t1), γ = β ◦ α0 for some β.

Strands via Needham-Schroeder. For the sake of simplicity, we will use the
familiar Needham-Schroeder [49] and Needham-Schroeder-Lowe [42] protocols.
(See Fig. 3.)

The parameters of each of these roles are the basic values A,B,Na, Nb, of
which the first two are principal names and the last two are nonces.

Each row of bullets, connected by double arrows • ⇒ • · · · is a strand,
representing the sequence of message transmissions and receptions in a single
local session of the protocol. The direction of the associated single arrow →
distinguishes transmissions from receptions. The message patterns (written here
on the top and bottom lines) indicate contents to be sent or received. We write
msg(n) for the message sent or received on the node n, while dmsg(n) is its
direction and message, which we write +t for transmission of t and −t for
reception of t.

Version of November 5, 2012 11

We write s ↓ i to refer to the ith node of the strand s. We assume that
messages, strands, and nodes all form pairwise disjoint sets.

We regard each of the two strands separately as a template. The instances
of the template are the sequences of messages we obtain if we fill in suitable
values in place of its parameters A,B,Na, and Nb. The instances are called
strands also; a strand serving as template is called a role.

We assume that the parameters such as A,B,Na, Nb are written in a fixed
order for any particular role. The instances of a role are all the strands that
result by applying substitutions α that specify, for each parameter v, what value
α(v) to replace it with.

We often label a strand using notation like Init[A,B,Na, Nb], indicating what
role it is an instance of, and the parameters, or what values have been substi-
tuted for the parameters. A pair of strands Init[A,B,Na, Nb] and Resp[C,D,Na, N

′
b]

have the same value selected for the third parameter, but different values for
the remaining parameters.

We also assume that every protocol contains one special role that we will
call the listener role. The listener role consists of a single reception node • x←
which can receive any message as an instance of the indeterminate parameter
x. The purpose of a listener strand is to witness for the fact that the message
x was available to be received. For instance, if the message y was intended

to be a secret, then the listener strand • y←, which instantiates the listener
role with this message y, witnesses for the fact that message y was available
as transmitted without any cryptographic protection. Thus, they are useful for
expressing confidentiality goals.

A particular execution may include any number of instances of one of these
roles, or of their initial segments, e.g. the first two nodes of the initiator or
responder role. And it may contain the same or a different number of instances—
with the same or different values plugged in—of the other role. These non-
adversary strands, in which a compliant principal follows the protocol, are called
regular strands.

Definition 2.1 Π is a protocol iff Π is a finite set of strands ρ, called the
roles of the protocol, including the listener role. We assume that if x is an
indeterminate (parameter of message type) and x occurs in a transmission node
ρ ↓ i, then for some reception node ρ ↓ j with j < i, x v msg(ρ ↓ j). That is,
parameters of unconstrained message type are acquired on reception nodes.

Π also associates two sets of parameters of base sort with a role ρ, called
role unique(ρ) and role non(ρ).

We use role unique(ρ) and role non(ρ) in defining when a partial execution (“frag-
ment”) is permitted under the protocol Π (Defn. 3.2).

Fix a protocol Π such as Needham-Schroeder for the rest of this section. NS
and all the protocols we discuss here use role unique(ρ) = role non(ρ) = ∅. If
ρ ∈ Π is a role, then params(ρ) is the set of parameters occurring in ρ.

Version of November 5, 2012 12

• a→ t1

��

t2

��

{|t1|}t2

• +3 • +3 •

OO

• +3 • +3 •
��

{|t1|}t2

OO

t2
−1

OO

t1

t1

��

t2

��

t1 ˆt2

• +3 • +3 •

OO

• +3 • +3

��

•
��

t1 ˆt2

OO

t1 t2

Figure 5: Adversary Roles: Generate basic value; encrypt and decrypt; concate-
nate and separate

The Adversary. An execution may also contain various instances of certain
adversary roles that codify the basic abilities of the adversary.

The adversary (see Fig. 5) may originate a basic value a, in a one-node

strand • a→. It may also engage in a three-node strand that receives a value t1
to be used as plaintext; then a value t2 to be used as encryption key; and then
transmits the encryption {|t1|}t2 . Another adversary role receives an encrypted
value and its corresponding decryption key, after which it transmits the enclosed
plaintext. The decryption key corresponding to K—written K−1—is equal to
K if K is a symmetric cryptographic key. If K is one member of an asymmetric
key pair, then K−1 is the other key in this pair.

Adversary strands can also pair together two received messages; or, having
received a pair, transmit each component of the pair separately. The adversary
can also produce a digital signature given the signature key and the message to
sign, and can verify a signature and retrieve the signed message. It can generate
a hash for a given message.

Bundles. An execution is pieced together from a finite set of these regular
and adversary strands (or their initial segments). Two nodes may be connected
with a single arrow • → • when the former transmits a message, and the latter
receives the same message directly from it. This leads to the notion of bundle,
meaning a causally well founded graph built using strands:

Definition 2.2 Let G = 〈N ,→E ∪ ⇒E〉 be a finite, directed acyclic graph
where (i) n1 ⇒E n2 implies n1 ⇒ n2, i.e. that n1, n2 are successive nodes on
the same strand n1 = s ↓ i and n2 = s ↓ i+ 1; and (ii) n1 →E n2 implies that
n1 is a transmission node, n2 is a reception node, and msg(n1) = msg(n2).
G is a bundle if:

1. If n1 ⇒ n2, and n2 ∈ N , then n1 ∈ N and n1 ⇒E n2; and

2. If n2 is a reception node, there exists a unique n1 ∈ N such that n1 →E n2.

G is an open bundle if:

Version of November 5, 2012 13

•
{|AˆNa|}pk(C) //

��

•
��
•

{|AˆNa|}pk(B) // •
��

•
��

•
{|Na ˆNb|}pk(A)oo

��

•
{|Nb|}pk(C) // •

��
•

{|Nb|}pk(B) // •

Figure 6: A Bundle in the NS Protocol, with adversary actions compressed

{|AˆNa|}pk(C)// •
��

•
pk(C)−1

// •
��
• AˆNa // •

��
•

pk(B)
// •
��
•
{|AˆNa|}pk(B)//

{|Nb|}pk(C)// •
��

•
pk(C)−1

// •
��
• Nb // •

��
•

pk(B)
// •
��
•
{|Nb|}pk(B)//

Figure 7: Adversary strands for Fig. 6

1. If n1 ⇒ n2, and n2 ∈ N , then n1 ∈ N and n1 ⇒E n2; and

2. If n2 is a reception node, there is at most one n1 ∈ N such that n1 →E n2.

If G is a bundle or open bundle, then �G is the causal partial order of reach-
ability, defined to equal (→E ∪ ⇒E)∗, and ≺G is the strict partial order (→E

∪ ⇒E)+.

The principle of bundle induction is crucial for all reasoning about protocols:

Proposition 2.3 Suppose that B = 〈N ,→E ∪ ⇒E〉 is a bundle, and S ⊆ N is
a non-empty set of nodes. Then S contains �B-minimal elements.

We often write n ∈ G when we mean n ∈ N , where G = 〈N ,→E ∪ ⇒E〉. If
every node n on a strand s is in G, then we say that s has full height in G. The
G-height of s is the number of nodes on s that are in G.

For an example bundle, see Fig. 6, in which however for want of space we
have not written out the adversary strands in full. The necessary adversary
strands are shown separately in Fig. 7. In each part of Fig. 7, four strands
are shown. Two are of length 1, and represent the adversary transmitting to
himself keys he knows, namely his own private decryption key pk(C)−1 and B’s
public encryption key pk(B). The other two strands are first a decryption strand
and then an encryption strand. This is typical of the way that the primitive
adversary strands fit together to build up useful attacks.

Version of November 5, 2012 14

Ingredients and Origination. We use a notion of message contents that
covers the plaintext but not the key in an encryption. We write v (“is an
ingredient of”) for the smallest reflexive, transitive relation such that:

1. t1 v (t1 ˆt2) and t2 v (t1 ˆt2);

2. t1 v {|t1|}t2 .

By contrast, t2 6v {|t1|}t2 unless (anomalously) t2 v t1.
We say that t originates on a node n if n is a transmission node, and t v

msg(n), and for all n0, if n0 ⇒+ n, then t 6v msg(n).
Thus, t originates at n if n transmits t, and t was neither transmitted nor

received earlier along the strand of n. We regard a basic value a as occurring
freshly in a bundle B if it originates at just one node of B. In this case, a was
chosen by a participant, without having the bad luck that any other principal
selected the same value independently. We call a basic value a uniquely orig-
inating in B if there exists exactly one node n ∈ B such that a originates at
n.

A key is regarded as uncompromised in B if it originates nowhere. We call
a basic value a non-originating in B if there exists no node n ∈ B such that a
originates at n. It may still be used in B even if it does not originate anywhere,
since the regular strands may receive and send messages encrypted by K or K−1,
thus using K for encryption and decryption (resp.). Identifying non-originating
keys with uncompromised ones is justified by this proposition:

Proposition 2.4 Suppose that B is a bundle, and n ∈ B. If t v msg(n), then
there exists an m ∈ B such that t originates on m. Cf. [59].

Suppose K is non-originating in bundle B. There is no encryption strand
of full height in B which transmits any message of the form {|t|}K . There is
no decryption strand of full height in B which receives any message of the form
{|t|}K−1 and transmits t.

We use the terms non-originating and uniquely originating only in the case of
basic values a, not compound values t1 ˆt2 or {|t|}K .

We occasionally write � for the smallest reflexive, transitive relation that
is closed under the rules for v and also:

3. t� {|t0|}t.

Both� and v are subrelations of the usual relation of occurring in, defined via
the inductive generation of the messages. For instance, A occurs in privk(A)−1,
but A 6� privk(A)−1. In fact, if a, b are basic values, then a� b implies a = b.

Fragments. In protocol analysis, our aim is to find out what the protocol
allows to happen in its bundles. However, to carry out protocol analysis con-
veniently, we would like to work with objects that are incomplete executions.
We can then fill them in gradually to infer representatives of the different kinds

Version of November 5, 2012 15

of protocol executions (bundles). We will call these objects fragments. Previ-
ous authors have called similar objects semibundles [58], open bundles [16], and
patterns [17]. Our skeletons, of which much more later, are also related [37].

Although a fragment need not contain enough transmission events to be
causally well-founded, it does impose constraints on what events may be added
to obtain a relevant completing bundle. These are ordering constraints, which
may impose an ordering on nodes that are not yet connected by a path; and
origination constraints, i.e. that some basic values must remain at most uniquely
originating, and that some must remain non-originating.

Definition 2.5 Let G = 〈N ,→E ∪ ⇒E〉 be an open bundle. Let �⊆ N × N
be a partial order on the nodes. Let unique, non be finite sets of basic values.
F = 〈G,�, unique, non〉 is a fragment iff:

1. (→E ∪ ⇒E) ⊆�;

2. If a ∈ unique then:

(a) For some node n ∈ N , a v msg(n);

(b) If a originates at node n0 ∈ N , then

i. if a also originates at node n1 ∈ N , then n0 = n1;

ii. if a v msg(n1) for n1 ∈ N , then n0 � n1;

3. If a ∈ non, then:

(a) For some node n ∈ N , a� msg(n) or a−1 � msg(n);

(b) For all nodes n ∈ N , a 6v msg(n);

A fragment F = 〈G,�, unique, non〉 is realized if G is a bundle.

Since ⇒E is completely determined by N , we will often write a fragment
〈〈N ,→E ∪ ⇒E〉,�, unique, non〉 in the form 〈N ,→E ,�, unique, non〉. We will
also write nodes(F) to refer to the set N of nodes, and regnodes(F) to refer to
the nodes that are regular, not adversary, nodes.

If F is a fragment, then the set params(F) of parameters of F contains all
the images of parameters of roles ρ ∈ Π that F uses. That is:

params(F) = {α(a) : (α(ρ) ↓ i) ∈ nodes(F) ∧ a occurs in ρ ↓ i}.

Homomorphisms between fragments. A homomorphism is a structure-
preserving map. In our case, we represent a homomorphism between fragments
by two components, namely a substitution to be applied to the messages and
a map from the nodes of the source to nodes of the target. The substitution
determines the message on a target node, given the message on a source node.

Definition 2.6 Let F1,F2 be fragments, with F1 = 〈N1,→1,�1, unique1, non1〉
and F2 = 〈N2,→2,�2, unique2, non2〉. Let α be a substitution; and let f be a
map f : nodes(F1)→ nodes(F2). Then H = (f, α) is a homomorphism if:

Version of November 5, 2012 16

1. n is a transmission node or respectively a reception node iff f(n) is;

2. α(msg(n)) = msg(f(n));

3. n1 ⇒ n2 implies f(n1)⇒ f(n2);

4. m1 ⇒ f(n2) implies for some n1, m1 = f(n1) and n1 ⇒ n2;

5. n1 →1 n2 implies f(n1)→2 f(n2);

6. n1 �1 n2 implies f(n1) �2 f(n2);

7. α(unique1) ⊆ unique2;

8. α(non1) ⊆ non2; and

9. If a ∈ unique1 and a originates at n1 ∈ N1, then α(a) originates at f(n1).

We write H : F1 ·→ F2 when H is a homomorphism from F1 to F2.
When α, α′ agree on all the parameters appearing in F1, then [f, α] = [f, α′];

i.e., [f, α] is the equivalence class of pairs under this relation.
We sometimes use H to refer to its components, writing (e.g.) H(n) to

mean f(n) or H ◦ β to mean α ◦ β, when H = [f, α] and n ∈ nodes(F).
H = [f, α] is an inclusion map if f is the identity function. In this case, α

is also the identity, i.e. H = [Idnodes(F), Idmsgs(F)].
F is a subfragment of E if there is an inclusion H : F ·→ E.
H is an isomorphism if there is a homomorphism K such that K ◦H = Id.
When H = [f, α] : F1 ·→ F2, and f is an injective function from nodes(F1)

to nodes(F2), then we call H node-injective, and write H : F1 ·→ ni F2

The identity on a fragment F is always a homomorphism from it to itself, and
the composition of two homomorphisms is a homomorphism.

Isomorphisms (or homomorphisms generally) depend only on the part of a
strand that is actually in a fragment. Suppose, for instance, that a fragment
F contains the first i nodes of a strand s, and these nodes send and receive
(respectively) the same messages that are sent and received on the first i nodes
of another strand r. The strands s and r may however do incompatible things
after their first i nodes. Suppose F ′ results from F when we surgically excise
the nodes of s, and implant the corresponding nodes of r in their place. Then
this operation is an isomorphism from F to F ′, even if the i+ 1st node of s is
incompatible with the i+ 1st node of r.

In this sense, a fragment is only sensitive to the transmit/receive behavior
of the nodes that lie within it. The fragment is not sensitive to what role these
nodes were instantiated from. In the example above, s and r may be instantiated
from different roles, which behave differently after the first i nodes, but this role
may differ in isomorphic fragments.

Version of November 5, 2012 17

3 Security Goals: Some Examples

In this section, we will examine some examples of security properties, showing
that they may be viewed as implications of the form of Eqn. 1. These examples
will also clarify the underlying signature of the language of security goals.

We will set aside distinguishability properties. A distinguishability property
is about the relation between different executions. To distinguish a real value
r from a randomly chosen fake value f (for instance) the adversary considers
whether—among executions compatible with his observations—those that use
r are more probable than those using f . This is not a property that is true or
false in any one execution; rather, it is a property about the set of executions
(with a distribution on that set). Thus, we cannot give a semantic treatment of
distinguishability properties by considering individual executions of a protocol
as models.

Indeed, our study in this paper is essentially defined as what we can establish
about protocols by the formulas that are true in each individual execution,
viewed as a model in the sense of first order logic.

This includes authentication; confidentiality in the sense of non-disclosure
of values; and related properties of a single execution. Indeed, many relevant
security goals can be expressed easily in statements of the form of Eqn. 1. They
include forward secrecy, and resistance to attacks in which the adversary gets a
regular participant to re-adopt an old, now-compromised key. They also include
resistance to impersonation attacks, in which the adversary impersonates B to A
when B’s long term secrets are not compromised, although A’s own secrets are.
Implicit authentication, an important goal of some Diffie-Hellman protocols, is
also of this form [24].

In this section, we will illustrate several of these properties, thereby explain-
ing the vocabulary we work with, and how executions satisfy or provide coun-
terexamples to formulas using that vocabulary. We use the Needham-Schroeder
and Needham-Schroeder-Lowe protocols as our example protocols. We will also
translate our diagrams into formulas, thereby introducing the protocol goal lan-
guages GL(NS) and GL(NSL).

Authentication. We can specify a classic authentication goal by giving two
fragments, with a homomorphism between them. We start with a fragment
representing an assumed configuration, e.g. that the responder has had a run
of the protocol. In this configuration, we must also stipulate freshness and
non-compromise assumptions. The assumptions that matter in this particular
example are Nb ∈ unique and pk(A)−1 ∈ non. B’s authentication guarantee
that A has engaged in this session with him depends on B’s assumption that
A’s private decryption key is uncompromised, and also that B’s nonce is fresh
and unguessable. We illustrate the authentication goal if Fig. 8. There is a
similar goal starting from an initiator strand.

Our convention is to box the strands in fragments, to set them off visually.
Fig. 8 expresses the claim that—starting from the fragment on the left, contain-
ing just a responder strand and assuming freshness for Nb and non-compromise

Version of November 5, 2012 18

F : // •
��
•
��

oo

// •

H·→ E : •
��

// // •
��

•
��

oo •
��

oo

• // // •

Resp[A,B,Na, Nb] Init[A,B,Na, Nb] Resp[A,B,Na, Nb]

Nb ∈ unique, pk(A)−1 ∈ non Nb ∈ unique, pk(A)−1 ∈ non

Figure 8: Responder’s Authentication Guarantee

for pk(A)−1—every execution exhibits at least the structure shown in the frag-
ment on the right. More formally, every homomorphism J : F ·→ D, where D
is any realized fragment, factors through H. In particular, there exists some
K : E ·→ D such that J = K ◦H.

So any execution D which contains a responder strand with a fresh nonce and
uncompromised peer also contains an initiator strand; moreover, the initiator
strand and responder strand agree on the respective values for their parameters.

The white space in the diagram of E is, so to speak, pregnant, not empty.
The goal is making an assertion about the possibly much larger execution D,
in which there may be many runs of the protocol. Some of these may be be-
tween A and B; others, between one of them and a new principal C, possibly
compromised; and yet others between new principals. Keys in these other ex-
ecutions may be compromised or not, and nonces may be sometimes freshly
chosen and sometimes stale. Some sessions may be incomplete and some local
runs unmatched. However, what Fig. 8 asserts is that these other sessions make
no difference: No matter what goes wrong elsewhere, on the assumptions shown
in F , the desired behavior shown in E is sure—at least—to be present.

This security goal is not achieved by NS; indeed, Fig. 6 shows a counterex-
ample. The map that embeds F into Fig. 6 cannot factor through H, because
the initiator strand in Fig. 6 contains the parameter C for its peer, in con-
trast to the responder’s parameter B. In every homomorphic image of E , the
two strands agree on this parameter. Lowe’s corrected protocol NSL [42] does
achieve the goal, though.

We may express this authentication goal as a formula by writing out the
contents of the two fragments in Fig. 8 in formulas. The fragment F on the left
shows a contains a responder strand, with assumptions on two of its parameters.
We will also mention its other parameters, because we will use them soon. Since
a fragment containing the third node n will necessarily contain n’s predecessors,
we can simply say that the third node appears, thereby entailing that it also
has two predecessors. However, we would like to mention the second node m,
because we will assert that the nonce Nb originates uniquely at m. Thus, this

Version of November 5, 2012 19

formula characterizes F :

RespThd(n) ∧ RespScd(m) ∧ Coll(m,n) ∧
Peer(n, a) ∧ Self(n, b) ∧ MyNonce(n, c) ∧ YourNonce(n, d) ∧ (2)

Non(inv(pk(a))) ∧ UnqAt(m, c).

Here, n,m are variables that in this formula refer to nodes; a, b are variables
that refer to principal names; and c, d are variables that refer to nonce values.
The first two atomic formulas say that n,m are a third node of a responder
strand and a second node of one. Coll(m,n) says that they are “collinear” in
the sense of lying on the same strand. The next line describes their parameters.
The parameter a represents the peer of n, and b represents its own identity. The
nonce c is the one chosen on the strand itself, and d is the one received on the
first message. The last line expresses the assumptions on the key and nonce,
namely that my nonce is uniquely originating and originates at node m, and
that your private decryption key is non-originating.

All this is still true in E on the right, which also contains an initiator strand
with matching parameters. We write this (incorporating Eqn. 2) in the form:

(2) ∧ InitThd(n′) ∧
Self(n′, a) ∧ Peer(n′, b) ∧ YourNonce(n′, c) ∧ MyNonce(n′, d) (3)

In particular, the security goal expressed in Fig. 8 is an implication, namely:

(2) −→ ∃n′ . (3) (4)

Observe that this formula is not valid in all fragments; for instance, its hypoth-
esis is satisfied in F , but its conclusion is not. However, can we make a realized
fragment that satisfies Eqn. 2, but without also satisfying Eqn. 3?

If so, Π achieves the goal in Fig. 8. NSL achieves it, though not NS.
NS does achieve something, namely the weaker authentication goal shown

in Fig. 9. There is only one difference between Fig. 8 and Fig. 9, namely that
the initiator’s intended peer is any B′, not necessarily the same B. Fig. 9 yields
the formula

(2) −→ ∃n′, b′ . (6) (5)

where the conclusion uses the weakened formula:

(2) ∧ InitThd(n′) ∧
Self(n′, a) ∧ Peer(n′, b′) ∧ YourNonce(n′, c) ∧ MyNonce(n′, d) (6)

in which the peer b′ may be different from b. This is too weak a goal if the
protocol is also intended to preserve the secrecy of the nonces Na, Nb, as we
consider next.

This framework easily accommodates Lowe’s insight that authentication
properties are partially ordered. In fact, one goal is at least as strong as another
if (in the first) the set of parameters shared between the original strand and the

Version of November 5, 2012 20

F : // •
��
•
��

oo

// •

H·→ E : •
��

// // •
��

•
��

oo •
��

oo

• // // •

Resp[A,B,Na, Nb] Init[A,B′, Na, Nb] Resp[A,B,Na, Nb]

Nb ∈ unique, pk(A)−1 ∈ non Nb ∈ unique, pk(A)−1 ∈ non

Figure 9: Responder’s Weak Authentication Guarantee

one whose presence is inferred is a subset of shared parameters in the second [44].
Thus, the partial order is simply the partial order of entailment among the right
hand side (RHS) formulas, as they vary with a fixed assumption on the LHS.
However, Lowe’s injective agreement properties do not concern the same LHS,
because they would then involve the quantifier “there exists uniquely,” ∃!, in
the conclusion, which is not positive existential. ∃! contains a hidden universal
quantifier. Instead, we find below that we can represent them with a different
LHS.

In more complex protocols, disjunctive authentication goals are also possible.
For a particular starting point F , there may be a number of homomorphisms
H1 : F ·→ E1, . . . ,Hk : F ·→ Ek such that every execution compatible with F
exhibits at least the structure shown in one of the fragments Ei. More formally,
every homomorphism J : F ·→ D, where D is any realized fragment, factors
through one of the Hi; i.e. there exists some i ≤ k and some K : Ei ·→ D such
that J = K ◦ Hi. Then a participant in the fragment F knows that—in any
execution that his actions could be part of—all the facts in some Ei occur in this
execution. This situations lead to authentication goals with disjunctive RHSs.

Secrecy Goals. To express secrecy goals, we make use of listener strands.
We have assumed that every protocol contains a particular role, the listener
role, which consists of a single reception node, receiving a message x, i.e. • x←.
To express that a value such as Nb may be compromised in a given situation,

we simply instantiate the listener role, and add a listener strand • Nb← to the
fragment representing that situation.

Having formed a fragment F by adding a listener strand to express the
compromise, we can assert that secrecy is preserved by saying that F does not
extend to a realized fragment. That is, if D is any realized fragment, then
F6·→D.

As an example, Fig. 10 shows a fragment F containing a responder strand,
with the assumptions that both private decryption keys are uncompromised,
and that the nonce is freshly chosen and unguessable. By the symbol 6·→ ·, we

Version of November 5, 2012 21

F : // •
��

• Nboo •
��

oo

// •

6·→ ·

Resp[A,B,Na, Nb]

Nb ∈ unique, pk(A)−1, pk(B)−1 ∈ non

Figure 10: Secrecy for Responder’s Nonce

mean to convey that there is no realized fragment D such that F·→D.
This security goal is in fact not achieved by NS, as Figs. 6–7 illustrate. That

is, if we add a listener strand • Nb← to those figures, then we can clearly connect
that strand to the middle transmission node on the right side of Fig. 7. This
shows a way to map F into a realized fragment.

However, NSL does achieve the goal F 6·→ ·.
The essential difference between an authentication goal and a secrecy (“non-

disclosure”) goal is not the listener strand. Rather, it is the number 0. An
authentication goal identifies a fragment F and 1 or more homomorphisms
H1, . . . ,Hk. It asserts that any homomorphism from F to a realized factors
through one of the Hi. A non-disclosure goal is simply the case k = 0, in which
homomorphism from F to a realized fragment factors through a member of the
empty set of homomorphisms; i.e. there are none.

In fact, there are useful non-disclosure goals that do not involve listener
strands. For instance, in a three-party protocol, two participants may agree on
a value that should not be disclosed, neither to an outsider nor to the third party.
The non-disclosure to an outsider is natural to express via a listener strand. The
non-disclosure to the third party may be expressed by adding strands for this
party with the sensitive value as one of the parameters. If these fragments do
not extend to realized fragments, then the third party can not end up receiving
the sensitive value in any execution.

Using the predicate Lsn(`) to say that ` is a listener node, and Hear(`, c) to
say that the value heard on ` is c, we may express the content of the fragment
F in Fig. 10 (again incorporating Eqn. 2) in the form:

(2) ∧ Lsn(`) ∧ Hear(`, c) ∧ Non(inv(pk(b))) (7)

and the secrecy goal has this as its premise, and asserts that it cannot occur.
Its conclusion is the empty disjunction ⊥.

(7) −→ ⊥. (8)

Version of November 5, 2012 22

F : •
��

// // •
��

•
��

oo •
��

oo

• // // •

H·→ E : •
��

// // •
��

•

��

�oo •

��

oo

• // � // •

Init[A,C,Na, Nb] Resp[A,B,Na, Nb] Init[A,C,Na, Nb] Resp[A,B,Na, Nb]

Na, Nb ∈ unique, pk(A)−1 ∈ non Na, Nb ∈ unique, pk(A)−1 ∈ non

Figure 11: A Recency Goal for NS

It is achieved in NSL but not NS. That is, Eqn. 7 is satisfied in no realized
fragment for NSL.

Recent Key Generation. Some protocols fail to ensure that a session key
was recently generated. In these protocols, an adversary can cryptanalyze an old
key, often a lengthy process, and then coerce a regular participant to re-adopt
it for a new session [22]. Thus, one would often like to assert—and prove—
that when a participant B adopts its key, then not only does the intended peer
A have a matching local session, but that matching local session overlaps B’s
session in time. The first part of this is an authentication goal, and the second
part is a recency goal [31].

For this purpose, we use the fragment’s causal partial order �. We continue
to choose our examples from the NS responder’s point of view, in Fig. 11. Here,
we assume a fragment F containing a responder strand and a partially match-
ing initiator strand, as in the right side of Fig. 9. In this fragment, no ordering
relations are assumed to hold between nodes on different strands. The conclu-
sion asserts that the causal partial ordering holds between two pairs of nodes,
ensuring that two nodes on the right hand strand “bracket” the corresponding
nodes on the left hand strand. This recency goal is in fact achieved by the NS
protocol.

Here, in the conclusion, what we are adding to the formula 3 are the two
precedence assertions, and to express one of them, we need to be able to refer
to the second node of the initiator strand.

(3) ∧ InitScd(m′) ∧ Coll(m′, n′) ∧ Preceq(m,m′) ∧ Preceq(n′, n) (9)

The recency goal then takes the form:

(3) −→ ∃m′ . (9) (10)

Implicit Authentication. Implicit authentication is an important goal of a
group of protocols that use the Diffie-Hellman idea to achieve key agreement [8].

Version of November 5, 2012 23

F : •
��

// // •
��

•
��

oo •
��

oo

• // // •

H·→ E : •
��

// // •
��

•
��

oo •
��

oo

• // // •

Init[X,Y,Na, Nb] Resp[A,B,Na, Nb] Init[A,B,Na, Nb] Resp[A,B,Na, Nb]

Na, Nb ∈ unique, pk(A)−1 ∈ non Na, Nb ∈ unique, pk(A)−1 ∈ non

Figure 12: An Implicit Authentication Goal

The idea of implicit authentication is that if any peer shares the session secrets
with me, then that principal is A. Thus, we again start with a fragment with two
strands, as with our recency goal Fig. 11. However, in this case we will have the
two strands agree on the session secrets, and have different name parameters for
the principals. The security goal is for the protocol to ensure—in this case—that
the strands must in fact agree on the principal names, as shown in Fig. 12. This
asserts that every realized fragment must in fact identify X = A and Y = B.

Here, we may express this by an implication in which the conclusion is a
pair of equations. The hypothesis describes F :

RespThd(n) ∧ RespScd(m) ∧ Coll(m,n) ∧ InitThd(n′) ∧
Peer(n, a) ∧ Self(n, b) ∧ MyNonce(n, c) ∧ YourNonce(n, d) ∧

Self(n′, x) ∧ Peer(n′, y) ∧ YourNonce(n′, c) ∧ MyNonce(n′, d) ∧ (11)

Non(inv(pk(a))) ∧ UnqAt(m, c) ∧ Unq(d).

It is enough to state Unq(d) because the initiator’s nonce always originates on
its first node, since this is a transmission node. Then the implicit authentication
goal takes the form

(11) −→ x = a ∧ y = b (12)

Although NS does not achieve this goal, NSL does achieve it. NSL also
achieves the related goal where we assume Nb ∈ unique and pk(A)−1, pk(B)−1 ∈
non. That is, it suffices to assume both nonces uniquely originating, and the
peer’s decryption key is non-originating; or, alternatively, to assume that both
decryption keys are non-originating, and one’s own nonce is uniquely originating.

Forward Secrecy. A protocol offers forward secrecy if subsequent compro-
mise of the principal’s long term secrets cannot cause disclosure of an earlier
session key. A protocol such as NS or NSL cannot achieve forward secrecy, be-
cause the private decryption keys are the only protection against disclosure of
the secrets Na, Nb. If, say, pk(A)−1 is subsequently disclosed, an adversary who
has recorded the earlier encrypted messages will recover the secrets.

Version of November 5, 2012 24

s1 • +3 • +3 • +3

• Koo

s2 • +3 • +3 • +3

• +3 • +3 •

i i i i i i i i i i i i i

• Koo •
pk(A)−1

oo •
pk(B)−1

//

Figure 13: Weak and strong forward secrecy (resp.): these diagrams have no
homomorphisms to realized fragments

Suppose we were to modify NSL to transport Diffie-Hellman values. The
initiator A would choose a value x, and use the exponentiated value gx mod p
as its nonce Na. The responder B would choose a value y, and use the expo-
nentiated value gy mod p as its nonce Nb. The protocol allows each principal to
authenticate the source of its peer’s value. If for a suitable prime p and some
reasonable g < p they use

(Na)y mod p = K = (Nb)
x mod p

as a session key, K will be shared only with the other. By the Decisional
Diffie-Hellman assumption [10], subsequent compromise of the decryption keys
discloses nothing about K.

There are two different ways that one might formalize the intuition, that
subsequent compromise of the long-term keys should not disclose a session key
K. Both of them are in fact secrecy goals, as they say that there are no homo-
morphisms from a fragment to any realized fragment.

One is that if two regular strands both yield the same session key K, then
K is not disclosed. On this formalization, the purpose of the long-term secrets
is simply to ensure authentication, meaning that the two regular strands are
present. So long as that holds, forward secrecy is the non-disclosure property
saying that a listener strand for K is impossible, as shown on the left in Fig. 13.

A somewhat stronger notion of forward secrecy stresses the word subse-
quently. One local session occurs, and the compromise of the long term keys
happens after that session is finished: Can the adversary then retrieve the ses-
sion key?

The easiest way to formalize this is to enrich the protocols with an additional
role, the blab role • x→ which simply transmits a value x. It is dual to the listener
role.

Now, we formalize this idea in a diagram in which the long term secrets
pk(A)−1, pk(B)−1 are transmitted after a session issuing in session key K com-
pletes. Moreover, we assume that the long term secrets are uniquely originat-
ing. This implies that they cannot have been used before the session completed,
which is exactly the intended force of considering a subsequent compromise.

Fig. 13 illustrates this situation on the right. The slanted dotted line sep-
arates past from future, meaning that any event northwest of the dotted line

Version of November 5, 2012 25

F : •
��

// •
��

// // •
��

•
��

oo •
��

oo •
��

oo

• // • // // •

H·→ E : •
��

// // •
��

•
��

oo •
��

oo

• // // •

Na, Nb ∈ unique, pk(A)−1 ∈ non Na, Nb ∈ unique, pk(A)−1 ∈ non

Figure 14: An Injectiveness Goal

occurs before any event southwest of it. This ordering relation between the end
of the strand and the points of disclosure is essential to the idea.

We may express the content of this fragment in the formula:

(2) ∧ Lsn(`) ∧ Hear(`, k) ∧
Unq(inv(pk(a))) ∧ Unq(inv(pk(b))) ∧
Blab(m1) ∧ Said(m1, inv(pk(a))) ∧ (13)

Blab(m2) ∧ Said(m2, inv(pk(b))) ∧
Preceq(n,m1) ∧ Preceq(n,m2)

where the goal is (13) −→ ⊥.

Injective agreement. Lowe [44] also formalized the idea that there can be
only one strand corresponding to a given strand, e.g. involving the same nonces.
We formalize this as in Fig 14; it says that in any realized fragment that is an
H-image of F , the two strands on the left have been identified by the homomor-
phism H. Fig. 14 also asserts an equality, but, unlike implicit authentication,
an equality between nodes:

. . . InitThd(n′) ∧ InitThd(n′′) . . . −→ n′ = n′′.

Although we have illustrated these types of goals with a specific pair of
protocols, namely NS and NSL, these diagrams and their variants appear to
capture a wide variety of properties that many protocols attempt to achieve.

Curiously, the diagrams in this section never involve adversary nodes. In-
stead, they use only regular nodes, which include listener nodes and blab nodes.
Moreover, although they use the precedence order �, they never involve single
arrow links between nodes • → •. Thus, they are skeletons [37]:

Definition 3.1 A fragment F = 〈N ,→E ,�, unique, non〉 is a skeleton if (i)
→E= ∅, and (ii) N contains only regular nodes (and no adversary nodes).

If E = 〈N ,→E ,�, unique, non〉 is any fragment, then the skeleton skeleton(E) =
〈N ′, ∅,�, unique, non〉 where N ′ ⊆ N contains only its regular nodes.

A skeleton A is a realized skeleton if there is some realized fragment E such
that skeleton(E) = A. We generally write skeletons in blackboard font, e.g. A,B.

Version of November 5, 2012 26

Thus, a skeleton is a realized skeleton if we can obtain a realized fragment by
adding only adversary nodes to N and edges to →E .

Since all the security goals actually concern homomorphisms between skele-
tons, skeletons are thus the natural objects that security goals are talking about.
Nevertheless, some approaches to protocol analysis build realized skeletons from
given skeletons as “starting points” by generating fragments that are not skele-
tons along the way, including both regular and adversary activity.

A protocol enforces a security goal, represented via homomorphisms as in
the figures above, if all realized fragments permitted by that protocol resulting
from the starting point do so by a homomorphism that factors through the given
homomorphisms.

Definition 3.2 Let Π be a protocol. F is a Π-fragment if F is a fragment, and

1. if a regular strand s has nodes in nodes(F), then s = α(ρ), for some
substitution α and some role ρ ∈ Π;

2. if a ∈ role unique(ρ) and n = α(ρ) ↓ i ∈ nodes(F), then if α(a) occurs in
msg(n), then α(a) ∈ unique(F); and

3. if a ∈ role non(ρ) and n = α(ρ) ↓ i ∈ nodes(F), then if α(a) occurs in
msg(n), then α(a) ∈ non(F).

{Hi}i∈I is a family of homomorphisms based in F iff, for each i ∈ I, Hi : F·→ Ei
is a homomorphism with the source fragment F .

Let {Hi}i∈I be a family of homomorphisms based in F .
Π enforces {Hi}i∈I iff every homomorphism from F to a realized Π-fragment

D factors through some Hi. That is, iff, for every realized Π-fragment D and
homomorphism K : F·→D, there exists an i ∈ I and a homomorphism J : Ei·→D
such that K = J ◦Hi.

Thus, Π enforces a family of homomorphisms if every homomorphism from its
source to a realized fragment has to “factor through” one of the homomorphisms
in that family, or “go by way of” one of them. All the examples considered in
this section use either a singleton or the empty set as the index set I, but that
is certainly not always the case. The fragments Ei that are the targets of the
Hi are not required to be realized; we require only that if D is realized, then
the homomorphism to it factors through an Hi.

4 The Security Goal Language of a Protocol

Our next task is to define a language GL(Π) in classical first order logic with
equality for each protocol Π, to express goals like those considered in Section 3.
The diagrammatic goals are all expressed by implications between geometric
formulas of GL(Π), i.e. by formulas of the form of Eqn. 1. This allows us
to verify and falsify them by exploring the homomorphisms from a particular
fragment F , observing the forms of realized fragment that they lead to.

Version of November 5, 2012 27

We design our language not to express too much. We would like some
protocol transformations to be able to preserve the security goals of a source
protocol. Since these transformations may change the forms of the messages, we
will set up GL(Π) so that it does not describe the forms of the messages. Since a
transformation may add message transmissions and receptions, we ensure that
GL(Π) expresses the main facts about nodes without needing to state their
positions on strands. Instead, GL(Π) talks about which events on which regular
roles have occurred, and which values were the instances of the parameters.

In addition, it has predicates to express the precedence ordering, and the
unique and non properties, and equality, but not much more.

Our language concerns only the nodes and their parameters and the relations
among them. It does not specifically talk about strands; it says only that some
nodes lie on the same strand as each other (they are “collinear”).

Given any formula of the form of Eqn. 1, we can use α-renaming, quantifier
rules, and the rules for disjunction on the left and conjunction on the right to
transform it to a set of formulas of the form:

∀x . (φ −→ (∃y1 . ψ1) ∨ (∃y2 . ψ2) ∨ . . . ∨ (∃yj . ψj)) (14)

where: (i) φ and each ψi is a conjunction of atomic formulas, and (ii) x and each
yi are disjoint lists of variables. Null and unary disjunctions (j = 0 or j = 1)
are permitted, where the null disjunction ⊥ is the constantly false formula. For
this reason, we will focus in this section on formulas (14).

We formulate GL(Π) as a single-sorted logic, since that is notationally sim-
pler. In an implementation, such as the one by Ramsdell for CPSA [53], one
would prefer instead a multi-sorted (or preferably order-sorted) logic; however,
that would not simplify anything considered here.
GL(Π) says nothing about the structure of Π’s messages, so it can express

goals that are preserved when message structure is transformed. It classifies
nodes by which action they are, on which role, and how they instantiate the
role’s parameters.

The vocabulary of the language GL(Π) has two parts. One part is indepen-
dent of Π, and is present in the language for every Π. It includes functions that
relate principals to their keys, and keys to their inverses. GL(Π) contains func-
tion symbols pk(a), sk(a), and inv(k), for a’s public encryption key; a’s private
signature key; and the inverse of a key k, i.e. the other member of an asymmetric
key pair. This part of the language can easily be extended, e.g. with a func-
tion symbol lts(a, b) that takes two principal names as arguments, returning
their long-term shared symmetric key, since some protocols such as Kerberos
use one. We write these functions, as all the (non-variable) vocabulary of the
goal language, in typewriter font, as shown in Table 1.

The protocol-independent part also includes the predicate symbols shown
in Table 1. Preceq(m,n) expresses that node m precedes node n. Coll(m,n)
expresses that nodes m and n lie on the same strand. Unq(v) expresses that
the basic value v originates uniquely. UnqAt(n, v) expresses that the basic value
v originates uniquely, and originates at the node n. Non(v) expresses the non-

Version of November 5, 2012 28

Functions: pk(a) sk(a) inv(k)
lts(a, b)

Relations: Preceq(m,n) Coll(m,n) =
Unq(v) UnqAt(n, v) Non(v)

Table 1: Protocol-independent vocabulary of the languages GL(Π)

origination of the basic value v. As always, = is equality. All protocol languages
use this vocabulary to express structural properties of fragments.

The protocol-specific vocabulary consists of two kinds of predicates. Role
position predicates R(n) assert that node n is a node lying at a particular
position on a strand that is an instance of that regular role. For instance,
RespFirst(n) could assert that n is an instance of the first node of a responder
role, which means that it receives a message of the form {|AˆNa|}KB

for some
values of the parameters.

The second kind of predicate concerns the values of the parameters. A
parameter predicate P (n, v) asserts that node n is formed by instantiating a
particular parameter of its role with the value v. The same parameter predicate
may be used for different roles, so long as—whenever a node may be viewed
as lying on instances of two different roles—it satisfies the same parameter
predicates no matter of which role it is viewed as an instance.

Example 1: GL(NS). GL(NS) includes the protocol-independent vocabulary.
Its protocol-specific vocabulary includes the role position predicates:

InitFst(n) InitScd(n) InitThd(n)
RespFst(n) RespScd(n) RespThd(n)

Lsn(n),

meaning that n is the first, second, or third node on an initiator or responder
strand (resp.), and that n is the reception node on a listener strand, which
we assume present in all protocols. Only the regular roles of the protocol, not
the adversary roles, are expressed here. GL(NS) also includes the parameter
predicates:

Self(n, v) Peer(n, v)
MyNonce(n, v) YourNonce(n, v)

Hear(n, v).

The predicates Self, Peer express the name of the current principal, and of its
intended communication partner. MyNonce, YourNonce express the value of the
nonce created on this strand, and of the one received purportedly from the peer.
Hear relates a listener node to the message it hears.

In the fragment F shown on the left in Fig. 8, the upper node n satisfies
RespFst(n), the middle node satisfies RespScd(n), and the lower node satisfies
RespThd(n). The upper node n and the name v = A satisfy Peer(n, v), while n
and v = B satisfy Self(n, v). The upper node n and the nonce v = Na satisfy

Version of November 5, 2012 29

τr 1 2 3
Init InitFst InitScd InitThd

Resp RespFst RespScd RespThd

τp A B Na Nb

Init Self Peer MyNonce YourNonce

Resp Peer Self YourNonce MyNonce

Table 2: τr and τp for GL(NS)

the parameter predicate YourNonce(n, v). There is no v such that this n and v
satisfy MyNonce(n, v), since my nonce has not yet been chosen at the time of n.
However, the middle node m and the nonce v = Nb do satisfy MyNonce(m, v).

Example 2: GL(NSL). The language GL(NSL) of the protocol NSL can be
identical with the language GL(NS). After all, it too has initiator and respon-
der roles, each of length three, with exactly the same parameters, as well as
the listener role. One of the messages on the roles is different, but, since the
parameters are the same, this necessitates no change in the language itself.

Semantics of GL(Π). Suppose that Π is a protocol, with language GL(Π).
We will assume that there is a pair of tables τr, τp such that—for every role ρ ∈ Π
and integer i up to the length of ρ—τr(ρ, i) gives the role position predicate for
the ith position on instances of ρ. Thus, for instance, in NS, we have τr(Init, 1)
is InitFst and τr(Resp, 2) is RespScd, etc. We assume that τr is injective.

Moreover, τp gives the parameter predicate for a particular role and parame-
ter. For instance, in NS, τp(Init, A) is Self and τp(Init, Na) is MyNonce. However,
τp(Resp, A) is Peer and τp(Resp, Na) is YourNonce. We do not assume that τp
is injective, although we do assume that when τp(ρ, a) = τp(ρ

′, b), if any strand
can be regarded as an instance of both ρ and ρ′, then it has the same instance
for a in ρ in the first case as for b in ρ′ in the second. This makes the defini-
tion of satisfaction (Defn. 4.2) unambiguous. The tables τr, τp match roles and
parameters of Π with the vocabulary of GL(Π). The tables for of GL(NS) are
shown in Table 2.

Before defining satisfaction, we introduce some helpful notation. Recall that
s ↓ j is the jth node along strand s.

Definition 4.1 If ρ ∈ Π is a role of protocol Π, then instances(ρ) is the set of
instances of ρ, i.e.

instances(ρ) = {α(ρ) : α is a substitution}.

The (larger) set of strands that agree with a member of instances(ρ) on the first
i nodes, in having the same directed message for each, is defined:

instances(ρ|i) = {s : ∃r ∈ instances(ρ) . ∀j ≤ i . dmsg(s ↓ j) = dmsg(r ↓ j)}.

So instances(ρ|i) contains a strand if it is indistinguishable from a run of ρ
while only i events have occurred.

Version of November 5, 2012 30

If s ∈ instances(ρ|i), then match(s, ρ, i) is the substitution that causes the
first i nodes of s to match the first i nodes of ρ; i.e. match(s, ρ, i) = α iff α is
the most general substitution (if any exists) such that

∀j ≤ i . dmsg(s ↓ j) = dmsg(r ↓ j).

We can now define satisfaction completely traditionally in the manner of Tarski.
Observe that we distinguish variable assignments η : Var → nodes(F) ∪ ALG,
which assign values to variables, from substitutions α, which are essentially
homomorphisms from the message algebra ALG to itself. However, in H ◦ η
these notions can be meaningfully composed, sending each variable not to a
message value or node in the source of H, but rather the corresponding value
in the target.

Definition 4.2 Suppose F = 〈N ,→E ,�, unique, non〉 is a fragment, and η is a
map from variables to values which are either messages in the message algebra
ALG or else nodes of F .

If x is a variable of GL(Π), then η(x) is just the result of applying the map
η to the variable x. If t is a compound term pk(t′), sk(t′), or inv(t′), then η(t)

is pk(η(t′)), privk(η(t′)), or η(t′)
−1

resp., when the latter is well-defined, and is
undefined otherwise.1

We define satisfaction F , η |= φ for compound formulas using the standard
Tarski clauses. For atomic formulas, we stipulate the clauses in Table 3. Any
atomic formula containing t is false if η(t) is undefined.

The table τp is well formed only if all choices of ρ, a, i satisfying Conditions 1–2
in the clause for ParamPred yield the same outcome.

Observe in this definition that the formulas satisfied for F , η depend only
on the nodes within F . What a strand would do “after” the part in F never
changes the truth value of any atomic formula. Indeed:

Lemma 4.3 Let φ be a positive existential formula, and let H : F ·→ E. If
F , η |= φ then E , (H ◦ η) |= φ.

Proof. For the protocol-independent vocabulary, preservation of atomic for-
mulas is immediate from the definition of homomorphism.

If F , η |= RolePosition(t), then, letting s ↓ i = η(t), there is an α and
an r = α(ρ) such that ∀j ≤ i . dmsg(s ↓ j) = dmsg(r ↓ j). Hence, letting
r′ = H ◦ α(ρ), we have ∀j ≤ i . H(dmsg(s ↓ j)) = dmsg(r′ ↓ j). So E , H ◦ η |=
RolePosition(t).

If F , η |= ParamPred(t, t′), then there is a ρ and a a satisfying Clauses 1–3.
Applying H, the clauses are also satisfied for (H ◦ η)(t) = H(s ↓ i).

If satisfaction for Φ,Ψ is preserved under H, then so is satisfaction for Φ∧Ψ,
Φ ∨Ψ, and ∃x . Φ. ut

1We use typewriter font for the syntactic constants, and sans serif for the functions in the
models that interpret them.

Version of November 5, 2012 31

F , η |= t = t′ iff η(t) = η(t′);
F , η |= Preceq(t, t′) iff η(t) � η(t′);
F , η |= Coll(t, t′) iff η(t)⇒∗ η(t′) or η(t′)⇒∗ η(t);
F , η |= Unq(t) iff η(t) ∈ unique;
F , η |= Non(t) iff η(t) ∈ non;
F , η |= UnqAt(t′, t) iff η(t) ∈ unique and η(t′) = s ↓ i where

s ↓ i ∈ nodes(F) and η(t) originates at s ↓ i;

F , η |= RolePosition(t) iff, letting τr(ρ, i) = RolePosition, we have:

1. η(t) = s ↓ i where s ↓ i ∈ nodes(F);

2. s ∈ instances(ρ|i);

F , η |= ParamPred(t, t′) iff, letting τp(ρ, a) = ParamPred, we have:

1. η(t) = s ↓ i where s ↓ i ∈ nodes(F);

2. match(s, ρ, i) = α

3. α(a) = η(t′).

Table 3: Clauses for satisfaction

Φ entails Ψ if for all Π-fragments F , F , η |= Φ implies F , η |= Ψ. Φ and Ψ are
equivalent if each entails the other. Two variable assignments η, θ agree on a
set of variables V, written η ∼V θ, if η(x) = θ(x) for every variable x ∈ V. We
write fv(Φ) for the free variables of Φ, and write η ∼Φ θ to mean η ∼fv(Φ) θ.

Definition 4.4 Let Π be a protocol, and let G ∈ GL(Π) be a closed formula of
the form (14). Π achieves the goal G if, for every realized fragment D, D |= G.

5 Characteristic Fragments and Formulas

Each of the fragments in Figs. 8–14 is a structure for GL(NS). Looking at each
one, we can read off a formula that characterizes it. For instance, for fragment
F in 8, we had the formula Eqn 2.

This suggests the idea of a characteristic formula: A conjunction of atomic
formulas Φ is a characteristic formula for F if Φ is a logically strongest conjunc-
tion of atoms that is true in F . To define characteristic formulas, we start with
the familiar logical notion of “diagram,” relative to a variable assignment that
covers the values relevant to F .

Definition 5.1 Suppose F is a Π-fragment, and let S = nodes(F)∪Params(F)
be the set containing all its nodes and the message parameters to its strands. Let
η be a variable assignment which is injective and covers S, i.e. S ⊆ range(η),
and let V be the inverse image of S under η. Let D be the set of atomic formulas
φ of GL(Π) such that fv(φ) ⊆ V and F , η |= φ.

Version of November 5, 2012 32

Because V is finite, D is finite.
The η-diagram of F , written δη(F), is the conjunction

∧
D.

Whenever we write δη(F), we assume that η is injective and covers S = nodes(F)∪
Params(F). When η is irrelevant, we omit it and write δ(F).

The diagram of F is a strongest formula that is true of F . In particular, any
other true atomic formula ψ is a consequence of δ(F), as long as we specify the
meanings of any additional variables in ψ:

Lemma 5.2 Let V = fv(δη(F)). Suppose that η ∼V θ, and F , θ |= ψ. Then
there is a finite set of equations ti = yi where fv(ti) ⊆ V and yi 6∈ V such that:

1. F , θ |=
∧

(ti = yi); and

2. δη(F) ∧
∧

(ti = yi) entails ψ.

Proof. If F , θ |= ψ, where ψ is R(s1, . . . , sn), then 〈θ(s1), . . . , θ(sn)〉 is in the
extension of R in F . If y ∈ fv(si), then θ(y) is either a node, a parameter, or
the result of applying a key function f to a parameter a. In the first two cases,
θ(y) is also in the range of η, say η(x), so use the equation x = y. In the last
case, a is in the range of η, say η(x), so use the equation f(x) = y. ut

A characteristic formula is any formula equivalent to the diagram:

Definition 5.3 A conjunction of atomic formulas Φ is a characteristic formula
for F via η, written Φ ∈ cformη(F), if Φ is equivalent to δη(F).

As examples, each of the formulas we mentioned in Section 3 as giving the
“content” of one of the fragments in Figs. 8–14 is a characteristic formula for
it. This is the reason why we repeated the content of the characteristic formula
for the left hand fragments F in the right hand fragments E , so that the latter
would be a self-contained characteristic formula. Using the definitions:

Lemma 5.4 If Φ,Ψ ∈ cformη(E), then Φ and Ψ are equivalent.
If Φ ∈ cformη(E) and Ψ ∈ cformθ(E), then their existential closures ∃x . Φ

and ∃y . Ψ are equivalent.

A characteristic formula may be quite a lot shorter than δη(F). It does not need
to mention nodes on a strand earlier than the last one in nodes(F), nor say that
they are collinear with it and precede it, nor repeat that their parameters agree
with those on the later node of the same strand. Nor do we need to include both
Unq(v) and UnqAt(n, v). We prefer the former when n is an initial transmission
node, since any ingredient of its message must originate there. Otherwise, the
latter is more informative, so we use that.

Eqn. 2 and the fragment F on the left of Fig. 8 have a very strong rela-
tion. Any fragment that is a homomorphic image of F will satisfy Eqn. 2, by
Lemma 4.3. Indeed, conversely, any fragment that satisfies Eqn. 2 will be a
homomorphic image of F . That is because it must have a responder strand
(including all three nodes) with freshly chosen nonce and uncompromised peer,

Version of November 5, 2012 33

to satisfy Eqn. 2. Given the third of these nodes, and its parameters, we know
just how to build the homomorphism. We call F a characteristic fragment
for Eqn. 2, because being a homomorphic image of F characterizes whether a
fragment satisfies Eqn. 2.

Definition 5.5 E is a characteristic fragment for Φ via variable assignment η
iff for every F and assignment θ,

F , θ |= Φ iff there exists a unique H : E ·→ F such that (H ◦ η) ∼Φ θ. (15)

Lemma 5.6 If E and F are characteristic fragments for Φ via η and θ resp.,
then there is an isomorphism H : E ·→ F such that H ◦ η ∼Φ θ.

Proof. Since E is a characteristic fragment and F , θ |= Φ, there is a homomor-
phism H. However, since F is a characteristic fragment, there is a homomor-
phism K : F ·→ E . Since there is only one homomorphisms E ·→ E satisfying
Eqn. 15, and the identity is one, K ◦H must also be the identity. So H is an
isomorphism. ut

Because of Lemma 5.6, we can regard characteristic fragment as a partial
function from conjunctions of atoms to fragments (to within isomorphism). We
write cfragη(Φ) for this partial function. When we say cfragη(Φ) = E , we mean
that it is well-defined, and has value E .

Characteristic fragments and characteristic formulas are connected à la Ga-
lois: When E is a characteristic fragment for a formula Φ, and Φ′ is a charac-
teristic formula for E , then Φ and Φ′ are equivalent. When Φ is a characteristic
formula for E , and F is a characteristic fragment for Φ, then F ·→ E .2 Tak-
ing a characteristic formula may discard some information, because GL(Π) is of
limited expressiveness, but taking a characteristic fragment does not.

Lemma 5.7 1. If Φ ∈ cformη(F) and cfragθ(Φ) = E, then E ·→ F .

2. When cfragη(Φ) = F and Ψ ∈ cformη(F), then Ψ is equivalent to Φ.

Proof. 1. When Φ ∈ cformη(F), by the definition, F , η |= Φ. Hence if
cfragθ(Φ) = E is well-defined, the definition of characteristic fragment says that
H : E ·→ F exists, where η ∼Φ (H ◦ θ).

2. (a) Ψ entails Φ, because the latter is a conjunction of atomic formulas all
satisfied in F , and Lemma 5.2 ensures that δη(F) entails each of them.

(b) Conversely, we claim Φ entails Ψ: Let ψ be any conjunct of the latter.
F , η |= ψ by the definition of cform. Therefore E , H◦η |= ψ whenever H : F ·→ E .
However, these E , θ are precisely the satisfying interpretations of Φ, by the
definition of cfrag. Thus, ψ is satisfied whenever Φ is. ut

In clause 1, cfrag(cform(F)) may be properly less informative than F , in the
sense that the homomorphism is not an isomorphism. To take the simplest case,

2Indeed, this map is injective on the nodes, so that F ·→ ni E.

Version of November 5, 2012 34

suppose that F contains only • {|a|}K← . Then cform(F) is just Lsn(n)∧Hear(n, v),
since GL(Π) has no way to say that v is actually an encryption, rather than

any other message. Thus, the characteristic fragment is • x←, where x is an
indeterminate that can be replaced by any message. In particular, α = x 7→
{|a|}K determines the non-isomorphism from • x← to • {|a|}K← .

Role-specific Formulas. In fact, cform(F) yields a formula of a special, well-
typed kind, ensuring that cfrag(cform(F)) is actually well-defined. We call for-
mulas like this role-specific formulas.

Definition 5.8 Let Φ be a conjunction of atomic formulas.
A variable n ∈ fv(Φ) is a node variable in Φ if it occurs in some conjunct

of Φ as the argument to a role position predicate RolePosition(n).
A variable v ∈ fv(Φ) is a message variable in Φ if it occurs in the second

argument of a parameter predicate ParamPred(n, v).
Φ is role-specific iff (i) its node variables and message variables partition

fv(Φ); (ii) only message variables appear as argument to a key function, Unq,
Non, or in the second position of UnqAt; and (iii) only node variables appear
(a) as arguments to Preceq or Coll, or (b) as the first argument to UnqAt or a
parameter predicate.

All of the characteristic formulas in Section 3 are role-specific.

Lemma 5.9 Let Φ be role-specific, with F , η |= Φ. If x is a node variable of Φ,
then η(x) ∈ nodes(F). If x is a message variable of Φ, then η(x) ∈ ALG.

For all skeletons A, δη(A) is role-specific.

Proof. 1. From the definitions.
2. If A is a skeleton, it has no adversary nodes. So every node n ∈ nodes(A)

satisfies some role position predicate, which therefore appears in δη(A). Ev-
ery parameter satisfies some parameter predicate with one of these nodes. By
the construction of η in Defn. 5.1, this partitions the variables in δη(A). The
remaining conditions follow from the type constraints in the definition of satis-
faction. ut

δη(F) is typically not role-specific for non-skeletons F . For instance, consider a
fragment containing two adversary nodes n,m transmitting basic values, with
n � m. Then δη(F) contains atomic formulas involving Preceq, but no role
predicates that say what regular roles m,n belong to.

Lemma 5.10 Let Φ be a role-specific conjunction of atomic formulas. F , η |= Φ
iff skeleton(F), η |= Φ.

Proof. From right to left, the implication holds because the identity is a
homomorphism skeleton(F) ·→ F .

Version of November 5, 2012 35

From left to right, the implication holds because η(x) is a regular node or a
parameter to some regular node, for every x ∈ fv(Φ). Thus, any fact involving
x is preserved in skeleton(F). ut

We now prove that cfrag(Φ) is well-defined for role-specific Φ. However, to do
so, we will need slightly adapted versions of the lemmas [37, Lemmas 3.14–3.15].
A map f is universal in some set of maps F if f ∈ F and, for every f ′ ∈ F ,
there is exactly one g such that f ′ is of the form f ′ = g ◦ f .

Lemma 5.11 Suppose that H : F ·→ E.

1. Suppose that H(a) = H(b) for a, b ∈ ALG. The set of homomorphisms
{K : F ·→ E ′ : K(a) = K(b)} has a universal member K0.

2. Suppose that H(n) = H(m) for n,m ∈ nodes(E). The set of homomor-
phisms {K : F ·→ E ′ : K(n) = K(m)} has a universal member K0.

3. Suppose that H(n) �E H(m) for n,m ∈ nodes(E). The set of homomor-
phisms {K : F ·→ E ′ : K(n) �E′ K(m)} has a universal member K0.

4. Suppose that H(a) ∈ unique(E). The set of homomorphisms {K : F ·→
E ′ : K(a) ∈ unique(E ′)} has a universal member K0.

We will not re-prove this lemma here; adapting the proofs is routine.

Theorem 5.12 If a satisfiable conjunction Φ of atomic formulas is role-specific,
then cfragη(Φ) is well-defined, and is a skeleton, for some η.

Proof. We will assume that Φ is in left-associated form ((φ1 ∧ φ2) ∧ . . .) ∧ φj ,
and that the leftmost occurrence of a node variable is a role position predicate,
and the leftmost occurrence of a message variable is a parameter predicate. We
work by induction on j.

Base case, j = 0. In this case, Φ is the vacuously true empty conjunction, and
its characteristic fragment is the empty fragment with nodes = ∅, etc. There is
in fact exactly one homomorphism from the empty fragment to any fragment,
so it satisfies the condition for cs(Φ). Indeed, it is a skeleton. The variable
assignment η can be any injective assignment.

Induction step. Here we assume that cfragη(Φ) = A is well-defined, and a
skeleton, and we consider the satisfiable, role-specific formula Φ ∧ φj . Since
Φ ∧ φj is satisfiable, there is a fragment F such that F , θ |= Φ ∧ φj . By
Lemma 5.10, skeleton(F), θ |= Φ ∧ φj . Since cfragη(Φ) = A, there is a (unique)
H such that H : A ·→ skeleton(F), and θ ∼Φ H ◦ η.

Since we have H, we may apply the clauses of Lemma 5.11 to H. The
universality of the maps they guarantee is what ensures that their result is
universal for the extended formula Φ ∧ φj . We take cases on the form of φj :

φj is Preceq(m,n): By role-specificity, η(m) and η(n) are nodes in A. Thus,
the desired skeleton B is the target of the homomorphism K of clause 3.

Version of November 5, 2012 36

φj is Coll(m,n): By role-specificity, η(m) and η(n) are nodes in A, of the forms
s ↓ k and s′ ↓ `. Assuming w.l.o.g. that k ≤ `, apply clause 2 to s ↓ k and
s′ ↓ k.

φj is Unq(t): Adding η(t) to unique(A), and using clause 4 yields a universal
result.

φj is Non(t): Adding η(t) to non(A) yields the desired result.

φj is UnqAt(n, t): By role-specificity, η(n) is a node in A. Since H(η(t)) ∈
unique(F), it is a basic value. Let p be a path to an occurrence of H(η(t))
within msg(H(η(n))) as an ingredient (i.e., not as an encryption key); and
let p′ be the longest prefix of p that is a path within η(t). If a is the
value occurring at p′ in msg(η(n)), H(a) = H(η(t)). Thus, we may apply
clause 1.

φj is s = t: If η(s), η(t) ∈ ALG, we apply clause 1. Otherwise, by role-specificity,
they are both nodes in node(A). Hence, we may apply clause 2.

φj is RolePos(n): If n ∈ fv(Φ), then there is also an earlier conjunct RolePos′(n)
by role-specificity. If RolePos = τr(ρ, i), then RolePos′ = τr(ρ

′, i), and
we can apply clause 2 i times, once for each of the nodes up to η(n).

If instead n 6∈ fv(Φ), then we make a copy of ρ instantiating its parameters
with values not yet used in A to form strand s, and we put nodes(B) =
nodes(A)∪ {s ↓ k : k ≤ i}. To form η′, we map n 7→ (s ↓ i), and for fv(Φ),
η′ agrees with η.

φj is ParamPred(n, t): There is an earlier conjunct RolePos(n), by role speci-
ficity. Since Φ ∧ φj is satisfiable, there are ρ, i, a such that RolePos =
τr(ρ, i) and ParamPred = τp(ρ, a). Let v be the value of parameter a in
node η(n).

If t is a variable x 6∈ fv(Φ), then leave A unchanged and let η′ be η with
x 7→ v.

If t ∈ fv(Φ) or if t is g(x) where x ∈ fv(Φ) and g is a key function, then
apply clause 1 to η(t) and v.

If t is g(x) where x 6∈ fv(Φ), then let η′ be η with x 7→ b, where b is a new
parameter of sort principal name. Now apply clause 1 to η′(t) and v.

Each inductive case also determines a variable assignment θ for the formula. ut

By Lemma 5.9 and Thm. 5.12, we can always assume that cfrag(Φ) is defined
when Φ ∈ cform(A). Even if Φ is not itself of the right syntactic form, it is
equivalent to something of the right form, and we will always assume that a
role-specific form has been chosen.

Goal formulas and families of homomorphisms are now equivalent now in the
following sense, using “achievement” and “enforcement.” Achievement means
that the closed formula is true in every realized fragment; enforcement means

Version of November 5, 2012 37

that every homomorphism to a realized skeleton factors through some member
of the family (Defns. 3.2 and 4.4).

Our assumption in this theorem that each ψi entails φ is not a significant
restriction. Since φ is already available as a hypothesis in the goal formula,
we could replace any ψi that did not meet this assumption by φ ∧ ψi without
changing the meaning of the formula. Indeed, in case ψi is a characteristic
formula, it is already of this form, as we illustrated in Section 3.

Theorem 5.13 Let Π be a protocol and let G ∈ GL(Π) be a formula

∀x . (φ −→ (∃y1 . ψ1) ∨ (∃y2 . ψ2) ∨ . . . ∨ (∃yj . ψj)),

where φ, ψi are satisfiable and role-specific, and each ψi entails φ. Then there
exists a family of homomorphisms

Hi : cfrag(φ) ·→ cfrag(ψi)

based in cfrag(φ) such that

Π achieves G iff Π enforces {Hi}1≤i≤j.

Proof. By Thm. 5.12, cfragη(φ) and each cfragθi(ψi) is a well-defined skeleton.
Since ψi entails φ, the latter is satisfied in cfragθi(ψi). Since cfragη(φ) is a
characteristic fragment, there is a homomorphism Hi : cfragη(φ) ·→ cfragθi(ψi)
such that θi ∼φ Hi ◦ η. We use the family {Hi}1≤i≤j of these homomorphisms.

1. Suppose that Π achieves G and D is a realized Π-fragment. We must
show that if there is a homomorphism K : cfragη(φ) ·→ D, then K factors
through one of the Hi.

If K : cfragη(φ) ·→ D, then D, (K ◦ η) |= φ. Since G is satisfied, one of
the disjuncts ∃yi . ψi must be satisfied too, i.e. D, (K ◦ η) |= ∃yi . ψi.
Thus, for some ζ that differs from K ◦ η only on yi we have D, ζ |=
ψi. Since cfragθi(ψi) is a characteristic fragment, we have the desired
J : cfragθi(ψi) ·→ D such that ζ ∼ψi

J ◦Hi ◦ η.

2. Suppose that every homomorphism from cfragη(φ) to a realized D factors
through one of the Hi. We must show that D satisfies G.

Suppose that ζ is a variable assignment. If D, ζ 6|= φ, then D, ζ |= φ −→∨
i ψi. So assume D, ζ |= φ. By the definition of characteristic fragment,

there is a K : cfragη(φ) ·→ D such that ζ ∼φ K ◦ η. Factoring K = J ◦Hi,
we have ζ ∼φ J ◦ (Hi ◦ η). So ζ ∼φ J ◦ θi, whence D, ζ |= ∃yi . ψi. ut

A corollary, due originally to Ramsdell [53, Thm. 2], works in the opposite
direction, constructing a formula from a family that Π enforces:

Corollary 5.14 Let {Hi : A ·→ Ei}1≤i≤j be a family of homomorphisms based
in a skeleton A = cfragη(φ). Let θi = Hi ◦ η; let ψi = cformθi(Ei); and let
yi = fv(ψi) \ fv(φ).

Version of November 5, 2012 38

If Π enforces {Hi}1≤i≤j, then Π achieves goal formula

φ −→
∨

1≤i≤j

∃yi . ψi. (16)

Proof. Applying Thm. 5.13 to Formula 16 as G, we generate a family

{Ki : cfragη(φ) ·→ cfragθi(ψi)}1≤i≤j ;

Thm. 5.13 tells us that it suffices for us to show that Π enforces {Ki}1≤i≤j . By
Lemma 5.7, for each i there is an Li such that Li : cfragθi(ψi) ·→ Ei. Moreover,
by the uniqueness in the definition of characteristic fragment, Hi = Li ◦Ki.

Suppose now that D is realized and M : A ·→ D. Since Π enforces {Hi}1≤i≤j ,
M factors through some Hi, i.e. M = J ◦Hi. But now M = J ◦ (Li ◦Ki), so
by associativity M factors through Ki. So Π enforces {Ki}1≤i≤j . ut

In Thm. 5.13 and Cor. 5.14, the finiteness of the index set I = {i : 1 ≤ i ≤ j}
is fundamentally irrelevant. If we enrich GL(Π) to allow infinitary disjunctions,
then the corresponding results hold for infinite I also, by the same arguments.

6 Enrich-by-Need Protocol Analysis

Thm. 5.13 and Cor. 5.14 suggest an approach to protocol analysis, which is in
fact a deepening or formalization of the enrich-by-need idea.

Suppose we are interested in security goals that Π achieves, using a particular
premise φ. First, we check that φ is role-specific. Section 3’s examples suggest
this will normally be the case. Working from cfrag(φ) = A as a starting point,
we look for a family {Hi}1≤i≤j based in A. When we find one, we take the
targets Ei of the Hi. Their characteristic formulas ψi determine a formula G as
in Eqn. 16. If Π enforces {Hi}1≤i≤j , then Π achieves the formula G.

Suppose also that all of the Ei are realized. Let G′ be another formula of
the same form, but using the formulas χ1, . . . , χk to produce the conclusion∨
i ∃ziχi. If

∨
i ∃yiψi entails

∨
i ∃ziχi, then G′ follows from the goal G that we

discovered. Otherwise, suppose
∨
i ∃yiψi does not entail

∨
i ∃ziχi. Because the

ψi are logically strongest formulas true in the Ei, it follows that
∨
i ∃ziχi is not

true in one of the Ei. Thus, that Ei is a counterexample to the goal G′ if G′ is
not entailed by G.

Hence, a family enforced by Π with realized targets Ei gives us a strongest
goal. It dominates any other goal G′ with the same premise φ.

It is also interesting to consider families where the targets may not be re-
alized. If {Hj}j∈J has an unrealized member Hi : F ·→ Ei, and {Kj}j∈J′ is a
family based in Ei, then

{Hj}j∈(J\{i}) ∪ {Kj ◦Hi}j∈J′

is a family based in F . It is indexed by (J \{i})∪J ′, if J, J ′ are disjoint. More-
over, if Π enforces {Hj}j∈J and {Kj}j∈J′ , then it also enforces {Hj}j∈J\{i} ∪

Version of November 5, 2012 39

{Kj ◦Hi}j∈J′ . This is a form of compositionality, and—if suitable small steps
{Kj}j∈J′ can be found—offers a progressive way to compute families that even-
tually yield realized targets. We will call a small step like {Kj}j∈J′ a cohort.

There are two main approaches to generating cohorts. The first introduces
adversary strands. The second avoids them entirely, and works only with skele-
tons. To formulate the two approaches, we will use the notion of a component :

Definition 6.1 Suppose that a message t0 is not a pair, but either a basic value,
an encryption, a digital signature, or a hash. In keeping with our convention of
representing digital signatures and hashes via encryptions, we will assume t0 is
either a basic value or an encryption.

Then t0 is a component of a message t1 iff either (i) t0 = t1, or else (ii)
there exist t2, t3 such that t1 = t2 ˆt3 and t0 is (recursively) a component of
either t2 or t3.

So the components of t1 result from it by unpairing until we reach non-pairs.
Components are the important ingredients in messages, since an adversary with
the right components can always pair and unpair to build the desired messages.

Direct backward search. One method, pursued by Athena and Scyther [58,
17], and related to NPA [46], is to consider, for each component in a reception
node, which nodes could have transmitted it previously.

Suppose n1 ∈ F is a reception node, and c is a component of msg(n1). If c
is not a component of any transmission node n0 ∈ F with n0 �F n1, then F
cannot possibly be realized. In fact, not fragment that differs from F by adding
0 or more adversary pairing and unpairing strands can be realized.

Thus, the pair n1, c indicates a problem in F that must be solved by adding
some other kind of information before F can become realized. This problem
has several kinds of possible solution, in which we would

1. Apply a substitution α to F , which unifies c with some component trans-
mitted earlier;

2. Add an instance of a protocol role, transmitting the component c;

3. Add an adversary encryption strand that transmits c, if it is an encryption;
or

4. Add an adversary decryption strand that transmits c by decrypting it (or
a pair of which it is a component) from a larger encrypted unit e. This
is relevant only when e is an ingredient in some message transmitted on a
regular node of some Π-strand [50, 13, 39].

These four groups of possibilities together cover the ways that F can be en-
riched to solve the problem n1, c. We call this method “direct backward search”
because—for each component c received—it searches for transmission nodes ear-
lier in time that would have sent c. It is thus directly motivated by the idea
that every component received must previously have been sent.

Version of November 5, 2012 40

Authentication Test Search. An alternative way to generate information-
increasing steps is the authentication test method [39, 23].

Here also we consider a basic value or encryption c such that c v msg(n1) for
some reception node n1 ∈ F . We also choose a set of encryptions S. Suppose:

• If {|t|}K ∈ S, then K−1 is not a component of any node m �F n1.

• If n0 ≺F n1, then any path within msg(n0) that leads to an occurrence of
c either traverses a member of S or enters the key of an encryption. (In
this case, we say that c is found only within S in nodes before n1.)

• There is a path to an occurrence of c within msg(n1) that traverses no
member of S and enters the key in no encryption. (We say that c is found
outside S in n1.)

When these conditions hold, n1, c, S is an unsolved authentication test in F . The
“test” here is to explain how c got outside of the encryptions S, as it somehow
did, so as to be received as it was in msg(n1). S here may be the empty set,
in which case the test is to explain how c was transmitted at all. We call S an
escape set, since the test is to explain how c has escaped from the encryptions
in S.

To solve an unsolved test n1, c, S, we may enrich the fragment F in the
following ways:

1. If there is a substitution α such that α(c) is found only within α(S) in
α(msg(n1)), then applying α makes the test disappear.

2. Adding a listener node for a key K−1 such that {|t|}K ∈ S to F explains
c’s escape, as the adversary can hear K−1 and use it to decrypt {|t|}K .

3. Adding a regular transmission node m1 in which c is found outside S
explains c’s escape also, if c was found only within S in all earlier nodes
m0 ⇒+ m1 on the same strand.

See [37] for a more precise description and various examples, and [54] to see
how this idea is implemented in the protocol tool cpsa. In this method, the
problems are the unsolved authentication tests.

Cohorts. Whether implemented by direct backward search or by the authen-
tication test method, enrich-by-need protocol analysis turns on the notion of
a cohort. Given a problem ` in F , i.e. either ` is a pair n1, c, where c is a
component received on n1 but not transmitted earlier, or ` is an unsolved test
n1, c, S, a cohort for ` is a family of homomorphisms {Hi}i∈I based in F such
that:

• If Hi : F ·→ Ei, then the image of ` is solved in Ei.

• If K : F ·→ D, where D is realized, then K = J ◦Hi for some J and i ∈ I.

Version of November 5, 2012 41

A cohort for ` is thus a set of maximally general ways of solving `.
As a special case, a cohort for ` could be the empty set of homomorphisms.

The two approaches each suggest a way of computing cohorts, and these methods
can return the empty set. When this happens, we have learnt that there are no
realized fragments D accessible from F . We express this by saying that F is
dead : No homomorphism can lead to a realized skeleton.

Search via Cohorts. The cohort idea immediately explains enrich-by need
as a form of search. Starting from an initial fragment, generally a skeleton A,
we look for a problem ` in it. If there is none, we can immediately construct a
realized fragment from it. Otherwise, we choose a problem ` and construct the
cohort for it. We build a directed graph rooted at A using the homomorphisms
making up this cohort as edges.

At any stage, we choose a fragment on the fringe of the directed graph. If it
is realized, we need not consider it further. If we find a problem and construct
a cohort, we add those edges to the graph. If this cohort is empty, we mark the
fragment as dead. Otherwise, the cohort helps us extend the fringe.

In some cases, the search terminates with a graph in which the fringe con-
sists only of dead and realized fragments. Then the paths from A to realized
fragments determine a family of homomorphisms based in A. We can apply
Thm. 5.13 to this family to decide whether a goal G is achieved. We may also
apply Cor. 5.14 to construct a strongest goal formula for the starting point A.

If the search does not terminate, we may still falsify a goal G, if a path
leads to a counterexample to the conclusion of G. Observe that as long as
cohort generation is recursively enumerable, the existence of a counterexample
to a goal G with role-specific premise φ is recursively enumerable. Thus, the
relation Π achieves G is co-r.e.

Axiomatizing Enrich-by-need. Homomorphisms determine a preorder, not

a partial order, since J ◦ H is not always an isomorphism when F H·→ E J·→
F . However, if H,J map distinct nodes of their sources injectively to distinct
nodes of their targets, then J ◦ H is an isomorphism. These node-injective
homomorphisms H : F ·→ ni E determine a partial order ≤ni on skeletons to
within isomorphism.

Lemma 6.2 ([37, Lemma 3.11]) ≤ni is a well-founded partial order. Indeed,
for every E, there are only finitely many non-isomorphic F such that F ≤ni E.

When F ≤ni E ≤ni F , F and E are isomorphic.

Enrich-by-need protocol analysis is a search through part of the preorder ·→ .
Skeletons A0 determine starting points for the search; protocol analysis then
seeks realized fragments D such that A·→ D. Both cpsa and Scyther implement
this search. Scyther computes a set of fragments which have a minimality
property [18]. cpsa computes a set of representative realized skeletons we call
shapes [54]. Within the set of all realized B such that A ·→ B, the shapes are the
minimal ones in the node-injective ordering ≤ni [23]. cpsa’s test-and-solution

Version of November 5, 2012 42

steps form a labeled transition system, where A0
`
; A1 means that A0 has

an unsolved test described by the label `, and A1 contains one solution to this
test. The lts ; is a subrelation of ·→ . Indeed, most of the search process
works in the partial order ≤ni . Although cpsa’s implementation is somewhat
different, its search could be separated into two phases. After an initial non-
node-injective step, all of its test-solving could take place in the node-injective
ordering (see [37, Thm. 6.5]).

Rather than specialize our results for cpsa, or Scyther, we axiomatize the
crucial properties of problem-and-solution ltss. This has an additional advan-
tage. Namely, we can choose very small ltss; they need only be large enough to
model the steps in a single enrich-by-need search. These are often finite, indeed,
often very small, ltss.

We let S be a set of fragments and Λ be a set of labels. When modeling
cpsa, a typical label ` ∈ Λ is of the form n1, c, S, defining an unsolved authenti-
cation test. When modeling Scyther, typical ` take the form n1, c, representing
a component c that is received without having previously been sent as a compo-
nent. The transition relation implements the cohorts. For every ` of these forms,

{Ei : F
`
; Ei} defines the cohort solving the problem `. Strictly speaking, the

homomorphisms, not their targets Ei are the members of the cohorts. However,
in practice, Hi is recoverable from the triple E , `, Ei. Thus, we will freely allow
ourselves to pass from these triples to the homomorphisms themselves.

We also include one special value dead ∈ Λ. When the cohort for F and a

particular problem is empty, so that F is dead, we will in fact write F dead
; F .

Thus, a dead fragment stutters, and only a realized fragment is a terminal node
in our transition system.

Definition 6.3 Suppose given S, a set of fragments, dead ∈ Λ, and a ternary
relation · ·; · ⊆ S × Λ× S such that F ; E implies F ·→ E.

(S,Λ,;) is a problem-solution lts or pslts iff:

1. If F ∈ S, then F is realized iff there is no E such that F ; E;

2. If F dead
; E, then F = E and there is no realized D such that F ·→ D;

3. If J : F ·→ D from an unrealized F to a realized D, then:

(a) if F `
; ·, then there exists E ′ s.t. F `

; E ′, and J = F H·→ E ′ K·→ D;

(b) if F = F0 ; · · ·; Fi ; · · · is an infinite ;-path, then for some i,
Fi 6·→ D.

Let S(;) = {F : ∃ E . F ; E} ∪ {E : ∃F . F ; E}.

We tacitly assume (e.g. in 3a) that the homomorphism H can be recovered from

F `
; E . Thus, when ; is iterated and we have F

σ

;∗ E for some sequence of
labels σ, then there is a definite H : F ·→ E corresponding to σ.

We may write H
F `

; E
for the homomorphism recovered from F `

; E , or Hσ

for the homomorphism for the path σ = F0
`1
; · · · · · · `k; Fk.

Version of November 5, 2012 43

There is great freedom in defining psltss. For one thing, we have mentioned
that cpsa and Scyther construct them using different ideas [54, 17]. Moreover,
a pslts may cover a very small finite set S of fragments; in particular, it may
cover only a particular starting point and the fragments we traverse to reach
realized fragments. In simple cases, with cpsa, this may be just a few, or in
complicated cases a hundred or two hundred.

Theorem 6.4 Suppose that · ·; · is a pslts, and F0 ∈ S(;). If F0 ·→ ni D
where D is realized, then there exists a realized E such that F0 ;

∗ E and E·→ niD.

Proof. Let Ξ be the set of all sequences

F0
`1
; F1 ; · · · ; Fk−1

`k
; Fk

starting at F0 such that for each i ≤ k, Fi ·→ D. Ξ 6= ∅ because it contains the
trivial sequence F0. By Def. 6.3, Clause 3b, there are maximal sequences in Ξ.

So let p = F0
`1
; F1 ; · · · ; Fk−1

`k
; Fk be maximal.

We claim that Fk is realized. Otherwise, there must be some transition

Fk
`
; C. Moreover, ` 6= dead, since then there is no realized fragment B such

that Fk ·→ B, so Fk 6·→ D, contradicting p ∈ Ξ.

Thus, if Fk is unrealized, there is a non-dead label ` such that Fk
`
; ·.

Hence, by clause 3a, there exists E ′ s.t. Fk
`
; E ′, and F·→E ′·→D. Hence,

p
`
; E ′ ∈ Ξ, contradicting the maximality of p. ut

Combining this with Thm. 5.13, we have:

Corollary 6.5 Let φ be role specific, and let G be ∀x . (φ −→
∨
i ∃yi . ψi).

Let · ·; · be a pslts, and cfragη(φ) ∈ S(;). Then Π achieves G iff, for every
sufficiently long path

σ = cfragη(φ)
`1
; · · · · · · `k; Ek,

either (i) `k = dead, or else (ii) Ek is realized and, for some i,

Ek, (Hσ ◦ η) |= ∃yi . ψi.

Proof. For each realized D, let σD be a path cfragη(φ);∗ E where E is real-
ized and cfragη(φ)·→E·→D. Apply Thm. 5.13 to the (possibly infinite) family
{HσD}D. ut

7 Protocol Transformations

Protocol design is an art of reuse. A few basic patterns for achieving authen-
tication and confidentiality—despite actively malicious parties—are frequently

Version of November 5, 2012 44

adapted to new contexts. Designers combine these patterns, piggy-backing val-
ues on top of them, to solve many problems. The transformations modify mes-
sage structure; add new transmissions or receptions on a given role; and add
entirely new roles. Constructing protocols may be difficult, particularly for inter-
actions involving more than two participants: Some data values may be shared
among subsets of the participants, while remaining hidden from the other par-
ticipants. Designers use existing protocols as heuristics for parts of the protocol,
welding the parts cleverly together, so that the transformed protocol preserves
the goals achieved by the components, while achieving additional goals.

Our goal here is not to make this cleverness unnecessary, but to explain it
semantically. Thm. 7.12 justifies inferring that a transformed protocol satis-
fies some security goals, when the source protocol did. Although a logical result
about models of protocol behavior and the formulas they satisfy, it is a corollary
of a logic-free theorem (Thm. 7.8). The latter concerns only fragments, homo-
morphisms between them, and psltss for source protocol and transformed pro-
tocol. These psltss formalize relations between the activity of protocol analysis
in the two protocols.

We start by considering a number of examples, which motivate a definition
of protocol transformation. This is a rather inclusive notion, which includes
many unsound transformations. Its technical motivation is that transformations
as defined here form a full and faithful functor, transforming skeletons and
homomorphisms of the source protocol to skeletons and transformations of the
target protocol.

In this regard, skeletons—having no adversary behavior—are more canonical
than fragments in general. It would require additional machinery to extend the
methods given here to fragments in general. It is hard to translate the adversary
strands except by the syntactic forms of the messages they send and receive.
By contrast, a regular strand s can be identified by giving a role ρ that it
instantiates, and the substitution α such that s = α(ρ), as in Defn. 7.3. We will
thus concentrate on skeletons, leaving it to future work with greater focus on
syntactic forms to integrate the remaining fragments into our picture.

We start first with some example protocol transformations, introducing a
definition (Section 7.1). We then prove that transformations yield full and
faithful functors on skeletons (Section 7.2). Finally, in Section 7.4 we give
Thm. 7.8, generalizing Thm. 6.4. The main theorem Thm. 7.12 then follows.

7.1 Some Protocol Transformations

We start by recalling the protocol HD, defined in Fig. 1. Its security goals
may be expressed in a language GL(HD), as described in Section 4. We do this
using the standard protocol-independent vocabulary, and the protocol-specific
predicates shown in Table 4.

We mentioned two transformations where HD is the source protocol and NS
is the target protocol. First, we can associate the HD initiator with the first
two nodes of the NS initiator, letting the nonce N represent the NS initiator’s
nonce Na. In this transformation, we associate the HD responder with the NS

Version of November 5, 2012 45

responder, which receives an encrypted form of the initiator’s nonce on its first
node, and retransmits that value outside that encryption in its second node.

Alternatively, we can associate the HD initiator with the second and third
nodes of the NS responder, letting the nonce N represent the NS responder’s
nonce Nb. Now, we will associate the HD responder with the NS initiator,
which receives an encrypted form of the responder’s nonce on its second node,
and retransmits that value outside that encryption in its third node. The HD
responder receives the nonceN , and this is associated with the nonceNb received
by the NS initiator.

This suggests that a protocol transformation T with source protocol Π1 and
target protocol Π2 should consist of a map that:

• sends each source protocol role ρ1 ∈ Π1 to a target protocol role ρ2 ∈ Π2;

• associates each node along role ρ1 with a node along ρ2; and

• sends each parameter a of role ρ1 to a parameter b of ρ2.

The Yes-or-No Protocol. The Yes-or-No Protocol YN allows a Questioner
to ask a question Q, to which the Answerer gives a private, authenticated reply;
YN is constructed by two transformations of HD. In YN, the question and
answer should each remain secret. Indeed, the protocol should prevent even
an adversary who has guessed the question from determining what answer was
given. The Questioner authenticates the Answerer as supplying an answer.

The Questioner chooses two random nonces, and encrypts them, together
with the question. The Answerer releases the first of the two nonces Y to
indicate a yes, and the second N to indicate a no. No adversary learns anything,
since whichever nonce was released, the questioner was equally likely to have
used it in the other position.

The protocol has four roles (Fig. 15). One describes the behavior of a Ques-
tioner receiving an affirmative answer. The second describes the behavior of a
Questioner receiving a negative answer. The remaining two describe the behav-
ior of an Answerer providing an affirmative and respectively negative answer.
Which of the two nonces has been released tells the Questioner which reply the
Answerer has made.

We summarize GL(YN) in Table 5.
The protocol is interesting partly because it is an example of a protocol that

exhibits branching behaviors. Any instance of the first node of the QAf role is
also an instance of the first node of the QNg role. A partial execution which

τr 1 2
Init InitFst InitScd

Resp RespFst RespScd

τp B N
Init Peer MyNonce

Resp Self YourNonce

Table 4: τr and τp for GL(HD)

Version of November 5, 2012 46

QAf •
��

+3 • •
��

+3 • QNg

{|QˆY ˆN |}pk(A) Y

OO

{|QˆY ˆN |}pk(A) N

OO

{|QˆY ˆN |}pk(A)

��

Y {|QˆY ˆN |}pk(A)

��

N

AnAf • +3 •

OO

• +3 •

OO

AnNg

Figure 15: The Yes-or-No Protocol YN

has only reached this step is of both forms. The same is true of the roles AnAf
and AfNg.

We can view either half of this diagram as a transformation of the protocol
HD. In transforming HD to the left (affirmative) half of YN, we send the initiator
role to QAf, and the responder role to AnAf. The HD nonce N will be associated
with the affirmative YN nonce Y . The principal name B is associated with A.

In transforming HD to the right (negative) half of YN, we send the initiator
role to QNg, and the responder role to AnNg. The HD nonceN is now associated
with the affirmative YN nonce Y , and B is associated with A.

Mutually Authenticated Yes-or-No Protocol. As a final example, we
present a mutually authenticated version of YN. Here, the Answerer starts by
giving the Questioner a nonce R to use when asking a question. The presence of

A
{|RˆA|}B //

��

B

��
•

u} rrr
rrrrrr
rrr

!)L
LLL

LL
LLL

LLL
•

{|RˆQˆY ˆN ˆB|}Aoo

u} rrr
rrrrrr
rrr

!)L
LLL

LL

LLL
LLL

•

Y

66•

N

55• •

Figure 16: Answering Questions with YN+

this R identifies the question
Q as originating with B; it is
a sort of ticket enabling B to
ask a question of A. Perhaps
A will charge for the service.

There is a transformation
from YN to YN+ in which we
map AnAf and AnNg to the
two roles shown on the left
side and QAf and QNg to the
two on the right side. The
two nodes of each source pro-
tocol role are mapped to the

τr 1 2
QAf AskA BeAffirmed

AnAf BeAskedA Affirm

QNg AskN BeDenied

AnNg BeAskedN Deny

τp A Q Y N
QAf Peer Query Yea Nay

AnAf Self Query Yea Nay

QNg Peer Query Yea Nay

AnNg Self Query Yea Nay

Table 5: τr and τp for GL(YN)

Version of November 5, 2012 47

τr 1 2 3

QAf GetTktA AskA BeAffirmed

AnAf GiveTktA BeAskedA Affirm

QNg GetTktN AskN BeDenied

AnNg GiveTktN BeAskedN Deny

Table 6: τr for GL(YN+)

second and third node of the YN+ roles. There is a transformation from HD
directly to YN+, in which the initiator’s first node is mapped to A’s first node,
which sends the ticket, and the initiator’s second node goes to A’s second node,
with maps from the responder to B’s role.

We may also view YN+ in two ways as the target of a transformation from
NS or NSL. We can map the NS initiator to the affirmative answer role or to
the negative answer role. We respectively map the NS responder strand to the
question role receiving the affirmative answer, or to the question role receiving
the negative answer. If we take these transformations as having source NSL,
they are certainly not sound, because YN+ certainly discloses B’s nonces, which
NSL does not.

The language GL(YN+) is much like GL(YN), except that we shift the role
predicates to make room for the new first node (see Table 6). We also add a
new parameter predicate Tkt(n, r).

7.2 Transformations and Homomorphisms

In our approach, homomorphisms between fragments (and especially skeletons)
are fundamental. Hence, we introduce a definition of transformation that is
designed just to respect homomorphisms. Within this broad class of roughly
reasonable operations, we will later seek a separate condition that ensures that
security goals are preserved.

Definition 7.1 A substitution γ is suitable for ρ1, ρ2 iff for some set X such
that Params(ρ1) ⊆ X, γ is a bijection between X and Params(ρ2).

So, γ is injective going forward from parameters of ρ1, and on a set of other
values that it maps to the remaining parameters of ρ2. When γ is suitable, we
can apply its inverse to ρ2; if e.g. α(ρ1) is an instance of ρ1, then α(γ−1(ρ2)) is
a corresponding instance of ρ2.

Definition 7.2 (Transformation) Suppose T maps each role ρ1 ∈ Π1 to a
triple ρ2, g, γ, where ρ2 ∈ Π2, g : N+ → N+, and γ is a substitution suitable for
ρ1, ρ2. T is a protocol transformation iff:

1. g is order-preserving and g(length(ρ1)) ≤ length(ρ2);

2. ρ1 ↓ i is a transmission (or resp. reception) node iff ρ2 ↓ g(i) is;

Version of November 5, 2012 48

3. For all parameters x and integers i, there exists a j ≤ g(i) such that:

(a) if x v msg(ρ1 ↓ i), then γ(x) v msg(ρ2 ↓ j); and

(b) if x originates on ρ1 ↓ i, then γ(x) originates on ρ2 ↓ j;

4. Let ρ1, σ1 ∈ Π1, let T (σ1) = σ2, h, δ, and let α, β be substitutions. If, for
every j up to i, dmsg(α(ρ1) ↓ j) = dmsg(β(σ1) ↓ j), then:

(a) g(j) = h(j) for all j ≤ i;
(b) There exist α′, β′ that agree with α, β on the parameters of ρ1, σ1

respectively, where for all j up to h(i),

dmsg(α′(γ−1(ρ2)) ↓ j) = dmsg(β′(δ−1(σ2)) ↓ j).

When T is a protocol transformation from Π1 to Π2, we write T : Π1 → Π2.

The first three clauses say that T should preserve order, direction (send vs. re-
ceive), and where parameters are ingredients or originate. The last clause says
that when the same strand can be viewed (up to height i) as an instance of
either ρ1 or σ1, then the transformation handles it the same no matter which
way we view it.

Each skeleton A contains nodes from a finite number of regular strands s.
If it contains any nodes from s, it contains exactly the nodes s ↓ j, where
1 ≤ j ≤ i, for some i which we call the height of s in A. Moreover, each regular
strand s is of the form α(ρ) for at least one role ρ and substitution α. Thus,
we can always represent the nodes of a skeleton as a set of triples ρ, α, i, each
of which represents {(α(ρ) ↓ j) : 1 ≤ j ≤ i}; we avoid representing the nodes
of any strand repeatedly. If a set S of triples yields nodes(A), we will call S a
role-substitution representation of nodes(A).

Notice that if α, α′ differ only on parameters that do not appear in A, then
replacing ρ, α, i by ρ, α′, i in a role-substitution representation of nodes(A) yields
another role-substitution representation of nodes(A).

Definition 7.3 Assume T : Π1 → Π2. When T (ρ1) = ρ2, g, γ, define

liftT (α(ρ1) ↓ j) = α(γ−1(ρ2)) ↓ g(j).

That is, we first apply the inverse of γ to find how to apply α to ρ2; we then
take the g(j)th node of the resulting strand.

Hence, if S is a set of triples ρ, α, i, define liftT (S) to be the set of triples:

{(ρ2, α ◦ γ−1, g(i)) : (ρ1, α, i) ∈ S and T (ρ1) = ρ2, g, γ}.

Let A be a Π1-skeleton, and let C be a Π2-skeleton. C is a T -lifting of A, written
C ∈ liftsT (A), if:

1. There is a role-substitution representation S of nodes(A) such that liftT (S)
is a role-substitution representation of nodes(B);

Version of November 5, 2012 49

2. For all m,n ∈ nodes(A), m �A n implies liftT (m) �B liftT (n);

3. uniqueA ⊆ uniqueB;

4. nonA ⊆ nonB.

We concentrate on skeletons in this section, because, while the lifting we have
just defined has a canonical effect on skeletons, it does not determine how we
should transform adversary strands. Those can be treated only using a far more
syntactic approach to message translation. It is far from clear that protocol
transformations as we have defined them always extend in a canonical way to
adversary strands. Thus, we avoid fragments that are not skeletons.

Below, we write strands(A) for the set of strands s with A-height i ≥ 1,
i.e. the set of strands that have nodes in A.

Lemma 7.4 Let A be a Π1-skeleton, and T : Π1 → Π2.

1. There are ≤ni -minimal members C1 of liftsT (A).

2. Suppose that

s1 = α(ρ1) ∈ strands(A) and

s2 = β(σ1) ∈ strands(A), where

liftT (s1) = α(γ−1(ρ2)) ∈ strands(C1) and

liftT (s2) = β(δ−1(σ2)) ∈ strands(C1)

Let a be a parameter of ρ2, and b be a parameter of σ2 that are not in the
images of the parameters of ρ1 under γ and σ1 under δ. Then:

(a) α(a) and β(b) are both parameters;

(b) α(a) = β(b) implies ρ2 and σ2 are the same, and a and b are also
same.

Proof. 1. For each strand s ∈ strands(A), letting s = α(ρ1), select an instance
λ(s) = βs(ρ2), of height g(i), where the instantiation βs associates not-yet-used
parameters with each parameter of ρ2. Let the Π2-skeleton C0 be the resulting
skeleton, where n0 �C0 n1 implies n0 ⇒+ n1. We take uniqueC0

, nonC0 to be the
minimal possible sets, i.e. uniqueC0

is the union over the strands s = α(ρ1) in
strands(A) of βs(role unique(ρ2)). Likewise, nonC0 is the union over the strands
s = α(ρ1) in strands(A) of βs(role non(ρ2)).

There is a node-injective homomorphismHC : C0·→ niC for each C ∈ liftsT (A).
Using these homomorphisms, apply Lemma 5.11, clause 3 repeatedly, once

for each pair of nodes λ(n), λ(m) such that n �A m. Use Lemma 5.11, clause 1
repeatedly, once for each βs ◦ γ−1(a) and α(a) where (i) s ∈ strands(A); (ii)
s = α(ρ1); (iii) a is a parameter to ρ1; and (iv) T (ρ1) = ρ2, g, γ.

At every stage, the resulting skeleton has a node-injective homomorphism
to every skeleton in liftsT (A). When we are finished, the resulting skeleton C1

is in liftsT (A). Thus, it is ≤ni -minimal within liftsT (A).

Version of November 5, 2012 50

2. The statement is true for C0, and it remains true under each step of apply-
ing Lemma 5.11, clause 1, which affect only the parameters γ(c) where c is a
parameter of ρ1. ut

Since A≤ni B≤ni A implies that A,B are isomorphic, we may define T (A):

Definition 7.5 T (A) is the ≤ni -minimal member of liftsT (A), which is unique
to within isomorphism.

The following theorem justifies our definition of transformations.

Theorem 7.6 Let T : Π1 → Π2.

1. If H : A·→B is a Π1-homomorphism, there is a Π2-homomorphism G : T (A)·→
T (B) such that, for every n ∈ nodes(A),

liftT (H(n)) = G(liftT (n)).

Moreover, if G and G′ both satisfy this property, then they differ by an
isomorphism I, i.e. G′ = I ◦G. G is node-injective iff H is.

2. If instead G : T (A) ·→ T (B), then there is an H : A ·→ B such that G =
F (H). H is unique to within isomorphism.

T (A)
G // T (B)

A H //
liftT
OO

B
liftT
OO

Proof. 1. Let H = f, β. Viewing the image of strands(A)
under f , each of those strands is of the form β(α(ρ1)), for
some ρ1 and α, where the strand in strands(A) is of the
form α(ρ1). Thus, each strand in T (A) is of the form
α(γ(ρ2)−1), where T (ρ1) = ρ2, g, γ. Thus, we can use homomorphism G with
node function and substitution

liftT ◦ f ◦ liftT−1 and β.

This construction is canonical, and is node-injective if f is.

2. If G = f, β, then
lift−1

T ◦ f ◦ liftT and β

work for H. ut

7.3 Preservation via PSLTSs

Let Φ ∈ GL(Π1) be role-specific, and let GΦ be the set of goals of the form
∀~x . (Φ −→ Ψ), as Ψ varies over positive existential formulas.

To show that the goals GΦ are preserved under a transformation T : Π1 →
Π2, we would like to exhibit a pslts for Π1 that contains cfrag(Φ), and a pslts
for Π2 that contains T (cfrag(Φ)). If these psltss match up, then all the goals
GΦ will be preserved. In this subsection, we will define what “match up” means
here, and we will prove a structural theorem that relates the how the two psltss

Version of November 5, 2012 51

reach realized skeletons. It generalizes Thm. 6.4, at least for skeletons; Thm. 6.4
covers the case of the identity transformation Id : Π1 → Π1.

One degree of freedom concerns the labels. We care little about their struc-
ture. We assume simply that each pslts comes with its labels Λ1,Λ2, each
containing the distinguished label dead. We allow a map between the labels as
a relabeling function if it respects the dead. We also need the relevant notions
of progress and simulation:

Definition 7.7 Let ∆: Λ1 → Λ2 be a function between the Λi, and let T : Π1 →
Π2 be a protocol transformation. Let ;1 be a pslts on Π1 using labels Λ1; let
;2 be a pslts on Π2 using labels Λ2.

1. ∆ is a relabeling function iff ∆−1({dead}) = {dead}.

Let ∆ be a relabeling function.

2. T,∆ preserve progress for ;1 and ;2 iff, for every ` ∈ Λ, A `
;1 ·

implies T (A)
∆(`)
;2 ·.

3. ;1 simulates ;2 under T,∆ iff: T (A)
`′
;2 B′ and `′ = ∆(`) entails ∃B

s.t. B′ = T (B) and A `
;1 B.

Theorem 7.8 (Preservation) Let ∆: Λ1 → Λ2 be a relabeling function and
let T : Π1 → Π2 be a protocol transformation. Let ;1 and ;2 be psltss for Π1

and Π2 resp., with A0 ∈ S(;1) and T (A0) ∈ S(;2). Suppose that:

1. T,∆ preserve progress for ;1, ;2;

2. ;1 simulates ;2 under T,∆.

For every Π2-realized C, if H : T (A0) ·→ C,
there is a Π1-realized Ak ∈ Skel(Π1) such that

A0 ;
∗
1 Ak, and H factors through T (Ak).

T (A0)

H

((
K
// T (Ak)

J
// C

A0
///o/o/o/o/o Ak

Proof. Let Σ be the set of ;1 paths σ of the form:

A0
`1
;1 · · ·

`i
;1 Ai

`i+1
;1 · · ·

`j
;1 Aj

starting at A0. Let ΣH be the set of σ ∈ Σ such that, for some J : T (Aj) ·→ C,
we have H = J ◦Hσ. These σ are the ones that never diverge from H. ΣH is
non-empty since the empty path is in it.

By Defn. 6.3, Clause 3b, there are maximal members in ΣH , i.e. σ1 such
that no extension σ_1 ` is in ΣH .

So let σ1 be maximal in ΣH , where A0

σ1

;∗1 Aj . By construction, T (Hσ1) : T (A0)·→
T (Aj), and H = J ◦Hσ1 . So we need only check that Aj is realized.

Version of November 5, 2012 52

However, if Aj is not realized, then by Defn. 6.3, Clause 1, there is a label

` and skeleton Aj+1 such that Aj
`

;1 Aj+1. By progress (assumption 1),

T (Aj)
∆(`)
;2 T (Aj+1), so T (Aj) is unrealized.

Moreover, ` 6= dead: If T (Aj)
dead
;2 T (Aj+1), then Defn. 6.3, Clause 2 con-

tradicts the assumption that J : T (Aj) ·→ C.

Using Clause 3a, there is in fact a E ′ such that T (Aj)
∆(`)
;2 E ′ and J =

T (Aj)
H`·→ E ′ K·→ C. That is, H∆(`) : T (Aj) ·→ E ′ is the member of the ∆(`)

cohort compatible with J . So by simulation (assumption 2), it follows that

there is a B such that T (B) = E ′ and Aj
`

;1 B. So in fact

A0
`1
;1 · · ·

`i
;1 Ai

`i+1
;1 · · ·

`j
;1 Aj

`
;1 B

is also in ΣH , contradicting the maximality of σ. Hence, Aj is realized. ut

The proof of Thm. 6.4 is essentially this proof, letting T,∆ be the identity.

7.4 Preserving Goal Formulas

Each T : Π1 → Π2 determines a translation from role specific goal formulas φ of
GL(Π1) into GL(Π2). We define this translation in the simplest possible way,
going through φ one atomic formula at a time and replacing some of the pred-
icate symbols. We use the tables τr and τp for the two languages to determine
how to do this replacement.

By the definition of role specific, Defn. 5.8, if a variable v occurs in φ, then
it is either a node variable or a message variable. A node variable appears in
some role position predicate R(v), and a message variable occurs as the second
argument to a parameter predicate P (n, v).

If R is a role position predicate, then we say that the role position location
of R is (ρ, i) if in the table τr for GL(Π), the entry for (ρ, i) is R. Given φ and
a node variable n in φ, we will say that its role position location in φ is (ρ, i)
if the leftmost role position predicate in φ containing n is R(n), and the role
position location of R is (ρ, i).

If P (n, t) is an atomic formula where P is a parameter predicate and n is a
variable, then we say that P (n, t) has role parameter (ρ, a) in φ if:

• n has role position location (ρ, i) in φ, for some i; and

• in the table τp for GL(Π), the entry for (ρ, a) is P .

If P (t′, t) has a non-variable t′ in the first position, then t′ is the result of a key
function, and the formula P (t′, t) will be false in all interpretations.

Definition 7.9 Let T : Π1 → Π2. The T -translation of a role specific formula
φ is the result of replacing each predicate symbol R within it according to the
following rules:

Version of November 5, 2012 53

• If R belongs to the protocol-independent vocabulary =, Preceq, Coll, Unq,
UnqAt(n, v), Non(v), then it is unchanged.

• Suppose R is a role position predicate, and the role position location of R
is (ρ1, i), and let T (ρ1) = ρ2, g, γ.

Replace R with R′, which is the entry in τr for GL(Π2) for ρ2 and g(i).

• Suppose that R is a parameter predicate, and appears in the form R(n, t).
Let R(n, t) have parameter (ρ, a) in φ, and let T (ρ1) = ρ2, g, γ.

Replace R with R′, which is the entry in τp for GL(Π2) for ρ2 and γ(a).

• Suppose that R is a parameter predicate, and appears in the form R(t′, t),
where t′ is not a variable. Then it will be false.

Replace R with any R′ where R′ is a parameter predicate in GL(Π2).

We write T (φ) for the result of this process.
If ∀~x . (φ −→

∨
i ∃~yi . ψi) is a goal formula Γ with role specific φ, we write

T (Γ) for the formula ∀~x . (T (φ) −→
∨
i ∃~yi . T (ψi)).

We may tacitly repeat the hypothesis φ when it would be convenient: so T (Γ)
means ∀~x . (T (φ) −→

∨
i ∃~yi . T (φ ∧ ψi)), when the ψi are not role specific.

T (φ) is role specific when φ is, and T (Γ) is a goal formula when Γ is.

Definition 7.10 Let T : Π1 → Π2 and A ∈ Skel(Π1), and let η be a variable
assignment η : Var→ nodes(A) ∪ ALG. Let liftT lift nodes(A) to nodes(T (A)).

The extension of η for A, T is the function which, for a variable x, returns
η(x) if the latter is in ALG, and returns liftT (η(x)) if η(x) ∈ nodes(A).

When A, T are clear, we write η for the extension of η for A, T .

Lemma 7.11 Let T : Π1 → Π2, A ∈ Skel(Π1), B ∈ Skel(Π2), and let φ ∈
GL(Π1) be a satisfiable, role-specific conjunction of atomic formulas.

1. cfrag(T (φ)) exists.

2. If A, η |= φ, then T (A), η |= T (φ).

3. If B, θ |= T (φ) and cfragη(φ) = A, then there exists a J : T (A) ·→ B such
that θ ∼φ J ◦ η.

4. T (cfrag(φ)) = cfrag(T (φ)).

Proof. 1. As observed, T (φ) is role specific, so Thm. 5.12 applies.

2. By induction on the structure of the conjunction φ. Essentially, one checks
that Defn. 7.9 matches Defn. 7.3.

3. Define J = [f, α]: For f , let f(η(x)) = θ(x), observing that every strand in
A has a node in range(η), whence every strand in T (A) has a node in range(η).
For α, let a be any parameter of A. Hence, there is some s = β(ρ1) and

Version of November 5, 2012 54

b ∈ Params(ρ1) such that a = β(b). Letting f(s) = δ(ρ2), set α(γ(b)) = δ(γ(b)),
where as usual T (ρ1) = ρ2, g, γ.

4. By the previous clause, we have a J : T (cfrag(φ)) ·→ cfrag(T (φ)).
By clause 2, T (cfrag(φ)), η |= T (φ). Thus, Def. 5.5 entails that there is a

K : cfrag(T (φ)) ·→ T (cfrag(φ)). Hence, by the uniqueness in Def. 5.5, J ◦K = Id.
Hence, T (cfrag(φ)) and cfrag(T (φ)) are isomorphic. ut

We now turn to our last main theorem.

Theorem 7.12 (Goal Preservation) Let φ be a role specific conjunction of
atomic formulas. Let ∆: Λ1 → Λ2 be a relabeling function and let T : Π1 → Π2

be a protocol transformation. Let ;1 and ;2 be psltss for Π1 and Π2 resp.,
with cfrag(φ) ∈ S(;1) and T (cfrag(φ)) ∈ S(;2). Suppose

1. T,∆ preserve progress for ;1, ;2;

2. ;1 simulates ;2 under T,∆.

Then for every security goal Γ = ∀x . φ −→
∨
i ∃~yi . ψi, if Π1 achieves Γ, then

Π2 achieves T (Γ).

Proof. T (Γ) = ∀x . T (φ) −→
∨
i ∃~yi . T (ψi).

Suppose that C is any realized Π2-skeleton, and θ is a variable assignment
into nodes(C) ∪ ALG. If C, θ 6|= T (φ), then C, θ |= T (φ) −→

∨
i ∃~yi . T (ψi).

So suppose C, θ |= T (φ). By Defn. 5.5, there is an H : cfragη(T (φ)) ·→ C,
and θ ∼φ H ◦ η. Moreover,

cfragη(T (φ)) = T (cfragη(φ)),

by Lemma 7.11, Clause 4. So we may apply Thm. 7.8: There is a Π1-realized

B such that cfragη(φ)
σ

;∗1 B, and, for K = T (Hσ),

T (cfragη(φ))
K·→ T (B)

J·→ C.

If Π1 achieves Γ, then for some i, ψi is satisfied in B, i.e. B, ζ |= ψi where
ζ ∼φ (Hσ ◦η). Hence, T (B), ζ |= T (ψi). Moreover, ζ ∼T (φ) (K ◦η). Since homo-
morphisms preserve satisfaction for positive existential formulas (Lemma 4.3),
C, J ◦ ζ |= T (ψi), where J ◦ ζ ∼T (φ) (H ◦ η). ut

8 Conclusion

The safe protocol transformation problem is not new. As an idea for protocol
design, it goes back at least to Bird et al. [7]. In a key special case, “protocol
composition,” it dates from the 1990s [41, e.g.]. In the protocol composition
case, roles of Π1 also appear unchanged as roles of Π2. Since Π2 may also have
additional roles not in the image of Π2, composition is thus effectively the case

Version of November 5, 2012 55

in which Π1 ⊆ Π2. While there has been an extensive literature devoted to
this special case, the more general type of transformation discussed here has
seen very little progress. Our view is that the effects of a syntactic change
in message structure on protocol behavior are very hard to predict (given an
active adversary model). This has made it hard to reason about the full notion
of transformation, as opposed to the special case of composition. We have
introduced the pslts as a representation of the protocol analysis problem to
tame this complexity.

Focusing then on protocol composition, it has been very successfully treated
in a cryptographic model. A strong form of composition is reactive simulata-
bility [52, 5] or universal composability [12]; weaker forms may still be crypto-
graphically justified [21].

In the symbolic model, we previously provided a widely applicable and prac-
tically useful criterion [38, 32]. Cortier et al.’s criterion is in some ways broader
but in other ways narrower than ours [14]; cf. [3]. Our [33] covers the union
of [38, 14, 3]. From one point of view, the contribution of the present paper is
to generalize [33] beyond the composition case.

The Protocol Composition Logic PCL considers refinements that preserve
security goals [20, Thms. 4.4, 4.8]. A specific proof of a goal formula relies on
particular invariants. If a protocol refinement introduces no actions falsifying
these invariants, it preserves the security goal. Although PCL was designed
to support richer forms of transformation, the existing results are essentially
confined to the composition case. [20]’s “parallel” and “sequential” composition
amounts to Π1 ⊆ Π2. Datta et al.’s “protocol refinement using templates” [19]
suggested many of our examples.

By contrast with Distributed Temporal Logic [11], GL(Π) is intended to be
less expressive about the forms of messages. We wanted to focus only on what
is retained under transformation, which concerns the role parameters rather
than the forms of the messages. Nevertheless, our logic, unlike DTL, being a
quantified logic, satisfaction is undecidable.

Lowe and Auty [45] refine protocols to concrete messages starting from for-
mulas in a Hoare-like logic that represent the effect of messages. Maffei et al. [4]
express the effects of messages by abstract tags, and provide constraints on
instantiating the tags by concrete messages.

“Protocol compilers” transform their input automatically. Some start with a
crypto-free protocol, and transform it into a protocol meeting security goals [15,
6]. Others transform a protocol secure in a weak adversary model into protocols
satisfying those goals with multi-session, active adversary [40].

Future work. We leave a major gap: What syntactic property of F : Π1 →
Π2 ensures that F preserves security goals? A clue comes from the “disjoint
encryption” property [38, 33], cf. [45, 14]. Consider a map E from all encrypted
units used by Π1 to a subset of the encrypted units of Π2. Π2 should create
an encryption α(E(e)) on node n only if n = F (n0) and n0 creates α(e) in
Π1. Likewise, Π2 should remove an ingredient from α(E(e)) only on a node

Version of November 5, 2012 56

n = F (n0) where n0 removes an ingredient from α(e) in Π1.
Tool support is also required. cpsa generates some pslts transition rela-

tions. We then construct others, and the simulations, by hand. A variant of
cpsa that would explore two protocols in tandem would be of great interest.

Acknowledgments. Thanks to Dan Dougherty, Dusko Pavlovic, John Rams-
dell, Paul Rowe, and Javier Thayer. Early versions of some of this material were
presented at FCS-ARPSA-WITS in 2008 and in Darmstadt in 2010.

Thanks to Siraj Sayani and Soumentra Ghosal, whose hospitality I enjoyed
in Coonoor while writing a key part of this paper.

References

[1] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy
types and logic programs. Journal of the ACM, 52(1):102–146, January 2005.

[2] Roberto M. Amadio and Denis Lugiez. On the reachability problem in crypto-
graphic protocols. In Concur, number 1877 in LNCS, pages 380–394, 2000.

[3] S. Andova, C.J.F. Cremers, K. Gjøsteen, S. Mauw, S.F. Mjølsnes, and
S. Radomirović. Sufficient conditions for composing security protocols. Infor-
mation and Computation, 2007.

[4] Michael Backes, Agostino Cortesi, Riccardo Focardi, and Matteo Maffei. A cal-
culus of challenges and responses. In FMSE ’07: ACM Workshop on Formal
methods in Security Engineering, pages 51–60, New York, NY, USA, 2007. ACM.

[5] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A universally compos-
able cryptographic library. Available at http://eprint.iacr.org/2003/015/,
January 2003.

[6] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet,
and James J. Leifer. Cryptographic protocol synthesis and verification for multi-
party sessions. In IEEE Computer Security Foundations Symposium, 2009.

[7] R. Bird, I. Gopal, A. Herzberg, P. A. Janson, S. Kutten, R. Mulva, and M. Yung.
Systematic design of a family of attack-resistant authentication protocols. IEEE
Journal on Selected Areas in Communications, 11(5):679–693, 1993.

[8] Simon Blake-Wilson and Alfred Menezes. Authenticated Diffe-Hellman key agree-
ment protocols. In Selected Areas in Cryptography, pages 630–630. Springer, 1999.

[9] Bruno Blanchet. An efficient protocol verifier based on Prolog rules. In 14th
Computer Security Foundations Workshop, pages 82–96. IEEE CS Press, June
2001.

[10] Dan Boneh. The decision Diffie-Hellman problem. Algorithmic Number Theory,
pages 48–63, 1998.

[11] C. Caleiro, L. Vigano, and D. Basin. Relating strand spaces and distributed
temporal logic for security protocol analysis. Logic Journal of IGPL, 13(6):637,
2005.

[12] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Report 2000/067, International Association for Cryptographic Re-
search, October 2001. Extended Abstract appeared in proceedings of the 42nd
Symposium on Foundations of Computer Science (FOCS), 2001.

Version of November 5, 2012 57

[13] Edmund Clarke, Somesh Jha, and Will Marrero. Using state space exploration
and a natural deduction style message derivation engine to verify security pro-
tocols. In Proceedings, IFIP Working Conference on Programming Concepts and
Methods (Procomet), 1998.

[14] Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune. Safely composing
security protocols. In V. Arvind and Sanjiva Prasad, editors, Proceedings of the
27th Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS’07), LNCS, New Delhi, India, December 2007. Springer.

[15] Véronique Cortier, Bogdan Warinschi, and Eugen Zalinescu. Synthesizing secure
protocols. In ESORICS: European Symposium On Research In Computer Secu-
rity, volume 4734 of Lecture Notes in Computer Science, pages 406–421. Springer,
2007.

[16] Federico Crazzolara and Glynn Winskel. Composing strand spaces. In Pro-
ceedings, Foundations of Software Technology and Theoretical Computer Science,
number 2556 in LNCS, pages 97–108, Kanpur, December 2002. Springer Verlag.

[17] Cas J.F. Cremers. Unbounded verification, falsification, and characterization of
security protocols by pattern refinement. In ACM Conference on Computer and
Communications Security (CCS), pages 119–128, New York, NY, USA, 2008.
ACM.

[18] C.J.F. Cremers. Scyther - Semantics and Verification of Security Protocols. Ph.D.
dissertation, Eindhoven University of Technology, 2006.

[19] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. Abstraction
and refinement in protocol derivation. In IEEE Computer Security Foundations
Workshop. IEEE CS Press, 2004.

[20] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A deriva-
tion system and compositional logic for security protocols. Journal of Computer
Security, 13(3):423–482, 2005.

[21] Anupam Datta, Ante Derek, John C. Mitchell, and Bogdan Warinschi. Com-
putationally sound compositional logic for key exchange protocols. In Computer
Security Foundations Workshop, pages 321–334, 2006.

[22] Dorothy Denning and G. Sacco. Timestamps in key distribution protocols. Com-
munications of the ACM, 24(8), August 1981.

[23] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for
shapes in cryptographic protocols. In Tools and Algorithms for Construction and
Analysis of Systems (TACAS), number 4424 in LNCS, pages 523–538, 2007.

[24] Daniel J. Dougherty and Joshua D. Guttman. Symbolic protocol analysis for
Diffie-Hellman. Arxiv preprint arXiv:1202.2168, 2012. At http://arxiv.org/

abs/1202.2168v1.

[25] Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset
rewriting and the complexity of bounded security protocols. Journal of Computer
Security, 12(2):247–311, 2004. Initial version appeared in Workshop on Formal
Methods and Security Protocols, 1999.

[26] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. Foundations of Security
Analysis and Design V, pages 1–50, 2009.

http://arxiv.org/abs/1202.2168v1
http://arxiv.org/abs/1202.2168v1

Version of November 5, 2012 58

[27] Marcelo Fiore and Mart́ın Abadi. Computing symbolic models for verifying cryp-
tographic protocols. In Computer Security Foundations Workshop, June 2001.

[28] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security proto-
cols. Journal of Computer Security, 11(4):451–521, 2003.

[29] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. Journal of Computer Security, 12(3/4):435–484, 2004.

[30] Jean Goubault-Larrecq. Towards producing formally checkable security proofs,
automatically. In Computer Security Foundations Workshop, pages 224–238,
2008.

[31] Joshua D. Guttman. Key compromise and the authentication tests. Electronic
Notes in Theoretical Computer Science, 47, 2001. Editor, M. Mislove. URL http:

//www.elsevier.nl/locate/entcs/volume47.html, 21 pages.

[32] Joshua D. Guttman. Authentication tests and disjoint encryption: a design
method for security protocols. Journal of Computer Security, 12(3/4):409–433,
2004.

[33] Joshua D. Guttman. Cryptographic protocol composition via the authentication
tests. In Luca de Alfaro, editor, Foundations of Software Science and Computation
Structures (FOSSACS), number 5504 in LNCS, pages 303–317. Springer, March
2009.

[34] Joshua D. Guttman. Security theorems via model theory. EXPRESS: Expres-
siveness in Concurrency (EPTCS), 8:51, 2009. doi:10.4204/EPTCS.8.5.

[35] Joshua D. Guttman. Transformations between cryptographic protocols. In
P. Degano and L. Viganò, editors, Automated Reasoning in Security Protocol
Analysis, and Workshop on Issues in the Theory of Security (ARSPA-WITS),
number 5511 in LNCS, pages 107–123. Springer, 2009.

[36] Joshua D. Guttman. Security goals and protocol transformations. In Sebastian
Mödersheim and Catuscia Palamidessi, editors, Tosca: Theory of Security and
Applications, LNCS. Springer, March 2011.

[37] Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique
Cortier and Steve Kremer, editors, Formal Models and Techniques for Analyzing
Security Protocols, Cryptology and Information Security Series. IOS Press, 2011.

[38] Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint
encryption. In Computer Security Foundations Workshop. IEEE CS Press, 2000.

[39] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, June 2002. Conference
version appeared in IEEE Symposium on Security and Privacy, May 2000.

[40] Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. J. Cryptology, 20(1):85–113, 2007.

[41] John Kelsey, Bruce Schneier, and David Wagner. Protocol interactions and the
chosen protocol attack. In Security Protocols Workshop. Springer, 1998.

[42] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proceeedings of tacas, volume 1055 of Lecture Notes in Computer
Science, pages 147–166. Springer Verlag, 1996.

[43] Gavin Lowe. Casper: A compiler for the analysis of security protocols. In 10th
Computer Security Foundations Workshop Proceedings, pages 18–30. IEEE CS
Press, 1997.

http://www.elsevier.nl/locate/entcs/volume47.html
http://www.elsevier.nl/locate/entcs/volume47.html

Version of November 5, 2012 59

[44] Gavin Lowe. A hierarchy of authentication specifications. In 10th Computer
Security Foundations Workshop Proceedings, pages 31–43. IEEE CS Press, 1997.

[45] Gavin Lowe and Michael Auty. A calculus for security protocol development.
Technical report, Oxford University Computing Laboratory, March 2007.

[46] C. Meadows. The NRL protocol analyzer: An overview. The Journal of Logic
Programming, 26(2):113–131, 1996.

[47] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol security
analysis. IEEE Transactions on Software Engineering, 13(2):274–288, February
1987.

[48] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In 8th ACM Conference on Computer
and Communications Security (CCS ’01), pages 166–175. ACM, 2001.

[49] Roger Needham and Michael Schroeder. Using encryption for authentication in
large networks of computers. CACM, 21(12), December 1978.

[50] Lawrence C. Paulson. Proving properties of security protocols by induction. In
10th IEEE Computer Security Foundations Workshop, pages 70–83. IEEE CS
Press, 1997.

[51] Lawrence C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 1998. Also Report 443, Cambridge University
Computer Lab.

[52] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation
of secure reactive systems. In Proceedings, Seventh ACM Conference of Commu-
nication and Computer Security. ACM, November 2000.

[53] John D. Ramsdell. Deducing security goals from shape analysis sentences. The
MITRE Corporation, April 2012. http://arxiv.org/abs/1204.0480.

[54] John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol
shapes analyzer. In Hackage. The MITRE Corporation, 2009. http://hackage.

haskell.org/package/cpsa; see esp. doc subdirectory.

[55] John D. Ramsdell, Joshua D. Guttman, and Paul D. Rowe. The CPSA Specifi-
cation: A Reduction System for Searching for Shapes in Cryptographic Protocols.
The MITRE Corporation, 2009. In http://hackage.haskell.org/package/cpsa

source distribution, doc directory.

[56] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with finite number
of sessions is NP-complete. In Computer Security Foundations Workshop, pages
174–, 2001.

[57] Peter Selinger. Models for an adversary-centric protocol logic. Electr. Notes
Theor. Comput. Sci., 55(1), 2001.

[58] Dawn Xiaodong Song. Athena: a new efficient automated checker for security pro-
tocol analysis. In Proceedings of the 12th IEEE Computer Security Foundations
Workshop. IEEE CS Press, June 1999.

[59] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230,
1999.

http://arxiv.org/abs/1204.0480
http://hackage.haskell.org/package/cpsa
http://hackage.haskell.org/package/cpsa
http://hackage.haskell.org/package/cpsa

	Introduction
	Some approaches to protocol analysis
	Our key ideas

	Strands, Bundles, Fragments
	Security Goals: Some Examples
	The Security Goal Language of a Protocol
	Characteristic Fragments and Formulas
	Enrich-by-Need Protocol Analysis
	Protocol Transformations
	Some Protocol Transformations
	Transformations and Homomorphisms
	Preservation via PSLTSs
	Preserving Goal Formulas

	Conclusion

