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Abstract

Many cryptographic protocols are intended to coordinate state changes
among principals. Exchange protocols, for instance, coordinate delivery
of new values to the participants, i.e. additions to the set of values they
possess. An exchange protocol is fair if it ensures that delivery of new
values is balanced: If one participant obtains a new possession via the
protocol, then all other participants will, too.

Understanding this balanced coordination of different principals in a
distributed system requires relating (long-term) state to (short-term) pro-
tocol activities. Fair exchange also requires progress assumptions.

In this paper we adapt the strand space framework to protocols, such
as fair exchange, that coordinate state changes. We regard the state as a
multiset of facts, and we allow protocol actions to cause local changes in
this state via multiset rewriting. Second, progress assumptions stipulate
that some channels are resilient—and guaranteed to deliver messages—
and some principals will not stop at critical steps. Our proofs of cor-
rectness cleanly separate protocol properties, such as authentication and
confidentiality, from properties about progress and state evolution.

G. Wang’s recent fair exchange protocol illustrates the approach.

1 Introduction

Many cryptographic protocols coordinate state changes between principals in
distributed systems. For instance, electronic commerce protocols aim to coor-
dinate state changes among a customer, a merchant, and one or more financial
institutions. The financial institutions should record credits and debits against
the accounts of the customer and the merchant. These state changes corre-
late with state changes at the merchant and the customer. The merchant’s
state changes should include sending a shipping order to its warehouse. The
customer records a copy of the shipping order, and a receipt for the payment,

∗Funded in part by MITRE-Sponsored Research, and in part by National Science Founda-
tion grant number CNS-0952287. Email: guttman@{wpi.edu}.

1



issued by its financial institution. The designer of an application-level protocol
must ensure that these changes occur in a coordinated, transaction-like way.

State changes should occur only when the participants have taken certain ac-
tions; for instance, any funds transfer requires the payer’s authorization. More-
over, changes should occur only when the participants have certain joint knowl-
edge, e.g. that they all agree on the identities of the participants in the transac-
tion, and the amount of money involved. These are authentication goals in the
parlance of protocol analysis. There may also be confidentiality goals that limit
joint knowledge. In our example, the customer and merchant should agree on
the goods being purchased—which should not be disclosed to the bank—while
the customer and bank should agree on the account number or card number,
which should not be disclosed to the merchant.

Goal of this paper. We develop a model connecting protocol execution with
state and state change. We use our model to provide a proof of a clever fair
exchange protocol due to Guilin Wang [21], modulo a slight correction.

We believe that the strength of the model is evident in the proof’s clean
composition of protocol-specific reasoning with state-specific reasoning. In par-
ticular, our proof modularizes what it needs to know about protocol behavior
into the four authentication properties given in Section 2, Lemmas 5–6. If any
protocol achieves these authentication goals and its roles obey simple conditions
on the ordering of events, then other details do not matter: it will succeed as a
fair exchange protocol.

A two-party fair exchange protocol is a mechanism to deposit a pair of values
atomically into the states of a pair of principals. Certified delivery protocols
are a typical kind of fair exchange protocol. A certified delivery protocol aims
to allow A, the sender of a message, to obtain a digitally signed receipt if the
message is delivered to B. B should obtain the message together with signed
evidence that it came from A. If a session fails, then neither principal should
obtain these values. If it succeeds, then both should obtain them. The protocol
goal is to cause state evolution of these participants to be balanced.

The “fair” in “fair exchange” refers to the balanced evolution of the state.
“Fair” does not have the same sense as in some other uses in computer science,
where an infinitely long execution is fair if any event actually occurs, assuming
that it is enabled in an infinite subsequence of the states in that execution.
In some frameworks, fairness in this latter sense helps to clarify the workings
of fair exchange protocols [3, 6]. However, we show here how fair exchange
protocols can also be understood independent of this notion of fairness. When
we formalize Wang’s protocol [21], we use an extension of the strand space
model [16] in which there are no infinite executions or fairness assumptions.

As has been long known [10, 19], a deterministic fair exchange protocol must
rely on a trusted third party T . Recent protocols generally follow [1] in using
the trusted third party optimistically, i.e. T is never contacted in the extremely
common case that a session terminates normally between the two participants.
T is contacted only when one participant does not receive an expected message.

Each principal A,B, T has a state. T uses its state to record the sessions in
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which one participant has contacted it. For each such session, T remembers the
outcome—whether T aborted the session or completed it successfully—so that
it can deliver the same outcome to the other participant. The states of A,B
simply records the ultimate result of each session in which it participates. The
protocol guides the state’s evolution to ensure balanced changes.

Strand space extensions. Two additions to strand spaces are needed to
view protocols as solving to coordinated state change problems.

A strand is a sequence of actions executed by a single principal in a single
local session of a protocol. We enrich strands to allow them to synchronize with
the projection of the joint state that is local to the principal P executing the
strand. We previously defined the actions on a strand to be either (1) message
transmissions or (2) message receptions. We now extend the definition to allow
the actions also to be (3) state synchronization events. P ’s state at a particular
time may permit some state synchronization events and prohibit others, so that
P ’s strands are blocked from the latter behaviors. Thus, the state constrains
protocol behavior. Updates to P ’s state reflect actions of P ’s strands.

We represent states by multisets of facts, and state change by multiset rewrit-
ing [4, 9], although with several differences from Mitchell, Scedrov et al. First,
they use multiset rewriting to model protocol and communication behavior, as
well as the states of the principals. We instead use strands for the protocol
and communication behavior. Our multiset rewriting steps change only a single
principal’s local state. Hence, second, in our rules we do not need existentials,
which they used to model selection of fresh values. Third, we use “big” states
that may have a high cardinality of facts. However, the big states are generally
sparse, and extremely easy to implement with small data structures.

We also incorporate guaranteed progress assumptions into strand spaces.
Protocols that establish balance properties need guaranteed progress. Since
principals communicate by messages, one of them—call it A—must be ready
to make its state change first. Some principal (either A or some third party)
must send a message to B to enable it to make its state change. If this message
never reaches B, B cannot execute its state change. Hence, in the absence of a
mechanism to ensure progress, A has a strategy—by preventing future message
deliveries—to prevent the joint state from returning to balance.

Progress has two ingredients. One is that certain message transmissions are
resilient in the sense that they are guaranteed to be received sooner or later.
For instance, each party’s transmissions to the trusted third party should be
resilient. The other ingredient is that a recipient (in this case, the trusted
third party) will progress, and prepare a response. This response should also
be transmitted resiliently. These two elements together ensure that the original
sender will receive a reply. However, no particular time bound is required. We
will not assume that these events will occur before other, independent events
have occurred.

The two augmentations—state synchronization events and a way to stipulate
progress—fit together to form a strand space theory usable for reasoning about
coordinated state change.
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Structure of this paper. Section 2 describes the general approach of Wang’s
protocol. Section 3 specifies it in a more precise way, using the notation of strand
spaces.

Section 4 develops the authentication properties that we will rely on, summa-
rized in two lemmas (Lemmas 5–6). Any protocol whose message flow satisfies
these two lemmas, and which synchronizes with state history at the same points,
will meet our needs.

Section 5 introduces our multiset rewriting framework, proving a locality
property. This property says that state synchronization events of two differ-
ent principals are always concurrent in the sense that they commute. Hence,
coordination between different principals can only occur by protocol messages,
not directly by state changes. We also formalize the state facts and rules for
Wang’s protocol, inferring central facts about computations using these rules.
These (very easily verified) facts are summarized in Lemma 13. Any system of
rules that satisfies Lemma 13 will meet our needs.

Section 6 gives definitions for guaranteed progress, applying them to Wang’s
protocol. Lemmas 20–21, the key conclusions of Section 6, jointly entail that
any compliant principals executing a session with a session label L can always
proceed to the end of a local run, assuming only that the trusted third party is
ready to handle sessions labeled L.

In Section 7 we put the pieces together to show that it achieves its balanced
state evolution goal (Thm. 23). In particular, the balance property of Thm. 23
depends only on:

Lemmas 4, 5 and 6 about the protocol structure;

Lemma 13 about the state history mechanism; and

Lemmas 20–21 about progress.

These lemmas factor the verification into three sharply distinguished compo-
nents.

2 The Gist of Wang’s Protocol

Wang’s fair exchange protocol [21] is appealing because it is short—only three
messages in the main exchange (Fig. 1)—and uses only “generic” cryptography.
By generic cryptography, Wang means hash functions, standard digital signa-
tures, and probabilistic asymmetric encryption such that the random parameter
may be recovered when decryption occurs. RSA-OAEP is such a scheme.

Some other protocols proposed for fair exchange use more specialized primi-
tives. For instance, Anteniese [2] studied protocols that use an encryption that
can be verified before having the decryption key; and Garay, Jakobsson, and
MacKenzie [12] proposed a protocol that uses a primitive called “private con-
tract signatures.” A private contract signature is not verifiable by an outsider to
the transaction, but it may be verified by the peer. Moreover, the trusted third
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party can convert to a standard digital signature to recover a failed transaction.
See also [5].

In many situations, the advantages of Wang’s protocol—that it is short and
uses only standard signatures—will probably outweigh its disadvantage, namely
one additional step in dispute resolution (see below in this section, p. 8).

Terminology. We write:

t1 ˆt2 for the concatenation of t1 and t2;

{|t|}k for t encrypted with the key k;

{|t|}rk for t encrypted with the key k using the recoverable random value r;

h(t) for a cryptographic hash of t; and

[[ t ]]k for a digital signature on t which may be verified using key k. By this,
we mean t together with a cryptographic value v prepared from h(t) using
the private signature key k−1 corresponding to k.

When we use a principal name A,B, T in place of k, we mean that a public key
associated with that principal is used. Thus:

{|t|}rT is an asymmetric encryption using T ’s public encryption key; and

[[ t ]]A is a digital signature that may be verified using A’s public verification key.

Message ingredients such as keytag, ab rq, ab cf, etc., are distinctive bit-patterns
used to tag data, indicate requests or confirmations, etc. Our notation differs
somewhat from Wang’s; for instance, his L is our h(L).

2.1 Main exchange

In the first message (Fig. 1), A sends the payload M to B encrypted with a key
K, as well as K encrypted with the public encryption key of the trusted third
party T . A also sends a digitally signed unit EOO asserting that the payload
(etc.) originate with A. The value L serves to identify this session uniquely.

In the second message, B countersigns h(L),EK.
In the third message, A discloses K and the random value R used originally

to encrypt K for T . B uses this information to obtain M , and also to reconstruct
EK, and thus to validate that the hashes inside EOO are correctly constructed.
At the end of a successful exchange, each party deposits the resulting values as
a record in its state repository.

2.2 Abort and recovery subprotocols

What can go wrong? If the signature keys are uncompromised and the random
values K,R are freshly chosen, only two things can fail:
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A→B : Lˆ EM ˆ EK ˆ EOO

B→A : EOR

A→B : K ˆR

where:

L = AˆBˆT ˆh(EM)ˆh(K) EM = {|M |}K

EK = {| keytag ˆh(L)ˆK|}RT
EOO = [[ eootag ˆh(L)ˆ EK ]]A EOR = [[ eortag ˆh(L)ˆ EK ]]B

Figure 1: Wang’s protocol: A Successful Run

• A does not receiveB’s evidence of receipt EOR, and would like to abort this
incomplete session. A prepares and signs an abort request AR containing
L, which it transmits to the trusted third party T .

• B does not receive a correct K,R, and would like to recover them with
the help of the trusted third party. B signs a value indicating a recovery
request for L, and forwards that to T as a unit RR that also includes the
signed evidence of receipt and other session data.

What can T do, if contacted in connection with a session L?

• T can abort L by countersigning an abort request AR. The resulting
abort confirmation token AT certifies that A requested that the session be
aborted, and T accepted that request.

• T can recover L by delivering K,R to B. T can extract them from the
encrypted unit EK = {| keytag ˆh(L)ˆK|}RT , using its private decryption
key.

If T ’s attempt to decrypt fails, or yields a value incompatible with the
session information, then no harm is done: A will never be able to convince
a judge that a valid transaction occurred. Wang’s protocol returns an error
message that we do not show here [21, Fig. 3].

However, a crucial condition is that if T receives both an abort request and
a recovery request for the same session L, then T should provide compatible
responses to both parties. If it provided AT to A and K,R to B, then B would
succeed at decrypting M with K, adding the message and its EOO to its state
repository. But A would not have received the balancing EOR.

Thus, when receiving the first request for any session L, T must record its
action. It then responds to the other party to L in a matching way. If T receives
an abort request for a new session L, then it records its abort token AT, to be
delivered to B in lieu of recovery information in case a recovery request arrives
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Figure 2: Initiator (A) and Responder (B) Behavior

subsequently. Conversely, before delivering K,R to B, it must receive EOR,
and check that it is correctly formed, and record it, so that if A subsequently
requests an abort for L, T can deliver EOR to provide the balancing outcome.
This is the core reason why the trusted third party in a fair exchange protocol
must keep long term state.

Thus, T has essentially four state-manipulating actions:

Abort When an abort request arrives for a session L, and no session informa-
tion is stored for L, then T issues an abort token AT, which is stored also
for L.

Recover When a recovery request arrives for a session L, and no session infor-
mation is stored for L, then T extracts K,R, storing the EOR for L.

Forced recovery When an abort request arrives for a session L, but an EOR
is already stored for L, then the EOR is transmitted in response, with no
further state change.

Forced abort When a recovery request arrives for a session L, but an AT is
already stored for L, then the AT is transmitted in response, with no
further state change.

For completeness, we also allow an abort event to occur when an abort request
arrives for a session L, and a matching AT is already stored for L. In this case,
the same AT remains in the store. Similarly, when a recovery request arrives for
a session L, and a matching EOR is already stored for L, then the same K,R
should be retransmitted in response, with no further state change.

Hence, if A makes an abort request and B also makes a recovery request, per-
haps because EOR was sent but lost in transmission, then T services whichever
request is received first. When the other party’s request is received, T reports
the result of that first action. The local behaviors (strands) for A,B in this
protocol are shown in Fig. 2. The local sessions (strands) are the paths from a
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Figure 3: Trusted Third Party: Abort (left), Resolve (center), and Confirm
(right) Requests

root to a terminal node; there are four paths for A and three paths for B. The
solid nodes indicate messages to be sent or received, while the hollow nodes ◦
indicate events in which the participants deposit results into their state reposi-
tories. This figure is not precise about the forms of the messages, the parameters
available to each participant at each point in its run, or the parameters to the
state synchronization events. For instance, B does not know whether a claimed
EM is really of the form {|M |}K when first receiving it, nor what M,K would
produce the message received. We will clarify these details in Section 3.

A’s abort request AR elicits an abort confirmation [[ AR ]]T if it reaches T first,
but it elicits a recovery token Lˆ EOR if B’s recovery request was received first.
Likewise, B’s recovery request RR elicits K ˆR if it is received first, but it elicits
the abort confirmation [[ AR ]]T if A’s abort request was received first. T must
synchronize with its state to ensure that these different requests are serviced in
compatible ways, depending on whichever arrived first. This compatibility of
responses ensures that A,B will execute balanced state changes.

These behaviors of the trusted third party T , together with an additional
behavior concerned with dispute resolution, are summarized in Fig. 3. We have
indicated here that T ’s behavior, in response to an abort request AR may lead
either to an abort token AT, or else to evidence of receipt EOR. Now, the hollow
nodes ◦ guard the choice of branch. T transmits AR only after an abrt event,
and EOR only after a frcvr event. In response to a recovery request RR from B,
T may transmit K ˆR or an abort token AT; however, the former occurs only
after a rcvr event and the latter only after a fabrt event. Thus, the essential job
for T ’s long term state in this protocol is to ensure that if an abrt event occurs
for session L, then a rcvr never happens for L, and vice versa. This is easily
accomplished by a state-based mechanism.

2.3 Dispute Resolution

A subtlety in this protocol concerns dispute resolution. Since A receives EOR
before disclosing K ˆR, A could choose to abort at this point. A dishonest
A could later choose between proving delivery via EOR and proving that this
session aborted via the abort token AT. To prevent this, the protocol stipulates
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an extra step for a judge resolving disputes. If A presents the judge with EOR,
then the judge queries B or T for an abort token. The judge does not accept
A’s presented EOR if the abort token is also available.

However, this is asymmetric. The abort token is used only by B (or T on
B’s behalf) to dispute receipt. A can never use it to dispute origin [21, Sec. 4.4],
because of essentially the same abuse just mentioned.

For simplicity, we will assume that the judge is identical with T . When
asked by A to confirm an EOR, T does so if the session has not aborted. When
confirming an EOR, T must ensure that the session will never abort in the
future, so that an EOR confirmation is handled similarly to a recovery request.
If the session has already aborted, then T returns the abort token instead.
This behavior is summarized in the behaviors starting from the reception of a
confirmation request CF at the right side of Fig. 3.

This step may make Wang’s protocol undesirable in some cases, where T may
no longer be available for dispute resolution. It is also why Wang’s protocol can
use fewer messages than the four that Pfitzmann-Schunter-Waidner proved to
be needed in a fair exchange protocol with asynchronous communication [18].

2.4 Our Correction to Wang’s Protocol

We have adjusted Wang’s protocol, so that B receives [[ AR ]]T in the forced abort
case. In the original description, B received only AR.

However, in the original protocol, a dishonest B has a strategy to defeat
the fairness of the protocol. Namely, after receiving the first message, B does
not reply to A, but immediately requests resolution from T , generally receiving
K ˆR from T . When A requests an abort from T , B attempts to read this abort
request from the network. If successful, B has both AR and K ˆR. Hence, it
can subsequently choose whether to insist that the message was delivered, using
the valid EOO, or whether to repudiate receipt, using the AR.

Whether this attack is possible depends on the nature of the channel between
A and T . Under the usual assumption that the channel is resilient just in the
sense of ensuring delivery, the attack is possible. If the channel offers both
resilience and confidentiality, then the attack would be impossible. We have
stipulated that B needs the countersigned AT = [[ · · ·AR · · · ]]T to make this
attack infeasible on the standard assumption of resiliency only.

3 Wang’s Protocol: a Specification

Participants cannot always immediately verify that a message they have received
is of the form intended by the protocol. For instance, B cannot verify that
a message component received where EK is expected is actually of the form
{| keytag ˆh(L)ˆK|}RT . Nor can B validate that the last component of L is of the
form h(K), since B has not yet received K.1 Likewise, T , when receiving an

1Indeed, if the argument to h is a 160-bit value, and the symmetric keys are 128 bits,
so that in fact h is applied to a key followed by padding of a prescribed form, then a given
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abort request AR for a session L, will never validate that the last two components
of L are of the form h(EM) and h(K).

For these and other messages, the sender and recipient do not always have the
same view of how the message is constructed from its parameters. In this section,
we provide a more detailed specification of the protocol, using the strand space
formalism. This description clarifies exactly what messages a participant sends
and receives, even in cases where a compromised peer may disobey the protocol
with regard to message components that a recipient cannot immediately check.
We start by summarizing the core strand space definitions.

3.1 Preliminaries: Messages and Protocols

In this section, we provide an overview of the current strand space framework;
this section follows [13], except that it adds internal state synchronization events.
See also [16, 8].

Message Algebra. Let A0 be an algebra equipped with some operators and
a set of homomorphisms η : A0 → A0. We call members of A0 atoms.

For the sake of definiteness, we will assume here that A0 is the disjoint union
of infinite sets of nonces, atomic keys (which we divide into symmetric keys and
asymmetric keys), names, and texts. The operator signk(a) maps names to
(asymmetric) signature keys, and pubk(a) maps names to (asymmetric) public
encryption keys. K−1 maps an asymmetric atomic key to its inverse, and a
symmetric atomic key to itself. Homomorphisms η are maps that respect sorts,
and act homomorphically on signk(a) and K−1.

Let X be an infinite set disjoint from A0; its members—called indetermi-
nates—act like unsorted variables.

A is freely generated from A0 ∪X by two operations:

Encryption: The encryption of t0 using t1 as key is written {|t0|}t1 . In {|t0|}t1 ,
a non-atomic key t1 is a symmetric key.

Tagged concatenation: The tagged concatenation of t0 and t1 using tag as
tag is written tag t0 ˆt1. For a distinguished tag nil , we write nil t0 ˆt1
as t0 ˆt1 with no visible tag.

Members of A are called messages.
This algebra does not contain a separate hashing operator h(t0). We regard

the operator as a public key encryption using a public key Kh such that no prin-
cipal knows the corresponding private key K−1

h . Thus, any principal possessing
t0 can construct {|t0|}Kh

. A principal who has received a value {|t0|}Kh
and has

a hypothesis about the t0 can test this hypothesis by re-encrypting using Kh

and testing for equality. Thus, our encryption represents a non-probabilistic
encryption.

bitstring may in fact not equal h(K) for any symmetric key K.
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To represent a probabilistic encryption with recoverable randomness, such
as the operator {|t0|}RK , we use {|prob t0 ˆR|}K , where the tag prob indicates the
specific roles of t0 and R. R is certainly recoverable from {|prob t0 ˆR|}K .

A homomorphism α = (η, χ) : A → A consists of a homomorphism η on
atoms and a function χ : X → A. It is defined for all t ∈ A by the conditions:

α(a) = η(a), if a ∈ A0 α({|t0|}t1) = {|α(t0)|}α(t1)

α(x) = χ(x), if x ∈ X α(tag t0 ˆt1) = tag α(t0)ˆα(t1)

Thus, atoms serve as typed variables, replaceable only by other values of the
same sort, while indeterminates x are untyped. Indeterminates x serve as blank
slots, to be filled by any χ(x) ∈ A. Indeterminates and atoms are jointly param-
eters. The instances of a message t0 are its images α(t0) under homomorphisms
α.

Messages are abstract syntax trees in the usual way:

1. Let ` and r be the partial functions such that for t = {|t1|}t2 or t =
tag t1 ˆt2, `(t) = t1 and r(t) = t2; and for t ∈ A0, ` and r are undefined.

2. A path p is a sequence in {`, r}∗. We regard p as a partial function, where
〈〉 = Id and cons(f, p) = p ◦ f . When the rhs is defined, we have: 1.
〈〉(t) = t; 2. cons(`, p)(t) = p(`(t)); and 3. cons(r, p)(t) = p(r(t)).

3. p traverses a key edge in t if p1(t) is an encryption, where p = p1
_〈r〉_p2.

4. t0 is an ingredient of t, written t0 v t, if t0 = p(t) for some p that does
not traverse a key edge in t.

5. t0 appears in t, written t0 � t, if t0 = p(t) for some p.

Strands. A strand is a (linearly ordered) sequence of nodes n1 ⇒ . . . ⇒ nj ,
each of which represents either:

Transmission of some message msg(ni) = ti, graphically • ti→;

Reception of some message msg(ni) = ti, graphically ti→ •; or

State synchronization labeled by some fact E(a1, . . . , ak), i.e. a
variable-free atomic formula, graphically E(a1,...,ak) ◦.

We write s ↓ i for the ith node of s, using 1-based notation. We show transmis-
sion and reception nodes by bullets • and state synchronization nodes by hollow
circles ◦. In Figs. 2–3, the columns of nodes connected by double arrows ⇒ are
strands.

We lift homomorphisms α to strands s by mapping α through the nodes of
s. The instances of a strand s are all of its images α(s) under homomorphisms
α of the message algebra.
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Origination. A message t0 originates at a node n1 if (1) n1 is a transmission
node; (2) t0 v msg(n1); and (3) whenever n0 ⇒+ n1, t0 6v msg(n0).

Thus, t0 originates when it was transmitted without having been either
received, transmitted, or synchronized previously on the same strand. Values
assumed to originate only on one node in an execution—uniquely originating
values—formalize the idea of freshly chosen, unguessable values. Values assumed
to originate nowhere may be used to encrypt or decrypt, but are never sent
as message ingredients. They are called non-originating values. For a non-
originating value K, K 6v t for any transmitted message t. However, K �
{|t0|}K v t possibly, which is why we distinguish v from �.

A strand may represent the behavior of a principal in a single local session
of a protocol, in which case it is a regular strand of that protocol, or it may
represent a basic adversary activity. Basic adversary activities include receiving
a plaintext and a key and transmitting the result of the encryption, and similar
activities: An adversary strand has any of the following forms:

Ma: 〈+a〉 where a is basic value
Mg: 〈+g〉 where g is an indeterminate
C: 〈−g ⇒ · · · ⇒ −h⇒ +tag gˆ . . . ˆh〉
S: 〈−tag gˆ . . . ˆh⇒ +g ⇒ · · · ⇒ +h〉
E: 〈−K ⇒ −h⇒ +{|h|}K〉
D: 〈−K−1 ⇒ −{|h|}K ⇒ +h〉

Since strands are linearly ordered sequences of events, there is no such thing
as a branching strand. Each directed acyclic graph in Figs. 2–3 specifies a
number of strands, not a strand that branches. The maximal paths through
each dag are distinct strands that share a common initial segment, namely the
subpath that precedes the point at which they are distinguished. An execution
that has only used this initial part is not yet “committed” to one path or the
other. We therefore regard it as being the same, regardless of which path the not-
yet-executed part would choose. We formalize this in Section 3.2, Definition 2.

Protocols. A protocol Π is a finite set of strands, called the roles of the pro-
tocol. These strands, the roles of Π, are like templates that define the behavior
permitted for principals adhering to the protocol. Wang’s protocol has, as its
roles, the fourteen paths from roots to terminal nodes in Figs. 2–3.

The instances of a role r ∈ Π, are all the strands s such that s = α(r), i.e. s
results from the role r by applying a homomorphism α to it. A set of atoms
and indeterminates {a1, . . . ak, x1, . . . , x`} parametrize a role r ∈ Π iff

1. α(r ↓ j) = β(r ↓ j) for all j up to the length of r, when α, β are any pair of
homomorphisms such that α(ai) = β(ai) for all i ≤ k and α(xi) = β(xi)
for all i ≤ `; and

2. Clause 1 is false for any proper subset of {a1, . . . ak, x1, . . . , x`}.

That is, the ai, xi are a minimal set which suffice to determine the instances of r
under any homomorphism. There may be more than one choice of parametriza-
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tion for a role (for instance, when K 6= K−1, either could be used as the parame-
ter), but there are always parametrizations. In the remainder of this section, we
will clarify exactly the set of instances for each role, by describing parametriza-
tions for them (Figs. 4–5, 7–8).

Protocols as defined elsewhere [8, 13] have some additional structure which
is not relevant here and is therefore omitted.

Bundles. A bundle B is a finite directed acyclic graph whose vertices are
strand nodes, and whose arrows are either strand edges ⇒ or communication
arrows →. A bundle satisfies three properties:

1. If m → n, then m is a transmission node, n is a reception node, and
msg(m) = msg(n).

2. Every reception node n ∈ B has exactly one incoming → arrow.

3. If n ∈ B and m⇒ n, then m ∈ B.

We write m �B n when there is a path from m to n in B using arrows in ⇒
∪ →. Bundles, which may include both adversary strands and regular strands,
represent possible protocol executions.

Clause 3 requires that each bundle contains an initial segment of the nodes
lying on any one strand. However, it does not have to contain all of the nodes
on a strand. In this case, the bundle represents a moment when a principal is
only part way through some session. Indeed, this principal may have decided to
terminate its involvement in the session. The B-height of a strand is the number
of nodes on it that are in B. If all of the nodes of a strand s are in B, we say
that s has full height in B.

We assume that strands, nodes, and bundles are disjoint from A. We say
that a strand s is in B if s has at least one node in B.

Proposition 1 Let B be a bundle.

1. �B is a well-founded partial order.

2. Every non-empty set of nodes of B has �B-minimal members.

3. If a v msg(n) for any n ∈ B, then a originates at some m �B n.

Recall that a originates at a transmission node m if a v msg(m), and for all m0

earlier on the same strand, a is neither sent nor received on m0. I.e. m0 ⇒+ m
implies a 6v msg(m0).

Clause 3 justifies our use of non-origination as a way to express that a key is
uncompromised. In particular, if in B the adversary ever uses K to encrypt or
decrypt, then K is received on the first node n of an encryption or decryption
strand. Thus, K originates on some m �B n. By contraposition, keys that
originate nowhere are used only on regular strands.

Values are freshly chosen in B if they originate at just one node. If a is
uniquely originating on some regular node n, then the adversary does not guess
the value a in the sense of originating the same value on an Ma strand. Moreover,
no other regular strand has made a choice that unintentionally collides with a.

13
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AR = [[ ab rq L ]]A AT = [[ ab cf AR ]]T

Parameters: A,B, T,M,K,R

Figure 4: Initiator Strands

3.2 Specifying the Initiator

As an example of unfolding directed acyclic graphs, the dag for the initiator
(Fig. 2, left) unfolds to the five strands shown in Fig. 4, in which we use the
same abbreviations as in Fig. 1, and for brevity write D = Lˆ EM ˆ EK ˆ EOO.
In this case, each of the five strands Initi has the same parameters, namely
A,B, T,M,K,R. These parameters are chosen by A at the beginning of the
session, so nothing additional can be learnt about them. In this situation, the
dag notation of Fig. 2 leaves nothing to be desired.

Indeed, it has an advantage over the separate strand notation of Fig. 4.
Namely, if a node is the first node of any of these strands, it can be continued
into an execution of any of the other strands. Moreover, any node 2 on Init1,
Init4, or Init5 may be continued into an execution of any of the others. A node
3 on either Init4, or Init5 may be continued into an execution of the other. A
node 2 on Init2 or Init3 may be continued into an execution of the other.

Indeed, we regard a transformation on bundles as an isomorphism if it re-
places the nodes of one strand by the nodes of another strand with the same
parameters, and it is permitted by the rules we have just described. When the
parameters are determined at the start, the dag notation has the advantage
that two initial segments may be interchanged (to within isomorphism) if and
only if those initial segments may be written as the same partial path. We
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summarize this interchangeability by saying that the nodes are similar :

Definition 2 Strands s, s′ are similar up to k if, for each i where 1 ≤ i ≤ k,

1. the directions (transmission, reception, or state synchronization) of their
corresponding nodes s ↓ i and s′ ↓ i agree; and

2. s ↓ i and s′ ↓ i have the same message or state synchronization event.

Nodes n, n′ are similar, written n ∼ n′, if they are s ↓ i and s′ ↓ i for strands
s, s′ that are similar up to some k ≥ i.

Bundles B,B′ are similar, written B ∼ B′, if one results from the other by
replacing nodes with similar nodes.

According to the notion of homomorphism of [8], if B ∼ B′, then B,B′ are
certainly isomorphic. Thus, we need not distinguish between similar bundles.
This is convenient: It means that we can replace the part of s up to i with the
part of s′ up to i whenever s and s′ will diverge only at some point after i.
What has happened “so far” does not distinguish s from s′.

3.3 Specifying the Responder

However, it is worthwhile to expand the dag representation when the parame-
ters are not fully determined at the start. When the initial message reaches B,
B cannot check that it is of the form D.

If we write L∗ as an abbreviation for AˆBˆT ˆh(e1)ˆx, then the most B
can check is that the first message is of the form D∗, where:

D∗ = L∗ˆe1 ˆe2 ˆ[[ eootag ˆh(L∗)ˆe1 ]]A. (1)

However, B can say nothing about whether x = h(k) for any key k, nor whether
e1 and e2 are really encryptions, or are really prepared from plaintexts of the
right form. Thus, the parameters to the first node of a responder strand are
essentially: A,B, T, e1, x, e2. However, on node 3 of the main protocol, values
K and R are received. Now, B will accept them only if they disclose that the
parameters e1, x, e2 are of suitable forms; namely, whether, for some M :

e1 = {|M |}K ; x = h(K); e2 = {| keytag ˆh(L∗)ˆK|}RT . (2)

Thus, if B succeeds at receiving K ˆR as node 3 of a strand of the main proto-
col, B has succeeded in refining his knowledge of the parameters. He has learnt
that the old parameters take the explicit forms shown, for suitable values of the
newly introduced parameters K,R,M . A message K ′ˆR′ for which Eqn. 2 does
not hold must not be accepted as an instance of node 3, in a strand in which the
initial message took the form shown in Eqn. 1. In a run of the responder role
ending with an abort token, however, responder will never refine his knowledge
of the parameters, and, thus, we have the strands shown in Fig. 5. Here, the
strands Resp1 and Resp2 have the desired parameters A,B, T,M,K,R. How-
ever, Resp3 has the less informative parameters A,B, T, e1, x, e2.
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EOO∗ = [[ eootag ˆh(AˆBˆT ˆh(e1)ˆx)ˆe2 ]]A

EOR∗ = [[ eortag ˆh(L∗)ˆe2 ]]B

RR = Lˆ EK ˆ EOO ˆ EOR ˆ[[ rc rq Lˆ EK ]]B

RR∗ = L∗ˆe2 ˆ EOO∗ ˆ EOR∗ ˆ[[ rc rq L∗ˆe2 ]]B

AT∗ = [[ ab cf [[ ab rq L∗ ]]A ]]T

Parameters: Resp1, Resp2: A,B, T,M,K,R
Resp3: A,B, T, e1, x, e2

Figure 5: Responder Strands
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Figure 6: Responder Behavior

We may formalize this notion of refinement, and eliminate any reference to
the psychology and knowledge of the principals, using the notion of similarity
from Def. 2. The idea is that some but not all instances of Resp3 are similar
to instances of Resp2 up to step 2. Specifically, an instance of Resp3 is similar
to an instance of Resp2 up to step 2 if the parameters values for this instance
satisfy the equations in Eqn 2.

Definition 3 Let r1, r2 ∈ Π; let {a1, . . . ak, x1, . . . , x`} be a parametrization of
r2; and let eqs be a set of equations of the forms xi = t or ai = t.

Role r1 refines role r2 up to j under eqs iff

1. every instance of r1 similar to an instance of r2 up to j, and

2. if α satisfies eqs, then α(r2) is similar to an instance of r1 up to j.

Since some values of e1, x, e2 satisfy Eqn. 2, some prefixes of length 1 of
Resp3 are also prefixes of Resp1 and Resp2. Likewise, some prefixes of length 2
of Resp3 are also prefixes of Resp2. However, B does not know which values of
e1, x, e2 satisfy these conditions, nor for which values ofM,K,R. If A’s signature
key is used only in accordance with Wang’s protocol, then the conditions of
Eqn. 2 will be satisfiable. However, if A’s signature key is compromised, then
B may receive messages for which these conditions are unsatisfiable.

We may express the responder strands in dag form, as shown in Fig. 6. We
use here the starred message forms of Fig. 5. We provide an accurate view of
B’s knowledge of the parameters by means of the edges annotated “check (2)”.
This annotation stipulates that the principal must check—before accepting a
putative K ˆR—that the equations in Eqn. 2 are satisfied.

This check ensures that the branch it guards refines the alternative up to
the index of their last common node. B can use K,R to refine his knowledge of
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EOR′ = [[ eortag ˆh(L′)ˆe ]]B

Parameters: TtpAb1: A,B, T, y, x
TtpAb2: A,B, T, y, x, e

Figure 7: T ’s Strands for an Abort Request

the originally presented parameters e1, x, e2, confirming that they are messages
of the expected forms. Hence, we may “substitute back” the expanded forms
{|M |}K , h(K), and {| keytag ˆh(L∗)ˆK|}RT in place of e1, x, e2. This ensures that
a local execution that traverses an edge marked “check (2)” in fact has the
parameters demanded by a run of Resp1 or Resp2, even though B knew only,
when executing the first two nodes, that its messages took the weaker starred
forms.

The Cryptographic Protocol Programming Language cppl, after the publi-
cation of [15], was equipped with a “match” statement with just the semantics
of “check.” As a consequence, the semantics of a cppl procedure is exactly
compatible with the semantics of dags with checks embedded.

It is a strength of the strand space framework that it allows a rigorous
treatment of exactly what each participant knows about the parameters to a
run at each point along it. This information was not present in [21], which
effectively uses only the unstarred message forms. An accurate specification is
crucial for providing reliable analyses of cryptographic protocols.

3.4 Specifying the Trusted Third Party

We will clarify the parameters and checks performed by the trusted third party
T in the same way. In this subsection, we will annotate the messages with
partially analyzed ingredients using primes, so that T ’s initial view of a session
label L takes the form:

L′ = AˆBˆT ˆyˆx.

That is, neither of the hashes h(e1), h(K) can immediately be verified. We
start first with the response to an abort request (Fig. 7). However, in handling
the recovery request and the confirmation request (Fig. 8), T is given more
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Parameters: TtpCf1, TtpRc1: A,B, T,R,K, y
TtpCf2, TtpRc2: A,B, T,R,K, y

Figure 8: T ’s Strands for a Recovery or Confirmation Request

information from which to recover the parameters, and looks more carefully at
them.

4 Security Properties of Wang’s Protocol

In this section, we will summarize the security properties that Wang’s protocol
achieves in three lemmas.

We will write Init13(n1, A,B, T,M,K,R), for instance, to mean that n1

is a node of the form s ↓ 3, where s is an Init1 strand with the parameters
A,B, T,M,K,R. That is, the name indicates the role of the strand, and the
subscript indicates the position of the node on the strand. The first argument to
the predicate is the node being described, and the remaining arguments are the
values of the parameters with which the role has been instantiated. As another
example, Ttprc13(n′, A,B, T, y,K,R) means that n′ is of the form s′ ↓ 3, where
s′ is a TtpRc1 strand with the parameters A,B, T, y,K,R.

Notice that some of these formulas are equivalent. Since each role Initi
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begins by sending a message of the same form, Init11(n1, A,B, T,M,K,R) is
equivalent to

Init21(n1, A,B, T,M,K,R) and to Init31(n1, A,B, T,M,K,R).

That is, if s and s′ are instances of the roles Init1 and Init2 with the same
parameters A,B, T,M,K,R, then (s ↓ 1) ∼ (s′ ↓ 1). Bundles differing only in
having one versus the other node are isomorphic, and therefore should certainly
satisfy the same formulas. As another example, Resp11(n1, A,B, T,M,K,R)
holds iff

Resp31(n1, A,B, T, {|M |}K , h(K), {| keytag ˆLˆK|}RT ),

since the first node of a Resp3 strand in which the last parameters take this par-
ticular form has received the same message as a Resp1 strand with parameters
A,B, T,M,K,R. The nodes are similar.

We also write Unq(x) to say that x is uniquely originating, and Non(x) to
say that x is non-originating. This provides a language for each protocol Π
similar to the language L(Π) studied in [14], although slightly more expressive.

Disclosure only when authorized. Lemma 4 states that the message M is
disclosed only if there has been node 3 either of an Init1 strand or of a TtpRc1
strand, with matching parameters. In particular, if B deposits M with evidence
of origin into its state repository, then either A or T has reached node 3. This
may be regarded as a confidentiality goal: It says that M is not disclosed unless
it is released by one of the authorizing events, which are the third node of a
Init1 or TtpRc1 strand.

Lemma 4 Let B be a bundle in which:

• Init11(n1, A,B, T,M,K,R)

• Non(pubk(T )−1), i.e. T ’s private decryption key is not compromised;

• Unq(M) and Unq(K), i.e. M,K are freshly chosen; and

• there is a node2 m with either msg(m) = M or msg(m) = K ˆR.

Then B contains a node n3 where either

1. Init13(n3, A,B, T,M,K,R) and n1 ⇒ . . .⇒ n3, or else

2. TtpRc13(n3, A,B, T, y,K,R), where in fact y = h({|M |}K).

We could prove Lemma 4 using the authentication test theorems [16, 14]; and
these proofs would be quite routine. Alternatively, we can allow the Crypto-
graphic Protocol Shapes Analyzer cpsa [8] to search for the minimal, essentially
different skeletons satisfying the hypotheses of the lemma. cpsa, starting from

2Possibly an adversary node.
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Figure 9: cpsa Run Verifying Lemma 4. Non(pubk(T )−1), Unq(M),Unq(K)

the configuration described by the hypotheses, constructs the minimal, essen-
tially different executions extending that starting point. In order to prove the
Lemma, cpsa successively adds different items to the starting point A0, and
finds that there are two different branches of the search that lead to possible
executions A1,A2 (see Fig. 9). Each of these two executions satisfies one of the
disjuncts of the conclusion.

Authenticity of evidence of origin and receipt. Lemma 5 states that the
evidence of origin and receipt is sound. Specifically, if A deposits the evidence of
receipt in his state repository, then B transmitted the signed evidence on node 2
of a responder strand with matching parameters. Conversely, ifB deposits either
evidence of origin or an abort token in his state repository, then A transmitted
the initial message and signed evidence of origin, on node 1 of an initiator strand
with matching parameters.

Lemma 5 1. For all n ∈ B, if:

• either Init13(n,A,B, T,M,K,R), or Init33(n,A,B, T,M,K,R), or
Init54(n,A,B, T,M,K,R); and

• Non(signk(B)),

then B contains a node m such that either:

• Resp12(m,A,B, T,M,K,R); or

• Resp22(m,A,B, T,M,K,R).

2. For all n ∈ B, if:

• Resp13(n,A,B, T,M,K,R) or Resp24(n,A,B, T,M,K,R); and

• Non(signk(A)),

then there is an m such that Init11(m,A,B, T,M,K,R).
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Figure 10: cpsa Analysis of Lemma 5, Clause 1, Init1. Non(signk(B)); all
parameters match in B1,B2

(defskeleton wang
(vars (a b t hash name) (m data) (r text) (k skey))
(defstrand init1 3 (b b) (t t) (m m) (r r) (k k))
(non-orig
(privk "sign" b))
(comment "First of two queries to prove Lemma 4.2, cl 1"))

(defskeleton wang
(vars (a b t hash name) (m data) (r text) (k skey))
(defstrand init3 3 (b b) (t t) (m m) (r r) (k k))
(non-orig
(privk "sign" b))
(comment "Second of two queries to prove Lemma 4.2, cl 1"))

Figure 11: cpsa Inputs for Lemma 5, Clause 1

3. For all n ∈ B, if Resp34(n,A,B, T, e1, x, e2), and Non(signk(A)), then
there is an m ∈ B and M,K,R such that Init11(m,A,B, T,M,K,R), and

e1 = {|M |}K , x = h(K), and e2 = {| keytag ˆLˆK|}RT .

We have checked this lemma by a succession of queries to cpsa. The result of
the first, checking Clause 1 in the case where Init13(n,A,B, T,M,K,R), yields
the two skeletons shown in Fig. 10. Two more queries to cpsa check the cases of
Resp22(m,A,B, T,M,K,R) and Init54(n,A,B, T,M,K,R). In all, the lemma
requires six queries to cpsa.

Although this may seem a tedious way to prove theorems, it is in fact quite
comfortable. The two queries for Clause 1 take the forms shown in Fig. 11. In
each case, we declare the name of the protocol, some types for arguments, and
associate the formal parameters for each role with its actual arguments in this
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query. The fact that hash is a principal name, as well as a, b, t, is an artifact
of our representation of hashing; we represent h(t) as {|t|}pubk(hash). Thus, h(t)
is represented as the result of encrypting with the public encryption key of
the principal hash. Since this principal never decrypts anything, if in addition
Non(pubk(hash)−1), then principals can create and compare hashes, but never
extract values from them. In our figures here, we will not restate the assumption
Non(pubk(hash)−1).

These queries declare B’s private signing key to be non-originating, and
finally comment on the purpose of the query.

The twelve queries to verify the results of this section fit in 50 non-blank,
non-comment lines, and cpsa executes them all in a total of 6.1 seconds on
a 2008 vintage laptop with an Intel Core 2 Duo processor at 1.6 GHz, or 5.6
seconds with parallelism enabled for its two cores. Such small problems do not
benefit much from cpsa’s parallel facilities, although larger problems often do.

The protocol itself is represented by 190 non-blank, non-comment lines, in-
cluding auxiliary definitions.3 We have justified this as a method for proving
security theorems in [14].

Authenticity of abort request and token. Lemma 6 concerns the trusted
third party. It states that if A deposits an abort token into its state repository,
then T issued that token on a run with matching parameters. It also asserts
that if B deposits an abort token, then A has requested that this session abort,
and T has transmitted the abort token.

A manual proof by routine applications of rules for digital signatures is again
possible, though we have used cpsa instead.

Lemma 6 1. For any n ∈ B, if

msg(n) = AT = [[ ab cf [[ ab rq AˆBˆT ˆeˆx ]]A ]]T ,

and Non(signk(T )), then for some m ∈ B and value R, either:

• TtpAb13(m,A,B, T, y, x); or

• TtpRc23(m,A,B, T, y,K,R); or

• TtpCf23(m,A,B, T, y,K,R),

where y = h({|M |}K) and x = h(K).

2. For any n ∈ B, if Non(signk(T )) and Non(signk(A)) and either

• TtpAb13(n,A,B, T, y, x); or

• TtpRc23(n,A,B, T, y,K,R); or

• TtpCf23(n,A,B, T, y,K,R),

3The protocol definition and sequence of queries are available archived on the web as
http://web.cs.wpi.edu/~guttman/spiss. The cpsa program is available as open source un-
der a BSD license at http://hackage.haskell.org/package/cpsa-2.0.5.
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then for some m ∈ B and M , either

Init23(m,A,B, T,M,K,R′) or Init44(m,A,B, T,M,K,R′),

and y = h({|M |}K) and x = h(K).

In the last clause, the earlier ttp strands are an artifact of our formalization,
which cannot represent the way that these strands actually retrieve the abort
request AR from the long term state.

Clause 1 would still be true in Wang’s original protocol, without our adjust-
ment. However, it would not be sufficient to justify the fair exchange property
for the original protocol. Instead, the final theorem (Thm. 23) makes some as-
sertions about conditions under which AT is available or not available to B. In
Wang’s original protocol, it is only A’s request AR that is delivered to B, not
T ’s signed version AT. We certainly cannot prove the counterpart to clause 1
where we infer a node m on a ttp strand from the weaker assumption that
msg(n) = AR = [[ ab rq AˆBˆT ˆeˆx ]]A. In the original protocol, A and B
cannot know whether T ’s state reflects the abort.

cpsa enabled us to correct one small error in an earlier, manual proof of
these properties. In Lemma 6, Clause 2, the random value R that T obtains
may differ from the random value R′ that A has chosen. This may occur in the
cases TtpRc23 and TtpCf23 in which T has received the session data includ-
ing a component EK′′, presumably from B. However, on the extremely spare
assumptions that we make in Lemma 6, this EK′′ does not have to be the one
that A sent.

If we add the (reasonable) assumptions that Unq(M),Unq(K) and Non(pubk(T )−1),
then R = R′. However, if M,K were transmitted on two separate strands by A,
then A could choose different Rs on these two occasions, without T being able
to tell which transmission lay on the same A-strand as the abort request. More-
over, if K were guessable by the adversary, then an adversary could synthesize
a new encrypted key package with the same K and a different R′. If pubk(T )
were compromised, then an adversary could decrypt the key package, obtain K,
and regenerate the key package with R′. Naturally, these assumptions were in
force in Lemma 4.

Our manual proofs, using the authentication test method [16, 14], led oth-
erwise to the same results shown here.

5 Protocol Behavior and Mutable State

We formalize state change using multiset rewriting (MSR) [4, 9]. Strands contain
special state synchronization events that synchronize them with the state of the
principal executing the strands, as formalized in Definition 11.

5.1 Variables, Substitutions, and Facts

Let V be an infinite set of values disjoint from messages in the message algebra
A. We generate a larger algebra from V and A in two steps:
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• An extended atom is either (i) an atom a ∈ A; (ii) a variable; or (iii)
an application of one of the forms pubk(v), signk(v), v−1, pubk(v)−1, or
signk(v)−1 for v ∈ V .

• A[V ], the algebra of extended messages, is the least set containing the
extended atoms and the indeterminates X and closed under tagged con-
catenation and encryption.

An extended message in which no variables occur is a message in A, which we
also call a ground message. The free variables fv(t) of an extended message t
are defined as usual.

A substitution σ is a finite partial function V → A; thus, variables do not
occur in the ground messages in the range of a substitution. If S0 is the set
of variables x such that some part of t is of the form signk(x) or pubk(x), then
we call S0 the name variables of t. If S1 is the set of variables x such that
some part of t is of the form x−1, then we call S1 the key variables of t. If σ
is a substitution in which every name variable of t is mapped to a name, and
every key variable is mapped to a key, then t · σ is well-defined, and is indeed
the extended message built in the obvious way from members of the range of σ
rather than the variables in its domain.

If fv(t) ⊆ dom(σ) and t · σ is well-defined, then t · σ is a ground message.
We adopt a convention about assertions containing parts of the form t · σ

that are possibly ill-defined. A positive atomic assertion about an extended
message t · σ is true only if t · σ is well defined. A negative assertion such as
“t · σ is not ground” or “If t · σ is ground, then . . . ” is true if t · σ is not well
defined [11].

We assume given a set of predicate symbols F,G, . . ., each of a fixed arity.
If the arity of F is k and t1, . . . , tk are extended messages, then F (t1, . . . , tk) is
an atomic formula. If t1, . . . , tk are ground messages, then F (t1, . . . , tk) is also
a fact, i.e. a ground atomic formula.

We write φ, ψ, etc. for atomic formulas; Γ,∆, etc. for multisets of atomic
formulas; and Σ,Σ0, etc. for multisets of facts. We use the comma to form the
multiset union Γ,∆ from Γ and ∆.

A state Σ is a multiset of facts.

5.2 Multiset rewriting to maintain state

A rewrite rule or simply a rule ρ takes the form:

Γ
φ−→ ∆ where fv(Γ,∆) ⊆ fv(φ).

We also require:

• the name variables of Γ,∆ are included among those of φ;

• the key variables of Γ,∆ are included among those of φ.
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Thus, if φ · σ is well defined, so are Γ · σ and ∆ · σ. Moreover, if φ · σ is ground,
so are Γ · σ and ∆ · σ. We write lhs(ρ) for Γ; and rhs(ρ) for ∆; and lab(ρ) for φ.

Labeling the arrow with an atomic formula φ is in contrast with [9]. Also
unlike [9], we will not require existential quantifiers in the conclusions of rules.

A rule stipulates that the state can change by consuming instances of the
facts in its left-hand side, and producing the corresponding instances of the facts
in its right hand side. These sets of facts may overlap, in which case the facts in
the overlap are required for the rule to apply, but preserved when it executes.
The corresponding instance of the label allows us to correlate the state change
with some strand’s state synchronization event labeled by the same fact.

When lab(ρ) · σ is ground, ρ applies to a state Σ0 under σ if

Σ0 = Σ′0, (Γ · σ);

i.e., Σ0 is the multiset union of some Σ′0 with instances of the premises of lhs(ρ)
under σ. Then the result of applying ρ to Σ0, using σ, is

Σ′0, (∆ · σ).

By the definition of a rule ρ above, the result Σ′0,∆ · σ is also a state, namely a
multiset of ground atomic formulas.

∆ may contain variables that were not free in Γ. From the point of view
of the prior state Σ0, these variables take values nondeterministically. In an
execution, they may be determined by protocol activities synchronized with the
state. When a variable in φ does appear in a formula ψ in Γ, then the prior state
Σ0 is placing a constraint on the protocol activities: They can proceed only for
labels φ · σ such that ψ · σ ∈ Σ0. Thus, σ, by summarizing all choices of values
for variables in ρ, determines which parameters of the protocol execution can
help determine the next state Σ1, and which parameters of facts in the current
state Σ0 can help constrain the protocol execution.

Definition 7 Let ρ = Γ
φ−→ ∆.

1. Σ0
ρ,σ−→ Σ1 is a ρ, σ transition from Σ0 to Σ1 iff

(a) Σ0,Σ1 are ground, and

(b) there exists a Σ′0 such that Σ0 = Σ′0, (Γ · σ), and Σ1 = Σ′0, (∆ · σ).

A transition ρ, σ is enabled in Σ0 iff for some Σ1, Σ0
ρ,σ−→ Σ1.

2. A computation C is a finite path through states via transitions; i.e.

C = Σ0
ρ0,σ0−→ Σ1

ρ1,σ1−→ . . .
ρj ,σj−→ Σj+1.

3. C is over a set of rules R if each ρi ∈ R.
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When no ambiguity results, we will also write C in the form:

C = Σ0
φ0·σ0−→ Σ1

φ1·σ1−→ . . .
φj ·σj−→ Σj+1.

We write first(C) for Σ0 and last(C) for Σj+1.

Writing \,∪,⊆ for the multiset difference, union, and subset operators, we have:

Lemma 8 1. A transition ρ, σ is enabled in Σ iff lhs(ρ) · σ ⊆ Σ.

2. If Σ0
ρ,σ−→ Σ1, then Σ1 = (Σ0 \ lhs(ρ) · σ) ∪ rhs(ρ) · σ.

3. If (lhs(ρ1) · σ1) ∪ (lhs(ρ2) · σ2) ⊆ Σ0, then

Σ0
ρ1,σ1−→ Σ1

ρ2,σ2−→ Σ2 and Σ0
ρ2,σ2−→ Σ′1

ρ1,σ1−→ Σ2

where

Σ1 = (Σ0 \ lhs(ρ1) · σ1) ∪ rhs(ρ1) · σ1

Σ′1 = (Σ0 \ lhs(ρ2) · σ2) ∪ rhs(ρ2) · σ2

Σ2 = ((Σ0 \ lhs(ρ1) · σ1) \ lhs(ρ2) · σ2) ∪ rhs(ρ1) · σ1 ∪ rhs(ρ2) · σ2

Proof. Immediate from the definitions. ut

5.3 Locality to principals

In our manner of using MSR, all manipulation of state is local to a particu-
lar principal, and coordination among different principals occurs only through
protocol behavior represented on strands.

Definition 9 A set of rewrite rules R is localized to principals via the variable
p iff, for every rule ρ ∈ R, every atomic formula in lhs(ρ), lab(ρ), or rhs(ρ)
takes the form

F (p, t1, . . . , tk).

When R is localized to principals via p and ρ ∈ R, the principal of a transi-
tion Σ0

ρ,σ−→ Σ1 is p · σ.

Thus, only the principal of a transition Σ0
ρ,σ−→ Σ1 is affected by it. Tran-

sitions with different principals are always concurrent. If p · σ1 6= p · σ2 and
(ρ1, σ1), (ρ2, σ2) can happen, so can the reverse, with the same effect:

Corollary 10 Let R be localized to principals via p, with ρ1, ρ2 ∈ R, and p·σ1 6=
p · σ2. If Σ0

ρ1,σ1−→ Σ1
ρ2,σ2−→ Σ2, then Σ0

ρ2,σ2−→ Σ′1
ρ1,σ1−→ Σ2, for some Σ′1.

Proof. Since p ·σ1 6= p ·σ2, the facts on the right hand side of ρ1 ·σ1 are disjoint
from those on the left hand side of ρ2 · σ2. Hence, ρ2, σ2 being enabled in Σ1, it
must also be enabled in Σ0. Hence, (lhs(ρ1) · σ1) ∪ (lhs(ρ2) · σ2) ⊆ Σ0, and we
may apply Lemma 8, Clause 3. ut
The following definition connects bundles with computations.
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Definition 11 Let R be localized to principals via p.

1. An eventful protocol Π is a finite set of strands, called the roles of the
protocol. They contain nodes of three kinds:

(a) transmission nodes +t, where t is a message;

(b) reception nodes −t, where t is a message; and

(c) state synchronization events, facts E(p, t1, . . . , tk) · σ, i.e. ground
atomic formulas.

We require that if E(p, t1, . . . , tk) ·σ and F (p, t′1, . . . , t
′
j) ·σ′ lie on the same

strand, then p · σ = p · σ′. If s contains event E(p, t1, . . . , tk) · σ, then p is
the principal of s.

The regular strands of Π are all instances α(r) of roles r ∈ Π, using all
homomorphisms α on the message algebra A.4

2. Suppose that B is a bundle over the eventful protocol Π; C is a finite com-
putation for the rules R; and Φ is a bijection between state synchronization
nodes of B and indices i of the computation C.

B is compatible with C under Φ iff

(a) lab(ρi) ·σi is the event E(p, t1, . . . , tk) at n, whenever (i) n is a state
synchronization event; (ii) Φ(n) = i, and (iii) the ith transition of C
is ρi, σi; and

(b) n0 �B n1 implies Φ(n0) ≤ Φ(n1).

3. An execution of Π constrained by R is a triple (B, C,Φ) where B is com-
patible with C under Φ.

If (B, C,Φ) is an execution, then it represents possible protocol behavior B for
Π, where state-sensitive steps are constrained by the state maintained in C.
Moreover, the state C evolves as driven by state synchronizations occurring in
strands appearing in B. The bijection Φ makes explicit the correlation between
events in the protocol runs of B and transitions occurring in C. We do not
expect the converse of Clause 2b always to be true, because C is linearly ordered,
whereas �B may be only a partial ordering.

5.4 States and Rules for Wang’s Protocol

Trusted Third Party State. Conceptually, the trusted third party T0

maintains a status record for each possible transaction it could be asked to
4The homomorphisms α act on messages in A (and on objects built from them such as

strands), while substitutions σ act on extended messages in A[V ], and on objects built from
them such as formulas and multisets of formulas. A ground message t · σ in A is still not
a “constant value” in the sense that homomorphisms α can still act on it, yielding differing
results α(t · σ).
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abort or recover. Since each transaction is determined by a label Lm(hm, hk) =
AˆBˆT ˆhm ˆhk , where T = T0, it maintains a fact for each such value. This
fact indicates either (1) that the no message has as yet been received in con-
nection with this session; or (2) that the session has been recovered, in which
case the evidence of receipt is also kept in the record; or (3) that the session has
been aborted, in which case the signed abort request is also kept in the record.
Thus, the state record for the session with label L′ is a fact of one of the three
forms:

unseen(T, L′) recovered(T, L′,EOR′′) aborted(T, L′,AT′)

Naturally, a programmer will maintain a sparse representation of this state, in
which only the last two forms are actually stored. A query for ` that retrieves
nothing indicates that the session ` is as yet unseen. This programming strategy
requires that an unseen fact and a recovered or aborted fact never need to be
stored for the same session, and this invariant is ensured by Lemma 13, Clause 1.

We name predicates appearing in facts in the state by full words, formed
using past participles, namely unseen, recovered, aborted. We name predicates
used as events, i.e. in the formula labeling transitions, using contractions formed
from present tense verbs, namely rcvr, abrt and their forced correlates frcvr, fabrt.

Four types of events synchronize with T ’s state. First, events of the form
rcvr(T, `, e) deposit recovered(T, `, e) facts into the state. They require the state
to contain an unseen(T, `) fact or a preexisting recovered(T, `, e) fact with the
same e, which are consumed.

unseen(T, `)
rcvr(T,`,e) // recovered(T, `, e) (r1)

recovered(T, `, e)
rcvr(T,`,e′) // recovered(T, `, e) (r2)

The second of these forms ensures that repeated rcvr events succeed, with no
further state change. Indeed, the primed variable e′ in rule (r2) allows the event
to occur even if the new value for e′ is distinct from the old one. This could in
fact happen if the initiator A starts two sessions for the same M and K, but
using different random values R,R′. Rule (r2) retains the old signed value e. In
an execution where A originates M or K uniquely, then the rule (r2) will never
be executed with a value of e′ distinct from the value of e stored in the state.

In rule (r1), the value of e is passed from a strand engaging in the state
synchronization event rcvr(T, `, e) into the state. In (r2), no value is passed in
either direction, but the presence of a fact recovered(T, `, e) allows the strand
executing rcvr(T, `, e′) to proceed.

The event abrt(T, `, a) deposits a aborted(T, `, a) fact into the state, and re-
quires the state to contain either an unseen(T, `) fact or a preexisting aborted(T, `, a)
fact, which are consumed.

unseen(T, `)
abrt(T,`,a) // aborted(T, `, a) (a1)

aborted(T, `, a)
abrt(T,`,a′) // aborted(T, `, a) (a2)
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The variable a′ in (a2) plays a rule similar to that of e′ in (r2); it allows execution
to proceed with no state change even when the two abort requests were prepared
with different random factors.

Finally, there is an event for a forced recover frcvr(T, `, e) and one for a forced
abort fabrt(T, `, a). These may occur when the recovered fact [or respectively,
the aborted fact] is already present, so that attempt to abort [or respectively, to
recover] must yield the opposite result, as in Fig. 3.

recovered(T, `, e)
frcvr(T,`,e) // recovered(T, `, e) (f1)

aborted(T, `, a)
fabrt(T,`,a) // aborted(T, `, a) (f2)

In rule (f1), a ttp strand requesting an abort is forced to issue a recovery
token instead to the initiator A, because the state indicates that B has already
requested recovery. Thus, the state blocks continued execution of a ttp TtpAb1
strand for `, and permits only a TtpAb2 strand for ` to proceed. In this rule,
the value e is also passed out of the state and back to the requesting strand,
thereby determining what signed EOR is returned to A. In (f2), a is passed back
to the ongoing TtpRc2 strand, determining what AR to return within the ttp’s
signed AT.

Definition 12 A GW initial state is a multiset Σ such that:

1. No fact recovered(T, `, e) or aborted(T, `, a) is present in Σ;

2. The multiplicity | unseen(T, `)|Σ of any unseen(T, `) in Σ is at most 1.

C is a GW computation if it is a computation using the set RW of the six rules
above, starting from a GW initial state Σ0.

There are several consequences of the definitions. The first says that the mul-
tiplicity of facts for a single session ` does not increase, and initially starts at
0 or 1, concentrated in unseen(T, `). The next two say that a recovered(T, `, e)
fact arises only after a rcvr(T, `, e) event, and a aborted(T, `, a) fact after an
abrt(T, `, e) event. The fourth points out that a rcvr(T, `, e) event and an
abrt(T, `, a) event never occur in the same computation. Finally, a rcvr(T, `, e)
event must precede a frcvr(T, `, e) event, and likewise for aborts and forced
aborts.

Lemma 13 Let C = Σ0
ρ0,σ0−→ Σ1

ρ1,σ1−→ . . .
ρj ,σj−→ Σj+1 be a GW computation.

1. For any ` and i ≤ j + 1, the sum over all e, a of the multiplicities of all
facts unseen(T, `), recovered(T, `, e), aborted(T, `, a) is unchanged:

1 ≥ | unseen(T, `)|Σ0 =
∑
a,e

(
| unseen(T, `)|Σi

+ | recovered(T, `, e)|Σi

+ | aborted(T, `, a)|Σi

)
.
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2. | unseen(T, `)|Σk
is a non-increasing function of k.

3. | recovered(T, `, e)|Σk
and | aborted(T, `, a)|Σk

are non-decreasing functions
of k.

4. If | recovered(T, `, e)|Σi
= 1, then there is a j with 0 < j < i such that:

(a) lab(ρj) · σj = rcvr(T, `, e);

(b) For all k s.t. 0 ≤ k ≤ j, | unseen(T, `)|Σk
= 1;

(c) For all k > j, | recovered(T, `, e)|Σk
= 1.

5. If | aborted(T, `, e)|Σi
= 1, then there is a j with 0 < j < i such that:

(a) lab(ρj) · σj = abrt(T, `, e);

(b) For all k s.t. 0 ≤ k ≤ j, | unseen(T, `)|Σk
= 1;

(c) For all k > j, | aborted(T, `, e)|Σk
= 1.

6. ∀i, k, a, e, not both

lab(ρi) · σi = rcvr(T, `, e) or frcvr(T, `, e)
and lab(ρk) · σk = abrt(T, `, a) or fabrt(T, `, a)

Proof. 1. The first inequality 1 ≥ | unseen(T, `)|Σ0 holds by the definition of
GW initial. The equality with the sum holds inductively, because each of the
rules consumes one fact of one of these forms, and regenerates one fact of one
of these forms.

2. No rule produces a formula unseen(T, `) in its rhs.
3. Each rule that consumes a formula recovered(T, `, e) or aborted(T, `, a) in

its lhs regenerates that formula in its rhs.
4. By the definition of GW initial, | recovered(T, `, e)|Σ0 = 0, so let j0 be the

least number such that in Σ(j0+1) we have | recovered(T, `, e)|Σ(j0+1) = 1. By tak-
ing cases on the rules, we see that ρj0 is an instance of rule r1. Hence its label is
rcvr(T, `, e). Moreover, | unseen(T, `)|Σ(j0) = 1. By clauses 2–3, unseen(T, `) was
always previously present, and recovered(T, `, e) is always subsequently present.

5. By symmetry, interchanging aborts and recovers.
6. Suppose i and k are such. Choosing j > max(i, k), by Clause 2 | recovered(T, `, e)|Σj =

1. By Clause 3 | aborted(T, `, e)|Σj = 1. Hence their sum is 3, contradicting
Clause 1. ut

Initiator and Responder State. The initiator and responder have rules with
empty precondition, that simply deposit record values into their state. These
records are of the forms eor(A,L,EOR,M,K,R), eoo(B,L,EOO,M,K,R), and
aborted(P, `, [[ [[ ab rq ˆh(`) ]]A ]]T ). Of these, the last is used both by the initiator
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and the responder, with parameter ` = L for the initiator and ` = L∗ =
AˆBˆT ˆh(e1)ˆx for the responder (see p. 15). The rules are:

·
depEOR(A,`,e,M,K,R) // eor(A, `, e,M,K,R)

·
depEOO(B,`,e,M,K,R) // eoo(B, `, e,M,K,R)

·
depAT(P,`,a) // aborted(P, `, a)

6 Progress Assumptions

We introduce two kinds of progress properties for protocols. One of them for-
malizes the idea that certain messages, if sent, must be delivered to a regular
participant, i.e. that these messages traverse resilient channels. The second is
the idea that principals, at particular nodes in a strand, must progress. These
are either nodes where they could transmit a message with guaranteed delivery,
or else nodes where they could engage in an enabled state synchronization event.

6.1 Guaranteed Delivery

Definition 14 1. G is a set of guaranteed delivery assumptions for Π iff G
is a set of transmission nodes r ↓ i, where each r is a role of Π.

2. A transmission node n = s′ ↓ i is a guaranteed delivery node for Π, G iff
for some α and some r ∈ Π, s′ = r · α and r ↓ i ∈ G.

3. A bundle B satisfies guaranteed delivery for Π, G iff, for every guaranteed
delivery node n ∈ B,

if there exists a regular reception node m1 of Π such that msg(m1) =
msg(n) and either:

(a) m1 = s ↓ 1; or
(b) for some regular node m′0 ∈ B, there is an m0 ∼ m′0 such that

m0 ⇒ m1,

then there is exactly one regular node m ∈ B such that n→B m.

Thus, guaranteed delivery says that a transmission is received if doing so requires
only (i) adding the first node of a new strand, or else (ii) switching a strand
with a node in m′0 ∈ B with a similar strand containing m0 and extending it
one more step to m1. The definition of “similar” in Defn. 2 is that two nodes
are similar, n ∼ m, if their strands have sent and received the same messages,
and engaged in the same state synchronizations, up to this point.

In defining guaranteed delivery, there is no question about whether the re-
cipient node m is the right or wrong node to receive the message transmitted
by n. Since m is a regular node, its role, and the parameters determined on

32



any earlier nodes m0 ⇒+ m, constrain what messages it can receive. The guar-
anteed delivery condition just ensures that some one regular node, which must
therefore satisfy these requirements, will receive the message. Adversary nodes
are also free to receive it.

Guaranteed Delivery for Wang’s Protocol The guaranteed delivery as-
sumptions for Wang’s protocol are not surprising. They are the messages trans-
mitted on resilient channels between the principals and the Trusted Third Party.
These are A’s transmission of AR and B’s transmission of RR in Fig. 2, and T ’s
six transmissions in Fig. 3.

6.2 Transmission Progress

The second flavor of progress concerns principals who are ready to make a trans-
mission for a message with guaranteed delivery. A bundle satisfies transmission
progress if they have always continued either to perform this transmission or
else some other action that their roles permit.

Definition 15 B satisfies transmission progress iff, for every m0 ∈ B, and for
every regular node n0:

if (i) m0 ∼ n0, (ii) n0 ⇒ n1, and (iii) n1 is a guaranteed delivery transm. node,

then there exists an m1 ∈ B such that m0 ⇒ m1.

The transmission progress property says that if we look at any terminal node of
B—i.e. any nodem0 ∈ B where there is nom1 ∈ B such thatm0 ⇒ m1—thenm0

cannot continue to make a guaranteed delivery transmission. “Can continue”
here means that any similar node n0 is immediately followed n0 ⇒ n1 by a
guaranteed transmission node n1.

As an example of transmission progress, suppose that a bundle B contains
the first node n0 of an initiator A strand. Since A may send a message with
guaranteed delivery to the Ttp immediately after n0, transmission requires that
A has not stopped at n0. Regardless of whether n0 is the first node of an Init1
strand or the similar first node of an Init2 strand, the fact that an Init2 strand
continues with a guaranteed delivery message means that A must continue to
some node n1 after n0. If A has not received the expected message from B, and
has not yet transmitted an abort request to the Ttp, then B does not satisfy
the transmission progress property.

However, a bundle B containing a first responder strand node n0 of B need
not progress. Every responder strand continues with the transmission of EOR to
A, which does not have guaranteed delivery. Thus, the definition permits B to
stop at this point. However, it does not permit B to stop after that transmission,
since a continuation after that point is the guaranteed delivery transmission to
the Ttp.

In stating this lemma, we use the notion of the B-height of a strand s. The
B-height of s is the number of nodes of s that are in B. Equivalently, it is the
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(1-based) index of the last node of s in B. Strand s has full height in B iff its
B-height is its length. It is stopped at a node in B iff that node is s ↓ i, and s’s
B-height is i, but s has length > i. It is stopped before a node iff that node is
s ↓ i+ 1, and s’s B-height is i.

Lemma 16 If B is a bundle for Wang’s protocol, and B satisfies transmission
progress, then the B-height of a strand s

is not 1 if s an Initi strand;

is not 2 if s a Respi strand, or if s is an Init1, Init4, Init5 strand, or if s is a
Ttp strand.

Proof. In all of these cases, the last node in B would be equal or similar to a
node with a successor having guaranteed delivery. ut

6.3 State Progress

Just as we do not want a strand to stop when it could perform a guaranteed
delivery transmission, we also do not want it to stop when it could perform a
state synchronization event. However, this is not simply a property of a bundle;
whether a state synchronization event can occur also depends on the state.
Thus, it is a property of an execution E = (B, C,Φ).

Definition 17 (State Progress) Let E = (B, C,Φ) be an execution. E satis-
fies state progress for Π constrained by R iff, for every m0 ∈ B, and for every
regular node n0:

if (i) m0 ∼ n0; (ii) n0 ⇒ n1; (iii) node n1 is a state synchronization event φ;
and (iv) for some ρ ∈ R and σ, lab(ρ) · σ = φ and lhs(ρ) · σ ⊆ last(C);

then there exists an m1 ∈ B such that m0 ⇒ m1.

In the case of Wang’s protocol, an execution that satisfies state progress certainly
does not have an initiator or responder stopped immediately before its deposit
event depEOO, depEOR, or depAT. These events have empty precondition, and
therefore are enabled in every state. Thus, each strand that has reached the
previous node in B, can progress compatible with any C, and therefore (if state
progress is satisfied) has progressed and performed the deposit.

If, moreover, unseen(T, `) ∈ first(C), then by Lemma 13, Clause 1, there is ex-
actly one fact unseen(T, `), recovered(T, `, ·), recovered(T, `, ·) ∈ last(C). Hence,
if any Ttp strand is of B-height 1, then either it can progress or its similar node
can progress on the other branch shown in Fig. 3. Thus, summarizing these
considerations:

Lemma 18 Let E = (B, C,Φ) be an execution that satisfies state progress. If
unseen(T, `) ∈ first(C) and s is a strand whose parameters match the session `,
then the B-height of s
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is not 1 if s is a Ttp strand;

is not 3 if s is an Init1, 2, 3 strand, or a Respi strand;

is not 4 if s is an Init4, 5 strand. ut

6.4 Stability in Wang’s Protocol

Stability combines guaranteed delivery, transmission progress, and state progress:

Definition 19 (Stable) E is a stable execution if (1) B satisfies guaranteed
delivery for G; (2) B satisfies transmission progress; and (3) E satisfies state
progress.

In a stable execution, each strand has reached a “natural stopping point,” where
messages with guaranteed delivery have been delivered; no strand has stopped
when a transmission with guaranteed delivery is waiting to happen; and no
strand has stopped when an enabled state synchronization event is waiting to
happen. We may now summarize the consequences of Lemmas 16, 18 for stable
executions:

Lemma 20 Let E = (B, C,Φ) be a stable execution for Wang’s protocol, and let
` be a session label with Ttp T and unseen(T, `) ∈ first(C).

1. If s is an initiator strand with B-height ≥ 1, then either s has full height
or s is awaiting an AT or EOR from T . In particular, if s is an Init1
strand with B-height ≥ 1, then s has full height.

2. If s is a responder strand with B-height ≥ 2, then either s has full height
or s is awaiting a K ˆR or AT from T . In particular, if s is a Resp1
strand with B-height ≥ 2, then s has full height.

3. If s is a T Ttp strand with session label ` and B-height ≥ 1, then s has
full height.

Lemma 20 is entirely local in the sense that it involves only the structure of
individual strands and the state computation C. It does not depend on any
global or cross-strand properties of B. We now use Lemma 20 and the defini-
tion of guaranteed delivery, to infer global properties of stable executions. In
particular, initiator and responder strands are not stopped waiting for the Ttp.
However, in this lemma, we make no use of the security goals established in
Section 4, and therefore do not need any assumptions about non-origination or
unique origination in B.

Lemma 21 Let E = (B, C,Φ) be a stable execution for Wang’s protocol, and let
` be a session label with Ttp T and unseen(T, `) ∈ first(C). Let

S0 = {n ∈ B : regular n transmits a Ttp request for `}

be the set S of nodes making requests with session label `.
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1. Letting S1 = {m ∈ B : m regular and n → m for some n ∈ S0}, → is a
bijection between S0 and S1.

2. Letting S2 = {m′ ∈ B : m ⇒ · ⇒ m′ for some m ∈ S1} be the second
strand successors of nodes in S1, ⇒ ◦ ⇒ is a bijection between S1 and S2.

3. Letting S3 = {n′ ∈ B : n′ regular and m′ → n′ for some m′ ∈ S2}, → is a
bijection between S2 and S3.

4. No strand is stopped at any n ∈ S0.

Proof. 1. Since msg(n) is received on the first node of a ttp strand, the unique-
regular-delivery property of guaranteed delivery entails that→ is a function onto
S2. The bundle property that reception nodes have → in-degree 1 implies this
function is one-to-one.

2. By Lemma 20, Clause 3, and the linearity of strands.
3. Since we know from Clauses 1, 2 that ⇒ ◦ ⇒ ◦ → is a bijection from S0

to S2, we know that each m′ results from a request that is still waiting. Thus,
we may apply the unique-regular-delivery property again.

4. By composition. ut

Observe from this that if E is a stable execution and L is a session label with
unseen(T, L) ∈ last(C), then we can extend E to a stable execution containing
also an initiator session with label L by adding (e.g.) an Init2 strand and a
TtpAb1 strand of full height. If unseen(T, L) ∈ last(C), then we can extend
E to a stable execution containing also an initiator session with label L by
adding (e.g.) a Resp2 strand and a TtpRc1 strand of full height. Thus, stable
executions may be (stably) extended to contain new sessions for either initiator
or responder. The extended executions do not require any additional atomic
values to originate, except the parameters A,B, T,M,K,R.

This construction does not essentially depend on adding the new session
at the end of E , although we will not pause now to formalize a method to
incorporate the new session in the midst of E .

7 Correctness of Wang’s protocol

No protocol can protect principals that do not follow it.
Thus, correctness concerns stable executions in which at least one of A,B

comply with the protocol. We also assume that the trusted third party T merits
our trust, and obeys the protocol. However, we should certainly not assume that
the other party B,A complies with the protocol. The protocol must ensure a
satisfactory outcome even if it cheats. This trust model follows [17].

We formalize this compliance relative to an existing execution E by saying
that a new local initiator or responder session is compatible with E if it relates
properly with the existing behavior in E :

Definition 22 Let n be a regular node, and let E = (B, C,Φ) be an execution.
Node n is compatible with E = (B, C,Φ) iff n = s ↓ 1 where either:
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• s is an initiator strand with parameters A,B, T,M,K,R, and

1. signk(A), signk(T ), pubk(T ) are non-originating in B;

2. M,K are non-originating in B; and

3. for L = AˆBˆT ˆh({|M |}K)ˆh(K), unseen(T, L) ∈ first(C); or else

• s is a Resp1 strand with parameters A,B, T,M,K,R, and

1. signk(B), signk(T ), pubk(T ) are non-originating in B; and

2. for L = AˆBˆT ˆh({|M |}K)ˆh(K), unseen(T, L) ∈ first(C).

In both cases, we assume that the active principal’s signature key has been
used only in accordance with the protocol in B, and we assume that a T has
been chosen whose signature key and private decryption key have been used
only in accordance with the protocol. We also assume in both cases that the
session label is initially unseen in C. In the first case, we also assume that
M and K have never yet been used, and in the second case we assume that
the responder’s parameters could lead to a successful outcome. We need not
consider a Resp3 strand in which the responder receives an ill-formed EM or EK,
since the initiator will then never be able to convince a judge that a message
was successfully delivered. Although B certainly may not find out how EM and
EK are composed, we need worry about the outcome only when they are in fact
well formed. (See our comment on p. 6 and also [21, Fig. 3].)

This correctness theorem combines the elements we have introduced:

Theorem 23 (Wang’s Fair Exchange) Let E = (B, C,Φ) be a stable GW-
execution with unseen(T, L) ∈ Σ0, and let n be compatible with E. Let E ′ =
(B′, C′,Φ′) be a stable extension of E containing n, and in which no additional
atomic values originate, apart from A,B, T,M,K,R.

1. If n = s ↓ 1, where s is an initiator node with parameters A,B, T,M,K,R,
and either:

(a) eoo(B,L,EOO,M,K,R) ∈ last(C′); or else
(b) there is m0 ∈ B′ such that msg(m0) = M ,

then eor(A,L,EOR,M,K,R) ∈ last(C′), and
there is no m1 ∈ B′ such that msg(m0) = AT.

2. If n = s ↓ 2, where s is a responder strand, and either:

(a) eor(A,L,EOR,M,K,R) ∈ last(C′); or else
(b) there exist m0,m1,m2,m3 ∈ B′ such that

msg(m0) = EOR, msg(m1) = M, msg(m2) = K, and msg(m3) = R,

then either
eoo(B,L,EOO,M,K,R) ∈ last(C′),

or else
aborted(B,L,AT) ∈ last(C′).
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Proof. We break the proof up into four cases, depending on which assumptions
are in force.

1a. Since eoo(B,L,EOO,M,K,R) ∈ last(C′), a transition labeled

depEOO(B,L, e,M,K,R)

has occurred in C′. Hence, there is either a Resp1 or a Resp2 strand s′ with
parameters A,B, T,M,K,R of full height in B′. In particular, there is a node
s′ ↓ 3 receiving K ˆR.

Since n is compatible with E , we may apply Lemma 4, to infer that there is
an n3 with either Init13(n3, A,B, T,M,K,R) or TtpRc13(n3, A,B, T, y,K,R).
In the former case, Lemma 18 completes the proof. In the latter case, we may
infer (Lemma 13) that no abrt(T, L, a) event occurs in C′. Thus, s is not an Init2
strand. By Lemmas 20 and 21, s has full height as an Init1,3 strand, implying
that depEOR has occurred.

If in addition there were an m1 with msg(m1) = AT, then by Lemma 6,
Clause 1, then TtpAb13(m1, A,B, T, y, x), TtpRc23(m1, A,B, T, y,K,R), or TtpCf23(m1, A,B, T, y,K,R).
By Clause 2, there is then anm2 with Init23(m2, A,B, T,M,K,R) or Init44(m2, A,B, T,M,K,R).
However, since we are assuming M uniquely originating, this contradicts our
earlier conclusion that Init13(n3, A,B, T,M,K,R).

1b. This assumption also allows us to apply Lemma 4, with the same con-
sequence.

2a. The assumption ensures that we can apply Lemma 5, Clause 1, so that
s’s B-height is at least 2. Thus, Lemmas 20–21 imply that s has full height, and
has deposited either an eoo or an AT.

2b. Similar to Part 2a. ut

7.1 Conclusion

This formalism has also been found to be convenient to model the interface to
a cryptographic device, the Trusted Platform Module, which combines cryp-
tographic operations with a repository of state [20]. Thus, it appears to be a
widely applicable approach to the problem of combining reasoning about cryp-
tographic protocols with reasoning about state and histories.
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A CPSA Definition for Wang’s Protocol

We give here verbatim the CPSA input file used to check confidentiality and au-
thentication for Wang’s protocol. The corresponding output files may be found at
http://web.cs.wpi.edu/~guttman/spiss. For instance,

http://web.cs.wpi.edu/~guttman/spiss/wang_shapes.xml

is a browser-readable file that summarizes all of the queries and the shapes that cpsa
returns for each query.

;; CPSA input file to represent

;; Wang’s Fair Exchange Protocol

;; This macro implements the CPSA

;; convention of regarding a hash as

;; an asymmetric encryption. The

;; decryption key inverse to (pubk

;; hash) is assumed non-originating

;; in roles using hashing.

(defmacro (hash x)

(enc x (pubk hash_id)))

;; Wang’s encrypted format for the

;; message payload. Observe that m,

;; k get their values from the

;; like-named messages in the context

;; where the macro is expanded.

(defmacro (em)

40

http://eprint.iacr.org/2005/187
http://web.cs.wpi.edu/~guttman/spiss
http://web.cs.wpi.edu/~guttman/spiss/wang_shapes.xml


(enc m k))

;; The session label L as a fn of

;; the values that *should be* the

;; hashes of the encrypted message EM

;; and the session key K.

(defmacro (l-prime y x)

(cat a b t y x))

;; The recipient can check that a

;; session label has an l-prime where

;; y is the hash of another parameter.

;; Hence recipient roles use l-star.

(defmacro (l-star e1 x)

(l-prime (hash e1) x))

;; The Evidence of Origin is checked

;; to be this fn of other parameters

;; available to the recipient.

(defmacro (eoo-star x e1 e2)

(enc (cat "eootag"

(hash (l-star e1 x)) e2)

(privk "sign" a)))

;; The Evidence of Receipt is computed

;; as this fn of other parameters

;; available to the recipient.

(defmacro (eor-star x e1 e2)

(enc (cat "eortag"

(hash (l-star e1 x)) e2)

(privk "sign" b)))

;; The Recovery Request as computed by

;; the recipient.

(defmacro (rr-star x e1 e2)

(cat (l-star e1 x) e2

(eoo-star x e1 e2)

(eor-star x e1 e2)

(enc (cat "rcrq" (l-star e1 x) e2)

(privk "sign" b))))

;; The Abort Token is checked

;; to be this fn of other parameters

;; available to the recipient.

41



(defmacro (at-star e1 x)

(enc (enc "abrq" (l-star e1 x)

(privk "sign" a))

(privk "sign" t)))

;; How the initiator computes the

;; encrypted key package:

(defmacro (ek l)

(enc (cat "keytag" (hash l) k r)

(pubk "encr" t)))

;; The Initiator’s computed

;; version of L.

(defmacro (l)

(l-prime (hash (enc m k)) (hash k)))

;; The TTP can check that the session

;; label L is this fn of other

;; parameters available to the TTP.

(defmacro (l-prime-prime y)

(cat a b t y (hash k)))

;; The TTP can check that the EOO

;; is this fn of other parameters

;; available to the TTP.

(defmacro (eoo-prime-prime y)

(enc (cat "eootag"

(hash (l-prime-prime y))

(ek (l-prime-prime y)))

(privk "sign" a)))

;; The TTP can check that the EOR

;; is this fn of other parameters

;; available to the TTP.

(defmacro (eor-prime-prime y)

(enc (cat "eortag"

(hash (l-prime-prime y))

(ek (l-prime-prime y)))

(privk "sign" b)))

;; The TTP can check that the RR

;; is this fn of other parameters

;; available to the TTP.

(defmacro (rr-prime-prime y)
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(cat (l-prime-prime y)

(ek (l-prime-prime y))

(eoo-prime-prime y)

(eor-prime-prime y)

(enc "rcrq" (l-prime-prime y)

(ek (l-prime-prime y))

(privk "sign" b))))

;; The TTP can check that the Confirmation

;; Request is this fn of other parameters

;; available to the TTP.

(defmacro (cf-prime-prime y)

(cat (l-prime-prime y) (ek (l-prime-prime y))

(eoo-prime-prime y) (eor-prime-prime y)

(enc "cfrq" (l-prime-prime y)

(ek (l-prime-prime y))

(privk "sign" b))))

;; Defn of Wang’s Fair Exchange Protocol.

;; Closely follows the presentation in the

;; figures in Section 3. In the TTP roles,

;; we have put a dummy send or receive in place

;; of the state synchronization event to keep

;; the indices matching the spec.

(defprotocol wang basic

;; Successful initiator run with no TTP involvement

(defrole init1

(vars (a b t hash_id name) (m data) (r text) (k skey))

(trace

(send (cat (l) (enc m k) (ek (l))

(eoo-star (hash k) (enc m k) (ek (l)))))

(recv (eor-star (hash k) (enc m k) (ek (l))))

(send (cat k r)))

(non-orig (privk hash_id)))

;; Aborted initiator run

(defrole init2

(vars (a b t hash_id name) (m data) (r text) (k skey))

(trace

(send (cat (l) (enc m k) (ek (l))

(eoo-star (hash k) (enc m k) (ek (l)))))

(send (enc "abrq" (l) (privk "sign" a)))

(recv (enc "abcf"

(enc "abrq" (l) (privk "sign" a))

(privk "sign" t))))
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(non-orig (privk hash_id)))

;; Initiator run with abort request and forced recovery

(defrole init3

(vars (a b t hash_id name) (m data) (r text) (k skey))

(trace

(send (cat (l) (enc m k) (ek (l))

(eoo-star (hash k) (enc m k) (ek (l)))))

(send (enc "abrq" (l) (privk "sign" a)))

(recv (eor-star (hash k) (enc m k) (ek (l)))))

(non-orig (privk hash_id)))

;; Aborted initiator run, but with EOR received

(defrole init4

(vars (a b t hash_id name) (m data) (r text) (k skey))

(trace

(send (cat (l) (enc m k) (ek (l))

(eoo-star (hash k) (enc m k) (ek (l)))))

(recv (eor-star (hash k) (enc m k) (ek (l))))

(send (enc "abrq" (l) (privk "sign" a)))

(recv (enc "abcf"

(enc "abrq" (l) (privk "sign" a))

(privk "sign" t))))

(non-orig (privk hash_id)))

;; Initiator run with abort requested after EOR received,

;; but recovery forced

(defrole init5

(vars (a b t hash_id name) (m data) (r text) (k skey))

(trace

(send (cat (l) (enc m k) (ek (l))

(eoo-star (hash k) (enc m k) (ek (l)))))

(recv (eor-star (hash k) (enc m k) (ek (l))))

(send (enc "abrq" (l) (privk "sign" a)))

(recv (eor-star (hash k) (enc m k) (ek (l)))))

(non-orig (privk hash_id)))

;; Successful responder run with no TTP involvement

(defrole resp1

(vars (a b t hash_id name) (m data) (r text) (k skey))

(trace

(recv (cat (l) (enc m k) (ek (l))

(eoo-star (hash k) (enc m k) (ek (l)))))

(send (eor-star (hash k) (enc m k) (ek (l))))

(recv (cat k r)))

(non-orig (privk hash_id)))
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;;Responder run with recovery via TTP

(defrole resp2

(vars (a b t hash_id name) (m data) (r text) (k skey))

(trace

(recv (cat (l) (enc m k) (ek (l))

(eoo-star (hash k) (enc m k) (ek (l)))))

(send (cat (l) (ek (l)) (eoo-star (hash k) (enc m k) (ek (l)))

(eor-star (hash k) (enc m k) (ek (l)))))

(send (cat (l) (ek (l)) (eoo-star (hash k) (enc m k) (ek (l)))

(eor-star (hash k) (enc m k) (ek (l)))

(enc "rcrq" (l) (ek (l)) (privk "sign" b))))

(recv (cat k r)))

(non-orig (privk hash_id)))

;; Responder run with recovery request and forced abort

(defrole resp3

(vars (a b t hash_id name) (e1 e2 x mesg))

(trace

(recv (cat (l-star e1 x) e1 e2 (eoo-star x e1 e2)))

(send (cat (l-star e1 x) e2 (eoo-star x e1 e2) (eor-star x e1 e2)))

(send (cat (l-star e1 x) e2 (eoo-star x e1 e2) (eor-star x e1 e2)

(enc "rcrq" (l-star e1 x) e2 (privk "sign" b))))

(recv (enc "abcf"

(enc "abrq" (l-star e1 x) (privk "sign" a))

(privk "sign" t))))

(non-orig (privk hash_id)))

;; TTP handles an abort

(defrole ttp-ab1

(vars (a b t hash_id name) (y x mesg))

(trace

(recv (enc "abrq" (l-prime y x) (privk "sign" a)))

(send (cat "sync-abrq"

(enc "abrq" (l-prime y x) (privk "sign" a))))

(send (enc "abcf"

(enc "abrq" (l-prime y x) (privk "sign" a))

(privk "sign" t))))

(non-orig (privk hash_id)))

;; TTP forces recovery in response to an abort request

(defrole ttp-ab2

(vars (a b t hash_id name) (y x e mesg))

(trace

(recv (enc "abrq" (l-prime y x) (privk "sign" a)))

(recv (cat "sync-abrq"
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(enc "eortag" (hash (l-prime y x)) e

(privk "sign" b))))

(send (enc "eortag" (hash (l-prime y x)) e

(privk "sign" b))))

(non-orig (privk hash_id)))

;; TTP handles a recovery

(defrole ttp-rc1

(vars (a b t hash_id name) (r text) (k skey) (y mesg))

(trace

(recv (rr-prime-prime y))

(send (cat "sync-rc-req"

(rr-prime-prime y)))

(send (cat k r)))

(non-orig (privk hash_id)))

;; TTP forces abort in response to a recovery request

(defrole ttp-rc2

(vars (a b t hash_id name) (r text) (k skey) (y mesg))

(trace

(recv (rr-prime-prime y))

(recv (cat "sync-rc-req"

(enc "abrq" (l-prime-prime y) (privk "sign" a))))

(send (enc "abcf"

(enc "abrq" (l-prime-prime y) (privk "sign" a))

(privk "sign" t))))

(non-orig (privk hash_id)))

;; TTP handles a confirm request

(defrole ttp-cf1

(vars (a b t hash_id name) (r text) (k skey) (y mesg))

(trace

(recv (cf-prime-prime y))

(send (cat "sync-cf-req"

(cf-prime-prime y)))

(send (enc (cf-prime-prime y) (privk "sign" t))))

(non-orig (privk hash_id)))

;; TTP replies with abort token given confirm request

(defrole ttp-cf2

(vars (a b t hash_id name) (r text) (k skey) (y mesg))

(trace

(recv (cf-prime-prime y))

(recv (cat "sync-cf-req"

(enc "abrq"(l-prime-prime y) (privk "sign" a))))

(send (enc "abcf"
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(enc "abrq"(l-prime-prime y) (privk "sign" a))

(privk "sign" t))))

(non-orig (privk hash_id))))

;; End of Wang’s protocol defn.

;; Two experiments to prove Lemma 4.1

(defskeleton wang

(vars (a b t hash_id name) (m data) (r text) (k skey))

(defstrand init1 1 (b b) (t t) (m m) (r r) (k k))

(deflistener m)

(non-orig

(privk "encr" t))

(uniq-orig m k)

(comment "Experiment 1 to prove Lemma 4.1."))

(defskeleton wang

(vars (a b t hash_id name) (m data) (r text) (k skey))

(defstrand init1 1 (b b) (t t) (m m) (r r) (k k))

(deflistener k)

(non-orig

(privk "encr" t))

(uniq-orig m k)

(comment "Experiment 2 to prove Lemma 4.1."))

;; We now have three experiments

;; to prove Lemma 4.2, clause 1.

(defskeleton wang

(vars (a b t hash_id name) (m data) (r text) (k skey))

(defstrand init1 3 (b b) (t t) (m m) (r r) (k k))

(non-orig

(privk "sign" b))

(comment "First of three experiments to prove Lemma 4.2, clause 1."))

(defskeleton wang

(vars (a b t hash_id name) (m data) (r text) (k skey))

(defstrand init3 3 (b b) (t t) (m m) (r r) (k k))

(non-orig

(privk "sign" b))

(comment "Second of three experiments to prove Lemma 4.2, clause 1."))

(defskeleton wang

(vars (a b t hash_id name) (m data) (r text) (k skey))

(defstrand init5 4 (b b) (t t) (m m) (r r) (k k))

(non-orig

(privk "sign" b))

(comment "Third of three experiments to prove Lemma 4.2, clause 1."))

47



;; Two experiments to prove 4.2, Clause 2.

(defskeleton wang

(vars (a b t hash_id name) (m data) (r text) (k skey))

(defstrand resp1 3 (a a) (t t) (m m) (r r) (k k))

(non-orig

(privk "sign" a))

(comment

"First of two experiments to prove Lemma 4.2, clause 2."))

(defskeleton wang

(vars (a b t hash_id name) (m data) (r text) (k skey))

(defstrand resp2 4 (a a) (t t) (m m) (r r) (k k))

(non-orig

(privk "sign" a))

(comment

"Second of two experiments to prove Lemma 4.2, clause 2."))

;; Experiment to prove Lemma 4.2, clause 3.

(defskeleton wang

(vars (a b t hash_id name) (e1 e2 x mesg))

(defstrand resp3 4 (a a) (t t))

(non-orig

(privk "sign" a))

(comment

"Experiments to prove Lemma 4.2, clause 3."))

;; One experiment to prove Lemma 4.3, Clause 1.

(defskeleton wang

(vars (a b t hash_id name) (y x mesg))

(deflistener

(enc "abcf" (enc "abrq" (l-prime y x) (privk "sign" a))

(privk "sign" t)))

(non-orig

(privk "sign" t))

(comment

"Experiments to prove Lemma 4.3, clause 1."))

;; Three experiments to prove Lemma 4.3, Clause 2.

(defskeleton wang

(vars (y x mesg) (a b t name))

(defstrand ttp-ab1 3 (y y) (x x) (a a) (b b) (t t))

(non-orig (privk "sign" a) (privk "encr" t))

(comment

"Experiment 1 to prove Lemma 4.3, clause 2."))

(defskeleton wang
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(vars (a b t hash_id name) (r text) (k skey) (y mesg))

(defstrand ttp-rc2 3 (a a) (b b) (t t))

(non-orig (privk "sign" a) (privk "encr" t))

(comment

"Experiment 2 to prove Lemma 4.3, clause 2."))

(defskeleton wang

(vars (a b t hash_id name) (r text) (k skey) (y mesg))

(defstrand ttp-cf2 3 (a a) (b b) (t t))

(non-orig (privk "sign" a) (privk "encr" t))

(comment

"Experiment 3 to prove Lemma 4.3, clause 2."))
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