
SEARCHING FOR SHAPES IN CRYPTOGRAPHIC PROTOCOLS
(EXTENDED VERSION)

SHADDIN F. DOGHMI, JOSHUA D. GUTTMAN, AND F. JAVIER THAYER

Abstract. We describe a method for enumerating all essentially different
executions possible for a cryptographic protocol. We call them the shapes of
the protocol. Naturally occurring protocols have only finitely many, indeed
very few shapes. Authentication and secrecy properties are easy to determine
from them, as are attacks. cpsa, our Cryptographic Protocol Shape Analyzer,
implements the method.

In searching for shapes, cpsa starts with some initial behavior, and dis-
covers what shapes are compatible with it. Normally, the initial behavior is the
point of view of one participant. The analysis reveals what the other principals
must have done, given this participant’s view.

1. Introduction

The executions of cryptographic protocols frequently have very few essentially
different forms, which we call shapes. By enumerating these shapes, we may as-
certain whether they all satisfy a security condition such as an authentication or
confidentiality property. We may also find other anomalies, which are not necessar-
ily counterexamples to the security goals, such as involving unexpected participants,
or involving more local runs than expected.

In this paper, we describe a complete method for enumerating the shapes of a
protocol within a pure Dolev-Yao model. If the protocol has only finitely many es-
sentially different shapes, the enumeration will terminate. From the shapes, we can
then read off the answers to secrecy and authentication questions and observe other
anomalies. Our software implementation of this method is called a Cryptographic
Protocol Shapes Analyzer (cpsa).

We use the strand space theory [8]. A skeleton [4] represents regular (non-
penetrator) behavior that might make up part of an execution, and a homomor-
phism is an information-preserving map between skeletons. Skeletons are partially-
ordered structures, like fragments of Lamport diagrams [10]. A skeleton is realized
if it is non-fragmentary, i.e. it contains exactly the regular behavior of some execu-
tion. A realized skeleton is a shape if it is minimal in a sense we will make precise.
We search for shapes using the authentication tests [8] to find new strands to add
when a skeleton is not large enough to be realized.

The main technical result underlying cpsa is completeness, in the sense that—
for any protocol—our authentication test search eventually discovers every shape
for that protocol (Thm. 6.10). It cannot terminate for every protocol [5]. It does,
however, terminate for reasonably inclusive classes [2, 16].

1Supported by the National Security Agency and by MITRE-Sponsored Research. Addresses:
shaddin@stanford.edu, {guttman, jt}@mitre.org.

1

2 November 6, 2006

cpsa’s search is related to the second version of Athena [15], which adopted the
authentication tests from early versions of [8]. Our work, however, is distinguished
from Athena in several ways. First, it involves the regular behaviors alone; we
never represent adversary activity within a shape. Second, we have improved both
the search and the theory. In particular, we have introduced the notion of shape,
which defines a criterion for which possible executions should be considered, among
the infinitely many executions (of unbounded size) of any protocol. Third, we have
now created versions of the authentication tests strong enough for completeness to
be true.

The type-and-effect system for spi calculus [6] is also related to the authentication
tests, but differs from our work in two ways. First, we do not use the syntactically-
driven form of a type system, but instead a direct analysis of behaviors. Second,
type-and-effect systems aim at a sound approximation, whereas our work provides
actual counterexamples when a security goal is not met.

The shapes describe protocol executions of all sizes; we do not follow the widely
practiced bounded protocol analysis (e.g. [1, 12]).

Structure of this paper. We will develop the cpsa search strategy starting with
examples. Section 2 contains a very brief example of a protocol and its shapes, and
introduces terminology.

Section 3 introduces the Yahalom protocol [3, 14], and examines what global
behavior must be present in a run that contains a given local behavior. This
protocol is a good example, because although it is quite compact, it illustrates
almost every aspect of the cpsa search method.

We expand the terminology and give more precise definitions in Section 4 and,
for skeletons, homomorphisms, and shapes, Section 5. In this we use Section 3 as a
source of examples. Section 6 develops the authentication test theorems that were
used repeatedly—in implicit form—in Section 3.

In Section 7, we explain the search algorithm that the authentication tests sug-
gest, as illustrated within Section 3. First, in Section 7.1, we extract the search
content of the authentication test theorems themselves, abstracting the two prin-
ciples used repeatedly (Section 7.1). In Section 7.2, we define the search’s control
structure. The cpsa implementation is the subject of Section 8.

2. A Small Example with the Core Ideas

In practice, protocols have remarkably few shapes. The Needham-Schoeder-
Lowe [13, 11] protocol has only one. This holds whether we take the point of view
of the responder B, asking what behavior must have occurred if B has had a full
local run of the protocol, or whether we take the point of view of the originator
A. In either case, the other party must have had a matching run. The initiator,
however, can never be sure that the last message it sends was received by the
responder, as it is no longer expecting to receive any further messages.

Uniqueness of shape is perhaps not surprising for as strong a protocol as Needham-
Schroeder-Lowe. However, even a flawed protocol such as the original Needham-
Schroeder protocol may have a unique shape, shown in Fig. 1.

2.1. Terminology. B’s behavior is represented by the right-hand column in Fig. 1,
consisting of nodes connected by double arrows • ⇒ •. A’s behavior is represented
by the left-hand column. We call such a column a strand. The nodes represent

November 6, 2006 3

A
{|NaˆA|}pubk(C)-

{|NaˆA|}pubk(B)- B

•
�

�
{|NaˆNb|}pubk(A) � �

{|NaˆNb|}pubk(A) •
�

•
� {|Nb|}pubk(C) - ≺

{|Nb|}pubk(B) - •
�

Figure 1. Needham-Schroeder Shape (privk(A) uncompromised,
Nb fresh, B’s point of view)

message transmission or reception events, and the double arrows represent succes-
sion within a single linearly ordered local activity. The message transmitted or
received on a node n is written msg(n). A regular strand is a strand that represents
a principal executing a single local session of a protocol; it is called a regular strand
because the behavior follows the protocol rules.

In the messages, we use {|t|}K to refer to the encryption of t with key K, and
tˆt′ means the pair of the messages t and t′. Messages are constructed freely via
these two operations from atomic values A, Na, K, etc.

The subterm relation is the least reflexive, transitive relation such that t is a
subterm of {|t|}K , t is a subterm of tˆt′, and t is a subterm of t′ˆt (for all K, t′).
We write t v t′ if t is a subterm of t′. Thus, K 6v {|t|}K unless (anomalously)
K v t. Instead, K contributed to how {|t|}K was produced. This terminology
has an advantage: Uncompromised long-term keys are never subterms of messages
transmitted in a protocol; they are used by regular principals to encrypt, decrypt,
or sign messages, but are never transmitted. A value a originates at a node n if
(1) n is a transmission node; (2) a v msg(n); and (3) if m is any earlier node on
the same strand, then a 6v msg(m).

Adversary behavior is represented by strands too. These penetrator strands cod-
ify the basic abilities that make up the Dolev-Yao model. They include transmitting
a basic value such as a nonce or a key; transmitting an encrypted message after
receiving its plaintext and the key; and transmitting a plaintext after receiving ci-
phertext and decryption key. The adversary can also pair two messages, or separate
the pieces of a paired message. Since a penetrator strand that encrypts or decrypts
must receive the key as one of its inputs, keys used by the adversary—compromised
keys—have always been transmitted by some participant. These penetrator strands
are independent of the protocol under analysis.

2.2. The NS Shape. Suppose B’s nonce Nb has been freshly chosen and A’s
private key privk(A) is uncompromised, and B has had the full run shown at the
right in Fig. 1. Given that—on a particular occasion—B has received and sent these
messages in this order, what else must have occurred elsewhere in the network?
A must have had a matching run, with the messages sent and received in the or-

der indicated by the arrows of both kinds and the connecting dots. The dots mean
that the endpoints are ordered, but that other behavior may intervene, whether
adversary behavior or regular strands. There is no alternative: Any diagram con-
taining the responder strand of Fig. 1 must at least contain the initiator strand,
with the events ordered as shown, or it cannot have happened.

Such a diagram is a shape. A shape consists of the regular strands of an execution,
forming a minimal set among executions containing certain regular strands (in this

4 November 6, 2006

case, just the right-hand column). Possible execution may freely add adversary
behavior. Each shape is relative to assumptions about keys and freshness, in this
case that privk(A) is uncompromised and Nb freshly chosen.

Although there is a single shape, there are two ways that this shape may be
realized. Either (1) C’s private key may be compromised, in which case we may
complete this diagram with adversary activity to obtain the Lowe attack [11]; or
else (2) C = B, leading to the intended run.

Some protocols have more than one shape, Otway-Rees, e.g., having four. In
searching for shapes, one starts from some initial set of strands. Typically, the
initial set is a singleton, which we refer to as the “point of view” of the analysis.

2.3. Skeletons, Homomorphisms, Shapes. A skeleton A is (1) a finite set of
regular nodes, equipped with additional information. The additional information
consists of (2) a partial order �A on the nodes indicating causal precedence; (3) a set
of keys nonA; and (4) a set of atomic values uniqueA. Values in nonA must originate
nowhere in A, whereas those in uniqueA originate at most once in A.1 A is realized
if it has precisely the regular behavior of some concrete execution. Every message
received by a regular participant either should have been sent previously, or should
be constructable by the adversary with the help of messages sent previously. Fig. 1
shows a skeleton, indeed a realized one. See Defs. 5.1, 5.2.

A homomorphism is a map H from A0 to A1, written H : A0 7→ A1. We represent
it as a pair of maps (φ, α), where φ maps the nodes of A0 into those of A1, and α is a
replacement mapping atomic values into atomic values. We write t ·α for the result
of applying a replacement α to a message t. H = (φ, α) is a homomorphism iff: (1)
φ respects strand structure, and msg(n) ·α = msg(φ(n)) for all n ∈ A0; (2) m �A0 n
implies φ(m) �A1 φ(n); (3) nonA0 · α ⊂ nonA1 ; and (4) uniqueA0

· α ⊂ uniqueA1
. See

Def. 5.3.
Homomorphisms are information-preserving transformations. Each skeleton A0

describes the realized skeletons reachable from A0 by homomorphisms. Since ho-
momorphisms compose, if H : A0 7→ A1 then any realized skeleton accessible from
A1 is accessible from A0. Thus, A1 preserves the information in A0: A1 describes
a subset of the realized skeletons described by A0.

A homomorphism may supplement the strands of A0 with additional behavior
in A1; it may affect atomic parameter values; and it may identify different nodes
together, if their strands are compatible in messages sent and positions in the partial
ordering. For instance, a map is a homomorphism if it embeds a single strand of
Fig. 1 (e.g. B’s strand on the right side) into the whole skeleton shown. Likewise
if we embed the first two nodes of B’s strand (rather than the whole sequence of
three) into the whole of Fig. 1. Another homomorphism rewrites each occurrence
of C in Fig. 1 to B, hence each occurrence of pubk(C) to pubk(B). It yields the
Needham-Schroeder intended run.

A homomorphism H = (φ, α) is nodewise injective if φ is an injective function
on the nodes. The nodewise injective homomorphisms determine a useful partial
order on homomorphisms: When for some nodewise injective H1, H ′ = H1 ◦H, we
write H ≤n H

′. If H ≤n H
′ ≤n H, then H and H ′ are isomorphic.

A homomorphism H : A0 7→ A1 is a shape iff (a) A1 is realized and (b) H is
≤n -minimal among homomorphisms from A0 to realized skeletons.

1When n ⇒∗ n′ and n′ ∈ A, we require n ∈ A and n �A n′.

November 6, 2006 5

Init
AˆNa - AˆNa - Resp

�
Bˆ{|AˆNaˆNb|}ltk(B) •

�
•
�
wwwww

�
{|BˆK ˆNaˆNb|}ltk(A)

{|AˆK|}ltk(B) - •
�
wwwww

•
�
wwwww

{|Nb|}K - {|Nb|}K - •
�

Serv �
Bˆ{|AˆNaˆNb|}ltk(B)

�
{|BˆK ˆNaˆNb|}ltk(A) •

�
•
� {|AˆK|}ltk(B) -

Figure 2. Yahalom protocol (forwarding removed)

This means that if we factor H into A0
H07→ A′ H17→ A1, where A′ is realized,

then A′ cannot contain fewer nodes than A1, or make fewer identifications among
atomic values. A1 is as small and as general as possible. We call A1 a shape if
the homomorphism H is understood (such as an embedding). Shapes exist below
realized skeletons: If H : A0 7→ A1 with A1 realized, then the set of shapes H1 with
H1 ≤n H is finite and non-empty. (Prop. 5.7.)

The Needham-Schroeder intended run is not a shape for B’s strand, because the
skeleton shown in Fig. 1 makes fewer identifications among atomic values. Fig. 1 is
more general, and the map replacing C with B is nodewise injective.

3. The Yahalom Protocol

The Yahalom protocol [3] (Fig. 2) provides a session key K to principals sharing
long-term symmetric keys with a key server. We let ltk(·) map each principal A
to its long term shared key ltk(A). We assume that all participants agree on the
server, which does not also participate as a client.

3.1. Definition of the Protocol. The protocol contains three roles, the initiator,
the responder, and the server. Each is described by one strand in Fig. 2, and each
role is parametrized by A,B,Na, Nb,K. The parameters are atomic values, and
the instances of each role are constructed by replacing them with other atomic
values. The behavior Init of the initiator consists in transmitting AˆNa followed by
receiving {|BˆK ˆNaˆNb|}ltk(A) and finally transmitting {|Nb|}K . The other roles
are equally self-explanatory. The key server is trusted to generate a fresh, uniquely
originating session keyK in each run. By this, we mean that if a skeleton A contains
a server strand with session key K, then K ∈ uniqueA.

We consider the Yahalom protocol in detail, because it requires both of the two
types of step in Section 7, and it relies on the outgoing test in the strong form
we introduce here. The older form [8] does not suffice. We number the cases we
encounter, so the remainder of the paper can refer to them.

6 November 6, 2006

3.2. Yahalom: Shapes for the Responder. Suppose an execution contains a
local run of the responder’s role as shown in the upper right column of Fig. 2. We
assume the long term keys ltk(A), ltk(B) of the two participants are uncompromised.
Similarly, we assume the responder’s nonce Nb to be fresh and unguessable. We
codify these assumptions in an initial skeleton A0 consisting of a responder strand,
letting nonA0 = {ltk(A), ltk(B)} and uniqueA0

= {Nb}. What skeletons are shapes
for A0?

We will find that the shape A4 (Fig. 5) is the only possibility. Any realized A, if
it contains a responder strand s, with uncompromised long-term keys and a fresh
nonce, must contain an image of A4. The strand s is in the image of A4 under a
nodewise injective H. So, a portion of A contains s and resembles A4.

Transforming the Nonce. B chooses a fresh nonce Nb in its second step (n0 in
Fig. 3), and transmits it within the encrypted unit {|AˆNaˆNb|}ltk(B). In B’s
fourth step (n2 in Fig. 3), it is received outside that unit, in the form {|Nb|}K . How
could it be extracted from the former to appear in the latter? The transformation
must begin with case 1 or case 2:

(1) (a) {|AˆNaˆNb|}ltk(B) reaches a server strand that transforms it, for some
K ′, into {|BˆK ′ˆNaˆNb|}ltk(A). (b) The latter message reaches an initiator
strand that transforms it into {|Nb|}K′ . We ask later whether K ′ = K.

(2) The adversary somehow receives one of the long term shared keys. If the
adversary receives ltk(B), then the original message may never reach the
server. If it receives ltk(A), then the message {|BˆK ′ˆNaˆNb|}ltk(A), trans-
mitted by the server, may never reach A.

If the long-term keys do not become available to the adversary, then only the
protocol itself can extract Nb from the successive messages, and the protocol does
this only by a server strand followed by an initiator strand. Each of cases 1, 2
describes some of the homomorphisms that lead from A0 to its shapes.

Case 1 describes homomorphisms that add two strands as part of mapping A0

to a shape A′. In fact, one can factor this mapping into one that maps A0 into
the skeleton A1 (see Fig. 3) that results from adding these regular strands, and a
second homomorphism that does the rest of the work, mapping A1 to A′. Since K ′

is the session key originating on a server strand, K ′ ∈ uniqueA1
.

Turning to Case 2, any homomorphism that does not factor through A1 depends
on a key being compromised. However, ltk(A), ltk(B) ∈ nonA0 , meaning that these
keys will be used only on accordance with the protocol, and in particular never
transmitted. Thus, they can never be compromised, and Case 2 is vacuous.

Does K ′ = K? The server generated K ′ and delivered it to A in A1. B received
K, and found it was also used to encrypt the nonce Nb. Must the keys K ′,K be
the same, or could they be distinct?

We again consider transformations of Nb, which has appeared in the forms:
• {|AˆNaˆNb|}ltk(B);
• {|BˆK ′ˆNaˆNb|}ltk(A), generated from the previous form by the server;
• {|Nb|}K′ , generated from the previous form by A.

However, we know that Nb also occurs in the form {|Nb|}K at the node n1 (as shown
in Fig. 3). One of cases 3–5 could account for the transformation:

November 6, 2006 7

A S B

• •

• �.................................. n0

­ww

•
­
wwwwwwww

�.................................. m1

­ww

?

­w
n1

­
wwwwwwww

•
­
wwwwwwww

...- n2

­w
A, B, Na, Nb, K

′ A, B, Na, Nb, K
′ A, B, Na, Nb, K

Figure 3. Skeleton A1, with nonA1 = {ltk(A), ltk(B)} and
uniqueA1

= {Nb,K
′}.

(3) If K ′ = K, then {|Nb|}K′ = {|Nb|}K , and no transformation is needed.
(4) K ′ could be obtained by the adversary, who decrypts {|Nb|}K′ , causing Nb

to escape from the forms already seen.
(5) Another regular server strand could receive Nb in its original form and

retransmit it with a new session key as {|BˆK ′′ˆNaˆNb|}ltk(A).
However, we can prune this possibility, because K ′′ is not usefully differ-

ent from K ′. The messages transmitted by this strand cannot be used in
ways different from the messages transmitted by the existing server strand.
(Formalized in Proposition 6.11.)

Discarding case 5, we are left with two possibilities: either K ′ = K or else K ′

becomes compromised. We exclude case 4 next.
Case 4: K ′ becomes compromised. Then K ′ must become available without any
protective cryptography. K ′ originates only at m1 and is transmitted in that node
and possibly also the next node. Thus, it is sent only in the forms {|BˆK ′ˆNaˆNb|}ltk(A)

and {|AˆK ′|}ltk(B).
If K ′ occurs without protection, then one of these two cases must hold:

(6) Some instance of one of the Init,Resp,Serv roles can receive K ′ in one of
the forms shown, and retransmit it occurring in some other form.

However, no Yahalom role receives a key and retransmits it in any other
form. It is used by the responder as key in preparing an encrypted message,
but this cannot lead to its being revealed to the adversary.

(7) One of the keys that protect K ′ when it is initially transmitted must be-
come compromised. These are the long-term keys ltk(A), ltk(B). However,
ltk(A), ltk(B) ∈ nonA1 .

So neither case 6 nor case 7 is possible, and K ′ is uncompromised. Hence K ′ = K.
Let A2 be the result of replacing K ′ by K in wherever mentioned in A1. We now

know that if for some homomorphism H : A0 7→ A′ where A′ is a shape, then H is
a factors through the homomorphism that embeds A0 into A2, which is composed
with some other H ′ that does the rest of the work to get to A′.

8 November 6, 2006

A S B S′

• •

• �.................................. n0

­ww
•

•
­
wwwwwwwwww

�................................. m1

­ww
m′

1

­w

?

­ww
n1

­
wwwwwwwwww

�................................ m′
2

­w

•
­
wwwwwwwwww

...- n2

­ww
A, B, Na, Nb, K A, B, Na, Nb, K A, B, Na, Nb, K A, B, N ′

a, N ′
b, K

Figure 4. A3, with nonA3 = {ltk(A), ltk(B)} and uniqueA3
= {Nb,K}.

B’s Source for K. The responder B receives {|AˆK|}ltk(B). How is this term cre-
ated? There are two possibilities:

(8) A regular strand transmits {|AˆK|}ltk(B). Only a server strand, with pa-
rameters A,B,K, will do so, although we do not know what nonces appear
in it. In Fig. 4, we show A3, which represents what we know in this case.

(9) Alternatively, {|AˆK|}ltk(B) is generated by the adversary, so ltk(B) has
been compromised. However, ltk(B) ∈ nonA2 , excluding this case.

A3 has an anomaly, however. Although K ∈ uniqueA3
is intended to originate at

just one node, it in fact originates, packaged for A, at both m1 and m′
1. It is then

transmitted later, packaged for B, at m′
2 and possibly also at the location marked

?, if the latter has happened “already” at the time represented by A3.
Since K ∈ uniqueA3

, but originates at both m1 and m′
1, necessarily m1 = m′

1.
Hence, the strands marked S and S′ are identical. Fig. 5 shows the result of
identifying them. As a consequence of identifying these strands, we also infer that
Na = N ′

a and Nb = N ′
b, and that S starts after n0 and completes before n1.

Skeleton A4 is realized, since it can really happen with no additional activity of
the regular (non-penetrator) participants. Moreover, A4 is minimal in two ways.
First, if we leave out any nodes, then either B’s strand is no longer embedded in
the result, or else the result is no longer realized. Second, we cannot make it more
general: If two different strands share a parameter, and we alter that parameter in
one of the strands, then the result is no longer realized. For instance, the diagram
would no longer fit together if A’s parameterNb were altered to someN ′

b. A skeleton
that is realized and minimal in these two senses is a shape.

Thus, we have shown that A4 is a shape for A0. Since all homomorphisms from
A0 to realized skeletons factor through A4, A4 is the only shape for A0.

4. Terms, Strands, and Bundles

In this section and then next (Section 5), we give precise definitions, which
include a number of fine points which seemed an unnecessary distraction in the

November 6, 2006 9

A S B

• •

• �.................................. n0

­ww

•
­
wwwwwwww

�................................. m1

­ww

m2

­w
................................- n1

­
wwwwwwww

•
­
wwwwwwww

...- n2

­w
A, B, Na, Nb, K A, B, Na, Nb, K A, B, Na, Nb, K

Figure 5. Skeleton A4, with nonA4 = {ltk(A), ltk(B)} and
uniqueA4

= {Nb,K}.

previous sections. Examples of fine points include the tags on concatenated terms
in Def. 4.1 and the non-degeneracy conditions involving O(s, a) in Defs. 4.4 and 5.3.

4.1. Algebra of Terms. Terms (or messages) form a free algebra A, built from
atomic terms via constructors. The atoms are partitioned into the types principals,
texts, keys, and nonces. An inverse operator is defined on keys. There may be
additional functions on atoms, such as an injective public key of function mapping
principals to keys, or an injective long term shared key of function mapping pairs of
principals to keys. These functions are not constructors, and their results are atoms.
For definiteness, we include here functions pubk(a), ltk(a) mapping principals to
(respectively) their public keys and to a symmetric key shared on a long-term basis
with a fixed server S. pubk(a)−1 is a’s private key, where pubk(a)−1 6= pubk(a).
We often write the public key pair as Ka,K

−1
a . By contrast, ltk(a)−1 = ltk(a).

Atoms, written in italics (e.g. a,Na,K
−1), serve as indeterminates (variables).

We assume A contains infinitely many atoms of each type. Terms in A are freely
built from atoms using tagged concatenation and encryption. The tags are chosen
from a set of constants written in sans serif font (e.g. tag). The tagged concatena-
tion using tag of t0 and t1 is written tagˆt0ˆt1. Tagged concatenation using the
distinguished tag null of t0 and t1 is written t0ˆt1. Encryption takes a term t and
an atomic key K, and yields a term as result written {|t|}K .

Replacements have only atoms in their range:

Definition 4.1 (Replacement, Application). A replacement is a function α map-
ping atoms to atoms, such that (1) for every atom a, α(a) is an atom of the same
type as a, and (2) α is a homomorphism with respect to the operations on atoms,
i.e., α(K−1) = (α(K))−1 and α(pubk(a)) = pubk(α(a)).

The application of α to t, written t · α, homomorphically extends α’s action on
atoms. More explicitly, if t = a is an atom, then a · α = α(a); and:

(tagˆt0ˆt1) · α = tagˆ(t0 · α)ˆ(t1 · α)
({|t|}K) · α = {|t · α|}K·α

10 November 6, 2006

Application distributes through larger objects such as pairing and sets. Thus, (x, y) ·
α = (x · α, y · α), and S · α = {x · α : x ∈ S}. If x 6∈ A is a simple value such as an
integer or a symbol, then x · α = x.

4.2. Strands and Origination. Since replacements map atoms to atoms, not to
compound terms, unification is very simple. Two terms are unifiable if and only if
they have the same abstract syntax tree structure, with the same tags associated
with corresponding concatenations, and the same type for atoms at corresponding
leaves. To unify t1, t2 means to partition the atoms at the leaves; a most general
unifier is a finest partition that maps a, b to the same c whenever a appears at the
end of a path in t1 and b appears at the end of the same path in t2. If two terms
t1, t2 are unifiable, then t1 · α and t2 · β are still unifiable.

The direction + means transmission, and the direction − means reception:

Definition 4.2 (Strand Spaces). A direction is one of the symbols +,−. A directed
term is a pair (d, t) with t ∈ A and d a direction, normally written +t,−t. (±A)∗

is the set of finite sequences of directed terms.
A strand space over A is a structure containing a set Σ and two mappings: a

trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) 7→ s ·α
such that (1) tr(s · α) = (tr(s)) · α, and (2) s · α = s′ · α implies s = s′.

By condition (2), Σ has infinitely many copies of each strand s, i.e. strands s′

with tr(s′) = tr(s).

Definition 4.3. A penetrator strand has trace of one of the following forms:
Mt: 〈+t〉 where t ∈text, principal,nonce KK : 〈+K〉
Cg,h: 〈−g, −h, +gˆh〉 Sg,h: 〈−gˆh, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.

If s is a penetrator strand, then s · α is a penetrator strand of the same kind.
The subterm relation, written v, is the least reflexive, transitive relation such

that (1) t0 v tagˆt0ˆt1; (2) t1 v tagˆt0ˆt1; and (3) t v {|t|}K . Notice, however,
K 6v {|t|}K unless (anomalously) K v t. We say that a key K is used for encryption
in a term t if for some t0, {|t0|}K v t.

A node is a pair n = (s, i) where i ≤ length(tr(s)); strand(s, i) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s ↓ i for the node
n = (s, i).

A term t originates at node n if n is positive, t v msg(n), and t 6v msg(m)
whenever m⇒+ n. Thus, t originates on n if t is part of a message transmitted on
n, and t was neither sent nor received previously on this strand. If a originates on
strand s, we write O(s, a) to refer to the node on which it originates.

A listener role is a regular strand Lsn[a] with trace 〈−a〉. It documents that a
is available on its own to the adversary, unprotected by encryption. Since replace-
ments respect type, atoms of different type must be overheard by different roles.
We assume each protocol Π has listener roles Lsn[N] and Lsn[K] for nonces and
keys respectively, with traces 〈−N〉 and 〈−K〉.

4.3. Protocols and Bundles.

Definition 4.4 (Protocols). A candidate 〈Π, strand non, strand unique〉 consists of:
(1) a finite set Π of strands—containing the listener strands Lsn[N], Lsn[K]—called
the roles of the protocol; (2) a function strand non mapping each role r to a finite

November 6, 2006 11

set of keys strand nonr, called the non-originating keys of r; and (3) a function
strand unique mapping each role r to a finite set of atoms strand uniquer called the
uniquely originating atoms of r.

A candidate 〈Π, strand non, strand unique〉 is a protocol if (1) K ∈ strand nonr

implies that K does not occur in any node of r, but either K or K−1 is used
for encryption on some term of tr(r); and (2) a ∈ strand uniquer implies that a
originates on r, i.e. O(r, a) is well defined.

The regular strands of 〈Π, strand non, strand unique〉 form the set ΣΠ =

{r · α : r ∈ Π and ∀a ∈ strand uniquer,O(r · α, a · α) = (O(r, a)) · α}.

The non-originating keys strand nonr and uniquely originating atoms strand uniquer

are used in the definition of augmentations, Def. 6.3, Clauses 1c,d. The condition
that constrains r · α based on O(r, a) is a non-degeneracy condition. It says that
replacement α determines an instance of r only if it does not cause a value a, as-
sumed uniquely originating, to collide with another value already encountered in
executing r.

Example 4.5 (Yahalom Protocol). The Yahalom protocol has a set ΠY of roles
containing the three roles shown in Fig. 2 and two listener roles, to hear nonces
and keys. For each r ∈ ΠY , strand nonr = ∅. For the server role Serv ∈ ΠY ,
strand uniqueServ = {K}, and for the other roles r ∈ ΠY , strand uniquer = strand nonr =
∅.

The set N of all nodes forms a directed graph G = 〈N , (→ ∪ ⇒)〉 with edges
n1 → n2 for communication (with the same term, directed from positive to negative
node) and n1 ⇒ n2 for succession on the same strand.

Definition 4.6 (Bundle). A finite acyclic subgraph B = 〈NB, (→B ∪ ⇒B)〉 of G
is a bundle if (1) if n2 ∈ NB is negative, then there is a unique n1 ∈ NB with
n1 →B n2; and (2) if n2 ∈ NB and n1 ⇒ n2, then n1 ⇒B n2. When B is a bundle,
�B is the reflexive, transitive closure of (→B ∪ ⇒B).

A bundle B is over 〈Π, strand non, strand unique〉 if for every s ↓ i ∈ B, (1) either
s ∈ ΣΠ or s is a penetrator strand; (2) if s = r · α and a ∈ strand nonr · α, then a
does not occur in B; and (3) if s = r ·α and a ∈ strand uniquer ·α, then a originates
at most once in B.

Example 4.7. Fig. 1 is a bundle if we replace C with B and then connect arrows
with matching labels. Alternatively, it becomes a bundle by adding penetrator strands
to unpack the values encrypted with KC and repackage the values, encrypting with
KB.

We say that a strand s is in B if s has at least one node in B. Henceforth, assume
fixed some arbitrary protocol 〈Π, strand non, strand unique〉.

Proposition 4.8. Let B be a bundle. �B is a well-founded partial order. Every
non-empty set of nodes of B has �B-minimal members.

Let α be a replacement. Suppose for every regular strand s = r ·β in B, for every
b ∈ strand uniquer · β, we have (O(s, b)) ·α = O(s ·α, b ·α). Then B ·α is a bundle.

5. Preskeletons, Skeletons, and Homomorphisms

5.1. Skeletons. A preskeleton is potentially the regular (non-penetrator) part of a
bundle or of some portion of a bundle. Each of Figs. 1 and 3–5 shows a preskeleton.

12 November 6, 2006

A preskeleton consists of nodes annotated with additional information, indicating
order relations among the nodes, uniquely originating atoms, and non-originating
atoms. We say that an atom a occurs in a set nodes of nodes if for some n ∈ nodes,
a v msg(n). A key K is used in nodes if for some n ∈ nodes, {|t|}K v msg(n). We
say that a key K is mentioned in nodes if K or K−1 either occurs or is used in
nodes. For a non-key a, a is mentioned if it occurs.

Definition 5.1. A four-tuple A = (nodes,�, non, unique) is a preskeleton if:

(1) nodes is a finite set of regular nodes; n1 ∈ nodes and n0 ⇒+ n1 implies
n0 ∈ nodes;

(2) � is a partial ordering on nodes such that n0 ⇒+ n1 implies n0 � n1;
(3) non is a set of keys, and for all K ∈ non, either K or K−1 is used in nodes;
(3′) for all K ∈ non, K does not occur in nodes;
(4) unique is a set of atoms, and for all a ∈ unique, a occurs in nodes.

A preskeleton A is a skeleton if in addition:

(4′) a ∈ unique implies a originates at no more than one node in nodes.

A3, shown in Fig. 4, is a preskeleton but not a skeleton, because the session key
K originates at two different nodes, lying on the strands labeled S and S′. We
converted it into a skeleton by observing that these two strands must in fact be the
same.

We select components of a preskeleton using subscripts, so, in A = (N,R, S, S′),
�A means R and uniqueA means S′. A need not contain all of the nodes of a strand,
just some initial subsequence. We write n ∈ A to mean n ∈ nodesA, and we say
that a strand s is in A when at least one node of s is in A. The A-height of s is the
largest i with s ↓ i ∈ A. By Clauses 3, 4, uniqueA ∩ nonA = ∅.

The skeletons for a particular protocol 〈Π, strand non, strand unique〉 are defined
analogously to the bundles for that protocol. A (pre)skeleton A is a (pre)skeleton
for protocol 〈Π, strand non, strand unique〉 iff for every n ∈ nodesA with n = s ↓ i,
(1) s ∈ ΣΠ; (2) if s = r ·α and a ∈ strand nonr ·α, then a does not occur in A; and
(3) if s = r · α and a ∈ strand uniquer · α, then a ∈ uniqueA.

5.2. Skeletons and Bundles. Bundles correspond to certain skeletons:

Definition 5.2. Bundle B realizes skeleton A if:

(1) The nodes of A are the regular nodes n ∈ B.
(2) n �A n

′ just in case n, n′ ∈ nodesA and n �B n
′.

(3) K ∈ nonA iff case K or K−1 is used in nodesA but K occurs nowhere in B.
(4) a ∈ uniqueA iff a originates uniquely in B.

The skeleton of B is the skeleton that it realizes. The skeleton of B, written
skeleton(B), is uniquely determined. A is realized if some B realizes it.

Two bundles B,B′ are similar, written B∼LB′, if they differ only in what listener
strands they contain. Two realized skeletons A,A′ are similar, written A ∼L A′, if
for some B,B′ with B ∼L B′, A = skeleton(B) and A′ = skeleton(B′).

By condition (4), B does not realize A if A is a preskeleton but not a skeleton.
Given a skeleton A, methods derived from [8] determine whether A is realized.
Figs. 1 and 5 show realized skeletons, while Fig. 3 shows a non-realized skeleton.

November 6, 2006 13

5.3. Homomorphisms. When A is a preskeleton, we may apply a substitution
α to it, subject to the same condition as in Prop. 4.8. Namely, suppose α is a
replacement, and suppose that for each regular strand s = r · β such that s has
nodes in A, and for each atom b ∈ ur · β,

(O(s, b)) · α = O(s · α, b · α).

Then A ·α is a well defined object. However, it is not a preskeleton when x ·α = y ·α
where x ∈ nonA while y occurs in A. In this case, no further identifications can
restore the preskeleton property. So we are interested only in replacements with
the property that x ·α = y ·α and x ∈ nonA implies y does not occur in A. On this
condition, A · α is a preskeleton.

However, A may be a skeleton, while objects built from it are preskeletons but
not skeletons. Preskeleton A3 in Fig. 4 is built from the skeleton A2 by adding
a strand S′ containing an additional point of origination for the session key K;
we did this to explain “how B got K.” K ∈ uniqueA3

, but K originates at both
m1 and m′

1. In other cases, A may be a skeleton while A · α is a preskeleton but
not a skeleton. This may occur because a1, a2 ∈ uniqueA have distinct points of
origination n1, n2 ∈ A, but a1 ·α = a2 ·α. Then the two nodes ni ·α are both points
of origination for the common value ai · α.

In a preskeleton, we can sometimes, though, restore the skeleton unique origi-
nation property (4′) by a mapping φ that carries the two points of origination to
a common node. This will be possible only if the terms on them are the same,
and likewise for the other nodes in A on the same strands. We regard φ, α as an
information-preserving, or more specifically information-increasing, map. It has
added the information that a1, a2, which could have been distinct, are in fact the
same, and thus the nodes n1, n2, which could have been distinct, must also be
identified. We applied such a map to A3 to obtain A4.

Definition 5.3. Let A0,A1 be preskeletons, α a replacement, φ : nodesA0 → nodesA1 .
H = [φ, α] is a homomorphism if

1a. For all n ∈ A0, msg(φ(n)) = msg(n) · α, with the same direction;
1b. For all s, i, if s ↓ i ∈ A then there is an s′ s.t. for all j ≤ i, φ(s ↓ j) = (s′, j);
2. n �A0 m implies φ(n) �A1 φ(m);
3. nonA0 · α ⊂ nonA1 ;
4. uniqueA0

·α ⊂ uniqueA1
; and φ(O(s, a)) = O(s′, a·α) whenever a ∈ uniqueA0

,
O(s, a) ∈ A0, and φ(s ↓ j) = s′ ↓ j.

We write H : A0 7→ A1 when H is a homomorphism from A0 to A1. When a · α =
a·α′ for every a that occurs or is used for encryption in dom(φ), then [φ, α] = [φ, α′];
i.e., [φ, α] is the equivalence class of pairs under this relation.

The condition for [φ, α] = [φ, α′] implies that the action of α on atoms not
mentioned in the A0 is irrelevant. The condition on O in Clause 4 avoids a kind of
degeneracy, in which a point of origination is destroyed for some atom a ∈ uniqueA0

by identifying a with a value occurring earlier on the strand. We stipulate that
such a map is not a homomorphism. For instance, a replacement α that sends both
Na and Nb to the same value would not furnish homomorphisms on the examples
of Section 2–3. This would amount to the degenerate case in which the responder,
expecting to choose a fresh nonce, inadvertently selects the same nonce he has just
received.

14 November 6, 2006

A homomorphism I = [φ, α] : A0 7→ A1 is an isomorphism iff φ is a bijection
and α is injective. We say that two homomorphisms H1,H2 are isomorphic if they
differ by an isomorphism; i.e. H1 = I ◦H2 for some isomorphism I.

When transforming a preskeleton A into a skeleton, one identifies nodes n, n′ if
some a ∈ uniqueA originates on both; to do so, one may need to unify additional
atoms that appear in both msg(n),msg(n′). For instance, in Section 3.2, when
transforming A3 into A4, we identified nodes m1,m

′
1, and thereby learnt that the

additional values N ′
a, N

′
b must respectively equal Na, Nb. This process could cas-

cade. For instance if N ′
b had a point of origination in A4, then we would have to

identify that with the node marked n1 in Fig. 4. However, when success is possi-
ble, and the cascading produces no incompatible constraints, there is a canonical
(universal) way to succeed, as follows from the results in Appendix A:

Proposition 5.4. Suppose H0 : A 7→ A′ with A a preskeleton and A′ a skeleton.
There exists a homomorphism GA and a skeleton A0 such that GA : A 7→ A0

and, for every skeleton A1 and every homomorphism H1 : A 7→ A1, for some H,
H1 = H ◦GA. GA and A0 are unique to within isomorphism.

We call this universal map GA (or sometimes its target A0) the hull of A, hull(A).
We say that a skeleton A0 is live if for some H,A1, H : A0 7→ A1 and A1 is

realized. Otherwise, it is dead. There are two basic facts about dead skeletons:

Proposition 5.5 (Dead Skeletons). (1) If a ∈ nonA and (Lsn[a]) ↓ 1 ∈ A, then A
is dead. (2) If A is dead and H : A 7→ A′, then A′ is dead.

5.4. Shapes.

Definition 5.6 (Shape). [φ, α] : A0 7→ A1 is nodewise injective if φ is an injective
function on the nodes of A0.

A homomorphism H0 is nodewise less than or equal to H1, written H0 ≤n H1,
if for some nodewise injective J , J ◦H0 = H1. H0 is nodewise minimal in a set of
homomorphisms S if H0 ∈ S and for all H1 ∈ S, H0 ≤n H1.
H : A0 7→ A1 is a shape for A0 if H is nodewise minimal among the set of

homomorphisms H ′ : A0 7→ A′
1 where A′

1 is realized.

The composition of two nodewise injective homomorphisms is nodewise injec-
tive, and a nodewise injective H : A 7→ A is an isomorphism. Thus, H0,H1 are
isomorphic if each is nodewise less than or equal to the other. Hence, the relation
≤n is a partial order on homomorphisms to within isomorphism.

If we speak of a skeleton A0 as nodewise less than another skeleton A1, we mean
that H : A0 7→ A1 for some nodewise injective H. When we say that A1 is a shape,
we mean that it is the target of some shape H : A0 7→ A1, where a particular A0 is
understood from the context.

Proposition 5.7. Let H : A0 7→ A1. The set S = {H ′ : H ′ ≤n H} is finite (up to
isomorphism). If A1 is realized, then at least one H ′ ∈ S is a shape for A0.

Proof. Letting H = [φ, α], we generate S by choosing, for each node n ∈ (A1 \
φ(A0)), whether to omit it and all nodes later than n on the same strand.

We associate each location at which a is mentioned with an atom in α−1(a), the
inverse image of a under α. An association is permissible if locations containing
the same atom in A0 are associated with the same atom.

November 6, 2006 15

The set S contains the homomorphisms we get given a choice of nodes to omit
and a permissible association. H differs by a renaming from a member of S, namely
the one that omits no nodes and associates every occurrence of any a with a single
representative from α−1(a). Thus, if A1 is realized, S has members with a realized
target. Letting S ′ ⊆ S be the set of H ′ ∈ S such that the target of H ′ is realized,
S ′ is non-empty and finite; hence, S ′ has ≤n -minimal members. �

If A1 is realized and contains listener strands, and A results when we omit some
of the listener strands, then A is realized and A∼L A1. In particular, A is nodewise
less than or equal to A1. A minimal member of A will omit all of the listener
strands, which is why they do not appear in Fig. 1.

Given a skeleton A0 as “starting point,” we would like to find all the homomor-
phisms H : A0 7→ A that lead from A0 to a shape A. If we find homomorphisms
from A0 to realized skeletons A1, then Prop. 5.7 tells us how to obtain one or more
shapes from each of these realized skeletons. We are thus most interested in ho-
momorphisms H that do not unnecessarily identify occurrences of atoms, as we
will try to distinguish the different uses of the same atom in A1 to find nodewise
minimal members of A.

Our search is finished when more realized skeletons cannot yield any shapes we
have not yet encountered.

6. The Authentication Tests

To direct the process of searching for realized skeletons, we use the authentication
tests [8] in a strengthened and simplified form.

We say that t0 occurs only within S in t, where S is a set of terms, if:
(1) t0 6v t; or
(2) t ∈ S; or
(3) t 6= t0 and either (3a) t = {|t1|}K and t0 occurs only within S in t1; or (3b)

t = tagˆt1ˆt2 and t0 occurs only within S in each ti (i = 1, 2).
So t0 occurs only within S in t if in the abstract syntax tree, every path from the
root t to an occurrence of t0 as a subterm of t traverses some t1 ∈ S before reaching
t0. On the other hand, t0 occurs outside S in t if t0 does not occur only within S
in t. This means that t0 v t and there is a path from the root to an occurrence of
t0 as a subterm of t that traverses no t1 ∈ S.

6.1. The Tests in Bundles. We say that a is protected in B iff msg(n) 6= a for
all n ∈ B. Equivalently, a is protected in B iff the listener strand for a is not in B′
for any B′ ∼L B; that is, (Lsn[a] ↓ 1) 6∈ B′.

We say that a is protected up to m in B iff, for all n ∈ B, if msg(n) = a then
m ≺B n. We write a ∈ Protm(B) if a is protected up to m in B.

By the definitions of the penetrator strands for encryption and decryption (Def-
inition 4.3), if the adversary uses K for encryption or decryption anywhere in B,
then K is not protected in B. Thus, the adversary cannot create any encrypted
term with a protected key K. If K−1 is protected, it cannot decrypt any term en-
crypted with K. If a key is protected up to a negative node m, then the adversary
cannot use that key to prepare the term received on m.

Proposition 6.1 (Outgoing Authentication Test). Suppose that n0, n1 ∈ B, and

S ⊂ {{|t|}K : K−1 ∈ Protn1(B)}.

16 November 6, 2006

Suppose that a originates uniquely in B at node n0 and occurs only within S in
msg(n0), but a occurs outside S in msg(n1).

There is an integer i and a regular strand s ∈ ΣΠ such that m1 = s ↓ i ∈ B is
positive, and i is the least integer k such that a occurs outside S in msg(s ↓ k).
Moreover, there is a node m0 = s ↓ j with j < i such that a v msg(s ↓ j), and
n0 �B m0 ⇒+ m1 �B n1.

Proof. Apply Prop. 4.8 to

T = {m : m �B n1 and a occurs outside S in msg(m)}.

n1 ∈ T , so T has �B-minimal members m1. Since keys K used in S have K−1 ∈
Prot(B), m1 cannot lie on a decryption penetrator D-strand. By the assumptions,
a does not originate on m1, so that m1 does not lie on a M-strand or K-strand.
By the definitions of S and “occurs only within,” m1 does not lie on a S-, C-, or
E-strand. Thus, m1 lies on some s ∈ ΣΠ at some index i. �

In the Outgoing Authentication Test, we call m0 ⇒+ m1 an outgoing trans-
forming edge for a, S. It transforms the occurrence of a from lying only within S
to occurring outside it. We call (n0, n1) an outgoing test pair for a, S when these
nodes satisfy the condition in the first paragraph of the proposition. When we
do not know the set Protn1(B), we consider the set used(S) of keys used for some
outermost encryption in S as an approximation, and we speak of an outgoing test
pair for a, S.

Proposition 6.2 (Incoming Authentication Test). Suppose that n1 ∈ B is negative,
t = {|t0|}K v msg(n1), and K ∈ Prot(B). There exists a regular m1 ≺ n1 such that
t originates at m1.

Proof. Apply Prop. 4.8 to T = {m : m �B n1 and t v msg(m)}. A minimal mem-
ber m1 ∈ T does not lie on a penetrator E-strand because K ∈ Prot(B). �

We call m1 as an incoming transforming node, and n1 an incoming test node.

6.2. The Tests in Skeletons. Since these theorems hold for all bundles, and
concern only the regular behavior within the bundles, they hold for all realized
skeletons. Thus, roughly speaking, any homomorphism H : A0 7→ A1 where A1

is realized must add a transforming edge when A0 does not already contain one.
Indeed, we can regard H as a composition H ′′ ◦H ′ where H ′ adds the transform-
ing edge right away, and H ′′ does whatever else is needed to construct A1. This
definition uses the protocol origination data nr, ur from Def. 4.4.

Definition 6.3 (Augmentations, Contractions). (1) The inclusion

[id, id] : A0 7→ A1

is an augmentation if:
(a) nodesA1 \ nodesA0 = {s ↓ j : j ≤ i} for some s = r · α;
(b) �A1 is the transitive closure of (i) �A0 ; (ii) the strand ordering of s

up to i; and (iii) pairs (n,m) or (n,m) with n ∈ nodesA0 , m = s ↓ j,
and j ≤ i.

(c) nonA1 = nonA0 ∪ (nr · α); and
(d) uniqueA1

= uniqueA0
∪ (ur · α).

November 6, 2006 17

(2) An augmentation H : A0 7→ A1 is an outgoing augmentation if there exists
an outgoing test edge n0, n1 ∈ A0 with no outgoing transforming edge in A0,
and s ↓ 1 ⇒∗ m0 ⇒+ s ↓ i, where m0 ⇒+ s ↓ i is the earliest transforming
edge for this test on s. The additional pairs in the ordering (clause 1b(iii))
are the pairs (n0,m0) and ((s ↓ i), n1).

(3) It is an incoming augmentation if it adds an incoming transforming edge
for an incoming test node in A0. The pair (m1, n1) in the notation of
Prop. 6.2 is the additional pair in the ordering.

(4) It is a listener augmentation for a if it adds a listener strand Lsn[a], with
no pairs added to the ordering.

(5) A replacement α is a contraction for A if there are two distinct atoms
a, b mentioned in A such that a · α = b · α. We write hullα(A) for the
canonical homomorphism from A to hull(A · α), when the latter is defined.
(See Prop. 5.4.)

We can now state the search-oriented version of Prop. 6.1. It states that when
a skeleton A0 with an unsolved outgoing transformed pair can lead to a realized
skeleton A1, we can get there by starting out with one of three kinds of steps: (1) an
outgoing augmentation, (2) a contraction, or (3) adding a listener strand to witness
for the fact that one of the relevant keys is in fact not properly protected by the
time we reach A1.

Since we consider realized skeletons that differ only in their listener strands, we
recall that A1∼L A2 if they are both realized and differ only in what listener strands
they contain. We will also write H1 ∼L H2 if adding listener strands can equalize
them; i.e., when the Hi (for i = 1, 2) are of the form Hi : A 7→ Ai, and there are
embeddings Ei : Ai 7→ A′ such that A1 ∼L A′ ∼L A2 and E1 ◦H1 = E2 ◦H2.

Theorem 6.4 (Outgoing Augmentation). Let H : A0 7→ A1, where A1 is realized.
Let n0, n1 ∈ A0 be an outgoing test pair for a, S, for which A0 contains no trans-
forming edge. At least one of the following holds:

(1) H = H ′′ ◦ hullα(A0) for some contraction α;
(2) H = H ′′ ◦H ′, where H ′ is some outgoing augmentation for a, S;
(3) There is a listener augmentation H ′ : A0 7→ A′

0 for some K ∈ used(S), and
a homomorphism H ′′ : A′

0 7→ A′
1 such that H ∼L H

′′ ◦H ′.

Proof. Assuming H = [φ, α] : A0 7→ A1 with A1 realized, say with skeleton(B) = A1,
we have the following possibilities. If α contracts any atoms, then we may factor
H into a contraction followed by some remainder H ′′ (clause 1).

If α does not contract any atoms, then (φ(n0), φ(n1)) is an outgoing test pair
for a ·α, S ·α,X ·α. There are now two cases. First, suppose X ·α ⊆ Protφ(n1)(B).
Then we may apply Prop. 6.1 to infer that B and thus also A1 contains an outgoing
transforming edge m0 ⇒+ m1 for a·α, S ·α. Since α is injective on atoms mentioned
in A0, we may augment A0 with (m0 · α−1) ⇒+ (m1 · α−1).

Second, if there is some a ∈ X such that a·α 6∈ Protφ(n1)B, then there is A′
1∼LA1

such that A′
1 contains Lsn[a · α], and φ(n1) 6� (Lsn[a · α]) ↓ 1. Hence, clause 3 is

satisfied. �

In applying Theorem 6.4, we prefer to apply Clauses 2, 3 if possible; unnecessary
contractions must simply be un-contracted using Prop. 5.7. In particular, we use a
contraction α only if either (1) n0 · α, n1 · α is no longer an outgoing transformed

18 November 6, 2006

pair, or else (2) for some candidate outgoing augmentation, n0 · α, n1 · α is the
most general version of the test that it solves. The latter may occur when the
protocol role mentions the same atom at several locations where different atoms
are mentioned in n0, n1; α must then identify these atoms.

We can now see a fine point missing in the analysis in Section 3. Theorem 6.4
always interpolates the nodes m0,m1 between a’s point of origination and the node
n1 in which it occurs outside S. Thus, the repeated use of it in Steps 1(a) and 1(b)
place the transforming nodes between B’s first transmission and final reception, but
do not determine any order for the server strand and the initiator strand. As we
shall see in Section 8, we may introduce the strands in reverse order, and establish
that the server behavior causally preceded the initiator’s second action.

Incoming augmentations are similar to outgoing ones, except that the relevant
keys are only those used for encryption in the test node:

Theorem 6.5 (Incoming Augmentation). Let H : A0 7→ A1, where A1 is realized.
Let n1 ∈ A0 be a negative node and {|t0|}K v msg(n1). If {|t0|}K originates nowhere
in A0, then either:

(1) H = H ′′ ◦ hullα(A0) for some contraction α;
(2) H = H ′′ ◦H ′, where H ′ is an incoming augmentation originating {|t0|}K ;

or
(3) There is a listener augmentation H ′ : A0 7→ A′

0 for K, and a homomorphism
H ′′ : A′

0 7→ A′
1 such that: (a) A′

1 is realized, (b) A′
1∼LA1, and (c) H ′′◦H ′ =

I ◦H, where I is an inclusion homomorphism.

Here we use a contraction α only when α is needed to make an incoming aug-
mentation apply. A contraction never eliminates an incoming test node.

When a v msg(m), where a ∈ uniqueA0
and m ∈ A0, and a originates at n ∈ A0,

then n will precede m in any bundle accessible from A0. That is, if H : A0 7→ A1

where the latter is realized, then H factors through H ′ which maps A0 to the order
enrichment A′

0, where �A′
0

is the transitive closure of (�A0∪ (n,m)). We will rely
on this implicitly in what follows. When we need to be explicit about this, to say
that a skeleton needs no further enrichment of this kind, we will say that its order
reflects origination.

6.3. Completeness of the Authentication Tests. If a skeleton A is not re-
alized, does it necessarily contain an outgoing transformed edge or an incoming
transformed node? Yes, it does, although to make this precise we must be careful
about which atoms are protected, as this is not explicit in an unrealized skeleton.

Definition 6.6 (Penetrator web). Let G = 〈NG, (→G ∪ ⇒G)〉 be a finite acyclic
subgraph of 〈N , (→ ∪ ⇒)〉 such that NG consists entirely of penetrator nodes. G
is a penetrator web with support S and result R if S and R are sets of terms and
moreover:

(1) If n2 ∈ NG is negative, then either msg(n2) ∈ S or there is a unique n1

such that n1 →G n2.
(2) If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.
(3) For each t ∈ R, either t ∈ S or for some positive n ∈ NG, msg(n) = t.

If n ∈ B is a negative node, then B includes a penetrator web G with result
RG = {msg(n)}. Its support SG = {msg(m) : m is positive regular and m ≺B n}.
We write the set of positive regular nodes preceding a node n as support(n).

November 6, 2006 19

Definition 6.7. A term t is penetrator-derivable before n in A if there is a pene-
trator web G with t ∈ RG such that:

(1) SG ⊂ support(n);
(2) If K ∈ nonA, K does not originate in Gn; and
(3) If a ∈ uniqueA and a originates in A, then a does not originate in Gn.

Proposition 6.8. A skeleton A is realized iff, for every negative n ∈ A, msg(n) is
penetrator-derivable before n in A.

Proposition 6.9. Suppose that �A reflects origination. If msg(n) is not penetrator-
derivable before n in A, then either:

(1) n is an incoming transformed node, i.e., for some {|t|}K v msg(n), K ∈
nonA ∪ uniqueA and K is not penetrator-derivable before n in A; or else

(2) (m,n) is an outgoing transformed pair with respect to a, S for (i) some
m �A n; (ii) some a ∈ uniqueA originating at m; (iii) some set S of
encrypted terms such that a occurs only within S in support(n); and (iv)
for each K ∈ used(S), K−1 is not penetrator-derivable before n in A.

Proof. Similar to[8, Prop. 7]. �

Recall that shapes (being minimal) do not contain listener strands, so Clause 3
of Theorems 6.4, 6.5 need not appear in the following:

Theorem 6.10 (Authentication Tests Completeness). Let J = [φ, α] : A 7→ As be
a shape. J is isomorphic to Hi ◦ . . . ◦ H0 for some sequence of homomorphisms
{Hj}0≤j≤i, where

(1) H0 : A 7→ A0 is surjective and A0 is a substructure of A, or a contraction
of a substructure of A; and

(2) For each j with 1 ≤ j ≤ i, Hj : Aj−1 7→ Aj is a contraction or an augmen-
tation as in Theorem 6.4 or Theorem 6.5, Clauses 1, 2.

Proof. We define two sequences of homomorphisms, namely {Hj}0≤j≤i and {Lj}0≤j≤i,
such that (1), (2) hold, and moreover, (3) J = Lj ◦Hj ◦ . . . ◦H0, and (4) each Lj is
nodewise injective and Li is an isomorphism. (3) and (4) imply that J is isomorphic
to the composition of the Hj .

By the definition of shape, if any composition Hj ◦ . . . ◦H0 is realized, then we
may take j = i and stop. The nodewise injective Lj must be an isomorphism.

First, we define H0 to prune unnecessary strands in A, so that L0 will be node
injective. Partition the strands in A by their image under φ; i.e. es = {s′ : φ(s′ ↓
1) = φ(s ↓ 1)}. For each partition element es, choose a representative r(es) of
maximal height. We know that α unifies all the terms on the strands in any
partition element, so there is a most general contraction β compatible with these
identifications. Enrich the ordering to reflect origination. Let H0 = [(λs . r(es)), β].

Next, suppose that H0 . . .Hj and L0 . . . Lj have been defined, with Hj : Aj−1 7→
Aj , and Aj is not realized. Let Lj = [φj , βj] : Aj 7→ As. Let n1 ∈ Aj be a negative
node with msg(n1) not penetrator derivable before n1 in Aj (Prop. 6.8).

By Prop. 6.9, n1 is either an unsolved incoming transformed node for some {|t|}K

or else half of an unsolved outgoing transformed pair (n0, n1). In the latter case, we
choose n0 to be the point of origination of some a ∈ uniqueAj

such that a v msg(n1),
and (n0, n1) is an outgoing transformed edge for a, S for some S. There are now
the following possibilities.

20 November 6, 2006

(1) φj(n1) is still unsolved, meaning that K ·βj (or some K = K1 ·βj for some
K−1

1 ∈ used(S)) is compromised. Since n1 is not penetrator-derivable in
Aj , some such K is not derivable.

If for some S1, As \ Jj(Aj) contains an outgoing transforming edge for
K ·βj , S1 ·βj , then we augment Aj with a most general preimage of this edge.
If required, first apply a contraction Hj+1 to Aj . Then the augmentation
is Hj+2, and Jj+2 is Jj+1 together with this addition. Otherwise, the
augmentation is Hj+1.

If As contains no additional outgoing transforming edge for K · βj , then
this K is already derivable in Aj , contradicting the choice of K.

(2) Outgoing transformed edge φj(n0), φj(n1):
(a) φj(n0), φj(n1) is no longer a transformed edge with respect to a ·βj , S ·

βj . In this case, let Hj+1 be a most general contraction with this
property.

(b) φj(n0), φj(n1) is solved in As. Select a transforming edge contained in
As. Let m0 ⇒+ m1 be a most general preimage of the outgoing trans-
forming edge. If m0 ⇒+ m1 is not a transforming edge for (n0, n1) and
a, S, then the reason is that m0 ⇒+ m1 is less general than (n0, n1).
In this case, first contract Aj . After contracting, one will at the next
step augment with m0 ⇒+ m1. If contraction is not needed, augment
Aj with m0 ⇒+ m1.

(3) φj(n1) is a solved incoming test node in As. Select a transforming node
contained in As. Let m1 be a most general preimage of the incoming
transforming node. If m1 is not a transforming node for n1, then the
reason is that the transforming node m1 is not as general as n1. In this
case, first contract Aj . After contracting, one will at the next step augment
with m1. If contraction is not needed, augment Aj with m1.

Thus, if Aj is realized, it is isomorphic to As; otherwise, we extend {Hj}, {Lj}. �

6.4. A Pruning Condition. Some augmentations make progress toward realized
skeletons, and other augmentations make no progress, because although they in-
troduce a strand, that new strand is a redundant copy of an existing strand. We
can prune away these augmentations, and ignore them when searching for shapes.

We say A′
0 augments A0 with a copy of s if A′

0 results from A0 by an augmen-
tation with a strand s′ such that: (1) nodesA′

0
\ nodesA0 = {s′ ↓ j : j ≤ i} for some

i; (2) there is an idempotent I0 = [ψ0, β0] : A′
0 7→ A0 with ψ0(s′ ↓ j) = s ↓ j.

Proposition 6.11. Suppose A′ augments A with a copy of s, namely s′. Let
J ′ = [φ′, α′] : A′ 7→ A′

s with A′
s a shape. Then φ′(s′ ↓ j) = φ′(s ↓ j).

Proof. Let H ′
i ◦ . . . ◦ H ′

0 be the decomposition of J ′. We may now construct a
corresponding sequence Hi ◦ . . . ◦ H0 starting from A, but using the identity in
place of any steps H ′

j such that the non-derivable node is not present in Aj . For
any node whose derivation uses positive nodes from s′, we use the corresponding
positive nodes in s. Thus, the target As ofHi◦. . .◦H0 is realized, and a substructure
of A′

s. By the definition, Hi ◦ . . . ◦H0 ◦ I0 is a homomorphism from A′ to As. Since
As is embedded in A′

s, there’s a node injective map from As to A′
s. If this is not

the identity, it contradicts A′
s being a shape. �

November 6, 2006 21

7. Search

In this section, we describe how to search for shapes, abstracting the individual
types of steps in Section 7.1, and describing the control strategy in Section 7.2.

7.1. Search Steps. There are two types of search steps, outgoing steps and in-
coming steps.

Outgoing. The outgoing step states that each outgoing test pair n0, n1 must be
solved, either by contracting atoms, or by adding an outgoing transforming edge or
a listener strand.

We contracted atoms, thus eliminating the outgoing test pair, when letting K ′ =
K in case 3. We added outgoing transforming edges, namely the server and initiator
strands that transform the nonce, twice in cases 1(a) and 1(b). We added listener
strands repeatedly when checking for compromise.

The check for K ′ added another outgoing test pair between node m1 in Fig. 3
and the listener strand receiving K ′. This outgoing pair was unsolvable (case 6),
showing K ′ uncompromised.

Outgoing test principle. Let H : A0 7→ A1 with A1 realized, and let n0, n1 ∈ A0

be an outgoing test pair for a and S. If A0 contains (preceding n1) no outgoing
transforming edge for a, S, then, for some H ′′, H = H ′′ ◦H ′ where either:

(1) H ′ is a contraction; or
(2) H ′ : A0 7→ A′ is an embedding adding m0 ⇒+ m1, an outgoing transforming

edge for a, S, where n0 �A′ m0 and m1 �A′ n1; or
(3) H ′ is an embedding adding Lsn[K−1], for some K ∈ used(S).

Clause 1 is used when (H(n0),H(n1)) is no longer an outgoing test pair, as when we
contracted K ′ to K in Yahalom, case 3. It is also sometimes needed to prepare for
an application of Clause 2, if (n0, n1) is more general than some transforming edge
in a protocol role. Then the contraction H unifies a member of S with a subterm
of a role node. Clause 1 is needed only in these two cases. Clause 3 uses the inverse
K−1 because in public-key (asymmetric) algorithms, we regard pubk(A), privk(A)
as inverses; symmetric keys are self-inverse.

Older forms of the outgoing test [8] did not contain the set parameter S. They
applied only to singleton S. Yahalom case 1(b) requires a non-singleton S, for
instance.

There are only finitely many homomorphisms (to within isomorphism) that sat-
isfy any of Clauses 1–3, because only finitely many atoms can be mentioned in
A0 and only finitely many transforming edges are available in one protocol. In
particular, there is a finite set of most general homomorphisms for a given test.
A set of homomorphisms {Hk}k≤j is an outgoing cohort if for every H ′ satisfying
Clauses 1–3, there is some k ≤ j and some H ′′ such that H ′ = H ′′ ◦Hk

Cases 1(a)–2 form an outgoing cohort. So do cases 1(b)–2, 3–5, and 6–7.

Incoming. The incoming step states that when an encryption {|t|}K is received, then
either some regular strand is responsible, or else K is compromised. An incoming
step was used in Section 3.2 to provide B’s source for K.

Incoming test principle. Let H : A0 7→ A1 with A1 realized, and let n1 ∈ A0

receive message {|t|}K . If A0 contains (preceding n1) no m1 transmitting {|t|}K ,
then, for some H ′′, H = H ′′ ◦H ′ where either:

22 November 6, 2006

(1) H ′ is a contraction; or
(2) H ′ : A0 7→ A′ is an embedding adding an m1 �A′ n1 transmitting {|t|}K ; or

(3) H ′ is an embedding adding Lsn[K].
Here one uses Clause 1 only to prepare for an application of Clause 2, if n1 is more
general than a node in a role of the protocol. Then the contraction H unifies {|t|}K

with a subterm of a role node.
Again, there are finite sets {Hk}k≤j such that H ′ = H ′′ ◦ Hk for every H ′

satisfying Clauses 1–3, some k ≤ j, and some H ′′; we call them incoming cohorts.
Cases 8–9 form an incoming cohort. Given an outgoing or incoming cohort

{Hk}k≤j = Hk : A 7→ Ak, we call the skeletons {Ak}k≤j a cohort also.
We can now state a third important fact about dead skeletons, a consequence of

Prop 5.5 Clause 5.5.

Proposition 7.1. If A is not realized, and, moreover, all the A′
k in an incoming

or outgoing cohort are dead, then A is dead.

7.2. Search Strategy. The goal of cpsa is defined using in terms of a binary
relation, a unary predicate, and a function:

step(A, C): holds if C is a finite set of skeletons forming an outgoing or incom-
ing cohort for A. Any homomorphism from A to a realized skeleton passes
through some Ak ∈ C. The principles of Section 7.1 imply that the tests
and their cohorts may be used in any order, while still finding all shapes.

realized(A): holds if A is realized, which we can determine directly.
min realA0(A′): is defined if A′ is realized. Its value is the finite set of skeletons

A such that (1) there is a homomorphism from A0 to A; (2) A is realized;
(3) there is a nodewise injective homomorphism from A to A′; and (4) A
is ≤n -minimal among skeletons satisfying (1–3). Prop. 5.7 shows that this
set is finite and the proof indicates how to find its members.

We say child(A,A′) if for some C, step(A, C) and A′ ∈ C. Let descendent be the
reflexive, transitive closure of child. The goal of the search, given a starting skeleton
A0, is to determine the set

shapes(A0) = {A2 : ∃A1 . descendent(A0,A1) ∧ A2 ∈ min realA0(A1)}.
To do so, we use the search algorithm in Fig 6. We also need some auxiliaries:

dead(A): holds if A cannot ever be realized, i.e. there is no H : A 7→ A′ for
any realized A′. Dead(A) follows from any of the following: (1) A contains
Lsn[a] where a ∈ nonA; (2) dead(A0) and H : A0 7→ A; or (3) step(A, C)
where C consists of dead skeletons. (See Props. 5.5, 7.1.)

redundant strand(A): tests whether A contains a redundant strand that can be
identified with some other strand by a homomorphism from A to a proper
subskeleton. Prop. 6.11 justifies discarding A, as we did in Yahalom, case 5.

step applies(A): tests if an unsolved outgoing or incoming step exists in A.
apply step(A): selects an unsolved step, finds an incoming or outgoing co-

hort, updates the step relation, and then returns the cohort, assuming
step applies(A) is true.

targets(~H): = {Ak : k ≤ j}, if ~H is a set of j homomorphisms Hk : A 7→ Ak.
We assume select S selects a member of S if it is non-empty; and filter p S takes
the subset of S satisfying p. The failure marked “Impossible” in Fig. 6 cannot be

November 6, 2006 23

F := {A0}; shapes := ∅; seen := F ;
while F 6= ∅ begin

A := select(F); F := F \ {A};
if realized(A)

then shapes := shapes ∪min realA0(A)
else if redundant strand(A) then continue
else if step applies(A)

then begin
let new = targets(apply step(A)) \ seen in
F := F ∪ new;
F := F \ (filter dead F);
seen := seen ∪ new

end
else fail “Impossible.”
end;

return shapes

Figure 6. cpsa Search Algorithm

reached, because the completeness result (Prop. 6.9) ensures that when A is not
realized, then some authentication test step applies.

8. Implementing CPSA

We discuss here aspects of the cpsa implementation that seem interesting. They
are: finding candidate transformations in protocols, and using unification in apply-
ing them; choosing sets S for outgoing tests, and representing the sets; and a few
items for future work.

Finding transformations. When cpsa reads a protocol description from a textual
source, it identifies all the potential transforming edges. For the outgoing tests, it
locates all candidate pairs of a reception node m0 and a transmission node m1 later
on the same role such that a key or nonce is received in one or more encrypted
forms on m0 and retransmitted outside these forms in m1. For incoming tests,
cpsa notes all transmission nodes m1 that send encrypted units.

To find outgoing transforming edges for a ∈ uniqueA and a set S, cpsa considers
each candidate pair (m0,m1). Suppose an encrypted sub-message t of msg(m0)
unifies with a member of S using a replacement α. If a · α occurs in msg(m0) · α,
but only within S · α, then we check msg(m1) · α. If it occurs outside S · α in
msg(m1) · α, then (m0,m1) is a successful candidate. If α identifies atoms, so that
it contracts S, then we apply the Outgoing Test Principle twice, once to apply this
contraction, and once to add the instance of m0 ⇒+ m1. We also check whether a
contraction eliminates the outgoing test edge entirely.

For incoming tests, we do a unification on the candidate nodes m1.

Selecting sets S for outgoing tests. To select sets S in the Outgoing Test Principle,
we settled on a trick we call the “forwards-then-backwards” technique. cpsa plans
a sequence of applications of applications of it, like Yahalom cases 1(a) and 1(b),
until no further transforming edge is found. It follows the transmission of the

24 November 6, 2006

Protocol Point of view Runtime Shapes
iso reject responder 0.193s 2
Kerberos client 1.443s 1
Needham-Schroeder responder 0.055s 1
Needham-Schroeder-Lowe responder 0.124s 1
Yahalom responder 2.709s 1

Figure 7. Protocols with cpsa runtimes

uniquely originating value—Nb in that case—forwards, treating newly introduced
atoms like K ′ as free variables.

(1) S1 = { {|AˆNaˆNb|}ltk(B) },
(2) S2 = S1 ∪ { {|BˆK ′ˆNaˆNb|}ltk(A) : K ′ is a key }.

cpsa uses the sets in the opposite order, i.e. S2 is used first to introduce the initiator
strand in Fig. 3. Then S1 is used to interpolate the first two nodes of the server
strand between n0 and the initiator strand. This order respects the precedence
relations given in the Outgoing Test Principle.

The forwards-then-backwards technique also suggested cpsa’s representation for
the sets S. These sets are not necessarily finite; S2 for instance is not. The family
of candidate Ss is closed under the operations of union and set difference. The
primitive members are either singletons {t0} or generic sets, which represent all the
instances of a term t1 generated when certain of t1’s parameters vary (respecting
types). Thus, the family of candidate sets S are represented as finite unions and
differences of values of the form λ~v . t, where the vector ~v binds 0 or more atoms in t.
Restricting S to the sets representable in this form does not falsify the completeness
property. (See the proof of Prop. 6.9.)

This representation fits nicely with our use of unification to provide an extremely
focused search, while preserving the completeness property. The focused search
allows good runtimes on a variety of protocols. Some protocols and runtimes on
a Thinkpad X31, with a 1.4 GHz Pentium M processor and 1 GB store, running
Linux, are shown in Fig. 7. cpsa is implemented in OCaml.

Future work. Future work focuses on expanding beyond the bare-bones Dolev-Yao
model described above. We intend to augment cpsa with Diffie-Hellman operations,
as studied in [9]. We will also allow keys to be complex messages, typically the
result of hashing. In our current framework, replacements map atoms to other
atoms only, but it should be possible to map atoms to more general terms, at the
cost of using more sophisticated methods to check whether skeletons are realized
(e.g. [12]). The skeletons-and-homomorphisms approach may remain useful in a
cryptographic, asymptotic probabilistic context.

Acknowledgments. Lenore Zuck and John D. Ramsdell made very valuable com-
ments on earlier drafts. Larry Paulson first pointed out to us how good an analysis
challenge the Yahalom protocol is.

References

[1] Roberto M. Amadio and Denis Lugiez. On the reachability problem in cryptographic proto-
cols. In Concur, number 1877 in LNCS, pages 380–394, 2000.

November 6, 2006 25

[2] Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols: Tagging en-
forces termination. In Andrew D. Gordon, editor, Foundations of Software Science and Com-
putation Structures, number 2620 in LNCS, pages 136–152. Springer, April 2003.

[3] Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of authentication. Proceedings
of the Royal Society, Series A, 426(1871):233–271, December 1989.

[4] Shaddin Doghmi, Joshua Guttman, and F. Javier Thayer. Skeletons and the shapes of bun-
dles. Technical report, The MITRE Corp., 2005. Available at http://www.ccs.neu.edu/home/
guttman/skeletons.pdf.

[5] Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov. Multiset rewriting and
the complexity of bounded security protocols. Journal of Computer Security, 12(2):247–311,
2004. Initial version appeared in Workshop on Formal Methods and Security Protocols, 1999.

[6] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security, 12(3/4):435–484, 2003.

[7] Joshua D. Guttman. Key compromise and the authentication tests. Electronic Notes in The-
oretical Computer Science, 47, 2001. Editor, M. Mislove. URL http://www.elsevier.nl/

locate/entcs/volume47.html, 21 pages.
[8] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure of bundles.

Theoretical Computer Science, 283(2):333–380, June 2002.
[9] Jonathan C. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space model. In

16th Computer Security Foundations Workshop, pages 234–247, Asilomar, CA, June 2003.
IEEE CS Press.

[10] Leslie Lamport. Time, clocks and the ordering of events in a distributed system. CACM,
21(7):558–565, 1978.

[11] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Proceeedings of tacas, volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer Verlag, 1996.

[12] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process cryp-
tographic protocol analysis. In 8th ACM Conference on Computer and Communications
Security (CCS ’01), pages 166–175. ACM, 2001.

[13] Roger Needham and Michael Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12), 1978.

[14] Lawrence C. Paulson. Relations between secrets: Two formal analyses of the Yahalom proto-
col. Journal of Computer Security, 2001. Also available as Cambridge University Computer
Laboratory Technical Report 432 (1997).

[15] Adrian Perrig and Dawn Xiaodong Song. Looking for diamonds in the desert: Extending
automatic protocol generation to three-party authentication and key agreement protocols. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press, July 2000.

[16] R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols. Jour-
nal of Computer Security, 13(1):135–166, 2005. Preliminary version appeared in WITS ’03,
Workshop on Issues in the Theory of Security, Warsaw, April 2003.

Appendix A. Unifying Equivalence Relations

The essential content of Prop. 5.4 is that there is a coarsest equivalence relation
that satisfies the cascading conditions mentioned in Section 5.3.

We will consider equivalence relations on atomic terms which are type preserving.
This means aR b implies a, b have the same type.

The set of equivalence relations R on atomic terms forms a partially ordered
set with respect to coarsening v. Thus is R v S iff R is a coarsening of S, or
equivalently R ⊆ S. Note that R v S iff the each equivalence class of R is a subset
of some equivalence class of S. Thus R v S implies the equivalence classes of S
form a coarsening of those of R. The two extremes are the equality relation and
the relation which identifies everything.

Equiv with coarsening is a lattice (Equiv,v).

26 November 6, 2006

An equivalence relation R on atoms induces an equivalence relation also denoted
R on terms, defined by recursion as follows. For non-atomic terms s, t sR t iff t and
s both have the same constructor and the components s1, . . . sn of s and t1, . . . tn
of t, s satisfy si R ti for i = 1, . . . , n.

Proposition A.1. If Rλ is a family of equivalence relations on atoms, and s, t
are terms then s

[⋂
λ Rλ

]
t iff sRλ t for all λ.

Proof. Structural induction. If s, t are atomic this is by definition. Otherwise,
s = F(s1, . . . sn), t = F(t1, . . . tn). Then

s
[⋂

λ

Rλ

]
t ⇐⇒ si

[⋂
λ

Rλ

]
ti

⇐⇒ ∀λ, i = 1, . . . , n, si Rλ ti

⇐⇒ ∀λ, sRλ t.

�

If S is a set of terms, the unification of S, denoted Unif(S) is the smallest
equivalence R relation under which all elements of S are equivalent with respect to
R.

Definition A.2. Let A be a pre-skeleton. Strands s, s′ are equivalent with respect
to an equivalence relation R iff for every index k, if the nodes s ↓ k and s′ ↓ k are
both defined, then they have the same sign and msg(s ↓ k)Rmsg(s′ ↓ k).

Nodes n = s ↓ k, n′ = s′ ↓ k′ are equivalent iff sR s′ and k = k′.

In the above definition, s and s′ are not required to have the same length.
A transitive relation � on a set X is invariant under an equivalence relation ≡

iff m � n, m ≡ m′ and n ≡ n′ imply m′ � n′. The invariance property implies
that the relation m � n is determined by the ≡ classes of m and n respectively,
and thus passes to the quotient space X/ ≡.

If ≡ is an equivalence relation on X and � is a transitive relation on X, define

m �′ n ⇐⇒ ∃m1, n1, · · ·mk, nk s.t m = m1 � n1 ≡ m2 � n2 ≡ m3 · · ·mk � nk = n.

Then �′ is the coarsest transitive refinement of � on X invariant under ≡.

Definition A.3. An equivalence relation R on atoms is order compatible with the
pre-skeleton A iff whenever m1 �A n1 Rm2 �A n2 Rm3 · · ·mk �A nk Rm1 then,
for all i, mi Rni.

Lemma A.4. An equivalence relation R on atoms is order compatible with a pre-
skeleton A iff the coarsest R invariant refinement �′ of �A has the property that if
m �′ n and n �′ m, then mRn.

It follows from the previous lemma that given an A-order compatible equivalence
relation R, the quotient structure obtained by collapsing R equivalent nodes of
A, equipped with the image order structure is a pre-skeleton A/R, and the map
A → A/R is a homomorphism.

Proposition A.5. If Rλ is a family of equivalence relations on atoms which are
order compatible with the pre-skeleton A, then

⋂
λ Rλ is order compatible with A.

November 6, 2006 27

Definition A.6. An equivalence relation R on atoms collapses a pre-skeleton A
iff for every atom a, the set of strands

{s : for some atom b, bR a and b originates on s}
is empty if a ∈ nonA and consists of R equivalent strands if a ∈ uniqueA.

Proposition A.7. If Rλ is a family of equivalence relations on atoms each of
which collapses the pre-skeleton A, then

⋂
λ Rλ collapses A.

Proposition A.8. If R is an equivalence relation on atoms which has a compat-
ible and collapsing refinement, then the there is a coarsest compatible collapsing
refinement.

28 November 6, 2006

Contents

1. Introduction 1
2. A Small Example with the Core Ideas 2
2.1. Terminology 2
2.2. The NS Shape 3
2.3. Skeletons, Homomorphisms, Shapes 4
3. The Yahalom Protocol 5
3.1. Definition of the Protocol 5
3.2. Yahalom: Shapes for the Responder 6
4. Terms, Strands, and Bundles 8
4.1. Algebra of Terms 9
4.2. Strands and Origination 10
4.3. Protocols and Bundles 10
5. Preskeletons, Skeletons, and Homomorphisms 11
5.1. Skeletons 11
5.2. Skeletons and Bundles 12
5.3. Homomorphisms 13
5.4. Shapes 14
6. The Authentication Tests 15
6.1. The Tests in Bundles 15
6.2. The Tests in Skeletons 16
6.3. Completeness of the Authentication Tests 18
6.4. A Pruning Condition 20
7. Search 21
7.1. Search Steps 21
7.2. Search Strategy 22
8. Implementing CPSA 23
References 24
Appendix A. Unifying Equivalence Relations 25

