Electronic Notes in Theoretical Computer Science 47 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume47.html pp. 1 —21

Key Compromise, Strand Spaces, and the
Authentication Tests *

Joshua D. Guttman

The MITRE Corporation
Bedford, MA 01730 USA

guttman@mitre.org

Abstract

Some cryptographic protocols are vulnerable to replay attacks, a type of weakness
that was a focus of attention in the Burroughs-Abadi-Needham logic. Newer, more
operational approaches to protocol analysis have not concentrated on this type of
attack. This paper fills the gap for the strand space theory.

The main technical point is to provide a definition of recency. Our candidate is
convenient because we already have a powerful way to prove events recent, namely
the incoming and outgoing authentication tests.

A secondary purpose of this paper is to illustrate an easily mechanized pattern
for using the authentication tests.

Key words: cryptographic protocols, authentication,
authentication tests, strand spaces, bundles, key compromise

1 Introduction

Some cryptographic protocols are vulnerable to replay attacks, in which a
message from a legitimate protocol execution is retransmitted later, typically
when the same principal executes a different session of the protocol. If the
message contains an encrypted session key that a penetrator has cracked via
cryptanalysis, then the penetrator may induce the recipient to reuse the com-
promised session key.

Although the Burroughs-Abadi-Needham logic [1] was particularly success-
ful at identifying these situations, the newer, more operational approaches to
protocol analysis have not concentrated on this type of attack. These include
strand spaces [7,19], CSP model-checking [9], and rank functions [8,18], while
Paulson’s inductive method [15,16] was the primary exception to this.

* I gave my MFPS 17 talk on 24 May 2001, Bob Dylan’s sixtieth birthday. This paper is
dedicated to him.

(©2001 Published by Elsevier Science B. V.

GUTTMAN

In this paper we fill this gap in the strand space literature. We show
how to specify the behavior of a key server so that recent keys remain un-
compromised, whereas older keys may have been compromised. The famil-
iar Needham-Schroeder private key protocol [13] is vulnerable in this model,
whereas the Yahalom protocol [1] is not. The main technical point is to pro-
vide a definition of recency. Our candidate is convenient because the strand
space method already has a powerful way to prove that an event is recent,
namely the incoming and outgoing authentication tests [5,7].

A supplementary purpose of this paper is to illustrate the power of the
authentication tests. They provide simple and straightforward explanations
of protocol correctness. We linger over several examples to illustrate the pat-
terns of usage for the authentication tests. These patterns of usage are quite
stereotyped, although there are several ingredients to be combined effectively.

The Needham-Schroeder Symmetric Key Protocol In the seminal
paper [13], Needham and Schroeder proposed a protocol using symmetric cryp-
tography and another protocol using public key cryptography. Both turned
out to be flawed.

The symmetric-key protocol NSSK assumes that each principal shares a
long term key with a key server. Its purpose is to establish a secret session
key between two principals, after each has authenticated the identity of the
other. The intended execution of the protocol is summarized in Figure 1.

In this protocol, the initiator A sends a message to the key server containing
his name, the name B of his partner, and a nonce N,. A nonce is a new,
random number, generated for just one use. The message is encrypted using a
long-term key, shared between A and the server. The server generates a new
session key K, and sends it encrypted with A’s long-term key. B’s name and
the nonce N, are enclosed with the session, together with a ticket. The ticket
contains A’s name and the session key, encrypted with B’s long-term key. A
forwards this ticket to B, expecting to receive back a new nonce Ny, encrypted
with K. A demonstrates receipt by returning 1+ IV, also encrypted with K.

The shape of the diagram in Figure 1 is striking: It consists of two rectan-
gles, connected by a “neck,” the middle = in A’s behavior. The top rectangle
involves just A and the server, while the bottom rectangle involves just A and
B, so that the server is completed before B begins.

Denning and Sacco [2] promptly identified the failure that results. Al-
though B, when receiving {{A , K|}k, can infer that it was generated by the
server, B has no way to know how much time has elapsed since the server
completed. This is geometrically evident from Figure 1, as nothing available
to B measures the length of the “neck” between A’s second and third nodes,
nor the delay along the — arrow from A’s third node to B’s first node. So
B cannot bound the delay between when S generated the session key K and
when B receives it.

Assuming that A and B use K in a session for encrypted communication,

GUTTMAN

s
nn

A) {|B) Na|}KA

ei—o

{|B) Na) K) {|A) K|}KB|}KA

{|A) K|}KB
1N} i

11+ Nylbx

e—ol—0L——eoi—9
Sy

ei—e0i—0o

Fig. 1. The Needham-Schroeder Symmetric Key Protocol (NSSK)

perhaps a penetrator will cryptanalyze the conversation to recover K. In this
case, the penetrator can start a session by resending the same unit {|A , K|} x,,
later returning {|1 + N, [} x. Then B will have been had. The assumption that
K is good should expire when it is no longer recently generated.

Our goal in this paper is to formulate a rigorous theory allowing us to
prove that a protocol does not have flaws of this kind. The same ideas also
suggest heuristics for finding such flaws, when we cannot prove their absence.

2 Strand Spaces

The strand space theory [7,19] is a particular way to formalize the Dolev-Yao
model [3]. Tt assumes that cryptography is ideal, and aims to discover what
authentication and secrecy properties protocols then achieve.

In the strand space model, the behaviors of principals are represented by
a set of strands. A strand is a sequence of message send and receive events;
for instance, each vertical column in Figure 1 is a strand (for each particular
choice of parameters A, B, N,, etc.). The behaviors of the penetrator are
also represented by strands; in this case, the strands represent basic actions
such as encrypting or decrypting with a known key or selecting a nonce. Each
strand is a purely local behavior of some particular principal on a particular
occasion. A collection of strands forms a bundle if they are causally well-
founded, so that every message received was actually sent previously by some
strand, and no principal engages in a second or third event without having
already performed the first.

2.1 Background

We compactly summarize the ideas behind the strand space model [4,7,19];
definitions are contained in Appendix A.

3

GUTTMAN

Terms and Subterms A is the set of messages that can be sent between
principals. Its elements, called terms, are freely generated from two disjoint
sets, T (texts such as nonces or names) and K (keys), by concatenation and
encryption. The concatenation of terms g and h is denoted ¢, h, and the
encryption of h using key K is denoted {|hl} k. (See Appendix A.3.)

In NSSK, the initiator A sends a term of the form A , {|B , N,[}x, to start
an exchange intended for B. This is a concatenation containing A’s name and
a ciphertext. The ciphertext is created using A’s long-term key K 4 shared
with the key server; its plaintext is the result of concatenating B’s name with
a nonce (random bitstring) N,.

A term t is a subterm of another term ', written t C ¢, if starting with ¢ we
can reach t' by repeatedly concatenating with arbitrary terms and encrypting
with arbitrary keys. Hence, K [Z {|t[}k, except in case K [t. The subterms
of t are the values that are uttered when ¢ is sent; in {/¢[} 5, K is not uttered
but used. (See Definition A.7.) For instance, the subterms of A , {B , N.|tx,
are A, B, N,, the concatenated message B, N,, the ciphertext {|B , Ny|tx,,
and the whole term itself. The key K4 is not part of what is uttered; it just
contributes to how the message is constructed.

Strands and Strand Spaces A strand is a sequence of message transmis-
sions and receptions, where transmission of a term t is represented as +t and
reception of term ¢ is represented as —t. A strand element is called a node. If s
is a strand, s | 7 is the i node on s. The relation n = n’ holds between nodes
nandn’ifn=s|iandn’ =s | i+ 1. Hence, n =" n means that n ==s | i
and n’ = s | j for some j > i. The relation n — n’ represents inter-strand
communication; it means that term(n) = +t and node term(n’) = —t.

Continuing with NSSK as our illustration, an initiator strand offers a se-
quence of events of the form shown in the leftmost column of Figure 1. In
this strand s;, the initiator A sends a term intended for the server S, and
expects to receive back a “ticket” of the form {B, N, , K , {4, K[tx,[t x4,
after which it will forward {|A , K|} k,, and so on. The first reception is s; | 2
and the next transmission is s; | 3.

An NSSK initiator strand has five parameters (or degrees of freedom),
namely the two names A and B, the two nonces N, and N, and the session key
K. When we write s; € Init[A, B, N,, N}, K] in this illustration, we will mean
that s; is an initiator strand using the particular values shown as parameters,
and similarly for sy € Serv[A, B, N,, K] and s, € Resp[A4, B, N;, K]. A is the
principal active in Init[A, B, N,, N, K] as initiator, while B is the principal
active in Resp[A4, B, Ny, K] as responder. We generally write parameters in
this order: first the names of the intended participants, next any nonces seen
in that run, and finally a session key (if the protocol distributes one).

A strand represents the local view of a participant. For a legitimate partic-
ipant, a strand represents the messages that participant would send or receive
as part of one particular run of his side of the protocol. We call a strand

GUTTMAN

representing a legitimate participant a regular strand.

A strand space ¥ is a set of strands. The two relations = and — jointly
impose a graph structure on the nodes of . The vertices of this graph are
the nodes, and the edges are the union of = and —.

Origination We say that a term ¢ originates at a node n = s | ¢ if the sign
of n is positive; t C term(n); and t [Z term(s | ') for every ¢/ < i. Thus, n
represents a message transmission that includes ¢, and it is the first node in
s including t. For instance, if s; € Init[A, B, N,, N,, K|, then N, and A both
originate at s; | 1.

If a value originates on only one node in a set S of nodes, we call it
uniquely originating in S; uniquely originating values are desirable as nonces
and session keys. When we assume that a value like N, originates uniquely in
some set S, we are effectively assuming that S is not unrealistically large, in
a particular sense, namely so large as to contain independent events in which
the same value is repeatedly chosen at random from a large set. Although
both N, and A originate at s; | 1, N, is more likely to originate uniquely in
relevant sets of nodes S.

Bundles A bundle is a finite, causally well-founded graph of nodes and
arrows of both kinds — and =. In a bundle, when a strand receives a mes-
sage m, there is a unique node transmitting m from which the message was
immediately received. By contrast, when a strand transmits a message m,
many strands (or none) may immediately receive m. If s | ¢ is in a bundle
and j < i, then s | j must be in it also; taking the i step depends on having
already taken all previous steps. Moreover, the arrows must be acyclic, since
otherwise an event would have preceded itself. (See Definition A.3.)

By acyclicity, the relation ng < n; between nodes, which holds when there
is a sequence of edges leading from ng to ny, is a partial ordering. Since bundles
are finite, < is in fact a well founded relation, which justifies a principle
of bundle induction (Proposition A.6). Every execution of a protocol must
consist of a bundle, because a run is possible only if the causal constraints
formalized in the definition of bundle are satisfied.

The height of a strand in a bundle is the number of nodes on the strand
that are in the bundle. Authentication theorems assert that if some regular
strand has at least a given height in a bundle, meaning that the principal
must have engaged in at least that many steps of its run, then another regular
strand must have a certain height in the bundle. They often assume that
certain values are uniquely originating in the nodes of that bundle.

The Penetrator While regular principals are represented only by what
they say and hear, the behavior of the penetrator is represented more explic-
itly. The values he deduces are treated as if they had been said publicly. A
penetrator strand represents an atomic deduction, and more complex actions
use several penetrator strands. We partition penetrator strands according

GUTTMAN

to the operations they exemplify. E-strands encrypt when given a key and
a plaintext; D-strands decrypt when given a decryption key and matching
ciphertext; C-strands and S-strands concatenate and separate terms, respec-
tively; M-strands emit known atomic texts or guesses; and K-strands emit keys
from a set of known keys. The set of initially known keys, that may be emitted
in K-strands, is called Kp. (See Definition A.8.)

2.2 Key Secrecy

In most cryptographic protocols, key secrecy relies on two basic facts. We let
B be a bundle, and consider how the regular nodes in B transmit keys.

First, suppose no regular strand in B ever originates a term containing
a key K—that is, transmits K without having received it previously in the
same form. Then either the penetrator starts off knowing K in Kp, or else
the penetrator never learns it. This is typically the situation with long-term
shared keys, or with private keys in asymmetric cryptography. If K ¢ Kp
and no regular node in B ever originates a term containing K, then we say
that K is immediately safe in B, written K € So(B), or K € Sy, since we will
normally suppress the dependency of Sy on B.

Second, suppose that a key K may be transmitted by a regular strand in B,
but if so it is always encrypted using another key K’ such that K’ € Sy. Then
either the penetrator starts off knowing K in Kp, or else the penetrator never
learns it. This is typically the situation with session keys in well-designed
protocols. When K ¢ Kp and every regular strand that ever originates K
protects it with some K’ € Sy, then we say that K is safe at level 1, written
K € S1(B). Again, typically no confusion results from omitting B.

An inductive definition would be possible, but in practice Sp and S; are
usually sufficient. The safe keys are S = SqUS;. In [7] we prove that if K € S
and B is a bundle, then there is no node n € B such that K = term(n).

2.3 The Authentication Tests

Suppose in some bundle B, a principal creates and transmits a uniquely orig-
inating value a, such as a nonce, and later receives a back in some crypto-
graphically altered form. Then we could follow the trajectory of the value
a from its origin, which we can call mg, through various sends and receives
and along various strands, until it arrives back at the node m; later on the
same strand. Since m; contains a in cryptographically altered form, some-
where along this trajectory, someone has transformed it. If the key involved is
safe, that someone cannot be the penetrator, it can only be a regular princi-
pal. This is the authentication test idea, as developed and justified in [4,7,17].
There are two main forms of authentication test.

Outgoing Tests A uniquely originating value a may be transmitted only
in encrypted form {| ...a... [} x where the decryption key K~! € S is safe. If it

6

GUTTMAN

Assume {hl}x Z term(nq)

a originates uniquely at my, contained only in {|A[} x

Conclude nodes ng,ny exist in B and are regular

{nhx 2t

moy <ng<n3 <MmMmy

Fig. 2. Outgoing Authentication Test

is later received outside the context {|...a...[}g, then a regular participant,
not the penetrator, must have been responsible the first time it appears in a
different context. Observe that this regular participant transforms a after the
original transmission of {| ... a...[} x at mg and before the transformed version
is received back at m;. The temporal relations “after” and “before” refer to
the ordering <z generated by the arrows in the bundle B (as in Definition A.5).
It is an outgoing test because the encrypted unit goes out; see Figure 2.

Incoming Tests If, instead, a is received in encrypted form {...a... [}k
although it was not sent in that context, and the encryption key K € S is
safe, then a regular participant must have been responsible when a entered
this context. Again, the transformation producing {|...a...[} x must occur
after my and before m;. We call this an incoming test because the encrypted
unit comes in, as shown in Figure 3.

Sometimes a uniquely originating value a is transmitted in one encrypted
form {|hl}x and received back in a different {|h/[}x,. We include cases where
h=h or K = K', though not both. If K~! € S and K’ € S, then this is both
an outgoing test and an incoming test. However, these two views may have
different consequences. As an outgoing test, it implies a regular transforming
edge that accepts {|hl}x and extracts a from it. This may be of some form
other than {|h'[} ks, since another principal may later transform it again. The
incoming test yields a transforming edge creating {|A/[} k-, although it may
have received a in a form other than {Al} k.

Pattern Matching to Find Transforming Edges The authentication
tests are important because they show that a reqular strand does the trans-
formation. Typically, there are very few edges on regular strands that are
syntactically capable of performing the transformation. So a simple pattern

7

GUTTMAN

a C term(mg)

{hl}k C term(m;) K € Safe aC {hl}x

mp «---=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-- «- - - - - - - ni

Assume {|h[}x Z term(my)

a originates uniquely at mg

Conclude nodes ng,n; exist in B and are regular

mo <ng <Ny <mq

Fig. 3. Incoming Authentication Test

matching determines which regular strands could have been responsible.

We call the responsible strand a transforming edge, because it transforms
the way that a occurs. We will use the symbol ~» to summarize what the trans-
forming edge must do. We write for instance {{B , N,[} x, ~ N, for a regular
transforming edge containing a negative node with subterm {|B, N,|}x, fol-
lowed by a positive node emitting a message in which N, occurs outside the
context {|B, N,[}x,. An outgoing test guarantees the existence of a regu-
lar, non-penetrator edge {|B , Nu|tx, ~ N,. The ~» notation does not make
explicit the form in which N, occurs; however, it is required that it occurs
outside the context shown in the explicitly encrypted term on the other side.

Conversely, we write N, ~ {{B, Ny[tx, for a regular transforming edge
containing a negative node receiving N, outside of {|B, N,[}x,, followed by
a positive node emitting a message with subterm {|B, N,[}k,. An incoming
test establishes that a regular transforming edge of this form exists.

Outgoing Tests: Additional Conclusion There are additional conclu-
sions that an authentication test allows in certain cases (see [7, Section 4.2.1]);
one is relevant to the Yahalom protocol considered below.

Suppose in Figure 2 that a T {|hi|}x, T term(n;), that a occurs only
within {1}k, in term(n;), and that K;' € S. Then there is also a reqular
node ny receiving {|hi[}k,, meaning ns is negative and {{hq[} g, T term(ny).

Why does this hold? Either {|h; [}k, C term(m;), in which case m; is such
a node, or else some principal must transform {|h;[} g, to put a into whatever
form it appears in term(m;). Because K;' € S, this transformation can be
done only by a regular strand, which must receive {|h[}x, to do so.

This principle often helps to constrain the term {h;[}x,, or to fill in some
parameters of the receiving strand. We use this principle twice in Section 5.3.

Unsolicited Tests A third, related but weaker, type of test is the unso-
8

GUTTMAN

Test Test edge Constraint | Transforming edge | Bound
Outgoing | +{hlx = —...a... | K 1€S {hllk ~ a X
Incoming | +...a...= —{hl}lx KeS a~ {|hltx X

Unsolicited —{|hltx KeS ~ {|hl}x
Table 1

The Authentication Tests

licited test. If a term {|t[} ¢ is received, and K € S is safe, then {t[} x originated
on some regular strand. After all, it originated somewhere, and that can not
have been a penetrator strand if K € S. Here we know only that the regular
node originating {|t[} x is before the node on which it is received. We do not
know any node after which it must have occurred. We write ~ {{B , N,[}k,
for the positive node that must exist as a result of an unsolicited test.

The authentication tests are summarized in Table 1. The last column
contains X if the first node on the test edge is a lower bound (in the ordering
=) constraining when the transforming edge occurs.

2.4 Assumptions for This Paper

If either of the long-term keys of two principals A and B is compromised,
meaning that either K4 € Kp or Ky € Kp, then symmetric-key protocol
exchanges involving them are hopeless: No security guarantee of interest will
hold. Thus, we assume henceforth that for two particular principals A, B,

Assumption 1 K, Kg € Kp.

Hence, for reasonable protocols, K4, K will be safe, i.e. K4, Kg € Sg.
In the examples, we consider only symmetric cryptography, so we assume
that the same key is used to create a ciphertext {|t[}x as to decrypt it:

Assumption 2 For all keys K, K = K~ 1.

3 Key Servers

We now formalize the intended behavior of key servers. They must obey three
principles. First, the session key K delivered must never be known initially
to the penetrator, since otherwise K is certainly not safe. Second, the key
server must not re-use a session key, since it might spoil the confidentiality of
a session key by retransmitting the same key to a compromised principal. A
third principle is that a session key is never the same as a principal’s long term
key, since otherwise the server might disclose a long term key by sending it (as
a session key) to a compromised principal. We summarize these principles:

KS1 If 3s . s € Serv[x, K] then K & Kp;
KS2 If s,s" € Serv[xx, K], then s = s'; and
9

GUTTMAN

A, N,

S
B, Ny, {4, Nalyk,
. .

M Nbu{‘B>KaNa‘}KA7{‘A>B>K7Nb‘}KBl.J/

l.l {A, B, K, Nlry, { N

Fig. 4. The Yahalom-Paulson Protocol

KS3 ds. s € Serv[xx, K] implies K # K, for any A.

In normal protocols, all of the server parameters Xi,...,X,, K appear non-
vacuously in messages, and K originates on a node of s € Serv[+*, K|. Then
KS1 and KS2 imply that K is uniquely originating. Moreover, when s €
Serv[Xy,..., X,, K] and s € Serv[X],...,X,, K], then KS2 implies X; =
X{,.., X, =X/,

We interpret the principles as a constraint on bundles. That is, we intend
to consider only bundles B such that KS1-KS3 hold. The strands s are those
strands such that for some node n = s | 7, n € B. Thus, ds . ¢ means that
there is some strand s with at least one node in B such that ¢.

We regard a bundle B as formalizing what might reasonably happen over
a period of time (whether brief or reasonably extended) in a network of prin-
cipals executing one or more protocols. The likelihood that B contains a
counterexample to KS1-KS3 is taken to be negligible if the cryptography
and key-generation algorithms are well chosen and well implemented.

4 Yahalom and its Variants

We next present three variants of the Yahalom protocol [1,16]. They suggest
the main idea for analyzing key compromise. We start with a variant in which
key compromise is not an issue.

4.1 The Yahalom-Paulson Protocol

Paulson [16], following ideas from the BAN paper [1], modified a protocol
originally invented by Yahalom. The result, as illustrated in Figure 4, is a tight
protocol not vulnerable to key compromise. In this protocol, the participants
get their guarantees by a succession of incoming tests.

The Initiator’s Guarantees Assume given a bundle B containing an ini-
10

GUTTMAN

tiator strand s; € Init[A, B, N,, Ny, K], and assume that the nonces N,, N,
are uniquely originating. What follows?

A’s nonce N, is returned in the form {|B , K , N,|}k,, thereby guarantee-
ing an edge N, ~ {B, K, Ny|}x,. By case analysis, this edge occurs on a
server strand s;. By matching variables, s, € Serv[A, B, N,, , K].

Hence, {|A, Nu|tk, C term(ss | 1). We use {|A, N,[}x, as an unsolicited
test term, which implies that there is a positive node ~ {{A, N,|}k,. This
node can occur only on s, | 2 where s, € Resp[A, B, N,, *x]. We have now
derived the initiator’s guarantees about sg and s,.

The Responder’s Guarantees Assume next a bundle B containing a
responder strand s, € Resp|A, B, N,, Ny, K|, and assume that the nonces
N,, N, are uniquely originating. B’s nonce N, is returned in both the forms
{A, B, K, N[}k, and {{Np[} . The first is an incoming test, because Ky €
S. This guarantees a transforming edge N, ~ {4, B, K , Ny|} k,,, which lies
on a server strand ss. Noting the variables occurring in {|A, B, K, Ny|}k,,
we infer sy € Serv[A, B, *, Ny, K].

The key server assumption KS2 implies that K is transmitted only in
the forms {|A, B, K, Ny|}k, and {{B, K , N[}k, (for some N). Since in
addition, by KS1, K & Kp, it follows that K € S;, and is safe.

Thus +N, = —{|Vy|}x is also an incoming test, and guarantees a trans-
forming edge N, ~ {{Np[tx. It can lie only on an initiator strand s; €
Init[I, R, N, Ny, K]. We would like to ensure that I and R are A and B
respectively. By the form of the strand, we know that {R, K, N}k, C
term(s; | 2). However, K is transmitted only in the forms {|{A , B , K, Ny|}
and {|B, K , N|}k,. Since the first term does not match, {{R, K , N[}, =
{B,K ,N}k,,s0 R=Band I = B.

We need not worry about key compromise in this protocol. A’s incoming
test guarantees that S generates K after receiving N,. So the key is more
recent than the beginning of A’s own strand. This strand will be implemented
to time out long before any cryptanalytic attack could be completed, so K
cannot have been compromised yet. The same reasoning applies to B and N,

4.2 The Weakened Yahalom Protocol

The important change in the Yahalom-Paulson protocol was to include the
responder’s nonce N, as part of the encrypted ticket {A , B, K, Ny|} k, gen-
erated by the server. In contrast, a weakened Yahalom protocol (also discussed
by Paulson) omits this nonce from the encrypted ticket. It is transmitted in
plaintext and returned encrypted under the session key K, but not in the
ticket (Figure 5). An authentication test analysis also verifies the correctness
of this protocol, ignoring the risk of key compromise.

No compromise Focusing on responder’s point of view, we cannot start
with an incoming test as in the Yahalom-Paulson protocol, because N, is not

11

GUTTMAN

A, N,

S
B ’ Nb) {|A ; Na|}KB
[] []

. {|B=K>N117Nb‘}KA) {‘A7K‘}KB l}

l} 1A, Klry , IV}

Fig. 5. The Weakened Yahalom Protocol

returned encrypted under Kpg, and we do not yet know whether K € S.

Instead, we start with an unsolicited test. {{A, K[}k, is encrypted with
a safe key, so a regular node originates ~ {{A, K[} x,. By the form of the
protocol, this positive node is on ss € Serv[A, B, *, %, K|. By KS1 and KS2,
the only transmissions of K are protected by K, and Kpg, so K is safe.

We may now infer that the edge +...Ny--- = —{ N[}k is an incoming
test, guaranteeing a regular transforming edge N, ~ {|{Ny|}x. Thisis s; | 2 =
s; | 3 for s; € Init[l, R, *, Ny, K]. However, by an unsolicited test, there exists
st € Serv[l, R, x,*, K|, so by KS2 s, = s/, whence I = A and R = B.

Compromised by time Key compromise changes this situation. Because
we started with an unsolicited test, we do not know how long ago the server
strand sg occurred. In particular, it may have been before a previous session
in which the key K encrypted a large amount of data. Cryptanalysis may thus
have disclosed it. If the penetrator has access to K, then the edge ... Ny« -+ =
{No|} k is no longer an incoming test, invalidating the rest of our argument.

Figure 6 illustrates what might go wrong. In the upper left hand corner,
we show incompletely an old server strand marked S. The term tp stands for
the ticket {|A , K|} k,, and t4 stands for the corresponding encrypted message
for A. K originates in the center of Figure 6 as a result of cryptanalysis, which
we have no desire to represent more explicitly. A, N, is a message sent by the
penetrator, purporting to be A. Separation strands are shown in incomplete
form when one result is discarded.

This key compromise attack is perhaps less obvious than the NSSK attack,
since there is no suspicious neck in the protocol definition. However, the
underlying problem is the same: B cannot verify the recency of the session
key K. And the cause of the problem is the same, namely that the protocol
relies on an unsolicited test rather than an incoming or outgoing test.

12

GUTTMAN

N[} i

S
ty ty U
@ «—— 0
K
I . .
RVs ts
[] [)
B
AN,
[] [)
B7Nb7{|A7Na|}KB ‘U/
@ <« []
N,
@ <« []
U
[]

ei—eo

tB) {‘Nb‘}K

Fig. 6. Key Compromise Attack on Weakened Yahalom

AN,

S
B) {|A) Na) Nb|}KB
[] []

‘{|B) K) Na) Nb‘}KA) {‘A) K‘}KB l.L

1A, Klry , IV}

ei—eo

Fig. 7. The Yahalom Protocol

4.3 The Yahalom Protocol

The original Yahalom protocol (Figure 7) lies in between the Yahalom-Paulson
protocol and the weakened version. It avoids sending the nonce NV, in plaintext,
yet it does not include the nonce in the ticket S generates for B. Our question
is, does this save the protocol from the key-compromise attack? To answer
this question, we will extract a notion of recency from the examples, and use
it to provide a more accurate specification for key servers.

5 Recency

We first define a useful notion of recency motivated by the causal ordering
relation on bundles. We then adapt the constraints KS1-KS2 on key servers,

13

GUTTMAN

so that they entail that session keys are uncompromised if recently generated.

5.1 A Notion of Recency

Our core idea is that regular strands provide a way to measure recency. Im-
plementors always ensure that a protocol run will time out long before crypt-
analysis could have succeeded, a matter of hours at least in the case of any
usable cryptosystem.! Thus, a principal engaged in a strand knows that an
event is recent, if it happened after an earlier event on the same strand.

Definition 5.1 (Recency for) A node n is recent for a regular node m; in
B if there is a regular node mq € B such that my =T m; and my <g n <z m;.

The incoming and outgoing tests entail recency. That is, if mg =T my is
a test edge, and ny = n; is the corresponding transforming edge in B, then
mo = ng < ny < mq, so that ng and ny are recent for my. By contrast, an
unsolicited test provides no evidence of recency.

5.2 Key Servers and Recency

We now reformulate two of our principles governing key servers. The third,
KS3, does not need reformulation, since it stipulates that session keys are
disjoint from long term keys.

The other two original principles KS1-KS2 expressed the assumption that
a session key would be uncompromised forever. The more realistic assumption
is that it is uncompromised if recently generated. There are two ingredients
in this, one being that the penetrator will not guess a recent session key. The
other ingredient is that if a key server generated a session key K recently
before a node n, then no other server run that could affect n also generated
the same key K. We combine these two ingredients in a single principle.

We say that K originates uniquely previous to m in B if there exists a
unique node n such that n <z m and K originates at n. The nodes previous
to m are all those that could have a causal influence on m, its backward light
cone, to borrow a metaphor from the theory of relativity.

RKS If 3s . s € Serv[x*, K] and some node s | i on s is recent for m in B,
then K originates uniquely previous to m in B.

In reasonable key distribution protocols, K originates on s if s € Serv[xx, K.
Thus, RKS entails that there is no penetrator K-node previous to m emitting
the session key K. That would be another originating node. It also entails
that no other server strand emits the same session key K previous to m. Thus,
it covers the intended effect of KS1-KS2, in case the server run was recent,
for the part of B that can affect m.

1 Also, cryptanalysis can typically begin only after a key establishment protocol has com-
pleted, as the traffic from an encrypted session is a more promising source than the protocol
messages themselves.

14

GUTTMAN

Sub-Bundles How can we reason about the nodes previous to a given
node m? If B is a bundle and m € B is any node in it, then the set of nodes
S ={n € B: n X m} is a sub-bundle By, when equipped with those edges of
B both endpoints of which are in S [6].

Suppose moreover that we are trying to establish an authentication result
for a particular strand s in B. The logical form of authentication results ([19],
cp. [11,20]) requires us to show that a corresponding portion of another strand
s’ is also included in B. Let m be the last node on s such that m € B, and
consider the sub-bundle By of nodes n <z m. If we can prove that the required
portion of s’ is included in the sub-bundle By, then it is also included in B.

Thus, when proving an authentication result, we may ignore the portion of
B not previous to the nodes of interest. We then reason about the sub-bundle,
and transfer the authentication results back to B. The transfer is valid even

if the conclusions are drawn using the authentication test method using the
safe keys So and Sy within By, i.e. So(By) and Sq(By).

5.8 Analysis of Yahalom

We now show why Yahalom’s protocol is correct, even when non-recent session
keys may be compromised. We again focus on the responder.

Suppose that a bundle B contains all three nodes of a regular strand s, €
Resp[A, B, N,, Ny, K], and N, is uniquely originating. What authentication
guarantees does the responder B have about the other participants in B? Let
By be the sub-bundle of B containing the nodes n € B, such that n <z (s, | 3).

First, since Kg € Sy, the edge s, | 2 = s, | 3 is an outgoing test
with test component {{A, N, , Ny[}k,. Thus, there is a recent transforming
edge {{A, No, Ny}, ~ N,. The latter must lie on a recent server strand
ss € Serv[A, B, N,, N,, K'] for some K.

By RKS, we may infer that K’ originates uniquely previous to .S, | 3, and
thus originates uniquely in By. In particular, K’ € S. Since K’ does not occur
in the test term {|A, N, , Ny[}x,, we cannot yet say whether K’ = K.

We now use the extension to the outgoing test condition mentioned above
in Section 2.3 and justified in [7, Section 4.2.1]. N, is again transmitted on
ss | 2, contained only in the form {|{B, K’ , N, , Ny|}k,. Since K4 € S,
it implies that {B , K', N, , Ny[}x, is also a subterm of a regular receiving
node.? Considering the cases possible in this protocol, that node is s; | 2
where s; € Init[A, B, Ny, Ny, K']. Thus, term(s; | 3) = {|{No[} k-

Since K’ € S, we may apply the same principle again, inferring that
{{ Ny} is also a subterm of a regular receiving node. In the protocol, that
node is s/ | 3 where s/ € Resp[x, NV,, K'|. However, since N, is uniquely
originating, and originates on both s, and s/, s, = s/.. Therefore, K = K'.

2 Strictly speaking, the relevant fact is K;l € S, but Kgl = K4 because the protocols
considered in this paper use only symmetrical keys (Assumption 2).

15

GUTTMAN

N

S
A, B, N,

{‘A7BJN87K‘}KA\£J/

ei—o

S

bga. B N K,
! ;

b, M,

ei—0—0o

i

Fig. 8. The Trusted Introducer Protocol

Thus, ss € Serv[A, B, N,, Ny, K] and s; € Init[A, B, Ny, Ny, K|. This es-
tablishes B’s authentication guarantees in By. By our transfer principle for
authentication results, the same guarantees also hold in the larger bundle B.
Secrecy goals are of course a different matter. The secrecy of the session key K
is guaranteed in By, as a consequence of RKS. However, nothing guarantees
that K remains secret in B, because B may contain nodes for which s, is no
longer recent. Those nodes may issue in a disclosure of K, for instance as a
consequence of cryptanalysis.

6 Conclusion

In this paper, we have distinguished between protocols like NSSK or Weakened
Yahalom, which are susceptible to key compromise attacks, and those like
Otway-Rees [1,14,19] or Yahalom, which are not. Our notion of recency is
perfectly adapted to our protocol verification method, the authentication test
method: the incoming and outgoing authentication tests provide a guarantee
of the recency of their transforming edges.

This notion of recency is not complete. In the slightly peculiar protocol
shown in Figure 8, the principals share a long term key with a server, which
is only a trusted introducer; it does not generate session keys. The initiator
furnishes the session key. The responder uses an outgoing test to ensure a
recent server’s session s, € Serv[A, B, *, N/, Ny, K]. The server had used an
incoming test to ensure an initiator’s session s; € Init[A, B, Ny, K] recent for
ss. However, s; is not recent for s,, although it was recently recent.

We want a sort of “extension ladder” notion of recency here. Let us define:

(i) A node n is 1-recent for m if n is recent for m as in Definition 5.1;

(ii) A node n is i + 1-recent for m; if there exists a node mg such that n is
i-recent for mg and my is recent for m;.

If n is i-recent for m, then there are ¢ + 1 strands, each overlapping a portion
of the preceding one. From beginning to end, at most ¢ + 1 times the time-

16

GUTTMAN

out for a single regular strand can have elapsed. A particular cryptosystem
and protocol implementation determines what values of ¢ are small enough
to avoid key compromise. The protocol determines what degree of recency is
guaranteed, which for the introducer’s protocol is 2-recency.

Acknowledgments Supported by the National Security Agency under US
Army CECOM contract number DAABO07-99-C-C201.

Larry Paulson suggested the Yahalom protocol to me as a provocative test
case. Gavin Lowe described related work of his own to me, and suggested the
“extension ladder” notion of recency. They also made helpful comments on a
previous draft. I am grateful to the two of them, and also to Javier Thayer,
with whom I discussed all this.

References

[1] Burrows, M., M. Abadi and R. Needham, A logic of authentication, Proceedings
of the Royal Society Series A, 426 (1989), pp. 233-271, also appeared as
SRC Research Report 39 and, in a shortened form, in ACM Transactions on
Computer Systems 8, 1 (February 1990), 18-36.

[2] Denning, D. and G. Sacco, Timestamps in key distribution protocols,
Communications of the ACM 24 (1981).

[3] Dolev, D. and A. Yao, On the security of public-key protocols, TEEE
Transactions on Information Theory 29 (1983), pp. 198-208.

[4] Guttman, J. D., Security goals: Packet trajectories and strand spaces, in:
R. Gorrieri and R. Focardi, editors, Foundations of Security Analysis and
Design, LNCS 2171, Springer Verlag, 2001 Forthcoming.

[5] Guttman, J. D. and F. J. THAYER Fabrega, Authentication tests, in:
Proceedings, 2000 IEEE Symposium on Security and Privacy, May (2000).

[6] Guttman, J. D. and F. J. THAYER Fébrega, Protocol independence through

disjoint encryption, in: Proceedings, 13th Computer Security Foundations
Workshop (2000).

[7] Guttman, J. D. and F. J. THAYER Fébrega, Authentication tests and the
structure of bundles, Theoretical Computer Science (2001), to appear.

[8] Heather, J. and S. Schneider, Toward automatic verification of authentication
protocols on an unbounded network, in: Proceedings, 13th Computer Security
Foundations Workshop (2000).

[9] Lowe, G., Breaking and firing the Needham-Schroeder public-key protocol using
FDR, in: Proceeedings of Tacas, Lecture Notes in Computer Science 1055
(1996), pp. 147-166.

[10] Lowe, G., Casper: A compiler for the analysis of security protocols, in: 10th
Computer Security Foundations Workshop Proceedings (1997), pp. 18-30.

17

GUTTMAN

[11] Lowe, G., A hierarchy of authentication specifications, in: 10th Computer
Security Foundations Workshop Proceedings (1997), pp. 31-43.

[12] Marrero, W., E. Clarke and S. Jha, A model checker for authentication protocols,
in: C. Meadows and H. Orman, editors, Proceedings of the DIMACS Workshop
on Design and Verification of Security Protocols, DIMACS, Rutgers University,
1997.

[13] Needham, R. and M. Schroeder, Using encryption for authentication in large
networks of computers, Communications of the ACM 21 (1978).

[14] Otway, D. and O. Rees, Efficient and timely mutual authentication, Operating
Systems Review 21 (1987), pp. 8-10.

[15] Paulson, L. C., The inductive approach to wverifying cryptographic protocols,
Journal of Computer Security (1998), also Report 443, Cambridge University
Computer Lab.

[16] Paulson, L. C., Relations between secrets: Two formal analyses of the Yahalom
protocol, Journal of Computer Security (2001), also available as Cambridge
University Computer Laboratory Technical Report 432 (1997).

[17] Perrig, A. and D. X. Song, Looking for diamonds in the desert: Extending
automatic protocol generation to three-party authentication and key agreement
protocols, in: Proceedings of the 13th IEEE Computer Security Foundations
Workshop (2000).

[18] Schneider, S., Verifying authentication protocols with CSP, in: Proceedings of
the 10th IEEE Computer Security Foundations Workshop (1997), pp. 3—17.

[19] THAYER Fébrega, F. J., J. C. Herzog and J. D. Guttman, Strand spaces: Proving
security protocols correct, Journal of Computer Security 7 (1999), pp. 191-230.

[20] Woo, T. Y. C. and S. S. Lam, Verifying authentication protocols: Methodology
and example, in: Proc. Int. Conference on Network Protocols, 1993.

A Strand Space Definitions

This appendix, derived from [4,7,19], defines the basic strand space notions.

A.1 Strands, Strand Spaces, and Origination

Consider a set A, the elements of which are the possible messages that can be
exchanged between principals in a protocol. We will refer to the elements of
A as terms. We assume that a subterm relation is defined on A. ty C t; means
to is a subterm of £;. We constrain the set A further below in Section A.3, and
define a subterm relation there.

In a protocol, principals can either send or receive terms. We represent
transmission of a term as the occurrence of that term with positive sign, and
reception of a term as its occurrence with negative sign.

18

GUTTMAN

Definition A.1 A signed term is a pair (o,a) with a € A and o one of the
symbols +, —. We will write a signed term as +t or —t. (£A)* is the set of
finite sequences of signed terms. We will denote a typical element of (£A)*
by ({o1,a1), ..., (Op,an)).

A strand space over A is a set X with a trace mapping tr : 3 — (£A)*.

By abuse of language, we will still treat signed terms as ordinary terms.
For instance, we shall refer to subterms of signed terms. We will usually
represent a strand space by its underlying set of strands .

Definition A.2 Fix a strand space X.

(i) A node is a pair (s,i), with s € ¥ and 7 an integer satisfying 1 < i <
length(tr(s)). The set of nodes is denoted by N'. We will say the node
(s,1) belongs to the strand s. Clearly, every node belongs to a unique
strand.

(ii) If n = (s,i) € N then index(n) = i and strand(n) = s. Define term(n)
to be (tr(s)),, i.e. the ith signed term in the trace of s. Similarly,
uns_term(n) is ((tr(s)),)s, i-e. the unsigned part of the ith signed term in
the trace of s.

(iii) There is an edge n; — ng if and only if term(n,) = +a and term(ny) = —a
for some a € A. Intuitively, the edge means that node n; sends the
message a, which is received by ns, recording a potential causal link
between those strands.

(iv) When ny = (s,4) and ny = (s,i+ 1) are members of N, there is an edge
ni1 = neo. Intuitively, the edge expresses that n; is an immediate causal
predecessor of ny on the strand s. We write n’ =% n to mean that n’
precedes n (not necessarily immediately) on the same strand.

(v) An unsigned term ¢ occurs in n € N iff t C term(n).

(vi) Suppose I is a set of unsigned terms. The node n € N is an entry
point for I iff term(n) = 4t for some ¢t € I, and whenever n’ =% n,
term(n') & I.

(vil) An unsigned term t originates on n € N iff n is an entry point for the
set I ={t':tCt}.

vill) An unsigned term ¢ is uniquely originating in a set of nodes S C N i

iii) A igned term t is uniquely originating i t of nodes S C N iff
there is a unique n € S such that ¢ originates on n.

(ix) An unsigned term ¢ is non-originating in a set of nodes S C N iff there
is no n € S such that ¢ originates on n.

If a term ¢ originates uniquely in a suitable set of nodes, then it can play
the role of a nonce or session key, assuming that everything that the penetrator
does in some scenario is in that set of nodes.

N together with both sets of edges n; — ny and n; = ny is a directed
graph (N, (— U =)).

19

GUTTMAN

A.2 Bundles and Causal Precedence

A bundle is a finite subgraph of (N, (— U =)), for which we can regard the
edges as expressing the causal dependencies of the nodes.

Definition A.3 Suppose —¢ C —; suppose =¢ C =; and suppose C =
(Ne, (—¢ U =¢)) is a subgraph of (N, (— U =)). C is a bundle if:
(i) Mg and —¢ U = are finite.
(ii) If ng € N¢ and term(ny) is negative, then there is a unique n; such that
ny —¢ No.
(iii) If ny € Mg and ny = ny then ny =¢ no.

(iv) C is acyclic.
In conditions ii and iii, it follows that n; € A, because C is a graph.

Definition A.4 A node n is in a bundle C = (N¢, —¢ U =>¢), written n € C,
if n € Ng; a strand s is in C if all of its nodes are in Ne.

If C is a bundle, then the C-height of a strand s is the largest ¢ such that
(s,i) € C. C-trace(s) = (tr(s)(1),...,tr(s)(m)), where m = C-height(s).

We say that s € C if the C-height of s equals length(s).

Definition A.5 If § is a set of edges, i.e. S C— U =, then <y is the transi-
tive closure of S, and =g is the reflexive, transitive closure of S.

Proposition A.6 Suppose C is a bundle. Then =¢ is a partial order, i.e. a
reflexive, antisymmetric, transitive relation. Fvery non-empty subset of the
nodes in C has <c-minimal members.

We regard =< as expressing causal precedence, because n <s n’ holds only
when n’s occurrence causally contributes to the occurrence of n’. When a
bundle C is understood, we will simply write <. Similarly, “minimal” will
mean =<c-minimal.

A.83 Terms, Encryption, and Freeness Assumptions

We will now specialize the set of terms A. In particular we will assume given:

o A set T C A of texts (representing the atomic messages).

e A set K C A of cryptographic keys disjoint from T, equipped with a unary
operator inv : K — K. We assume that inv is an inverse mapping each
member of a key pair for an asymmetric cryptosystem to the other, and
each symmetric key to itself.

e Two binary operators encr : K x A — A and join : A x A — A.

We follow custom and write inv(K) as K~', encr(K,m) as {{m|}g, and
join(a,b) as a, b. In this paper, we are concerned only with symmetric-key
protocols, so we assume that K = K1 always.

We assume, like many others (e.g. [10,12,15]), that A is freely generated.

20

GUTTMAN

Axiom 1 A is freely generated from T and K by encr and join.

Definition A.7 The subterm relation C is defined inductively, as the smallest
relation such that a C a; a C {lgftx if aC g;and aC g, hifaC g or a C h.

By this definition, for K € K, we have K C {g[} x only if K C ¢ already.

A.J Penetrator Strands

The atomic actions available to the penetrator are encoded in a set of pene-
trator traces. They summarize his ability to discard messages, generate well
known messages, piece messages together, and apply cryptographic operations
using keys that become available to him. A protocol attack typically requires
hooking together several of these atomic actions.

The actions available to the penetrator are relative to the set of keys that
the penetrator knows initially. We encode this in a parameter, the set of
penetrator keys Kp.

Definition A.8 A penetrator trace relative to Kp is one of the following:
M; Text message: (+t) where t € T.
Kk Key: (+K) where K € Kp.
C, Concatenation: (—g, —h, +g, h)
S, Separation: (—g, h, +g, +h)
E, x Encryption: (—K, —h, +{hl} k).
D) x Decryption: (=K', —{|hl}x, +h).
Py is the set of all strands s € 3 such that tr(s) is a penetrator trace.
A strand s € ¥ is a penetrator strand if it belongs to Py, and a node is
a penetrator node if the strand it lies on is a penetrator strand. Otherwise
we will call it a non-penetrator or reqular strand or node. A node n is M, C,
etc. node if n lies on a penetrator strand with a trace of kind M, C, etc.

Since in this paper we assume K = K !, the key used in a D-strand is the
same as the one used to create the ciphertext.

21

