
Execution Models for Choreographies and Cryptoprotocols
Marco Carbone∗

IT University of Copenhagen
Copenhagen, Denmark
carbonem@itu.dk

Joshua Guttman
Worcester Polytechnic Institute
Worcester, MA, United States

guttman@wpi.edu

Abstract

A choreography describes a transaction in which several principals interact. Since choreographies
frequently describe business processes affecting substantial assets, we need a security infrastructure
in order to implement them safely. As part of a line of work devoted to generating cryptoprotocols
from choreographies, we focus here on the execution models suited to the two levels.

We give a strand-style semantics for choreographies, and propose a special execution model in
which choreography-level messages are faithfully delivered exactly once. We adapt this model to
handle multiparty protocols in which some participants may be compromised.

At level of cryptoprotocols, we use the standard Dolev-Yao execution model, with one alteration.
Since many implementations use a ”nonce cache” to discard multiply delivered messages, we provide
a semantics for at-most-once delivery.

1 Introduction

Choreographies are global descriptions of transactions including business or financial transactions. They
describe the intertwined behavior of several principals as they negotiate some agreement and—frequently—
commit some state change. A key idea is end-point projection [5], which converts a global description
into a set of descriptions that determine the local behavior of the individual participants in a choreog-
raphy. Conversely, global synthesis of a choreography from local behaviors is also sometimes possible,
i.e. meshing a set of local behaviors into a comprehensive global description [11].

Because these transactions may transfer sums of money and other objects of value, or may com-
municate sensitive information among the principals, they require a security infrastructure. It would be
desirable to synthesize a cryptographic protocol directly from a choreography description, to control how
adversaries can interfere with transactions among compliant principals. Corin et al. [6] have made a sub-
stantial start on this problem, with further advances described in [3]. However, many questions remain,
for instance how to optimize the generated cryptographic protocols, how best to establish that they are
always correct, and indeed how best to define their correctness.

This last question concerns how to state what control the protocol should provide, against adver-
saries trying to interfere with transactions. It is a substantial question because the execution model that
choreographies use is quite distant from the execution model cryptographic protocols are designed to
cope with. For instance, choreographies use an execution model—or communication model—in which
messages are never received by any party other than the intended recipient, or if the formalism represents
channels, they are received only over the channel. Moreover, messages are always delivered if the recipi-
ent is willing to receive the message. Messages are delivered only if they were sent, and specifically only
if they were sent by the expected peer. Finally, they are delivered only once. These aspects of the model
mean that confidentiality and integrity properties are built into the underlying assumptions. A security
infrastructure is intended to justify exactly these assumptions, i.e. to provide a set of behaviors in which
these assumptions are satisfied.

Naturally, these behaviors must be achieved within an underlying model in which the adversary is
much stronger. In this model—typically called the Dolev-Yao model, after a paper [8] in which Dolev and
Yao formalized ideas suggested by Needham and Schroeder [12]—all messages may be received by the
adversary, so that confidentiality needs to be achieved by encryption. They may be delivered zero times,

∗The author was supported by EPSRC grant EP/F002114

1

carbonem@itu.dk
guttman@wpi.edu

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

once, or repeatedly, and they may be misdelivered to the wrong participant. When delivered, a message
may appear to come from a participant that did not send it. The adversary may alter messages in transit,
including applying cryptographic operations using keys that he knows, or may obtain by manipulating
the protocol.

Digital signatures may be used to notify a recipient reliably of the source of a message (and of the
integrity of its contents). Symmetric encryption may also be used to ensure authenticity: a recipient
knows that the encrypted message was prepared by a party that knew the secret key, and intended it for
a peer that also knew the secret key. Nonces, which are simply randomly chosen bitstrings, may be used
to ensure freshness. The principal P that chose a nonce knows, when receiving a message containing it,
that the nonce was inserted after P chose it. Moreover, if P engages in many sessions and associates a
different nonce with each, P can ensure that messages containing one nonce cannot be misdirected to a
session using a different nonce.

In this paper, we begin the process of relating the Dolev-Yao model of execution to the choreography
execution model. This is a key step in generating cryptographic protocols and proving them faithful to
the intent of the choreography. In particular, we represent the two execution models using the strand
space model [13, 10].

Goals of this Paper. We provide a few definitions and an example to indicate how the strand space
framework can relate choreographies to the cryptographic protocols that implement them.

In particular, we consider a very simple choreography language, and provide a semantics for it as a
set of “abstract bundles.” That is, each session of the protocol executes according to one of the bundles
predicted by the semantics. Moreover, any collection of sessions that may have occurred takes the
following form: its events partition into bundles that are obtained by instantiating the parameters in
bundles given in the semantics. Also, if two nodes belong to different partition elements, there is no �
ordering between them, unless the executions are generated as parts of some higher-level choreography
that might determine a causal ordering.

We call this an abstract bundle semantics because it builds in the assumptions of the choreography
level: messages do not have explicit cryptographic operations, and the choreography-level communi-
cation assumptions are satisfied. Messages are always delivered exactly once; sender and recipient are
never mismatched; no message is created by adversary operations. We must connect this idealized se-
mantics with a more realistic semantics at the cryptographic level, in which the adversary may be active.

One peculiarity of our message datatype is that we allow “boxes.” A box [M̃]ρρ ′ is a message prepared
on role ρ that can be opened only by a principal playing role ρ ′. At the choreography level, this property
is enforced by a type system. We use these boxes to make explicit the confidentiality and authentication
requirements of a choreography in the case where some roles are played by compromised participants.
However, in this article, we focus on the simplest case, in which no participants are compromised. That
is, we will assume here, that any participant who is sent a box, will behave only as predicted by the
choreography.

Our semantics at the cryptographic level is a standard strand space treatment, except for one ingre-
dient. Namely, this semantics assumes that some kinds of messages are delivered at most once. These
are session-initiating messages that contain a nonce, or in some protocols a freshly generated session
key. Implementations now use a nonce-caching technique in which the nonces of previously executed
sessions are retained in a cache. A new incoming message contains a nonce which is compared against
the cache; if it is present, then with overwhelming probability there has been a replay attempt, and the
message is discarded. Otherwise, the nonce is recorded and the session proceeds. So as not to need to
retain nonces forever, implementations typically combine this with a timestamp, and assume that un-
compromised principals are loosely synchronized. A message with too old a timestamp is discarded.

2

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

Nonces may be dropped from the cache when their timestamps have expired. In this approach, the nonce
and the timestamp must appear digitally signed in the incoming message to prevent manipulation by the
adversary.

We define a cryptographic protocol to properly implement a choreography if, when abstracting its
possible executions in this at-most-once semantics, we obtain exactly the possible executions of the
abstract bundle semantics for the choreography.

We explore here a simple example in which the participants are well-known to each other from the
start of the transaction. However, the ideas also apply when additional participants may be chosen during
execution, and keys must be distributed as part of the message flow.

2 Strand Spaces

Strand spaces [13, 10] were developed as a simplest possible model for cryptographic protocol analysis,
but are also applicable to other kinds of distributed systems. In strand spaces, we consider strands,
behavioural traces for roles represented as finite linear sequences of transmission and reception events.
The model provides techniques for analysing how various strands can be combined together in a run of
a protocol including some adversary behaviour. Formally, for A being a generic set of messages,

Definition 1 (Strand Space). A directed term is a pair denoted by ±a (for a ∈ A) where ± ∈ {−,+} is a
direction with + representing transmission and − reception. A trace is an element of (±A)∗, the set of
infinite sequences of directed terms.
A strand space is a set S equipped with a trace mapping tr : S→ (±A)∗ and its elements are called
strands.

In the sequel, if s is a strand in some strand space S then s(i) denotes the ith element of the trace of s and
is called node. We write m⇒ n when n is the node immediately following m on the same strand s i.e.
m = s(i) and n = s(i+1). Also, msg(n) denotes the message of the directed term in n.

But how can strands be combined together in order to represent executions of a protocol? This is
precisely captured by the notion of bundle:

Definition 2 (Bundle). Given a strand space S, a finite acyclic directed graph B = (N ,E ,�B) is a
bundle if

1. N is a set of strand nodes in S such that if n ∈N and m⇒ n, then m ∈N ;

2. E =→B ∪⇒B where

(a) ⇒B is the restriction of⇒ to nodes in N ; and

(b) for any reception node n ∈ N , there is exactly one transmission node m ∈ N such that
m→B n and msg(m) = msg(n);

3. n�B m iff there is a path from n to m in B.

A bundle is a causally well-founded graph – essentially, a Lamport diagram – built from strands
and transmission edges. A transmission edge m→ n is possible when m is a transmission node; n is a
reception node; and the message transmitted on m is the same as the message received on n. Note that
the relation �B is a well-founded partial order, meaning that the bundle induction principle holds, that
every non-empty set of nodes of B contains �B-minimal members.

The notions of strand and bundle, and the principle of bundle induction, are the essential ingredi-
ents in the strand space model. Choices – such as what operations the adversary strands offer, or what

3

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

additional closure properties bundles may satisfy – can vary to model different problems concerning
cryptographic protocols or distributed communication more generally.
Example. We briefly introduce an example in order to clarify the concepts introduced above. Let S be
composed by the following strands:

(1) n1⇒ n2 (2) n3⇒ n4 (3) n5⇒ n6 (4) n7⇒ n8⇒ n9⇒ n10 (5) n11⇒ n12

where

msg(n1) = +”Hello” msg(n2) =−”Bye”
msg(n3) = +”Good luck” msg(n4) =−”Thanks”
msg(n5) =−”Good luck” msg(n6) = +”Thanks”
msg(n7) =−”Hello” msg(n8) =−”Good luck” msg(n9) = +”Thanks” msg(n10) = +”Bye”
msg(n11) =−”Thanks” msg(n11) = +”Bye”

Below, we report two possible executions in the strand space S (for clarity, we label→ with the corre-
sponding message):

n3
Good luck

- n5

n4

�w
�

Thanks
n6

�w
n1

”Hello”
- n7

n8

�w
�

”Good Luck”
n3

n9

�w
”Thanks”

- n4

�w

n2

�

wwwwwwwwwwwwww
�

”Bye”
n10

�ww
Note that strand (5) could interfere allowing for the following bundle:

n1
”Hello”

- n7

n8

�w
�

”Good Luck”
n3

n9

�w
”Thanks”

- n11

n2

�

wwwwwwwwwwwwww
�

”Bye”
n12

�ww
3 An Execution Model for Choreography

3.1 The Calculus

Syntax. Let ρ range over the set of roles R. The syntax of our choreography mini-language (based on
the Global Calculus [5]) is given by the following grammar:

C ::= Σi ρ1→ ρ2 : opi〈M̃i〉. Ci | 0 M ::= v | [M̃]ρ1ρ2

Above, the term Σi ρ1→ ρ2 : opi〈M̃i〉. Ci describes an interaction where a branch with label opi is non-
deterministically selected and a message M̃i is sent from role ρ1 to role ρ2. Each two roles in a choreog-
raphy share a private channel hence it would be redundant to have them explicit in the syntax [2].

Term 0 denotes the inactive system. A message M can either be a value v or a box [M̃]ρ1ρ2 . The latter
denotes a tuple of messages Mi from ρ1 that can only be opened by ρ2.

4

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

Syntactic Assumption. Let snd be a partial function such that snd(Σi ρ1 → ρ2 : opi〈M̃i〉. Ci) = ρ1.
Then, we assume that, for every choreography C:

• all op’s are distinct.

• in any path in a choreography syntax tree, a box [M̃]ρ1ρ2 has to occur first in an interaction whose
sender is ρ1 and can only be opened by ρ2 in later interaction;

• if C = Σi ρ1→ ρ2 : opi〈M̃i〉. Ci then either Ci = 0 or snd(Ci) = ρ2 for all Ci;

The last assumption above requires that the receiving role in an interaction is always the transmitting role
in the subsequent interaction. All the assumptions above can be statically checked [4].

LTS Semantics. Our mini-language can be equipped with a standard trace semantics with configura-
tions C

µ−→ C′ where µ contains the parameters of the interaction performed i.e. it ranges over the set
R×R×O ×M where O is the set of operators op and M the set of messages. The following rule
formally defines the relation

µ−→ which is taken up to commutativity and associativity of +:

(C-COM)
Σi ρ1→ ρ2 : opi〈M̃i〉. Ci

(ρ1,ρ2,opi,M̃)−→ Ci

Buyer-Seller Example. We report a variant of the Buyer-Seller financial protocol [5]. A buyer (or
client) C asks a seller S for a quote about a product prod. If the quote is accepted, C will send its credit
card card to S who will forward it to a bank B. The bank will check if the payment can be done and, if
so, reply with a receipt receipt which S will forward to C. In our syntax:

1. C→ S : req〈prod〉. S→ C : reply〈quote〉.
2. (C→ S : ok〈[card]CB〉. S→ B : pay〈[card]CB〉. (B→ S : okcf〈[receipt]BC〉.
3. S→ C : rcpt〈[receipt]BC〉
4. +
5. B→ S : nopaycf〈〉.
6. S→ C : nopay〈〉)
7. +
8. C→ S : refuse〈reason〉)

Line 1. denotes the quote request and reply. Lines 2. and 8. are computational branches corresponding
to acceptance and rejection of the quote respectively. If the quote is accepted, C will send its credit card
in the box [card]CB meaning that S cannot see it. The card number is then forwarded to B who can open
the box (line 2.). If the transaction can be finalised a receipt is forwarded to C. Otherwise, a nopay
notification will be sent. B boxes the receipt so that it cannot be seen or changed by S.

3.2 Abstract Bundle Semantics (ABS).

We introduce an alternative semantics for choreography based on bundles defined as judgements of the
form:

|= C � {(B1,who1), . . . ,(Bi,whoi)}

where (B,who) is a bundle environment. Given a role ρ , who(ρ) denotes the strand in the bundle B
associated to the behaviour of ρ . The abstract bundle semantics [[C]] = {(B1,who1), . . . ,(Bi,whoi)} if

5

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

(i)

C
req〈prod〉

- S

•
�ww
�
reply〈quote〉

•
�ww

∗
�ww

Ok〈[card]CB〉- •
�ww

pay〈[card]CB〉- B

•
�ww
�
rcpt〈[receipt]BC〉 •

�ww
�
okcf〈[receipt]BC〉 ∗

�ww

(ii)

C . . .as in (i) . . . S . . .as in (i) . . . B

•
�
wwwww
�
nopay〈〉

•
�
wwwww
�
nopaycf〈〉

∗
�
wwwww (iii)

C
req〈prod〉

- S

•
�ww
�
reply〈quote〉

•
�ww

∗
�ww

refuse〈reason〉
- •
�ww

Figure 1: Bundles for the Buyer-Seller protocol

and only if |= C � {(B1,who1), . . . ,(Bi,whoi)}. The relation |= is the minimum relation satisfying the
following:

(ABS-COM)
∀i. |= Ci � {(Bi1,whoi1), . . . ,(Bi ji ,whoi ji)}

|= Σi ρ1→ ρ2 : opi〈M̃i〉. Ci �
(⋃

i{(Bi ji ,whoi ji)} ji [ρ1,ρ2,opi(M̃i)]
)

(ABS-ZERO)
e fresh

/0 |= 0 � ({eρ}ρ ,λρ. eρ)

The abstract bundle semantics provides a set of bundles which represents all executions of the protocol
described by the choreography. In (ABS-COM), (Bi ji ,whoi ji)[ρ1,ρ2,opi(M̃i)] denotes a new bundle ob-
tained from Bi ji where the two strands whoi ji(ρ1) and whoi ji(ρ2) are prefixed with the events +opi(M̃i)
and −opi(M̃i) respectively. The function whoi ji is updated accordingly. Formally,

(B,who)[µ] = ((N ∪{ni}i,E ∪{ni⇒ who(ρi)}i∪{n1→ n2},�′), who[ρi 7→ ni⇒ who(ρi)]i)

where ≺′ is the update of ≺B according to the new elements added to the bundle and B = (N ,E ,�B).
The operation above is applied to all those bundles obtained from the semantics of each branch and the
result will be their union. In (ABS-ZERO), we augment the set A with fresh events {eρ} ∈ E in order to
distinguish each strand.

ABS Example. The ABS for the Buyer-Seller protocol has three bundles corresponding to its possible
executions, namely: (i) C accepts the quote and B successfully finalises the transaction sending back a
receipt; (ii) C accepts the quote but B does not accept the payment; and (iii) Buyer does not accept the
quote with reason reason and the protocol terminates. The three corresponding bundles are reported in
Fig. 1. The nodes marked with ∗ are those points where there is a possibility of branching i.e. bundle (ii)
is identical to (i) up to its ∗ while (iii) is identical to (i) and (ii) up to its ∗. Note that (iii) only involves
roles C and S.

In the sequel, let (B,who)\[µ] be defined as follows:

(B,who)\[µ] =
{

B′ if B = (B′,who)[µ]
undefined otherwise

6

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

Intuitively, the operation above is inverse to (B,who)[µ] i.e. removes the first communication from a
bundle (if equal to µ , undefined otherwise). We can then conclude this section with a result that relates
the LTS semantics to the bundle semantics.

Theorem 1. Let C be a choreography. Then,

1. if C
µ−→ C′ then there exists a bundle B in [[C]] such that [[C′]] = [[C]]\({B}∪L)∪{B\[µ]} for

L = {B′ |B ∈ [[C]]∧B\[µ] is undefined};

2. if B\[µ] is defined and B ∈ [[C]] then there exists C′ such that C
µ−→ C′.

4 An execution model for Cryptoprotocols

Cryptographic protocols are modelled by strand spaces where the set of messages a is more general.
Formally, crypto-level messages, denoted by the syntactic category t have the following syntax:

t ::= ṽ | {|t̃|}K

Above, the value v ranges over the disjoint union of infinite sets of nonces (denoted by N), atomic keys
(denoted by K) and other basic values. We will write a sequence of messages in the form v1 ˆ . . . ˆvk. A
node of a protocol Π is regular if it lies on a strand of Π, not on an adversary strand.

Definition 3 (Deliver-once). Suppose that S is a set of messages, and B is a bundle. B delivers messages
in S only once if there exists an injective function f : R→ T , where

• R is the set of regular nodes n in B such that a member of S is received on n, and

• T is the set of regular nodes n in B such that a member of S is transmitted on n.

When {Si}i∈I is a family of sets indexed by i ∈ I, we say that B is deliver-once for {Si}i∈I when B
delivers messages in each Si only once.

We typically apply this definition when I is a set of values that will be generated freshly, and Si is a
set of messages of particular forms containing one such value i (K j,k in the example below).

Cryptoprotocol Example. The Buyer-Seller cryptoprotocol implements the choreography example of
Section 3. It provides parametric strands that define the behaviors of the principals as they send and
receive encrypted messages to provide security services for the behaviors in the choreography. The
central idea is that the first few messages use public encryption keys and nonces to establish symmetric
keys. The remaining messages then use the keys in a straightforward way. To establish a key between
A and B, A sends a message containing a nonce, encrypted with B’s public key. B returns a message
encrypted with A’s public key. It contains A’s nonce as well as a fresh symmetric key to be used for
this session. We use different syntactic tags in each encrypted unit which correspond to the op’s in the
choreography (denoted by the typewriter font op). At this level, the tags ensure that no unit can be
confused with any other (this is the reason why the op’s are all distinct at choreography level). The key
exchange phase takes the form shown in Fig. 2. Each participant leaves the key exchange phase knowing
that N1,N2 are shared among C,S,B, and that two symmetric keys are to be used for encryption in the
next phase. For instance, C knows to use Ksc to communicate with the seller in the ensuing exchange,
and to use Kbc to communicate with the bank.

In the ensuing stage, the participants use these keys to transfer the payloads amongst themselves.
Their exchange—in the successful case, in which the transaction completes—takes the form shown in

7

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

C
m1 ˆm2-

m1 ˆx
- S

•
�w

m3 ˆx
-

m3 ˆm2- B

•
�w
�
m4 ˆy

�
m4 ˆm5 •

�w
•
�

wwwwwwwwwww
�
m6 ˆm5 �

m6 ˆy
•
�w

� � �
wwwww

m1 = {|csCˆBˆN1|}pubk(S) m2 = {|cbCˆSˆN1|}pubk(B)
m3 = {|sbCˆSˆN1|}pubk(B) m4 = {|bsk N2 ˆN1 ˆKbs|}pubk(B)
m5 = {|bck N1 ˆKbc|}pubk(C) m6 = {|sck N1 ˆN2 ˆKsc|}pubk(C)

Figure 2: Key exchange phase

Fig. 3. However, C and B each have an opportunity to prevent the exchange from completing, at the
nodes marked ∗. If C transmits {|refuse|}Ksc instead of p3, then S must terminate the exchange before
contacting B. If B transmits {|nopaycf {|nopay|}Kbc |}Kbs instead of p5[p6/y], then S and C must terminate
the transaction.

Analysis with CPSA indicates that this protocol achieves its goals. Let us assume that the participants
of a run use their private decryption keys only in accordance with this protocol, and that the nonces
N1,N2 and keys Kbc,Kbs,Ksc are in fact freshly chosen and unguessable. On this assumption, there
are essentially only three possible executions, if we consider only those of minimal size, given that
a role completed. When C completes normally, then the other participants have completed normally
with matching parameters. When S completes with a client refusal, then C has refused and B has had
a matching key exchange phase but no more. When C completes with a nopay message, then B has
refused to pay, and S has been informed of this.

C
p1-

p1- S

•
�w
�

p2 �
p2 •

�w
∗
�w

p3-
p3- •

�w
•
�w

p4-
p4 - B

•
�w
�

p5 �
p5[p6/y]

∗
�w

•
�

wwwwwwwwwww
�

p6 �
y

•
�w

p1 = {|req N2 ˆCˆSˆBˆprod|}Ksc p2 = {|reply quote|}Ksc

p3 = {|ok x|}Ksc p4 = {|pay xˆCˆS|}Kbs

p5 = {|okcf y|}Kbs p6 = {|rcpt receipt|}Kbc

Figure 3: Payload exchange phase

8

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

5 Abstraction and Correctness

A partial function α over messages is an abstraction map if (1) α(t) (if defined) contains no crypto-
graphic operators, nonces nor keys, and (2) the parameters in α(t) (if defined) always appear in t.

For instance, α could map {|req N2 ˆCˆSˆBˆprod|}Ksc to req〈prod〉 in our Buyer-Seller example.
The result has no cryptography and no nonces, and the tags req and prod appear in the argument.

We say that an abstract strand s is an image of a cryptographic strand sc if, ignoring transmissions or
receptions on sc, for which α is undefined, for each transmission or reception node n on s, its message
msg(n) is α(msg(nc)), where nc is the corresponding transmission or reception node (resp) on sc. That
is, α yielding the trace of s, when mapped through the trace of sc restricted to the domain of α .

Suppose that a concrete strand sc has its first i nodes in a concrete bundle C , but α is undefined for
the messages on these nodes. We then say that sc is abstractly vacuous in C . In the opposite case, when
some node n of sc is in C and α(msg(n)) is well-defined, we say that sc is abstractly non-vacuous in C .

An abstract bundle B is an image of a cryptographic bundle C if (1) there is a bijection φ between
the abstractly non-vacuous regular strands sc of C and the regular strands s of B; (2) φ(sc) is always an
image of sc; and (3) the transmission relation→B is formed by connecting nodes of B such that m→B n
implies mc �C nc, for some concrete nodes of which m,n are images. See [9] for a related notion of
protocol transformation, and [1] for an approach to protocol verification via abstraction functions.

Suppose that C is a concrete bundle and {Ci}i is a family of sub-graphs of C that partitions the
regular nodes of C . We say that {Ci}i separates C into components when each Ci is a bundle on its own.

Definition 4 (Faithfulness). Cryptoprotocol Π is faithful to choreography C if there is an abstraction
function α such that:

1. Every B ∈ [[C]] is an image of some bundle C of Π;

2. If C is a bundle of Π, then some family {Ci}i separates C into components. Moreover, each image
Bi of any Ci is an initial sub-bundle of σ(B), for some B ∈ [[C]] and some substitution σ .

If {Si}i∈I is a family of sets of messages, then Π is faithful to C assuming the deliver-once property for
{Si}i∈I if the above holds for bundles of Π that are deliver-once for {Si}i∈I .

Faithfulness in the Buyer-Seller protocol. We use the protocol analysis tool CPSA [7] as part of a proof
that the protocol of Fig. 2 and Fig. 3 is faithful to the choreography in Fig. 1. There are three stages:

1. CPSA determines the minimal, essentially different executions that are possible, given that any one
party has had a complete run.

These are the expected success execution As and failure execution A f ,A f ′ , modulo the fact that
a party never knows whether its last message was successfully delivered, if its last action is a
transmission. In particular, the active parties agree on all parameters to the session.

2. Based on this CPSA output, inspection shows that Def. 4, Clause 1 is satisfied: Any run B ∈ [[C]]
is the abstraction of some concrete bundle C .

3. Because As,A f ,A f ′ are the only minimal forms of execution, every larger execution Bc is a (pos-
sibly non-disjoint) union of executions of these forms. That is, there is a family of maps {Hi}i,
where each Hi maps either As or A f to some subset of the regular nodes of Bc. Moreover, each
regular node n ∈Bc is the image of some node in As,A f , or A f ′ under at least one of the Hi.

However, each pair of strands agrees on a pair of freshly chosen values, where each of them has
chosen one of the values. This forces the range of Hi and H j either to coincide or be disjoint.
Hence Clause 2 is satisfied when we define the family {Ci}i by saying that two nodes belong to
the same Ci if they are both in the range of any one Hi.

9

Execution Models for Choreographies and Cryptoprotocols Carbone and Guttman

6 Concluding Remarks

We have introduced two execution models, one for choreography (assuming no compromised partici-
pants) and one for cryptoprotocols with deliver-once assumptions. The abstract bundle semantics gives
a set of bundles representing all the possible runs of the protocol described by a choreography. We have
sketched a form of argument for proving that a cryptoprotocol is faithful to the ABS of a choreography.

In [4], we studied an abstract semantics for the choreography language presented here where roles can
belong to compromised principals. The ideas of abstraction have yet to be extended to the compromised
case and to a choreography language with infinite states. The work by Bhargavan et al. in [3, 6] is
closely related to ours: they provide a compiler for generating ML code that can then be type-checked
for verifying its security property. Their notion of faithfulness is guaranteed for the well-typed code
generated from the source choreography.

In future work, we aim at developing systematic techniques for proving that certain transformations
preserve all of the goals of a protocol, while achieving additional goals [9].

References
[1] Michael Backes, Agostino Cortesi, Riccardo Focardi, and Matteo Maffei. A calculus of challenges and

responses. In FMSE ’07: Proceedings of the 2007 ACM workshop on Formal methods in security engineering,
pages 51–60, New York, NY, USA, 2007. ACM.

[2] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and
Nobuko Yoshida. Global progress in dynamically interleaved multiparty sessions. In 19th International
Conference on Concurrency Theory (Concur’08), LNCS, pages 418–433. Springer, 2008.

[3] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bhargavan, and
James J. Leifer. Cryptographic protocol synthesis and verification for multiparty sessions. In 22nd IEEE
Computer Security Foundations Symposium CSF. IEEE CS Press, 2009.

[4] Marco Carbone and Joshua Guttman. Choreographies with secure boxes and compromised principals. In
Pre-proceedings of ICE’09, 2009.

[5] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Communication-Centred Programming for
Web Services. In 16th European Symposium on Programming (ESOP’07), volume 4421 of LNCS, pages
2–17. Springer, 2007.

[6] Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bhargavan, and James J. Leifer. A secure
compiler for session abstractions. Journal of Computer Security, 16(5):573–636, 2008.

[7] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for shapes in cryptographic proto-
cols. In Tools and Algorithms for Construction and Analysis of Systems (TACAS), number 4424 in LNCS,
pages 523–538. Springer, March 2007. Extended version at URL:http://eprint.iacr.org/2006/435.

[8] Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE Transactions on Information
Theory, 29:198–208, 1983.

[9] Joshua D. Guttman. Transformations between cryptographic protocols. In P. Degano and L. Viganò, edi-
tors, Automated Reasoning in Security Protocol Analysis, and Workshop on Issues in the Theory of Security
(ARSPA-WITS), number 5511 in LNCS, pages 107–123. Springer, 2009.

[10] Joshua D. Guttman, Jonathan C. Herzog, John D. Ramsdell, and Brian T. Sniffen. Programming crypto-
graphic protocols. In Rocco De Nicola and Davide Sangiorgi, editors, Trust in Global Computing, number
3705 in LNCS, pages 116–145. Springer, 2005.

[11] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially commutative
asynchronous sessions. In ESOP Proceedings, LNCS. Springer, March 2009.

[12] Roger Needham and Michael Schroeder. Using encryption for authentication in large networks of computers.
Communications of the ACM, 21(12), December 1978.

[13] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 7(1), 1999.

10

http://eprint.iacr.org/2006/435

	Introduction
	Strand Spaces
	An Execution Model for Choreography
	The Calculus
	Abstract Bundle Semantics (ABS).

	An execution model for Cryptoprotocols
	Abstraction and Correctness
	Concluding Remarks

