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ABSTRACTDolev and Yao initiated an approah to studying rypto-graphi protools whih abstrats from possible problemswith the ryptography so as to fous on the strutural as-pets of the protool. Reent work in this framework hasdeveloped easily appliable methods to determine many se-urity properties of protools. A separate line of work, initi-ated by Bellare and Rogaway, analyzes the way spei� ryp-tographi primitives are used in protools. It gives asymp-toti bounds on the risk of failures of serey or authentia-tion.In this paper we show how the Dolev-Yao model may beused for protool analysis, while a further analysis givesa quantitative bound on the extent to whih real rypto-graphi primitives may diverge from the idealized model.We develop this method where the ryptographi primitivesare based on Carter-Wegman universal lasses of hash fun-tions. This hoie allows us to give spei� quantitativebounds rather than simply asymptoti bounds.
1. INTRODUCTIONCryptographi protools are simple sequenes of messagesthat use ryptography to ahieve seurity goals suh as au-thentiation and establishing new shared serets. Despitetheir simpliity, they are often wrong, sometimes disastrously.Muh work (inluding [5, 15, 16, 13, 21, 18, 22, 11℄) has beendone to develop methods to ensure their orretness, start-ing with Dolev and Yao [8℄, who represent enryption as afree operator on terms, and abstrat from the mathemati-al properties of partiular ryptographi primitives. If anattak sueeds against a protool assuming this abstrat,perfet ryptography, then the same attak will also sueed�This work supported by the National Seurity Agenyunder US Army CECOM ontrat number DAAB07-99-C-C201. Author's aÆliations: The MITRE Corporation,Bedford MA, USA, and also (for L. Zuk) New York Uni-versity. Authors' email addresses: guttman,jt�mitre.orgzuk�s.nyu.edu
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when the protool is implemented with real ryptographiprimitives. By ontrast, a proof that there are no attaks,based on the assumption of abstrat ryptography, will nolonger be valid when onrete, less-than-perfet primitivesare seleted. Possibly a penetrator an manipulate the de-tails of the ryptography to reate attaks that would notsueed against abstrat enryption.Goals of this paper One form of the Dolev-Yao ap-proah, the strand spae theory, has now developed onve-nient methods to �nd what authentiation and on�dential-ity goals a protool ahieves [11℄; to determine when proto-ols may safely be ombined [10℄; to determine when type in-formation may safely be omitted from a protool [12℄; and togenerate protools automatially to ahieve given goals [19℄.However, the approah relies on Dolev-Yao abstrat ryp-tography. In this paper, we begin to adapt the strand spaetheory to the realities of ryptographi operators.First, we show how to quantify the divergene betweenonrete ryptographi operators and traditional abstratenryption in the Dolev-Yao style, as used in a protool,introduing the notion of �-faithfulness. A protool seu-rity goal, proved using abstrat enryption, is �-faithful toa ryptographi primitive if the probability that exeutionof the protool|implemented using that primitive|violatesthe goal is � �. Establishing �-faithfulness requires somestohasti assumptions. The seurity goals we will onsiderin this paper are authentiation goals [24, 14, 22℄.Seond, for a partiular primitive, we give preise, quan-titative bounds on this divergene. If an attak does notsueed against a protool with the perfet abstrat ryp-tography of the Dolev-Yao approah, then the likelihood itsueeds against the same protool when implemented us-ing this ryptographi primitive is below the bound �. Thepartiular primitive we onsider here is a type of messageauthentiation ode. A funtion is hosen (using a sharedseret) from a universal lass in the sense of Carter andWegman [7, 23℄; the protool partiipants apply the hosenfuntion to their messages to onstrut tags. The tag servesto authentiate that an attaker not privy to the sharedseret has not originated the message, or altered it beforedelivery. We expet that our methods will also extend tosome other primitives, possibly symmetri key enryptionalgorithms under statistial assumptions.For Carter-Wegman tagging funtions, we ahieve spe-i� bounds for a probability of failure suh as � = 2�32(see Setion 4.4). The bounds are based on parameters.One parameter is the seurity parameter k, whih summa-rizes the lengths of randomly hosen values, suh as keys.



Another parameter is the number of runs; it bounds howmany guesses the penetrator may make and how many ran-dom values the regular partiipants must hoose. In e�et,this parameter ditates a re-keying shedule. Keys must behanged often enough to limit the number of sessions beforere-keying, ounting all sessions by non-penetrator partii-pants.Our main ideas We use two main ideas to ahieve ourgoals. Both fous on the bundle as de�ned in previous workon strand spaes [22, 11℄, whih provides a model of pro-tool exeution. A bundle is a direted graph desribingthe behavior of the penetrator as well as the regular (non-penetrator) prinipals. The arrows represent either messagetransmission and reeption (in whih ase they are writ-ten as single arrows !) or the transition of a single prini-pal through suessive ations of a single session (in whihase they are written as double arrows )). Bundles repre-sent protool exeution using abstrat enryption when themessages transmitted and reeived belong to a suitable freealgebra. They represent protool exeution with partiu-lar ryptographi primitives when the messages transmittedand reeived are bitstrings generated using those primitives.We all bundles whose messages belong to a free algebraabstrat bundles, while we all bundles whose messages arebitstrings onrete bundles.Our �rst idea interrelates onrete and abstrat bundles.For eah onrete bundle B, there is a possibly empty set�(B) of orresponding abstrat bundles. The orrespon-dene � has the property that if there exists an abstratbundle Ba suh that Ba 2 �(B) and Ba satis�es an au-thentiation goal, then B satis�es the same authentiationgoal. We �nd a ondition on onrete bundles suh that,for any onrete bundle B satisfying this ondition, �(B)is non-empty. Therefore, if a onrete bundle B is a oun-terexample to some authentiation goal proved to hold of allabstrat bundles, then B does not satisfy our ondition.Our seond idea helps quantify the probability that �(B) =; for a onrete bundle B. We onsider a random variable B(in the sense of probability theory) taking onrete bundlesas values. We make some stohasti assumptions about B,that ertain parameters of the resulting bundles are stohas-tially independent of eah other. We also assume that er-tain parameters of the bundles are uniformly distributed.From these assumptions, it follows that the probability thatB takes a value B suh that �(B) = ; is less than a suitable�. These two ideas therefore bound the divergene betweenwhat may happen in onrete bundles B using the onreteryptographi primitive, when all abstrat bundles Ba sat-isfy some seurity goal.Related Work Reent works by P�tzmann et al. andAbadi and Rogaway [20, 1℄ have studied types of onreteryptography that do not introdue additional attaks, be-yond those predited by the abstrat protool analysis. Ormore preisely, any strategy of the penetrator has a neg-ligible probability of produing an attak. \Negligible" isde�ned asymptotially in this line of work, to mean that theprobability of suess dereases faster than 1=p(k), for anypolynomial p, as the seurity parameter k inreases.These onlusions are akin to those of Bellare and Rog-away [4℄, who studied protools without abstrating fromryptography, and established seurity results for spei�

A Na ! B A Na ! B��w [[B�A�Na�Nb ℄℄f � ��w �w  [[B�A�Na�Nb ℄℄f ��w��w [[A�Nb ℄℄f ! � ��w �w [[Nb ℄℄f ! ��wFigure 1: Intended Runs of map1 (left) and map1.1Protoolsprotools diretly from the way that spei� ryptographioperators are used in them. However, the newer work ofAbadi and Rogaway is a more onvenient way to reah theseresults, although the penetrator model of [1℄ is limited to apassive adversary. The problem is split into a part spei�to the ryptographi primitives and a separate part spei�to the protool. The protool-spei� part uses the abstratryptography of the Dolev-Yao tradition. Similarly, P�tz-mann et al. [20℄ separate a ryptographi lower layer froman upper layer that applies formal methods (state mahinesimulation, in their approah) to protool analysis.The asymptoti approahes do not lead to results as spe-i� as ours. They show only that, for any polynomial p,there exists some K0 suh that for k � K0, the likelihood ofsuess for the penetrator is below 1=p(k). They provide noway to show a key length suh as k = 128 bits is suÆient,when the tolerane is � = 1=(p(128)) for a partiular p.Not all work is asymptoti [2, 3℄, but the urrent paperfouses on protools with more multiparty interation andhas a riher penetrator model.
2. BACKGROUNDIn this setion, we �rst desribe the lass of \pure authen-tiation protools" that will be our fous in this paper, andgive an example (Setion 2.1). We then review the strandspae ideas (Setion 2.2).
2.1 Pure Authentication ProtocolsThe protools that interest us in the urrent paper arepure authentiation protools that involve honest partii-pants, whom we will all regular prinipals, and a penetra-tor. The regular prinipals agree on a tagging funtion f ,shared among all of themselves, hosen from a large lassof possible funtions. We assume the penetrator does notknow whih funtion has been hosen.For example, onsider the protool map1 of Bellare andRogaway [4℄, whose intended behavior is summarized onthe left in Figure 1. In this protool, the initiator (alledA here) sends in the lear a none (random bit string) ofthe form Na to start an exhange intended for a responder(alled B here). The responder B generates a fresh noneNb, whih we assume is distint from Na, and responds toA's message by sending a term of the form [[B�A�Na�Nb ℄℄f =(B�A�Na�Nb) � f(B�A�Na�Nb). Sine f is unknown to thepenetrator, the value f(B�A�Na�Nb) is intended to serve asa signature, guaranteeing the integrity of the message to thereipient. When the A reeives [[B�A�Na�Nb ℄℄f , it respondswith [[A�Nb ℄℄f , thereby assuring B that the value Nb hasbeen reeived by A. Again, [[A�Nb ℄℄f is really a onatena-tion (A�Nb) � f(A�Nb).map1 is a pure authentiation protool: If A has had arun with intended respondent B, then B has undertaken at



least the �rst two steps of a run with intended initiator A,and the runs agree on the nones Na; Nb. Conversely, if Bhas had a run with intended initiator A, then A has had arun with intended respondent B, and the runs agree on thenones Na; Nb.The protools we onsider here do not have the goal ofausing the partiipants to agree on any new seret. Ofourse, preserving the serey of the hoie of f is neessary.However, if the serey of f fails, then the authentiationgoals will also fail. Hene, we will not need to treat sereygoals diretly.Authentiation goals require some freshness assumptions,or as we all them, origination assumptions. For instane,nones should not be reused. In map1, if B reuses the noneNb, then the penetrator an save [[A�Nb ℄℄f , start sessionspurporting to be A, and omplete the run as soon as B re-uses Nb. We assume that in a bundle involving the valueNb, there will be just one point in one session at whih Nboriginates. By origination, we mean a message transmissionin whih Nb is sent without having been reeived previouslyin that session.Using the authentiation test method of [11℄, we an easilyshow that map1 ahieves its authentiation goals. Indeed,we may wonder about �ne points, suh as whether A's nameis needed in the last message. Again using the same meth-ods, we an show that the answer is no, and that the modi-�ed protool map1.1, shown in Figure 1 on the right, whihomits A's name from the last message, ahieves the sameauthentiation goals for essentially the same reasons.
2.2 Strand SpacesWe very briey summarize the ideas behind the strandspae model [22, 11℄; see also Appendix A. Let A be aset of messages that an be sent between prinipals; we areinterested in various hoies of A. For eah hoie of A, weassume that there is a subterm relation, written t < t0.A strand is a sequene of message transmissions and re-eptions, where transmission of a term t is represented as +tand reeption of term t is represented as �t. Eah vertialolumn in Figure 1 shows a strand, assuming that partiularvalues are hosen for the parameters A;B;Na, and Nb. Astrand element is alled a node. A strand spae � is a set ofstrands. (See De�nition A.1.)If s is a strand, hs; ii is the ith node on s. The rela-tion n ) n0 holds between nodes n and n0 if n = hs; iiand n0 = hs; i + 1i. The relation n ! n0 represents inter-strand ommuniation; it means that term(n1) = +t andnode term(n2) = �t. The two relations ) and ! jointlyimpose a graph struture on the nodes of �. The verties ofthis graph are the nodes, and the edges are the union of )and !.A term t originates at a node n = hs; ii if the sign of n ispositive; t < term(n); and t 6< term(hs; i0i) for every i0 < i.Thus, n represents a message transmission that inludes t,and it is the �rst node in s inluding t. If a value originateson only one node in the strand spae, we all it uniquely orig-inating ; uniquely originating values are desirable as nones.(See De�nition A.2.)A bundle is a ausally well-founded olletion of nodes andarrows of both kinds. In a bundle, when a strand reeivesa message m, there is a unique node transmitting m fromwhih the message was reeived. By ontrast, when a strandtransmits m, many strands (or none) may reeive m. (See

De�nition A.3.)A strand represents the loal view of a partiipant in arun of a protool. For a legitimate partiipant, it representsthe messages that partiipant would send or reeive as partof one partiular run of his side of the protool. We all astrand representing a legitimate partiipant a regular strand.Typially, the regular strands of � are the instanes of a�nite number of parameterized strands (See Setion 3.1.)For the penetrator, the strand represents an atomi de-dution. More omplex ations an be formed by onnet-ing several penetrator strands. While regular prinipals arerepresented only by what they say and hear, the behaviorof the penetrator is represented more expliitly, beause thevalues he dedues are treated as if they had been said pub-lily. We partition penetrator strands aording to the oper-ations they exemplify. C-strands and S-strands onatenateand separate terms, respetively; K-strands emit keys froma set of known keys; andM-strands emit known atomi textsor guesses. In protools whih use a genuine enryption op-erator, E-strands enrypt when given a key and a plaintext;D-strands derypt when given a deryption key and math-ing iphertext. (See De�nition A.6.) We will adapt the E-strands and D-strands below to reet our urrent interestin pure authentiation protools using tagging.As an example of an authentiation goal, onsider the re-sponder's guarantee in map1. Suppose that the responderB has a run apparently with A, using the nones Na andNb. B may assume that the none Nb is uniquely origi-nating, beause he generates it himself using highly randommethods. B's authentiation guarantee is the impliation:AB : if Nb is uniquely originating, then A has had a math-ing run apparently with B, using the nones Na andNb.
3. PROTOCOLS AND THEIR IMPLEMEN-

TATIONSWe turn now to the questions how to represent proto-ols in the strand spae theory (Setion 3.1), and what itmeans to implement protools using onrete primitives orabstrat messages. We talk about algebras of bitstrings inSetion 3.2, and relate them to abstrat (free) message al-gebras in Setion 3.3.
3.1 Representing Protocols in Strand SpacesA protool requires regular partiipants to play a numberof di�erent roles, suh as initiator, responder, or key server.The protool itself onsists of a number of shemati strands,one for eah role played by the regular prinipals. Theseshemati strands may be determined by programs exeutedby the prinipals against their loal state; our onern isexlusively with the resulting behaviors.A shemati strand onsists of a parameter listX1; : : : ; Xn,together with a sequene of a �xed number of signed she-mati terms in whih the parameters may our. A signedshemati term, in turn, is + or � together with a term inwhih some parts have been replaed by parameters Xi. Forinstane, the shemati strand map1Init[A;B;Na; Nb℄ thathas parameters A;B;Na; Nb and signed termsh+Na; �[[B�A�Na�Nb ℄℄f ; +[[A�Nb ℄℄f ide�nes the map1 initiator's behavior. The responder's be-havior map1Resp[A;B;Na; Nb℄ is the omplementary she-



mati strand with behaviorh�Na; +[[B�A�Na�Nb ℄℄f ; �[[A�Nb ℄℄f i:The parameters A;B range over names, while the param-eters Na; Nb range over nones. No parameter here rangesover onatenated terms suh as A�Na.Given some partiular algebra of messages A, we mayinstantiate a shemati strand by hoosing suitable valuesfrom A for the parameters X1; : : : ; Xn. The result is astrand. The messages sent and reeived are the results of�lling in these values in plae of the parameters in the su-essive signed shemati terms.We identify a protool with the set of shemati strandswhih speify it. A protool may also have parameters. Inmap1, the shared seret f is a parameter of the protoolitself; given a value for f , all of the regular partiipantsuse that value. That is why f is not listed as a param-eter of the shemati strands. Thus, map1, ating withshared seret f , as the set with two parametri strands,�f = fmap1Init[A;B;Na; Nb℄;map1Resp[A;B;Na; Nb℄g.Given a message algebra A, a protool � determines astrand spae �, whih we all the strand spae generated by� over A. The instanes of a shemati strand are all be-haviors resulting from hoosing values in A of appropriatetype for eah parameter. The strand spae � ontains, asits regular strands, instantiations of eah shemati strandswith eah appropriate value, for instane all bitstrings ofthe orret length for a none Na, and all properly formeddomain names or IP addresses for a parameter ranging overnames. In map1, no strand an be an instane of both she-mati strands, beause the patterns of + and � terms aredi�erent, and this is e�etively always the ase.There are two types of message algebra A that speiallyinterest us, eah of whih generates a strand spae � froma �. First, there are free algebras, in whih [[A�Nb ℄℄f is aterm distint from any onstruted in a di�erent way. Se-ond, there are algebras onsisting of bitstrings, in whihonatenation is an operator (possibly a partially de�ned op-erator) produing bitstrings from bitstrings. Likewise, thetagging operator produes partiular bitstrings when givenbitstrings as arguments, and it has ollisions, i.e. ases inwhih di�erent messages yield the same tag.Inmap1, the parameters range only over names and nones,not over onatenated or tagged terms. This is the ase forall (natural) pure authentiation protools, so we will as-sume it throughout the remainder of the paper. The as-sumption would not hold for other protools, partiularlyshared-key protools using a key server, suh as Otway-Rees [17℄ or Carlsen [6℄; see [11, Setion 5.1.3℄ for an ex-planation.
3.2 Implementing Protocols with BitstringsWe onsider �rst shemes that may be used to enodemessages via bitstrings.An Example An atom onsists of one letter followedby a string of hexadeimal digits. The letter indiates itsintended use. Names or addresses begin with a. Randomlyhosen nones begin with n; the set of suh atoms is N. Tagsfor verifying integrity begin with v; the set of suh atoms isV. Conatenations are s-expressions in the style of Lisp.Two terms t0 and t1 are onatenated to form the string`(t0 . t1)'.

This is an unambiguous enoding, sine it is always learwhether a string represents an atom or a onatenation, andif it is a onatenation, where eah of the two argumentsbegin and end. Every message is built from atoms by a�nite number of onatenations. The result of onatenationmay not always be a valid message. If the total number ofharaters exeeds some maximum, then the message maybe rejeted beause it overows the reeiver's input bu�er.If the depth of nested parentheses exeeds some maximum,then it may be rejeted beause parsing it requires too largea stak.Tagging funtions, by ontrast, beause they have olli-sions. The output bitstrings are tags in V, typially of lim-ited length, and the inputs may be bitstrings of arbitrarylength. However, in the ase of map1, eah tag immediatelyfollows the message body it is meant to validate. Given amessage body suh as t = B�A�Na�Nb, the reipient knowsthat the next omponent must be f(t). Thus, if tags in Vour only in the ontext t�f(t), then there is never any am-biguity about the body to whih the tag applies, and everyourrene of a tag ontributes to representing an authen-tiated message [[ t ℄℄f with no hoie about what t is beingtagged. Tags our nowhere else.Rigid Shemes In a sheme suh as the one we havejust desribed, any bitstring reeived by a prinipal an beinterpreted as a protool message in at most one way, andany message sent an be onstruted in at most one way, givethe parameters seleted. Thus, a prinipal always knowsuniquely what strand parameters are ompatible with thebitstrings it has reeived and sent. We say that a shemefor enoding messages is rigid for a protool when it has thisproperty.A rigid sheme for a protool �f onsists three ingredi-ents: a set of bitstringsM , a onatenation funtion �, and aset F of possible tagging funtions (where f 2 F). We againrefer to the tags as V, and require that all f 2 F have typef : M ! V. The atoms of the sheme, written atom(M),are all values x 2M suh that x is not of the form t0�t1 forany t0; t1 2 M ; we require that V � atom(M). We assumethat a bitstring in M an be a onatenation in at most oneway, and that every member of M may be built from atomsby a �nite sequene of onatenations.We also require that tags v 2 V our only in the form t�v,where v = f(t), in messages of �f . Thus, tags ontributeonly to tagging messages [[ t ℄℄f .Definition 3.1. If (M; �;F) is a rigid sheme, then thesubterm relation for it, written t0 < t1, is the smallest re-exive, transitive relation suh that t < t�t0 and t0 < t�t0.A bundle, whose messages are enoded as bitstrings using arigid sheme, will be alled a onrete bundle, and usuallydenoted by B.Given a protool under a rigid sheme and a bundle B,eah regular strand in B has a unique set of possible param-eters, whih are names (of partiipants) or nones. Thus,parameters are in atom(M) n V, the set of atoms that arenot tags.Penetrator Strands In the onrete model, the pen-etrator an do anything. The penetrator an hoose anybitstring to deliver, or given a number of bitstrings, an ap-ply any funtion g to them to determine a new bitstring todeliver. Thus any strand of the form h�x1 ) � � � � xn )



+g(x1; : : : ; xn)i is a penetrator strand, whih we all a g-strand.In ase n = 0, a g-strand amounts to guessing a onstantvalue g() independent of input; for instane, the penetratormay hoose any pair a � v to deliver when a tagged valueis needed. Indeed, he may hoose a � v for v = f(a) with-out knowing that he did so, and may thus apply f -strandsunknowingly.
3.3 Free Message AlgebrasGiven a rigid sheme for a protool �f , we de�ne an as-soiated abstrat (free) enryption algebra. We regard theset of tagging funtions as if they were keys, beause theyare a shared seret. Being funtions, though, these \keys"are never transmitted as part of a message belonging to theprotool.Definition 3.2. Let (M; �;F) be a rigid sheme for �f .The algebra E of abstrat tagging over (M; �;F) is freelygenerated from:� two sets: texts in atom(M) n V and \keys" in F,� via two operations: onatenation �E and tagging [[ t ℄℄ffor t 2 E and f 2 F.If the protool �f onsists of a set of parameterized strandsRolei[X1; : : : ; Xni ℄, and the parameters Xj range only overatoms in atom(M)nV, then we an regard it as determiningmessages in either M or E. We write RoleMi or RoleEi whenwe want to distinguish them.What protetion is o�ered by tagging? Although onlysomeone possessing f an reate [[ h ℄℄f from h, anyone anextrat h from [[h ℄℄f . Thus, we adapt the penetrator strandsshown in De�nition A.6 slightly, replaing the deryptionpenetrator strand with the untagging strand shown here,and updating the enryption strand to our tagging notation:Eh;f Enryption: h�f; �h; +[[h ℄℄f iUh Untagging: h�[[h ℄℄f ; +hiWe refer to these strands and the remaining M, K, C, and Sstrands from De�nition A.6 as abstrat penetrator strands.We are interested in the ase where the protool �f isexeuted using a seret tagging funtion hidden from thepenetrator, so we assume that f 62 KP , the set of keys ini-tially available to the penetrator.
3.4 Bundle AbstractionSuppose that we have a pure authentiation protool � =fRolei[X1; : : : ; Xni ℄ : 1 � i � ng, implemented using a rigidsheme (M; �;F). Let B be a onrete bundle, and supposes is a regular strand with some nodes ourring in B. Possi-bly only an initial segment of s is in B. We say the B-heightof a strand is the number of nodes of s in B. If s has nonodes in B, then its B-height is 0.Sine the operations yield bitstrings as determined by(M; �;F), the messages sent and reeived in s are parti-ular bitstrings in M . From Setion 3.2, we know that thereis a unique parameterization of s as some RoleMi [~a℄, and theparameters ~a are atoms of M whih are not tags. Therefore,these parameters are also atoms of E, the algebra of abstrattagging orresponding to (M; �;F), and there is also an ab-strat strand s0 = RoleEi [~a℄, in whih the same parameters

determine abstrat terms using the free algebra. The ab-strat skeleton of B is the result of transforming eah reg-ular strand s of B in this way, annotating eah resultingstrand with the B-height of s.Definition 3.3. The abstrat skeleton of B, whih wewrite skel(B), is the set of pairs (s0; h) where s0 = RoleEi [~a℄and h > 0 is the B-height of s = RoleMi [~a℄.The abstrat skeleton skel(B) is not an abstrat bundle; itis simply a set of regular strands annotated with heights.We also sometimes regard it as a set of nodes, namely the�rst h nodes on s when (s0; h) is in skel(B).Although skel(B) is not a bundle, we may be able toturn it into a bundle by adding abstrat penetrator strandsand onneting message transmissions and reeptions usingarrows !. There may be multiple ways to do so. Alterna-tively, if the penetrator exploited something peuliar in theway the bitstrings worked out in B, it may be impossible tomimi this via abstrat penetrator strands. We then regardB as having been a luky outome from the penetrator'spoint of view.Definition 3.4. �(B) is the set of all abstrat bundlesBa suh that for regular strands s0, the Ba-height of s0 = hand h > 0 if and only if (s0; h) 2 skel(B).If �(B) = ;, then B is a luky strike.A luky strike is a onrete bundle that is inexpliable, rel-ative to the abstrat model of the powers of the penetrator.The penetrator either guessed or did something spei� tothe way that onatenation and tagging interat with thebitstrings in M .
3.5 Lucky Strikes and ForgeriesThere is only one way that a luky strike an our: Thepenetrator selets a tag v 2 V, and delivers t�v to a reg-ular partiipant, who veri�es that v = f(t). We all thisa forgery. Of ourse, it is anomalous only if no regular par-tiipant has previously sent t�v. We understand previouslyby the bundle partial ordering �B (De�nition A.4) aord-ing to whih n0 �B n1 if there is a path of zero or morearrows ! and ) in B leading from n0 to n1.Definition 3.5. A forgery is a negative regular node n1 2B suh that t�f(t) < term(n1) and there is no positive regu-lar node n0 2 B suh that n0 �B n1 and t�f(t) < term(n0).In the Introdution we mentioned the need for a propertythat ensures that �(B) is non-empty. This is the propertyof ontaining no forgeries.Proposition 3.6. If B is a luky strike, then there existsa forgery n1 2 B.Proof. Suppose that there is no forgery in B; we showthat B is not a luky strike by building an abstrat bundleBa from skel(B). We do so by starting with the emptyabstrat bundle B0. Indutively we de�ne a sequene ofabstrat bundles; at eah step Bi+1 has one new regularnode, together with 0 or more penetrator nodes and newarrows as needed.If all of the nodes in skel(B) have been used, then wehave onstruted Ba. Otherwise, let n be a regular nodein B that is �-minimal (in the preedene ordering for B)among nodes not yet used, and let na be the orresponding



node in skel(B). Bi+1 will ontain na. To satisfy the bundlede�nition, we must onstrut term(na) from nodes alreadyin Bi together with new penetrator nodes if needed. UsingC-strands, we an build term(na) if given all of its atomiomponents and all of its tagged omponents [[ t ℄℄f .If m is an atomi omponent of term(na), then as notedbefore De�nition 3.2, m is not a key f 2 F ; keys are nottransmitted in these protools. Thus, we may add an M-strand initiating m. If [[ t ℄℄f is a tagged omponent, then bythe assumption that there is no forgery in B, some regularnode n0 � n emits the orresponding bitstring. By the�-minimality of n, the regular node orresponding to n0 isalready in Bi.Thus, in all ases, we may onstrut Bi+1. By the �nite-ness of B this proess must terminate with all of the nodesin skel(B) used. �By this proposition, if an authentiation property holds ofall abstrat bundles, then a onrete bundle is not a oun-terexample unless it has a forgery. To quantify the diver-gene between possible onrete behaviors and the abstrat,Dolev-Yao model, and to prove �-faithfulness in the senseof our Introdution, we must show that the probability of abundle having a forgery is � �. We show how to do this inSetion 4.3.There is another reason why authentiation may fail, apartfrom forgery. An authentiation theorem suh as AB inSetion 2.2 states an impliation: if a regular partiipanthooses uniquely originating nones, then its peer has en-gaged in a mathing strand. However, two regular prinipalsould hoose the same none. Then the onlusion might notbe true.In Setion 4.4, we bound the probability of this event.We ombine the bound on the likelihood of forgery with thebound on the likelihood of none ollision to infer an overallbound on the risk of authentiation failure, assuming theprotool is orret in the abstrat Dolev-Yao model.
4. STOCHASTIC MODELTo bound the probability that a onrete bundle ontainsa forgery, we need a stohasti model of protool behavior.This model onsists of an underlying probability spae, to-gether with some random variables1 that extrat aspets ofthe behavior. We must assume some onstraints, whih re-quire either that a random variable is uniformly distributed,or else that random variables are independent of one an-other.We all the probability spae (
;P). For onveniene, weassume that it is �nite, as we may do beause the sets ofmessages (bitstrings of bounded size) are �nite and the sizeof the bundles of interest are bounded. (
;P) enapsulatesan array of information inluding the hoie of nones andof interloutors by the regular partiipants.We assume that the penetrator has some strategy. Itdetermines his behavior as a funtion of two arguments,namely �rst what he observes of the regular partiipantsand seond some random hoies determined by the prob-ability spae. The strategy determines the behavior of thepenetrator, inluding his hoies about what genuine mes-sages to deliver, and espeially what messages and tags totry as forgeries. A protool implementation is �-faithful to1A random variable (sometimes we write just \variable") isa funtion on the underlying probability spae.

an authentiation goal A if the � bounds the probability ofthe event that a bundle is hosen in whih A fails.
4.1 Random VariablesEah hoie of ! 2 
 determines a bundle B(!). Weassume that the regular strands of B(!) are ordered in somearbitrary way, so that Si(!) enumerates skel(B(!)), as afuntion of i. The model fouses on 4 random variables.1. The random variable F : 
! F determines the serettagging funtion f .2. The random variable R : 
 ! f0; 1g� is the penetra-tor's soure of randomness.3. The random variable N : 
 ! (N � N) ! N deter-mines, given integers i and j, the jth none hosen to orig-inate on the ith regular strand Si(!).4. The random variable T : 
! (N�N) ! (M�V) de-termines, given integers i and j, the jth tagged value t�f(t)sent by the ith regular strand Si(!).In map1, regular strands use a single none, so N(!)(i; j) isde�ned only when j = 1. Likewise, they send a single taggedmessage eah, so T (!)(i; j) is also de�ned only when j = 1.T is ertainly not independent of N , sine a fresh noneis part of eah tagged message sent by a regular strand.Likewise, T is not independent of F , beause the values Tdelivers are pairs ht; f(t)i. However, we assume below thatthis is the only dependene of T on F , i.e. that the values ofthe �rst omponents t are independent of F (Assumption 2).The key aspet of penetrator behavior is the set of forgeryattempts. We formalize the penetrator strategy by a fun-tion G(T (!); R(!)) whih, given the signed messages sentby the regular partiipants and the penetrator's random-ness, returns a set of pairs (b; v) 2 M � V. The pene-trator's forgery attempts in B(!) are the messages b�v for(b; v) 2 G(T (!);R(!)). For these to be forgeries rather thanreplays, the messages b must be di�erent from those sent bythe regular partiipants, so we assume that there is no mes-sage b and tags v; v0 suh that (b; v) 2 G(T (!); R(!)) and(b; v0) = T (!)(i; j).B(!) has a suessful forgery if a value in G(T (!); R(!))has the form b�f(b) where f = F (!). Thus, we are interestedin the eventforge = f! : for some (b; v) 2 G(t; r); v = F (!)(b)gwhose probability we want to show is small, onditional onany partiular values T (!) = t and R(!) = r.
4.2 Model AssumptionsWe need to make assumptions that some of the variablesare independent and that some are uniformly distributed.We regard N(!)(i; j) as a family of none-valued randomvariables indexed by i and j.Assumption 1. Any two di�erent variables N(!)(i; j) andN(!)(i0; j0) are independent, and eah variable N(!)(i; j) isuniformly distributed.This assumption is used only in Setion 4.4.Let fst be the funtion that delivers the �rst omponent ofa pair, so that fst ÆT is the funtion that delivers the bodiesbut not the tags of the tagged messages sent by regularpartiipants.



Assumption 2. The variable F is stohastially indepen-dent of R and T 0 = fst ÆT taken jointly:PfF (!) = f ^ T 0(!) = x ^ R(!) = rg =PfF (!) = fg � PfT 0(!) = x ^ R(!) = rgHene, F and R are pairwise independent, as are F and T 0.Assumption 3. The distribution of F on F is uniform,that is, for any E � FPfF (!) 2 Eg = ardEardFThe protool limits the number of new nones sent by asingle regular strand. It also limits the number of signedexpressions sent by a single regular strand. And it limitsthe number of signed expressions that an be reeived by asingle regular strand. In map1, all of these numbers equal 1,though in another protool they may have some maximum�. Therefore, if a bundle B has at most � many regularstrands, the risk of two strands re-using a none is limitedbeause only � = � times � nones are used. The numberof samples of the tagging funtion f that the regular parti-ipants show the penetrator is limited by �. And the numberof forgeries that the penetrator may submit to the regularpartiipants is bounded by �.Assumption 4. The number of nones, tagged values sent,and tagged values reeived on regular nodes in B(!) is boundedby some value �.This assumption is part of the justi�ation for taking 
 tobe �nite. The restrition to no more than � many regularstrands is ultimately justi�ed by a re-keying shedule. Werequire the partiipants to agree on a new value of f before� many sessions an have ourred.
4.3 The Probability of ForgeryGiven a partiular !, the penetrator may observe t =T (!) and r = R(!), the �rst being the tagged messageshosen by the regular partiipants and the seond being thepenetrator's soure of randomness. The penetrator usesG tohoose forgery attempts, so we must bound P(forge j T (!) =t ^R(!) = r), i.e.Pffor some (b; v) 2 G(t; r); v = F (!)(b)j T (!) = t ^ R(!) = rgThe penetrator, having observed the regular partiipantssending the signed messages in T (!), an exlude some tag-ging funtions f 2 F , beause they are inompatible witha signed message t�v = T (!)(i; j). We refer to the set ofremaining andidates as the part of F ompatible with !,or F!, whereF! = fg 2 F : 8i; j; t; v :T (!)(i; j) = (t; v) implies g(t) = vgCalulation using Assumptions 2 and 3 yieldsP(forge j T (!) = t ^R(!) = r) =ard(fg 2 F! : 9(b; v) 2 G(t; r) ; g(b) = vg)ard(F!)whih in turn equals P(fg 2 F! : 9(b; v) 2 G(t; r) : g(b) =vg), by uniformity.

Suppose now that the set of tagging funtions F is a uni-versal lass, following the lassi papers by Carter and Weg-man [7, 23℄. We de�ne the notion in the form:Definition 4.1. A set of funtions F � Y X is n-stronglyuniversal just in ase the following two onditions are met:(1) ard(X) is at least n, and (2) if x1; : : : ; xn are any npairwise distint values in X, then the distribution of theevaluation mapping f 7! hf(x1); : : : ; f(xn)i is uniformly dis-tributed.In Appendix B we give an example of an n-strongly universallass (Example B.4), and derive a key lemma (Lemma B.7):Lemma 4.2. If F � Y X is n-strongly universal then F,then for any ` � n and x1; : : : ; x` 2 X, and any y1; : : : ; y` 2Y , Pff 2 F : 9i � ` : f(xi) = yig � `ardY :Observe that if F is n-universal and T (!) provides at mostm tagged messages, then F! is (n�m)-universal. We there-fore take F to be (2�)-universal and apply Lemma 4.2, in-stantiating F with F!, and observing that ` � �. Thislast inequality is justi�ed beause � bounds the number offorgery attempts `. Thus,P(forge) � �ard(V) :
4.4 Likelihood of AnomaliesIn the analysis of bundles by the abstrat bundle represen-tation theorem (Proposition 3.6), there are two events whoselikelihood we would like to bound. Either ould ause a fail-ure of the onlusion that the bundle ontains a mathingstrand, as in the authentiation goal AB of Setion 2.2. Oneis forge; the other is that the regular partiipants hooselashing nones, whih we de�ne:lash = f! : N(!)(i; j) = N(!)(i0; j0)where i 6= i0 or j 6= j0gSine by Assumption 1 the random variables N(!)(i; j) areuniformly distributed and mutually independent, determin-ing a bound on the likelihood of a none anomaly is a spe-ial ase of the \birthday problem" [9℄. The total numberof hoies is bounded by �, so the likelihood of at least oneollision is bounded above by �(� � 1)=2 ard(N).As an example, onsider a tolerane of � = 2�32 for thelikelihood of forgeries and lashes together, where we willalloate half of � for eah type of anomaly. If nones aregiven by 64-bit strings, then ard(N) = 264. To ensure thatindependent hoies of � nones has probability of anomalybelow �=2, it suÆes to restrit � so that �2=2�264 � 2�33,i.e., � � 216 = 65; 536. If, for example, we would like to usea shared seret hoie of f without hange for a year, thiswould allow 175 strands per day, sine 65; 000=365 > 175.For the ase of forgeries, P(forge) � �= ard V. We mustuse Carter-Wegman hash funtions whih are (2�)-stronglyuniversal with � = 216 as before, i.e. 217 � universal. Toensure that �= ardV � 2�33, we need ard V � 249, so that64-bit tags are ample.Thus with � = 216, the likelihood of an authentiationfailure is� � P(forge) + P(lash) � 2�33 + 2�33 � 2�32



Eah tag alulation requires substantial omputation, butthe rekeying is infrequent and the risk of authentiation fail-ure is very low. These numbers are only illustrative; thepoint is that we have desribed a omprehensive methodthat yokes abstrat protool design and veri�ation usingstrand spaes to low-level alulations of the risk of seurityompromise.
5. CONCLUSIONIn this paper we have shown that abstrat enryption isfaithful in the sense that, when a protool meets its seu-rity goals in an abstrat model like the strand spae model,then the probability that a penetrator an defeat it is be-low a suitable � suh as 2�32. Spei�ally, we have estab-lished this in the ase in whih the ryptographi primitiveis Carter-Wegman hashing; the protool uses a single seretshared among all partiipants; and the implementation ofthe protool is rigid in the sense of Setion 3.2. It is likelythat the restrition to a single shared seret is unneessary.It is also likely that some other types of ryptography leadto analogous results.
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APPENDIX

A. STRANDS AND THE PENETRATORIn this appendix, we de�ne the basi strand spae notionsused in the body of the paper. This material is derivedfrom [22, 11℄.
A.1 Strand SpacesConsider a set A, the elements of whih are the possi-ble messages that an be exhanged between prinipals in aprotool. We will refer to the elements of A as terms. Weassume that a subterm relation is de�ned on A. t0 < t1means t0 is a subterm of t1. We also assume that A has aonatenation operator � and possibly also a ryptographioperator. We write fjtjgK for the result of applying the ryp-tographi operator to t using the seret K.In a protool, prinipals an either send or reeive terms.We represent transmission of a term as the ourrene ofthat term with positive sign, and reeption of a term as itsourrene with negative sign.Definition A.1. A signed term is a pair h�; ai with a 2A and � one of the symbols +;�. We will write a signedterm as +t or �t. (�A)� is the set of �nite sequenes ofsigned terms. We will denote a typial element of (�A)� byh h�1; a1i; : : : ; h�n; ani i.A strand spae over A is a set � together with a traemapping tr : �! (�A)�.By abuse of language, we will still treat signed terms asordinary terms. For instane, we shall refer to subterms ofsigned terms. We will usually represent a strand spae byits underlying set of strands �.Definition A.2. Fix a strand spae �.1. A node is a pair hs; ii, with s 2 � and i an integersatisying 1 � i � length(tr(s)). The set of nodes isdenoted by N . If n = hs; ii 2 N then index(n) = i andstrand(n) = s. De�ne term(n) to be (tr(s))i, i.e. theith signed term in the trae of s.2. There is an edge n1 ! n2 if and only if term(n1) = +aand term(n2) = �a for some a 2 A. Intuitively, theedge means that node n1 sends the message a, whihis reeived by n2, reording a potential ausal link be-tween those strands.3. When n1 = hs; ii and n2 = hs; i + 1i are members ofN , there is an edge n1 ) n2. Intuitively, the edgeexpresses that n1 is an immediate ausal predeessorof n2 on the strand s.4. Suppose I is a set of unsigned terms. The node n 2 Nis an entry point for I i� term(n) = +t for some t 2 I,and whenever n0 )+ n, term(n0) 62 I.5. An unsigned term t originates on n 2 N i� n is anentry point for the set I = ft0 : t < t0g.6. An unsigned term t is uniquely originating in a set ofnodes S � N i� there is a unique n 2 S suh that toriginates on n.7. An unsigned term t is non-originating in a set of nodesS � N i� there is no n 2 S suh that t originates onn.

A.2 Bundles and Causal PrecedenceA bundle is a �nite subgraph of the graph hN ; (! [ ))i,for whih we an regard the edges as expressing the ausaldependenies of the nodes.Definition A.3. Suppose !C � !; suppose )C � );and suppose C = hNC; (!C [ )C)i is a subgraph of hN ; (![ ))i. C is a bundle if:1. NC and !C [ )C are �nite.2. If n2 2 NC and term(n2) is negative, then there is aunique n1 suh that n1 !C n2.3. If n2 2 NC and n1 ) n2 then n1 )C n2.4. C is ayli.In onditions 2 and 3, it follows that n1 2 NC , beause C isa graph.Definition A.4. If S is a set of edges, i.e. S �! [ ),then �S is the transitive losure of S, and �S is the reex-ive, transitive losure of S.The relations �S and�S are eah subsets of NS�NS , whereNS is the set of nodes inident with any edge in S.Proposition A.5. Suppose C is a bundle. Then �C is apartial order, i.e. a reexive, antisymmetri, transitive re-lation. Every non-empty subset of the nodes in C has �C-minimal members.
A.3 Penetrator StrandsThe ations available to the penetrator in the abstratDolev-Yao model are relative to the set of keys that thepenetrator knows initially. We enode this in a parameter,the set of penetrator keys KP .Definition A.6. A penetrator trae relative to KP is oneof the following:Mt Text message: h+ti where t 2 TKK Key: h+Ki where K 2 KPCg;h Conatenation: h�g; �h; +g�hiSg;h Separation: h�g�h; +g; +hiEh;K Enryption: h�K; �h; +fjhjgK iDh;K Deryption: h�K�1; �fjhjgK ; +hiP� is the set of all strands s 2 � suh that tr(s) is a pene-trator trae.A strand s 2 � is a penetrator strand if it belongs to P�,and a node is a penetrator node if the strand it lies on is apenetrator strand. Otherwise we will all it a regular strandor node.
B. CARTER-WEGMAN HASH FUNCTIONSWe now develop Carter-Wegman universal lasses [7, 23℄to establish Lemma 4.2.Definition B.1. � : X ! Y is uniformly distributedi� � maps the uniform distribution on X to the uniformdistribution on Y . Thus,ard���1(A)�ard(X) = ard(A)ard(Y )for every A � Y .



Alternatively, � is uniform i� the inverse image of eahy 2 Y has ardinality ard(X)= ard(Y ).For any � : X ! Y , X is the disjoint union of the sets��1(y) for y 2 Y . Uniform distribution means that all thesesets have the same ardinality. Intuitively, uniformly dis-tributed maps deompose X as a \produt" Y �H.Example B.2. Let V;W be �nite dimensional vetor spaesover the �nite �eld Fq . An linear map T : V ! W is uni-formly distributed i� it is surjetive. This will be the ase i�dimV � dimkerT = dimW .Proof. If T is surjetive and w 2 W , then T�1(w) is ansubspae of dimension T�1(0).Definition B.3. A set of funtions F � Y X is n-stronglyuniversal i� ard(X) is at least n and for any pairwise dis-tint x1; : : : ; xn 2 X, the evaluation mappingf 7! hf(x1); : : : ; f(xn)iis uniform. Equivalently, for pairwise distint x1; : : : ; xn 2XPff 2 F : hf(x1); : : : ; f(xn)i = hy1; : : : ; ynig = 1(ardY )nThe de�nition requires that the x1; : : : ; xn be pairwise dis-tint. If some of the xi's oinide, then hf(x1); : : : ; f(xn)ilies on a proper subspae of Y n, in whih ase the evaluationmapping is non-uniform.Example B.4. If q � n, the spae of polynomial fun-tions p : Fq ! Fq with deg(p) � n � 1 is n-strongly univer-sal. This follows from linearity of the evaluation mappingp 7! (p(�1); : : : ; p(�n)) and Lagrange interpolation.As a speial ase, the spae of aÆne mappings x 7! ax + bon �nite �elds is 2-strongly universal.Note that the usual de�nition of n-strong universality doesnot require that ard(X) be at least n. However, withoutthis assumption, the following lemma fails.Lemma B.5. If F � Y X is n-strongly universal then Fis m strongly universal for m � n.Proof. If x1; : : : xm are pairwise distint, extend to a pair-wise distint sequene x1; : : : xn, whih exists sine ard(X)is at least n, and use the fat the omposition of uniformmappings is uniform. �Given x1; : : : x` 2 X, let us refer to a set of the formfi : 1 � i � `^xi = xg as an index lass. The set C of indexlasses learly partition the set f1; : : : ; `g.Lemma B.6. If F � Y X is n-strongly universal, then forany x1; : : : ; xn 2 X (distint or not) and y1; : : : ; yn 2 Y ,Pff 2 F : hf(x1); : : : ; f(xn)i = hy1; : : : ; ynig = � (ardY )�`or 0where ` � n is the number of distint x1; : : : ; xn.Proof. Consider the two ases: yi = yj whenever i; j be-long to the same index lass and yi 6= yj for some i; j be-longing to the same index lass. In the �rst ase, we anredue the result to the previous ase by hoosing an i ineah index lass. In the seond ase, there learly an be nof 2 F in the preimage of hy1; : : : ; yni. �We write hx1; : : : ; xni 1 hy1; : : : ; yni to mean that orre-sponding elements are distint, i.e. xi 6= yi for all i with1 � i � n.

Lemma B.7. If F � Y X is n-strongly universal, then forany ` � n and x1; : : : ; x` 2 X, y1; : : : ; y` 2 YPff 2 F : hf(x1); : : : ; f(x`)i 1 hy1; : : : ; y`ig � 1� `ardY :Equivalently, Pff 2 F : 9i � ` : f(xi) = yig � `=ardY .Proof. Assume �rst x1; : : : ; x` 2 X are distint. By `-strong universality, for eah z1; : : : ; z` 2 Y withPff 2 F : hf(x1); : : : ; f(x`)i = hz1; : : : ; z`ig = � 1ardY �`:Now sum the previous inequality over z1; : : : ; z` for whihfor all i; 1 � i � `, zi 6= yi. The ardinality of this set is�ardY � 1�` so learly in this asePff 2 F : hf(x1); : : : ; f(x`)i 1hz1; : : : ; z`ig��1� 1ardY �`�1� `ardY :as laimed.Now onsider the ase in whih there is one index lass,but the yi's are all distint. In this ase, the only way to gethf(x1); : : : ; f(x`)i 1 hy1; : : : ; y`i is by hoosing the ommonvalue of f(xi) distint from all y1; : : : ; y`. By Assumption 3,the likelihood of this happening is 1� `= ard(V ).The other ases fall somewhere in between. The ase inwhih yi = yj whenever i; j belong to the same index lasseasily redues to the �rst ase, by seleting an iC 2 C foreah index lass C.In the general ase, note that the inequality worsens (thatis, the left hand side dereases) as the number of yj 's in-reases for eah index lass. Thus if we assume the numberof yj 's is as large as possible for eah index lass C, namelyard(C) we obtain:Pff 2 F : hf(x1); : : : ; f(x`)i 1hz1; : : : ; z`ig�YC2C�1� ardCardY ��1�XC2C ardCardY=1� `ardY


