
Camera ready: March 9, 2000 1

Authentication Tests
�

Joshua D. GUTTMAN F. Javier THAYER Fábrega

The MITRE Corporation�
guttman,jt � @mitre.org

Abstract

Suppose a principal in a cryptographic protocol creates
and transmits a message containing a new value � , which
it later receives back in cryptographically altered form. It
can conclude that some principal possessing the relevant
key has transformed the message containing � . In some cir-
cumstances, this must be a regular participant of the proto-
col, not the penetrator.

An inference of this kind is an authentication test. We
introduce two main kinds of authentication test. An outgo-
ing test is one in which the new value � is transmitted in
encrypted form, and only a regular participant can extract
it from that form. An incoming test is one in which � is
received back in encrypted form, and only a regular partic-
ipant can put it in that form. We combine these two tests
with a supplementary idea, the unsolicited test, and a re-
lated method for checking that certain values remain secret.
Together, they determine what authentication properties are
achieved by a wide range of cryptographic protocols.

In this paper we introduce authentication tests and il-
lustrate their power, giving new and straightforward proofs
of security goals for several protocols. We also illustrate
how to use the authentication tests as a heuristic for finding
attacks against incorrect protocols. Finally, we suggest a
protocol design process.

We express these ideas in the strand space formal-
ism [21], and prove them correct elsewhere [8].

1 Introduction

A major reason why cryptographic protocol analysis is
hard is that the attacker has so many choices. He may ap-
ply a repertory of actions in any order to any message he
observes, and he may submit the results in place of any
legitimate message. In addition, the attacker may initiate

�
This work was supported by the National Security Agency through US

Army CECOM contract DAAB07-99-C-C201. Appears in Proceedings,
2000 IEEE Symposium on Security and Privacy, Oakland CA, May 2000.

new sessions of the protocol, or await sessions initiated by
regular participants [6]. Consequently, even though cryp-
tographic protocols are simple finite state activities in the
absence of an attacker, the analysis of possible attacks is
not necessarily decidable; indeed, even if the protocols are
restricted so that the problem is decidable, it may not be
tractable [2]. However, everything the penetrator can ac-
complish can still be achieved if his actions are restricted to
a particular order. Although this “normal form lemma” is
not new [4, 2], it allows us to justify new methods for estab-
lishing authentication and secrecy [8]. In the current paper,
we will describe but not prove these methods, and illustrate
their significance.

An important consequence of the normal form is that,
for certain encrypted components of messages, the penetra-
tor cannot apply any non-trivial actions. Those components
may be discarded, but if they are delivered to a regular par-
ticipant, they can only be delivered unaltered. Only regular
protocol participants can change these encrypted compo-
nents in a way that will be accepted by other regular partic-
ipants. Therefore, this kind of component may be regarded
as an authentication test: if the contents are later received in
transformed form, then it can only be a regular participant,
not the penetrator, who has transformed them. In favorable
circumstances, it can only be one regular participant, the
intended one, who has thereby been authenticated.

We embody these ideas in three authentication results
(Section 2.2, Authentication Tests 1–3). These results al-
low us to establish many authentication results without any
further consideration of the dynamic execution of protocols,
which could involve the activity of several principals. In-
stead, we need only consider the possible behaviors of each
principal independently. In Section 3, we illustrate the point
by proving the authentication properties of some familiar
protocols and identifying counter-examples to some. The
protocols we consider are Needham-Schroeder-Lowe [14,
11], Otway-Rees [16], Neuman-Stubblebine [15], and Woo-
Lam [22, 23]. It is routine to apply the method to new pro-
tocols, whether they use public keys or shared symmetric
keys. Apparently, the analysis can be automated in the style

of [18].
However, not every protocol can be verified using these

methods. In particular, for the authentication theorems to
apply, the protocol must not allow the authentication test
components to be proper sub-messages of other messages
manipulated by the regular participants. We end (Section 4)
by suggesting a design process that structures protocols
around the authentication tests that show them to be com-
prehensively correct.

In this paper we emphasize the authentication tests them-
selves (Section 2.2) and the ease of applying them (Sec-
tion 3). The proofs justifying the authentication tests
are more complicated, and we have segregated them else-
where [8]. The authentication tests are like the interface
to a module; the implementation internal to the module is
complex, but the interface is simple, so one can use its ser-
vices without worrying about the internals. For some pur-
poses it would be helpful to enlarge the interface. There are
additional services, or ways of drawing conclusions about
authentication protocols, that the proof methods of [8] can
offer. One addition would make explicit the order in which
events have occurred; this gives a convenient way to reason
about whether a key has been generated recently. Another
addition would model explicitly the way a key may be gen-
erated by hashing other values (as is used e.g. in the SSL and
TLS protocols [5]). However, the authentication tests cur-
rently exported in Section 2 already apply to a wide range
of protocols, and give highly intuitive explanations for why
they are right, or where they go wrong.

1.1 Strand Spaces

We very briefly summarize the ideas behind the strand
space model [21]; see also Appendix A.�

is the set of messages that can be sent between prin-
cipals. We call elements of

�
terms.

�
is freely generated

from two disjoint sets, � (representing texts such as nonces
or names) and � (representing keys) by means of concate-
nation and encryption. The concatenation of terms � and�

is denoted � � , and the encryption of
�

using key � is
denoted ��� � � 	�
 . (See Appendix A.3.)

A term � is a subterm of another term �� , written ������ ,
if starting with � we can reach �� by repeatedly concatenat-
ing with arbitrary terms and encrypting with arbitrary keys.
Hence, �������� ��� 	
 , except in case ����� . The subterms of
� are the values that are uttered when � is sent; in ��� ��� 	
 , �
is not uttered but used. (See Definition A.7.)

A strand is a sequence of message transmissions and re-
ceptions, where transmission of a term � is represented as� � and reception of term � is represented as ��� . A strand
element is called a node. If � is a strand, ���! �"�# is the "%$'&
node on � . The relation (*)+(, holds between nodes (
and (- if (/.0���! �"�# and (-1.2�3�! �" �54 # . Hence, (6)678(-

means that (9.2���! �"�# and (::.2���! 3;<# for some ;>=�" . The
relation (�?@(- represents inter-strand communication; it
means that term AB(DCFEG. � � and node term AB(:HFEI.J��� .

A strand space K is a set of strands. The two relations
) and ? jointly impose a graph structure on the nodes of
K . The vertices of this graph are the nodes, and the edges
are the union of) and ? .

We say that a term � originates at a node (�.L�3�M �"�# if
the sign of (is positive; �N� term AO(:E ; and ���� term A����! �"�P#�E
for every "�RQ8" . Thus, (represents a message transmission
that includes � , and it is the first node in � including � . If
a value originates on only one node in the strand space, we
call it uniquely originating; uniquely originating values are
desirable as nonces and session keys.

A bundle is a causally well-founded collection of nodes
and arrows of both kinds. In a bundle, when a strand re-
ceives a message S , there is a unique node transmitting S
from which the message was immediately received. By con-
trast, when a strand transmits a message S , many strands
(or none) may immediately receive S . (See Definition A.3.)
The height of a strand in a bundle is the number of nodes on
the strand that are in the bundle. Authentication theorems
generally assert that a strand has at least a given height in
some bundle, meaning that the principal must have engaged
in at least that many steps of its run.

A strand represents the local view of a participant in a
run of a protocol. For a legitimate participant, it represents
the messages that participant would send or receive as part
of one particular run of his side of the protocol. We call a
strand representing a legitimate participant a regular strand.
For the penetrator, the strand represents an atomic deduc-
tion. More complex actions can be formed by connecting
several penetrator strands. While regular principals are rep-
resented only by what they say and hear, the behavior of the
penetrator is represented more explicitly, because the values
he deduces are treated as if they had been said publicly.

We partition penetrator strands according to the opera-
tions they exemplify. E-strands encrypt when given a key
and a plaintext; D-strands decrypt when given a decryption
key and matching ciphertext; C-strands and S-strands con-
catenate and separate terms, respectively; K-strands emit
keys from a set of known keys; and M-strands emit known
atomic texts or guesses. (See Definition A.9.)

1.2 New Components

When a node transmits or receives a concatenated mes-
sage, the penetrator—using C-strands and S-strands—has
full power over how the parts are concatenated together.
Thus, the important units for protocol correctness are what
we call the components. A term ��T is a component of � if
� T ��� , � T is not a concatenated term, and every � C �.U� T such
that � T ��� C �6� is a concatenated term. Components are ei-

2

ther atomic values or encryptions. (See Definition A.8.) For
instance, the three components of the concatenated term

� ��� ���,� ��� ����� � 	
�� � 	
�� �	�
are
�

, ��� � � � ��� ��� � � 	
 � � 	
 � , and � � . We say � is a com-
ponent of a node (if � is a component of term AO(:E .

A term � is new at (. �3�M �"�# if � is a component of
term AB(:E , but � is not a component of node �3�! 3;<# for every
; QJ" (Definition A.8). A component is new even if it has
occurred earlier as a nested subterm of some larger compo-
nent
�
�
 ���
�
�
���
�
�
 � 	

�
�
 .

When a component occurs new on a regular node, then
the principal executing that strand has done some crypto-
graphic work to produce the new component. The idea of
emphasizing components and the regular nodes at which
they occur new is due to Song [18].

2 A Method for Authentication

In this section we describe our method for establish-
ing authentication results. We first show how to establish
whether keys are accessible to the penetrator or not (Sec-
tion 2.1). We then introduce the notion of a transformed
edge, in which a value is sent out and later received in a
new component, and the notion of a transforming edge, in
which a value is received and later sent out in a new com-
ponent. We define two main kinds of authentication tests,
and state a theorem about each, showing what other regular
nodes must exist in a bundle, if that bundle contains an ex-
ample of an authentication test. A third, simpler variant of
an authentication test is also useful, especially when a key
server must authenticate its clients. Proofs are in [8].

2.1 Penetrable Keys and Safe Keys

Given a strand space K , we can inductively define the set
of keys that may become known to the penetrator. We use
the relation ��� defined in Definition A.8; � T ���U� means
that � T occurs as a subterm of � in a position where all en-
cryptions surrounding it use keys ����� . Thus, either �
can be constructed from � T simply by (possibly repeated)
concatenation, or else � can be written in the form

�
�
 ����
�
�
1� T
�
�
 � 	

�
�

where ����� and the dots hide only concatenations and
other encryptions with keys in � . The set ��� C means the
set of inverses of keys in � .

In the base case of this definition we refer to ��� , which
is the set of keys known to the penetrator initially, apart
from any protocol activity (Definition A.9).

Definition 2.1 Let � T . ��� .

Let ��� 7 C .����! #" , where �$�%" if and only if there
exists a positive regular node (&� K and a term � such that
� is a new component of (and �L�('*),+- � .
� ./. � �0� .

Thus, either a penetrable key is already penetrated (� �), or
else some regular strand puts it in a form that could allow
it to be penetrated, because for each key protecting it, the
matching decryption key is already penetrable. The justifi-
cation for this definition is that any key that becomes avail-
able to the penetrator in any bundle is a member of � .

Proposition 2.2 Let 1 be a bundle with (�21 and
term AB(:EG.�� . Then �3�4� .

� is a conservative approximation, in that it may be larger
than the set of keys that the penetrator can really capture.
This is the case when the strand that would put the key in
danger is not contained in any bundle. We also use the no-
tion of a safe key.

Definition 2.3 Let 5 T be the set of keys � such that � ��
�6� and there is no positive regular node (&� K and term �
such that � is a new component of (and ���6� .

Let 57� 7 C be the set of keys � such that �+�� ��� , and
for every positive regular node (%�6K and new component
� of (, every occurrence of � in � lies within an encryption
using some key � T where � � CT �85 � :

�
�
N����
�
�
G�9
�
�
 � 	
�:#
�
�

5 .;. � 57� . When �<�=5 , we say that � is safe in K .

Evidently, the set of safe keys is disjoint from � . However,
there are strand spaces K in which there are keys � such
that � ��&�	 =5 . In practice, protocol secrecy goals usually
amount to showing that keys are in either 5 T or 5 C . Larger
values of " seem rarely to occur.

Showing that a private key or a long-term symmetric key
is in 5 T typically reduces to checking that it is assumed
not to be in � � , because protocols generally avoid emitting
terms containing these keys.

Many protocols expect session keys to be generated by
a key server, which sends them encrypted in the long-term
keys of two principals, and no principal ever re-encrypts
a session key under a new key. In a particular session, a
session key � may be sent encrypted with long-term keys
are not in ��� (or, if they are asymmetric, their inverses are
not in ���). If the server never re-sends the same session
key � in a different session, we can infer that �>�?5 C .

There also exist protocols in which the session key is
translated, in the sense that it is sent out originally encrypted
with one key and is later re-encrypted by another principal
under a new key. These protocols can also be correct, al-
though they demand special care. The TMN protocol is a
(flawed) example [19]. In the case of a correct protocol of

3

this form, it would be necessary to show that the session key
is in 57� for some "I= 4 .

However, because 5 T and 5 C cover typical protocols, our
method for proving secrecy is particularly easy to use. It is
also easy to prove that a non-key data value such as a nonce
is kept secret in some run of a protocol; one simply shows
that every new component containing it protects it with an
encryption ��� � � 	
 where � � C �#57� . Again, typically " . �
or
4
.

2.2 Facts about Authentication Tests

Fix some strand space K . We identify segments of regu-
lar strands that amount to tests. Their presence will guaran-
tee the existence of other regular strands in the bundle.

Definition 2.4 The edge (DC)67�(-H is a transformed edge
[respectively, a transforming edge] for �8� � if (1C is posi-
tive and (:H is negative [respectively, (1C is negative and (:H
is positive], � � term AB(DC�E , and there is a new component ��H
of (H such that � �8� H .
Thus, a transformed edge emits � and later tests for its pres-
ence in a new form. A transforming edge receives � and
later emits it in a new form. We have chosen to interpret a
“form” in which � occurs as a component in which it occurs.

Definition 2.5 �G. ��� � � 	�
 is a test component for � in (if:

1. � �6� and � is a component of (;

2. The term � is not a proper subterm of a component of
any regular node (: �>K .

The edge (T)/7�(C is a test for � if � uniquely originates
at (T and (T)67 (C is a transformed edge for � .

Clause 2 in the definition of test component ensures that the
penetrator cannot get any benefit from building a larger term
to send to a regular participant, who might then emit some
new message of value to the penetrator.

Tests can use their test components in at least two dif-
ferent ways. If the uniquely originating value is sent in en-
crypted form, and the challenge is to decrypt it, then that is
an outgoing test. If it is received back in encrypted form,
and the challenge is to produce that encrypted form, then
that is an incoming test. These two kinds of test are illus-
trated in Figure 1.

Definition 2.6 The edge (-T)/76(,C is an outgoing test for
� in � . ��� � � 	
 if it is a test for � in which: � � C ��;� ; �
does not occur in any component of (:T other than � ; and �
is a test component for � in (-T .

The edge (RT)/7�(,C is an incoming test for � in �%C .
��� � � 	
 if it is a test for � in which � ���� and � C is a test
component for � in (C .

�
� � � ��� � � 	�
 . � � � C �� P�

�
�

������
� � � �

	�
�

�
� � � � �

�
�

����������
� � � ��� � � 	

	�
�
� �� P

� means � originates uniquely here

� means � is a component of this node

Figure 1. Outgoing and Incoming Tests

The authentication test results that follow give a powerful
method for establishing the authentication goals of proto-
cols.

Authentication Test 1 Let 1 be a bundle with (,��81 , and
let ()67 (- be an outgoing test for � in � .

1. There exist regular nodes S �S � 1 such that � is a
component of S and S)�7 S is a transforming edge
for � .

2. Suppose in addition that � occurs only in component
��C .J��� � C � 	
 + of S , that ��C is not a proper subterm of
any regular component, and that � � CC ��4� . Then there
is a negative regular node with �%C as a component.

The meaning of this assertion is illustrated in Figure 2. In
this diagram, the two nodes marked � represent (and (D .
The result assumes that � originates uniquely here (shown
by the �), and that the decryption key � � C is safe. The
diagram does not represent the assumption that � not be
a proper subterm of any regular component, which being
non-local is hard to display. The test establishes that 1 also
contains regular nodes S and S (marked � at right) with a
transforming edge for � . With the assumptions on � C given
in clause 2, there is also a negative regular node, shown with
a � on the bottom line, of which � C is a component.

A similar result holds for incoming tests; it can be used
to infer authentication results for protocols in which a nonce

4

�
� � � ��� � � 	�
 . � �&� C �� P �

�

�
�

������������
� � � �

	�
�
� � � � � � ��C

	�
�
�
�

������������

� means this regular node must exist

� with additional assumptions on � C

Figure 2. Authentication Provided by an Out-
going Test

�
� � � � � � � � C �

�

�
�

����������
� � � ��� � � 	

	�
�
� �� P � �� . ��� � � 	

	�
�

�
�

����������

Figure 3. Authentication Provided by an In-
coming Test

is emitted in plaintext, for instance as a challenge, and later
received in encrypted form.

Authentication Test 2 Let 1 be a bundle with (, �?1 , and
let ()67 (- be an incoming test for � in �� . Then there exist
regular nodes S �S ��81 such that �� is a component of S
and S)/7 S is a transforming edge for � .

The meaning of this assertion is illustrated in Figure 3 using
the same conventions. Although in this paper we will make
no use of it, the outgoing and incoming authentication tests
also establish an ordering on the nodes, as (occurs before
S and S , while (: occurs after. The nodes are ordered
(�� S��2S �� (- in the causal ordering given in Defi-
nition A.5. The principal executing (and (, can regard a
session key generated at S as “fresh,” because it was cre-
ated more recently than the beginning of his current run.

The authentication tests are also valid when (and (, are
not actually on the same strand, but (is a node known to be
in a bundle and to have uniquely originated the test value � ,
and (: is a node on a different strand that later receives � in
transformed form.

The authentication property achieved by an unsolicited
test is less informative, but frequently useful, for instance
when a key server authenticates its clients.

Definition 2.7 A negative node (is an unsolicited test for
� .J��� � � 	
 if � is a test component for any � in (and � ��4� .

Authentication Test 3 Let 1 be a bundle with (�41 , and
let (be an unsolicited test for �G.���� � � 	
 . Then there exists
a positive regular node S � 1 such that � is a component
of S .

3 Showing Protocol Correctness

In this section we apply the authentication tests of
Section 2.2 to several familiar examples. They are the
Needham-Schroeder-Lowe public key protocol [14, 11], the
Otway-Rees protocol [16, 1, 21], the Neuman-Stubblebine
protocol [15, 20], and the Wool-Lam protocol [22, 23]. We
do so to illustrate the ease and directness with which these
theorems lead to authentication results.

It is remarkably easy to find the outgoing, incoming,
and unsolicited tests that provide a protocol’s authentica-
tion guarantees, assuming that the protocol does not allow
its test components to occur in nested contexts. That would
violate Clause 2 of the definition of test component (Defini-
tion 2.5). The method works for public-key protocols, and
for shared symmetric key protocols also.

Outgoing tests provide the authentication guarantees in
the Needham-Schroeder-Lowe protocol. In the Otway-Rees
protocol, each of the initiator and the responder uses an out-
going test to authenticate a server strand. The server uses an
unsolicited test to establish that the initiator and responder
have each sent a message. The Neuman-Stubblebine pro-
tocol uses a combination of incoming tests and unsolicited
tests. It is a two-part protocol. The second part is flawed,
both in itself [9] and in undermining the guarantees that
part I provide in isolation [20]. We will use the authenti-
cation test results to explain both why the first part works
in isolation, and also why the addition of the second part
undermines its guarantees.

We give a detailed exposition in Section 3.1, so that the
reader can see just how our method works. The discussion
in Sections 3.2–3.4 is less detailed, as there is no point in
repeating the same routine checks.

3.1 Needham-Schroeder-Lowe

Let � name be a distinguished set with � name � � . In the
form we consider, the Needham-Schroeder-Lowe protocol
involves two types of regular strands:

1. Initiator strands with trace

� � ��� �	��� � 	
�� � ��� ������� � � 	
 � � ��� ���F� 	
�� #

5

where � � � � name, ���! �	� �U� but �	�6��8� name.
Init � � � ��� ����� will denote the set of all strands
with the trace shown.

2. Complementary responder strands with trace

��� ��� � � � � 	
 � � ��� � � � � � � 	
 � � ��� � � � 	
 � #
where � � � � name, � � � � � � but � � �� � name.
Resp � � � �	� ����� will denote the set of all strands
with the trace shown.

Fix a strand space K in which all regular strands are of
these forms. Correctness depends on the assumption that
the “public key of” mapping ��� ���? �	� is injective.

We note from the form of the regular strands that, for
regular nodes (, � �0� implies � �� term AO(:E . Hence,
Definition 2.3 yields a result about the secrecy of keys:

Proposition 3.1 For K , � . ���? =5 T , so � .J��� .

Proposition 3.2 Let 1 be a bundle in K , and � be a re-
sponder strand in Resp � � � �	� ����� with 1 -height 3. As-
sume � � C� �� ��� . Suppose �	� �. ��� and ��� is
uniquely originating. Then there is an initiator strand
�F!� Init � � � � � � � � with 1 -height 3.

PROOF. We show first that the second and third nodes on
� form an outgoing test for � � . ��� � � � � � � 	
 � is a test
component for � � in ���! �
!# , because it contains � � , and no
regular node has any term of this form as a proper subterm.
Checking the assumptions, it follows that ���! �
!#)�7����! � #
is an outgoing test for � � in ��� ������� � � 	
 � .

By Authentication Test 1, there exist regular nodes
S �S � 1 such that ��� �	�6�	� � � 	
�� is a component of S
and S)/7 S is a transforming edge for � � .

Because S is a negative regular node and
��� ������� � � 	
�� . term ABS E , S is �3� 3 �
!# for some
initiator strand � . Init � � � � � � � � . Since
term A��3� � �
M#�E . ��� � � � � � � 	
 � , we see that ��6. � ,� -. � , �>� .�� � , and � � .�� � . The 1 -height of � is 3,
because ��� 3 �
M#)/7U�3�F� � # is a transforming edge in 1 . �
The same proof explains the extent to which the original
Needham-Schroeder protocol achieved authentication. In
that version, the outgoing test was instead ��� � � ��� � 	
�� ,
lacking

�
’s name. All the reasoning is the same, ex-

cept it leads only to the conclusion that there is a strand
� � Init � � � �	� ����� , for some

� , with 1 -height 3.
Lowe’s attack [10] supplies a scenario in which a respon-
der strand � � Resp � � � � � � � � coexists with an initiator
strand � !� Init � � � 3 � � � � � where

� �. � .
We will also prove the initiator’s authentication guaran-

tee. The proof is very similar to that of Proposition 3.2,
except that it is necessary to use the second part of Authen-
tication Test 1 as well as the first part of it.

� � �
� ��� � �

�� � ��� � �
�� � � ��� �� �

��

������������
� ��� �� �

� ��� � � ��!#" $&% � �'�(")+* �-,
� �.� � � ��!#" $&% � �'�(")+* �-, !#" $&/ � �'�(")+* �0,
��� � � !#" $ %214365 ") * �7, !#" $ /814365 ") * �0,
��� � � !#" $ %214365 ") * �7,

Figure 4. Message Exchange in Otway-Rees

Proposition 3.3 Let 1 be a bundle in K , and � be an ini-
tiator’s strand in Init � � � � � � � � with 1 -height 3. As-
sume � � C� �� � C9 �� � � , and suppose that � � is uniquely
originating. Then there is a responder strand � 3�
Resp � � � �	� ����� with 1 -height 2.

PROOF. Observe that the first two nodes of � are an out-
going test for �	� in ��� �	� � � 	
�� . As in the previous proof,
using the first part of Authentication Test 1, it follows that
there is a responder strand �� � Resp � � � �	� � � � with
1 -height 2.

To see that � � .;��� , we use the second part of Authen-
tication Test 1 to show that there is a negative regular node
with component ��� �	� �>� � � 	
�� . This can only lie on some
initiator strand �� . By the form of an initiator strand, � �
originates on � . Since �	� originates uniquely, �� D. � , so
� � ./��� . �
3.2 The Otway-Rees Protocol

The Otway-Rees protocol (Figure 4) uses long-term
symmetric keys shared with a key server to distribute a
new session key for a conversation between two clients.
The protocol does not establish that the same key is de-
livered to both � and

�
[21], only that if either � or

�
reaches the end of its strand, then the other has submitted
the expected matching original request ��� � �6: � � � 	
��0,
or ��� �	�2: � � � 	
��7, . Also, � is not disclosed, assuming
the server chooses a uniquely originating session key � .

3.2.1 Strand Spaces for Otway-Rees

The regular strands are defined to be of the form:

1. Initiator strands in Init � � � � �:� ���� , with trace:

� � : � � ��� �;: � � � 	
 �-, F�<: ��� �J�8� 	
��7, #

6

2. Responder strands in Resp � � � � �:� ��> �� �� �
with trace:

�-� : � � �
� : � � � ��� �;: � � � 	
��0,
� :�� ��� �J�8� 	
��0,
� :�� #

3. Server strands in Serv � � � � � � � �:� ��<� with
trace:

�R� : � � ��� ��� : � � � 	
��-, ��� ���0: � � � 	
��0,
� : ��� ���D��� 	
 �-, ��� �	� ��� 	
 �0, #

The principal active in Init � � � � �:� ���� is � , while the
active principal in Resp � � � � �:� %�> � � � is

�
.1 We de-

fine �%� to be the set of long-term keys, i.e. the range of the
injective function � ��� for � � � name. All long-terms keys
are symmetrical: �<���%� implies � .�� � C .

We will use three side assumptions.

1. We assume that the responder’s nonce orig-
inates on that strand, which implies that
Resp � � � � � � �� � � .	� if �L�
� .

2. We assume that the terms � and � , which are sim-
ply forwarded by the responder with no interpretation
or processing, contain no proper encrypted subterms.
That is, ��� �-� 	
 ��� and ��� �R� 	
 �.	� implies

Resp � � � �� � � .���
and likewise for � . We prove elsewhere [8] that this
assumption does not mask any possible failure of the
protocol.2

3. We assume that the server generates keys in a reason-
able manner, in the sense that Serv � � � %�<� .�� un-
less: � ����6� ; ��.�� � C ; � is uniquely originating;
and � ����%� . It follows from the unique origination
assumption that the cardinality � Serv � � � ��<����� 4

for
every � .

1We sometimes use an asterisk to indicate a union over a particular ar-
gument position, and a double asterisk to indicate a union over all remain-
ing argument positions. Thus, for instance, Serv � ����������������������� is the set
of all server strands emitting the session key � ; Resp � ����� ��!"��#$���%�&�'���
is the set of all responder strands with initiator � , responder � , nonce
! , round number # , session key � , and any value of the remaining
parameters. We will also abbreviate a form like Serv � ����������������������� to
Serv � �'������� .

2In effect, since the responder strands do not depend on the form of(
, the penetrator can splice out any value) not meeting the constraint and

splice another value)+* into its position. Later, after the regular participant
has processed the message,) * will be emitted. The penetrator then splices
) back into position.

When authentication tests are applied to a protocol using symmetric
cryptography and a key server, this trick may always be applied. There
is never a problem about whether unconstrained “

(
-terms” are compat-

ible with the assumption that the test term not be a proper subterm of a
regular component.

Let K be a strand space satisfying these conditions.

3.2.2 Otway-Rees Authentication

Structurally, Otway-Rees achieves its authentication guar-
antees in three steps.

1. The long-term keys � � are not uttered by the protocol.
Thus, if � �
� � and � ��8� � , then � �&5 T . Hence,
if the server distributes a session key � to principals
with uncompromised keys, then � �?5 C .

2. The server strand receives an unsolicited test that au-
thenticates the initial positive node of the initiator and
responder.

3. The initiator strand contains an outgoing test for � � in
��� �	�2: � � � 	
��7, ; this authenticates the server strand.
Likewise, the responder strand contains an outgoing
test for ��� in ��� ���6: � � � 	
��0, , which authenticates
the server strand.

The initiator authenticates the responder only in that it au-
thenticates the server strand, which has authenticated the
occurrence of the responder’s initial positive node. The sit-
uation is symmetrical for the responder authenticating the
initiator.

Because � �� term AB(:E for long-term keys � �,� � and
regular nodes (, Definition 2.3 immediately entails �%� �
5<T� /� � . Because the initiator and responder strands emit
no new components in which keys occur, a session key can
be compromised only if the server sends it out encrypted
with a compromised long-term key. By the unique origi-
nation assumption on session keys, if it is sent out under
uncompromised long-term keys, then the server will never
re-use it with compromised long-term keys. Summarizing
this, we have:

Proposition 3.4 � � � 5 T� � � . If � ���: �� 9 �8�� � � and
Serv � � � � � � %�<�1�.	� then �>�?5 C .
Turning now to the server’s authentication guarantee, we
use unsolicited tests.

Proposition 3.5 Suppose that 1 is a bundle in K ; � �. � ;
� ���R %� 9 ����J� � ; and �?� Serv � � � � � � � �:� � � has
1 -height 1.

Then there exist � � � Init � � � � � �:� � � and �.- �
Resp � � � � � �:� � � � such that � � has 1 -height 1 and �/-
has 1 -height 2.

PROOF. The terms ��� � � : � � � 	
 �-, and
��� � � : � � � 	
 �0, are unsolicited tests, and therefore
(Authentication Test 3) occur on positive regular nodes in
1 . When � �. � , the latter occurs positively only on a node
��� - �
M# where � - � Resp � � � �	� �:� � � � .

7

As for ��� �	��: � � � 	
��7, , it may occur positively either
on a strand � � � Init � � � �	� �:� � � or as � or � in a
strand � - � Resp � � � �� � � or Resp � � � �� � . Let � be the
set of all regular nodes in 1 having ��� � � : � � � 	
 �-, as
a component. Since � is non-empty, it has a ��� -minimal
member (-T (Proposition A.6). Since neither � nor � oc-
curs new on a responder strand, (:T can only be of the form
��� �� 4 # for � � � Init � � � ��� �:� � � . �
If � . � , then ��� �;: � � � 	�
 �7, . ��� �;: � � � 	�
 �0, , so
the server can no longer be sure that both an initiator strand
and a responder strand are present. This is the explana-
tion for the odd attack, attributed to Michael Goldsmith, in
which “the responder thinks he wants to talk to himself, but
he really doesn’t.”

��� ���
	 �
:
�<� ���

�	 ��� �
�
:
��� ��� !#" $ / � ���(") * �0,

��� ���
	 �
:
��� � !#" $ / � ���(") * �0, !#" $ / � ���(") * �0,

which causes a normal server strand, despite the non-
existence of any active initiator.

Proposition 3.6 Suppose that 1 is a bundle in K ; � �. � ;
� ��� �� �6� ; and � � � Init � � � �	� �:� %�<� has 1 -height 2.

Then there exists �4� Serv � � � � � � �:� ���� with 1 -
height 2.

PROOF. ��� �� 4 #)/7 �3� �� �
M# is an outgoing test for �	� in
��� � � : � � � 	
 �7, . Therefore there is a regular transform-
ing edge for � � (Authentication Test 1). By inspection, this
can only lie on a server strand � � Serv � � � � � � �:� ���� .
�
Proposition 3.7 Suppose that 1 is a bundle in K ; � �. � ;
� 9 �2��0� � ; and �.- � Resp � � � � � �:� ��> � � � has 1 -
height 3.

Then there exists � � Serv � � � � � � �:� %�<� with 1 -
height 2.

The proof is similar to that of Proposition 3.6.
These three theorems exhaust the authentication that this

protocol actually achieves. Consider, for example, the ini-
tiator’s guarantee that the responder has been active in a
bundle 1 containing a strand � � in Init � � � ��� �:� ���� .
It follows from Proposition 3.6, which establishes that the
bundle contains some ��#� Serv � � � � � � �:� ���� , to-
gether with Proposition 3.5, which further shows that some
��-	� Resp � � � � �:� � � � has 1 -height 2. Because Propo-
sition 3.5 does not constrain the session keys, the Otway-
Rees protocol cannot possibly guarantee that the respon-
der strand (even if completed) will receive the same session
key [21].

� � �

� :6C �
�

� � : H �
� �

�
�

������
� :�� �

� �

�
� � :�� �

�
�

������

: C . �?���
: H . � ��� �?�	�:� � � 	
��0, �	�
:�� . ��� � ���D� � � � 	
��7, ��� �>� � � � 	
��0, ���
:���. ��� �>�J� � � 	
 �0, ��� � � � 	

Figure 5. Neuman-Stubblebine Part I (Authen-
tication)

3.3 Neuman-Stubblebine

The Neuman-Stubblebine protocol [15] contains two
sub-protocols. In the first part the initiator and responder
use a key distribution server to authenticate one another and
acquire a session key. In the second part the key distribu-
tion server is not involved; the initiator re-presents a ticket
obtained in a run of part I, and the initiator and respon-
der re-authenticate one another. We will call the first sub-
protocol the authentication protocol and the second sub-
protocol the re-authentication protocol. In the authentica-
tion sub-protocol, a key distribution center generates a ses-
sion key for an initiator (a network client) and a responder
(a network server); the message exchange is shown in Fig-
ure 5. This session key is embedded in encrypted form in a
re-usable ticket of the form ��� �>��� � 	
 �0, .

Strands of the form shown in the columns la-
belled � ,

�
, and � in Figure 5 will be called

Init � � � � � � � �� � �� ���� , Resp � � � � � � � �� � ���� ,
and Serv � � � � � � � �� � %�<� , respectively.

As in Section 3.2, we define �%� to be the set of long-
term keys, i.e. the range of the injective function � ���
for � � � name. All long-terms keys are symmetrical:
� ���%� implies � . �&� C . We likewise assume that
the server generates keys in a reasonable way, meaning
that that Serv � � � %�<��.�� unless: � �� ��� ; �@. �&� C ;
� is uniquely originating; and � �� � � . Because of the
unique origination assumption, it follows that the cardinal-
ity � Serv � � � ������ � 4 for every � .

The initiator’s guarantee is simple to establish. Assum-
ing � ��� �� ��� , the edge : C) :�� on an initiator

8

� �>� ��� �>��� � 	
��0, � �

�
� �

� �>� ��� �>� � 	�
 �
� �

�
� � ��� � � � 	
 �

�
� �

Figure 6. Neuman-Stubblebine, Part II (Re-
authentication)

strand Init � � � � � � � �� � %�> ��<� is an incoming test for
� � in ��� � � � � � � � 	�
 �7, . It shows there is a server strand
��� � Serv � � � � � � �� � ���� . Assuming � 9 � ���� � , the
first node of ��� is an unsolicited test, showing the existence
of a responder strand � - � Resp � � � ��� � �� � � � of 1 -
height 2.

The responder’s guarantee is subtler. The over-
all strategy for showing it, given a strand � - �
Resp � � � ��� ���� �� �� ���� and assuming � ��� %� 9 � ��9��� ,
is the following:

1. As with Otway-Rees, �%� � 5 T� �� � . So for all � ,
� ��?5 C whenever Serv � � � � � � �� �G�. � .

2. ��� �>� � � � 	
��0, is an unsolicited test, which can origi-
nate only on a regular strand. This can only be a server
strand � � � Serv � � � � � �� � ��<� . By step 1, �<�85 C .

3. : H) : � is an incoming test for � � in ��� �	�F� 	
 .
Hence, there is a regular transforming edge pro-
ducing ��� �	�F� 	
 . This can lie only on the sec-
ond and third nodes of an initiator strand � � �
Init � ��3 � � � � �	� ��� � %�> � � .

4. Since ��� � �
!# contains ��� � ��>� � �� � � 	�
 ��� , and �<�=5 C ,
it follows that � � C� � � �� � . Moreover � � C� � � .�� � � � .

So ��� � ��>� �J�� � � 	
 � � , is an unsolicited test, which can
originate only on a regular strand. This can only be a
server strand �� � � Serv � ��O � 3 �>� � ��� � %�<� .

5. Since server strands construct uniquely originating
keys, and � originates on both ��� and � � , it follows
that ��� . � � . Hence, ��G. � ,

� . � , and �� � . � � .
Therefore, � ��� Init � � � � �	� �� � %�> � � , and this
strand has height at least three.

In the re-authentication sub-protocol, the key distribu-
tion center no longer needs to be involved; the initiator
again presents the same ticket to the responder, as shown
in Figure 6. However, in the presence of this additional
sub-protocol, step 3 in the responder’s guarantee can no
longer be completed. There is certainly still a transform-
ing edge producing ��� � � � 	
 , but this edge may lie either

� � �
� � ? �

�
� �
� � � �

� �

�
� � ��� ��� � 	
��7, ? �

� �

�
� � ��� � ��� � � � 	�
 �-, � 	�
 �0, ? �

�
� �
� ��� ���F� 	
��0, �

� �

Figure 7. Woo-Lam

on an initiator strand for Part I of the protocol, or on either
type of strand for Part II. By contrast, the initiator’s guar-
antee for Part I is unaffected, because we have not added
any strand with a transforming edge producing a term of
the form ��� � ���D� � � � 	
��7, .
3.4 The Woo-Lam Protocol

The Woo-Lam one-way authentication protocol [22] also
uses an incoming test, although in a flawed way [23, 3, 7]. It
is intended to allow an initiator (client) � to authenticate his
presence to a responder (networked service)

�
, by means

of long-term keys shared with a key server. � receives no
authenticating information about

�
. The behavior of the

protocol is given in Figure 7.
It is clear from Figure 7 how this is intended to work.

The)67 edge from
�

’s first transmission of � � to its final
reception of ��� �	��� 	
��0, is intended to serve as an incoming
test with that term as test component. The server’s edge
��� � ���� � � � 	
 �7, � 	
 �0,) ��� � � � 	
 �0, is intended as the cor-
responding transforming edge. It “authenticates” that the
server has found � � inside � ’s encrypted message.

Unfortunately, this description is enough to see what is
wrong with this protocol. There is another type of trans-
forming edge that produces a term of the same form as the
incoming test component. This is the initiator’s encrypting
edge, in the case in which the initiator is

�
. Thus, the at-

tacker can wait until
�

needs to authenticate itself to any
responder, and can then execute the attack shown in Fig-
ure 8. Woo and Lam state that they assume that a principal
can detect when it receives an encrypted unit that it has con-
structed itself; so perhaps this attack is not entirely “fair.”
See [3] for additional discussion.

Yet another problem (also discussed in [3]) exists. Even
when the server constructs the term ��� � � � 	�
 �0, , this term
does not fully determine the parameters to the server strand.
A second attack on Woo-Lam exploits this. The attacker
starts two sessions with the responder

�
. In one he purports

to be � ; in the other he uses some identity
�

he has some-

9

� � �
� � 	 �

� � 	 �
��� $ / �� �

��

���������� � $ / �� �

� � 	 ��
������

�
�� � !#" ��� � ")+* �0, 	 �

��

������������ !#" $&/ ")+* �0, 	 �� � �� � !#" � * ") * �0,	

Figure 8. Woo-Lam Infiltrated

how captured, so that ��� � � ��� . He then switches the
nonce �	� that

�
generates, intended to authenticate � , into

the session with
�

, so that
�

sends ��� � ���� � �F� 	
	�8, � 	
��0, to
the server. The server then generates ��� � � � 	
��0, , which is
the test component for

�
’s session with � . The attacker

then makes this appear to belong to that session. The auxil-
iary session with

�
fails to complete.

The Woo-Lam example is included here to illustrate how
useful the authentication tests are as a heuristic used to find
problems in protocols. They may be used for this purpose
even in a case in which some of the official constraints on
the authentication test are not satisfied. For instance, in the
Woo-Lam protocol, the test component ��� � � � 	
��0, could
also occur as a proper subterm of a regular node, namely
the message from a responder to the server. However, the
authentication tests still model the reasoning of a protocol
designer well enough to suggest where failures will lie.

4 Designing a Protocol: A Rational Recon-
struction

The outgoing, incoming, and unsolicited tests, and the
authentication results that apply to them, suggest a protocol
design process. At our level of abstraction, authentication
protocol design is largely a matter of selecting authentica-
tion tests, and constructing a unique regular transforming
edge to satisfy each.3 We will illustrate this process by an
example, a possible rational reconstruction leading to the
Needham-Schroeder-Lowe protocol.

It is important to start by deciding the goals to be
achieved. Let us assume that we intend to construct a proto-
col in which the initiator � and responder

�
each generate

3Of course, at other levels of abstraction there are other issues, concern-
ing how to negotiate cryptographic algorithms, how to evaluate whether
cryptography has been used safely, how to format messages, how to dis-
tribute certificates, how to align key streams, and so on, that are not con-
sidered at the current level of abstraction.

a fresh, secret value, �	� and ��� respectively. They want to
share these values between themselves without disclosing
them to any other party. Each should learn that the other
has proceeded far enough in the protocol to have received
the values. Perhaps the principals intend to hash the two
values together to produce a session key for an encrypted
conversation. We will try to accomplish our goals without
using excessive messages.

We must also stipulate the cryptographic conditions un-
der which the protocol will operate. In our case, the rel-
evant assumption is that each principal has an asymmetric
key pair, and can reliably obtain the other’s public key. Per-
haps some public key infrastructure is already in place.

From the goal it follows that � can use an authentica-
tion test using � � , while

�
can use an authentication test

using �	� . Given the assumption that the principals hold
each other’s public keys, this can be an outgoing test. � can
use a test component of the form ���
�
�
 � �
�
�
 � 	
�� assum-
ing � � C9 is uncompromised. Only

�
will be able to extract

��� from this encrypted form.
By contrast, an incoming test is not suitable.

For instance, an incoming component of the form
���
�
�
 ���
�
�
 � 	
),+� would ensure that the transforming
edge lies on a strand of principal

�
, but would sacrifice

the secrecy of �	� . Similarly, an incoming component of
the form ���
�
�
 �	�
�
�
 � 	
�� would preserve secrecy, but
would not ensure that the transforming edge lies on a
regular strand, much less a strand of principal

�
. Nested

encryption might yield a usable incoming test, but is more
computationally demanding and more fragile.

The value � receives back in the outgoing test must be
encrypted in a key whose inverse is uncompromised, pre-
sumably � � , to preserve secrecy. In addition, the first
term must contain � ’s name, as otherwise

�
does not know

which public key to use for the return message. Thus, the
first steps for � will be of the form

� ��� ����� � 	
��)�� ���
�
�
 ���
�
�
F� 	
��)
�
�

A similar argument shows that
�

will use an outgoing
test of the form:

�
�
!) � ���
�
�
 ���!
�
�
 � 	
��)�� ���
�
�
 ���!
�
�
 � 	
��)
�
�

We save a message by observing that
�

’s outgoing message
can be combined with � ’s incoming message. Hence,

�
’s

behavior can take the form:

� ��� � � � � 	
 �)
� ��� �	�6�	�
�
�
F� 	
��)�� ���
�
�
 �	�
�
�
F� 	
��)
�
�

If we try to be clever, we may guess that the presence of
��� will identify the run to � . In that case, we discard the
ellipsis in

�
’s outgoing message. Since there is no need to

10

add anything to the third message or after it, we obtain the
Needham-Schroeder protocol:

� ��� � � � � 	
 �) � ��� � � � � � 	
 �)�� ��� � � � 	
 �
A more systematic approach is to check whether the values
contained in

�
’s outgoing test component suffice to identify

a unique initiator strand as the transforming edge for � � .
They do not, because

�
’s identity is not determined. This

establishes that we need a correction like Lowe’s:

� ��� ����� � 	
��) � ��� ������� � � 	
��)�� ��� �	��� 	
 �
We have now selected the complete message structure for
the protocol. We must now check that we have done so
correctly. There are five questions that need to be answered:

1. Is the set of penetrable keys � disjoint from the de-
cryption keys for outgoing components, and disjoint
from the encryption keys for incoming and unsolicited
components?

2. Is any test component a proper subterm of a component
of term AB(:E for any regular node (?

3. Are there ever two types of transforming edge that
transform the same outgoing component, or produce
the same incoming component?

4. Do the parameters contained in the test components
completely determine the data values contained in the
desired authentication guarantee?

5. If a data value is intended to remain secret, is it always
protected by at least one key � whose corresponding
decryption key � � C is not penetrable?

The first two questions must be answered affirmatively to
apply Authentication Tests 1–3, which then entail that there
exist matching regular transforming edges.

But must those regular transforming edges lie on the
strands that we expect them to (Question 3)? A common
cause of authentication failure arises when there is also an-
other edge that can transform the same value (e.g. Neuman-
Stubblebine with re-authentication and Woo-Lam). Alter-
natively, we may know that a transforming edge of the kind
desired is present, but it may not determine all of the pa-
rameters that we would like to agree on (Question 4). This
was the reason for the failure of the original Needham-
Schroeder protocol, and for the second Woo-Lam failure.

If the third and fourth questions are answered affirma-
tively, then the authentication goals of the protocol will have
been met. Finally, question 5 assures that the protocol’s se-
crecy goals will also be met.

Protocol designers need to be alert when Question 3 and
Question 4 receive negative answers. Then there are unin-
tended services, situations in which the protocol itself of-
fers a transformation that can be abused by the penetrator.

We recommend that protocol designers, even when work-
ing without any formal framework, ask themselves whether
their protocols offer any unintended services to assist the
penetrator in achieving what the protocol regards as estab-
lishing authentication. Unintended services are easy to rec-
ognize, and they are a strong clue where an attack on a pro-
tocol may lie.

Acknowledgments We are grateful to Sylvan Pinsky and
Al Maneki for encouragement, support, and many technical
discussions. We are grateful to Jonathan Herzog for sug-
gesting that we develop these ideas from the germinal form
they had in another paper. He and Lenore Zuck also helped
us to improve the content of the paper.

References

[1] M. Burrows, M. Abadi, and R. Needham. A logic of au-
thentication. Proceedings of the Royal Society, Series A,
426(1871):233–271, December 1989. Also appeared as
SRC Research Report 39 and, in a shortened form, in ACM
Transactions on Computer Systems 8, 1 (February 1990),
18-36.

[2] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and
A. Scedrov. A meta-notation for protocol analysis. In Pro-
ceedings, 12th IEEE Computer Security Foundations Work-
shop. IEEE Computer Society Press, June 1999.

[3] J. Clark and J. Jacob. A survey of authentication protocol
literature: Version 1.0. University of York, Department of
Computer Science, November 1997.

[4] E. Clarke, S. Jha, and W. Marrero. Using state space ex-
ploration and a natural deduction style message derivation
engine to verify security protocols. In Proceedings, IFIP
Working Conference on Programming Concepts and Meth-
ods (PROCOMET), 1998.

[5] T. Dierks and C. Allen. The TLS protocol. RFC 2246, Jan-
uary 1999.

[6] D. Dolev and A. Yao. On the security of public-key pro-
tocols. IEEE Transactions on Information Theory, 29:198–
208, 1983.

[7] A. Durante, R. Focardi, and R. Gorrieri. CVS: A compiler
for the analysis of cryptographic protocols. In 12th Com-
puter Security Foundations Workshop Proceedings, pages
203–212. IEEE Computer Society Press, June 1999.

[8] J. D. Guttman and F. J. THAYER Fábrega. Authentication
tests and the normal penetrator. MTR 00B04, The MITRE
Corporation, February 2000. Also submitted for publication.

[9] T. Hwang, N.-Y. Lee, C.-M. Li, M.-Y. Ko, and Y.-H. Chen.
Two attacks on Neuman-Stubblebine authentication proto-
cols. Information Processing Letters, 53:103–107, 1995.

[10] G. Lowe. An attack on the Needham-Schroeder public key
authentication protocol. Information Processing Letters,
56(3):131–136, Nov. 1995.

11

[11] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Proceeedings of TACAS,
volume 1055 of Lecture Notes in Computer Science, pages
147–166. Springer Verlag, 1996.

[12] G. Lowe. Casper: A compiler for the analysis of security
protocols. In 10th Computer Security Foundations Work-
shop Proceedings, pages 18–30. IEEE Computer Society
Press, 1997.

[13] W. Marrero, E. Clarke, and S. Jha. A model checker for
authentication protocols. In C. Meadows and H. Orman, ed-
itors, Proceedings of the DIMACS Workshop on Design and
Verification of Security Protocols. DIMACS, Rutgers Uni-
versity, September 1997.

[14] R. Needham and M. Schroeder. Using encryption for au-
thentication in large networks of computers. Communica-
tions of the ACM, 21(12), Dec. 1978.

[15] B. C. Neuman and S. G. Stubblebine. A note on the use of
timestamps as nonces. Operating Systems Review, 27(2):10–
14, Apr. 1993.

[16] D. Otway and O. Rees. Efficient and timely mutual authen-
tication. Operating Systems Review, 21(1):8–10, Jan. 1987.

[17] L. C. Paulson. Proving properties of security protocols by
induction. In 10th IEEE Computer Security Foundations
Workshop, pages 70–83. IEEE Computer Society Press,
1997.

[18] D. X. Song. Athena: a new efficient automated checker for
security protocol analysis. In Proceedings of the 12th IEEE
Computer Security Foundations Workshop. IEEE Computer
Society Press, June 1999.

[19] M. Tatebayashi, N. Matsuzaki, and D. Newman. Key distri-
bution protocol for digital mobile communication systems.
In G. Brassard, editor, Advances in Cryptology: CRYPTO

’89, volume 435 of Lecture Notes in Computer Science,
pages 324–331. Springer Verlag, 1990.

[20] F. J. THAYER Fábrega, J. C. Herzog, and J. D. Guttman.
Mixed strand spaces. In Proceedings of the 12th IEEE Com-
puter Security Foundations Workshop. IEEE Computer So-
ciety Press, June 1999.

[21] F. J. THAYER Fábrega, J. C. Herzog, and J. D. Guttman.
Strand spaces: Proving security protocols correct. Journal
of Computer Security, 7(2/3):191–230, 1999.

[22] T. Y. C. Woo and S. S. Lam. Authentication for distributed
systems. Computer, 25(1):39–52, Jan. 1992.

[23] T. Y. C. Woo and S. S. Lam. A lesson on authentication
protocol design. Operating Systems Review, pages 24–37,
1994.

A Strands, Bundles, and the Penetrator

In this appendix, we will introduce the basic strand space
notions to be used in the remainder of the paper. This mate-
rial is derived from [21, 20], with a few small changes. For
instance, the principle of induction on terms was previously
inadvertently omitted from the freeness axiom (Axiom 1).
The penetrator strands of type T were unnecessary and have
now been eliminated from Definition A.9.

A.1 Strand Spaces

Consider a set
�

, the elements of which are the possi-
ble messages that can be exchanged between principals in a
protocol. We will refer to the elements of

�
as terms. We

assume that a subterm relation is defined on
�

. � T � � C
means ��T is a subterm of �%C . We constrain the set

�
further

below in Section A.3, and define a subterm relation there.
In a protocol, principals can either send or receive terms.

We represent transmission of a term as the occurrence of
that term with positive sign, and reception of a term as its
occurrence with negative sign.

Definition A.1 A signed term is a pair ��� � # with � � �
and � one of the symbols

� �� . We will write a signed
term as

� � or ��� . A � � E�� is the set of finite sequences of
signed terms. We will denote a typical element of A � � E�� by
� ��� C � C # ��	�	�: -����
- ��
 # # .

A strand space over
�

is a set K together with a trace
mapping tr � K8? A � � E�� .

By abuse of language, we will still treat signed terms as
ordinary terms. For instance, we shall refer to subterms of
signed terms. We will usually represent a strand space by
its underlying set of strands K .

Definition A.2 Fix a strand space K .

1. A node is a pair ���! �"�# , with � � K and " an integer
satisying

4 � " � length A tr A���E�E . The set of nodes is
denoted by . We will say the node ���! �"�# belongs to
the strand � . Clearly, every node belongs to a unique
strand.

2. If (. ���! �"�#��� then index AO(:E . " and strand AO(:E .
� . Define term AO(:E to be A tr A���E�E � , i.e. the " th signed term
in the trace of � . Similarly, uns term AO(:E is A�A tr A3� E�E � E H ,
i.e. the unsigned part of the " th signed term in the trace
of � .

3. There is an edge (DC ? (-H if and only if term AO(,C�E .� � and term AB(H E . � � for some �4� � . Intuitively,
the edge means that node (C sends the message � ,
which is received by (H , recording a potential causal
link between those strands.

4. When (C .����! �"�# and (H .����! �" �J4 # are members
of , there is an edge (C)�(H . Intuitively, the edge
expresses that (,C is an immediate causal predecessor
of (-H on the strand � . We write (:)672(to mean
that (precedes ((not necessarily immediately) on the
same strand.

5. An unsigned term � occurs in (�� iff �N� term AO(:E .

12

6. Suppose � is a set of unsigned terms. The node (�
is an entry point for � iff term AO(:EI. � � for some � ��� ,
and whenever (:)67 (, term AB(- E����� .

7. An unsigned term � originates on (� iff (is an
entry point for the set � .J�F�� � � �8��B	 .

8. An unsigned term � is uniquely originating iff � origi-
nates on a unique (� .

If a term � originates uniquely in a particular strand space,
then it can play the role of a nonce or session key in that
structure.

 together with both sets of edges (C ? (H and (C)
(H is a directed graph � FA ? 9)6E�# .

A.2 Bundles and Causal Precedence

A bundle is a finite subgraph of � A3?)�E�# , for
which we can regard the edges as expressing the causal de-
pendencies of the nodes.

Definition A.3 Suppose ? � � ? ; suppose) � �) ; and
suppose 1�. � � FA ?��8) �<E�# is a subgraph of � FA ?
)�E�# . 1 is a bundle if:

1. � and ? � 9) � are finite.

2. If (-H8� � and term AO(-HFE is negative, then there is a
unique (,C such that (,C�? � (-H .

3. If (H � � and (C)L(H then (C) � (H .
4. 1 is acyclic.

In conditions 2 and 3, it follows that (C �� � , because 1 is
a graph.

For our purposes, it does not matter whether communi-
cation is regarded as a synchronizing event or as an asyn-
chronous activity. The definition of bundle formalizes a
process communication model with three properties:

� A strand (process) may send and receive messages, but
not both at the same time;

� When a strand receives a message � , there is a unique
node transmitting � from which the message was im-
mediately received;

� When a strand transmits a message � , many strands
may immediately receive � .

Notational Convention A.4 A node (is in a bundle 1 .
� � ?���) �<# , written (� 1 , if (� � ; a strand � is in
1 if all of its nodes are in � .

If 1 is a bundle, then the 1 -height of a strand �
is the largest " such that �3�! �"�#>� 1 . 1 -trace A���E .
� tr A���E�A 4 E 	� �	�� tr A���E�ABS E�# , where S . 1 -height A���E .

Definition A.5 If � is a set of edges, i.e. � � ?< 9) , then
��� is the transitive closure of � , and ��� is the reflexive,
transitive closure of � .

The relations ��� and ��� are each subsets of ��	�
� ,
where
� is the set of nodes incident with any edge in � .

Proposition A.6 Suppose 1 is a bundle. Then � � is a par-
tial order, i.e. a reflexive, antisymmetric, transitive relation.
Every non-empty subset of the nodes in 1 has � � -minimal
members.

We regard � � as expressing causal precedence, because
(���0(- holds only when (’s occurrence causally con-
tributes to the occurrence of (: . When a bundle 1 is under-
stood, we will simply write � . Similarly, “minimal” will
mean � � -minimal.

A.3 Terms, Encryption, and Freeness Assump-
tions

We will now specialize the set of terms
�

. In particular
we will assume given:

� A set ��� �
of texts (representing the atomic mes-

sages).

� A set �� �
of cryptographic keys disjoint from � ,

equipped with a unary operator inv � � ? � . We
assume that inv is an inverse mapping each member of
a key pair for an asymmetric cryptosystem to the other,
and each symmetric key to itself.

� Two binary operators encr � ��� � ? �
and join �� � � ? �

.

We will follow custom and write inv AO� E as � � C ,
encr AO� �S E as ��� S � 	�
 , and join A � �� E as ��� . If � is a set
of keys, � � C denotes the set of inverses of elements of � .
We assume, like many others (e.g. [12, 13, 17]), that

�
is

freely generated, which is crucial for the results in this pa-
per.

Axiom 1
�

is freely generated from � and � by encr and
join.

Definition A.7 The subterm relation � is defined induc-
tively, as the smallest relation such that �>� � ; � � ��� �-� 	

if � �/� ; and � �6� � if � �6� or � � � .

By this definition, for � ��� , we have � � ��� �-� 	
 only if
�L�6� already.

Definition A.8 1. If � � � , then ��T � � � if � is in the
smallest set containing ��T and closed under encryption
with � � � and concatenation with arbitrary terms
� C .

13

2. A term � is simple if it is not of the form � � .

3. A term � T is a component of � if � T is simple and � T ���
� .

A.4 Penetrator Strands

The atomic actions available to the penetrator are en-
coded in a set of penetrator traces. They summarize his
ability to discard messages, generate well known messages,
piece messages together, and apply cryptographic opera-
tions using keys that become available to him. A protocol
attack typically requires hooking together several of these
atomic actions.

The actions available to the penetrator are relative to the
set of keys that the penetrator knows initially. We encode
this in a parameter, the set of penetrator keys ��� .

Definition A.9 A penetrator trace relative to � � is one of
the following:

M � Text message: � � ��# where ��� � .

K
 Key: � � � # where �<� � � .

C ��� � Concatenation: ��� � � � � � � #
S ��� � Separation: ��� � � � � � � #
E ���
 Encryption: ��� �> �� � � ��� � � 	�
 # .
D ���
 Decryption: ��� � � C �� ��� � � 	
 � � # .
�
	

is the set of all strands � � K such that ���A���E is a pene-
trator trace.

A strand � �2K is a penetrator strand if it belongs to� 	
, and a node is a penetrator node if the strand it lies

on is a penetrator strand. Otherwise we will call it a non-
penetrator or regular strand or node. A node (is M, C,
etc. node if (lies on a penetrator strand with a trace of
kind M, C, etc.

Contents

1 Introduction 1
1.1 Strand Spaces 2
1.2 New Components 2

2 A Method for Authentication 3
2.1 Penetrable Keys and Safe Keys 3
2.2 Facts about Authentication Tests 4

3 Showing Protocol Correctness 5
3.1 Needham-Schroeder-Lowe 5
3.2 The Otway-Rees Protocol 6

3.2.1 Strand Spaces for Otway-Rees . . . 6
3.2.2 Otway-Rees Authentication 7

3.3 Neuman-Stubblebine 8
3.4 The Woo-Lam Protocol 9

4 Designing a Protocol: A Rational Reconstruction 10

A Strands, Bundles, and the Penetrator 12
A.1 Strand Spaces 12
A.2 Bundles and Causal Precedence 13
A.3 Terms, Encryption, and Freeness Assump-

tions . 13
A.4 Penetrator Strands 14

14

