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Abstract

We describe a protocol design process, and illustrate its
use by creating ATSPECT, an Authentication Test-based Se-
cure Protocol for Electronic Commerce Transactions. The
design process is organized around the authentication tests,
a method for protocol verification based on the strand space
theory. The authentication tests dictate how randomly gen-
erated values such as nonces may be combined with encryp-
tion to achieve authentication and freshness.

ATSPECT offers functionality and security guarantees
akin to the purchase request, payment authorization, and
payment capture phases of SET, the secure electronic trans-
action standard created by the major credit card firms.

In previous work [10, 12, 8], we have developed a
method—called the “authentication test” method—that can
be used by hand to verify cryptographic protocols. We also
pointed out that the same ideas can be used to guide the
protocol development process, quickly leading to new pro-
tocols; proofs of correctness for these protocols then follow
from the development process. In [10, 12] we illustrated the
point by “reinventing” preexisting protocols. The purpose
of this paper is to use it to create a completely new protocol
with highly non-trivial functionality.

We call our new protocol ATSPECT, an Authentica-
tion Test-based Secure Protocol for Electronic Commerce
Transactions. It is intended to achieve the essential security
goals of the existing Secure Electronic Transaction (SET)
purchase request, payment authorization, and payment cap-
ture phases, as we understand them.

The Secure Electronic Transaction protocol [15] was a
major effort undertaken by a consortium of credit card com-
panies and banks in the mid-90s. It was intended to provide
a basis for secure electronic commerce. It is not currently
in use anywhere, presumably partly as a consequence of
being complex, difficult to implement, and difficult to an-
alyze. For these reasons it was viewed as a high-risk un-
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dertaking, something that the financial industry prefers to
avoid. Also, it shifts information away from merchants (for
instance, information about their clients’ credit cards), and
resistance from the retail industry may be another reason
why it languished. However, it would have provided bet-
ter functionality for customers and financial institutions and
better privacy protection for customers. The security goals
of SET are hard to determine in a precise way, although
Bella, Massacci, and Paulson have recently studied it in its
own terms [2]. We will make no strong claim relating SET

to ATSPECT.

1 ATSPECT Protocol Goals

Our goals in designing ATSPECT are to provide authen-
tication and pairwise confidentiality for certain values in a
three-way protocol exchange. ATSPECT must also provide
significant non-repudiation guarantees. However, we do not
give any attention to fairness: different participants achieve
their guarantees at different stages of the protocol. Analyz-
ing fairness requires subtler methods [4, 13].

1.1 Protocol Participants

Principals playing three different roles, typically a Cus-
tomer, a Merchant, and a Bank or other financial institution,
desire to engage in an authenticated transaction. We will
refer to the three participants as C, M , and B. Some data
must be agreed among all three participants, for instance
their identities and the total purchase cost for an order C

places with M .
Other data must be shared between each pair, while re-

maining confidential from the third participant. For in-
stance, the merchandise being purchased must be agreed
between C and M , but is no concern of B’s. C’s credit
card number must be agreed between C and B, but is best
withheld from M . Otherwise, M ’s systems may be hacked,
revealing all its customers’ credit card numbers. Payment
details such as B’s discount for handling the transaction
may be confidential business information that should not be



disclosed to C. All the data must remain confidential from
principals other than these three.

The same principal may play different roles in different
protocol executions. When different merchants order sup-
plies from each other, they alternately play the roles of C

and M . A bank or credit card firm may order supplies from
a merchant, playing the role of C.

1.2 Protocol Goals

The goals of the participants are of four kinds:

Confidentiality All data transmitted in the exchange is to
remain secret, and data intended for a pair should not
be disclosed to the third participant.

Authentication, I Each participant P should receive a
guarantee that each partner Q has received P ’s data
and Q accepted it.

Non-Repudiation Each participant P should be able to
prove its Authentication, I guarantee to a third party.

Authentication, II Each participant Q should receive a
guarantee that data purportedly from a partner P in
fact originated with P , freshly in a recent run of this
protocol.

Each of these goals, with one exception, concerns just a
pair P and Q of principals. We want to achieve the goals
whichever principals P and Q may be. This observation
motivates our design strategy, which treats the protocol as a
collection of two party subprotocols (Section 3). When we
show that the two-party protocols meet these goals (Sec-
tion 4.1), we will also be more precise about which keys
must be uncompromised to establish each goal.

The exception concerns the confidentiality of the infor-
mation shared among all three participants, and we establish
it directly for the combined protocol (Section 5.3).

2 The Authentication Tests

In this section, we will introduce the basic ideas of the
strand space theory, and then describe the authentication
tests. A more precise summary is in the Appendix.

2.1 Strand Spaces

A strand is a sequence of transmission and reception
events local to a particular run of a principal. If this princi-
pal is honest, it is a regular strand. If it is dishonest, it is a
penetrator strand, taking the forms in Definition A.8.

A bundle B is a causally well-founded directed graph
containing the transmission and reception events of a num-
ber of strands. It represents a global execution possible for

a given protocol (with a penetrator). A node m in the graph
precedes a node n (written m �B n) if the n is accessi-
ble from m via 0 or more edges of the graph. Likewise,
m ≺B n means it is accessible via 1 or more edges. (See
Definition A.5.)

We write S for safe keys, i.e. keys we can prove that the
penetrator can never learn. In [12] we show how to de-
fine S in a useful way. In our current context, we are in-
terested only in the private members of public-private key
pairs. Since private keys are never transmitted in the pro-
tocols we will consider, they will belong to S unless com-
promised before execution of the protocol. Thus, we will
not need any elaborate method to prove that a key is in S.
If K ∈ S, the penetrator can never use K for encryption or
decryption.

2.2 The Authentication Test Idea

Suppose a principal in a cryptographic protocol creates
and transmits a message containing a new value v, later re-
ceiving v back in a different cryptographic context. It can
conclude that some principal possessing the relevant key K

has received and transformed the message in which v was
emitted. If K ∈ S is safe, this principal cannot be the pen-
etrator, but instead must be a regular principal. A trans-
forming edge is the action of changing the cryptographic
form in which such a value v occurs. The authentication
tests [9, 12, 14] give sufficient conditions for transforming
edges being the work of regular principals. There are two
main types of authentication test.

Outgoing Tests A uniquely originating value a may be
transmitted only in encrypted form {| . . . a . . . |}K where the
decryption key K−1 ∈ S is safe. If it is later received out-
side the context {| . . . a . . . |}K , then a regular participant,
not the penetrator, must have been responsible the first time
it appears in a different context. We write {| . . . a . . . |}K ;

. . . a . . . for a transforming edge that extracts it from this
form. This transforming edge occurs after the original trans-
mission of {| . . . a . . . |}K at m0 and before the transformed
version is received back at m1, where the temporal relations
refer to the ordering�B generated by the arrows in the bun-
dle B.

It is an outgoing test because the encrypted unit goes out;
see Figure 1. Figure 1 presents a theorem, Proposition 19
of [12] in simplified form.

Incoming Tests If, instead, a is received in encrypted
form {| . . . a . . . |}K although it was not sent in that con-
text, and the encryption key K ∈ S is safe, then a reg-
ular participant must have been responsible when a en-
tered this context. We refer to this transforming edge as
. . . a . . . ; {| . . . a . . . |}K . As with an outgoing test,
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Figure 1. Outgoing Authentication Test
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Figure 2. Incoming Authentication Test

the transformation producing {| . . . a . . . |}K must occur af-
ter m0 and before m1. We call this an incoming test because
the encrypted unit comes in, as shown in Figure 2, repre-
senting Proposition 20 of [12]. In public key cryptography,
K is serving as a signature key.

Sometimes a uniquely originating value a is transmit-
ted in one encrypted form {|h|}K and received back in a
different {|h′|}K′ . If K−1 ∈ S and K ′ ∈ S, then this
is both an outgoing test and an incoming test. However,
these two views may have different consequences. As an
outgoing test, it implies a regular transforming edge that
accepts {|h|}K and extracts a from it. This may be of some
form other than {|h′|}K′ , since another principal may later
transform it again. The incoming test yields a transforming
edge creating {|h′|}K′ , although it may have received a in a
form other than {|h|}K .

Unsolicited Tests A third, related but weaker, type of test
is the unsolicited test. If a term {|t|}K is received, and

K ∈ S is safe, then {|t|}K originated on some regular strand.
After all, it originated somewhere, and that can not have
been a penetrator strand if K ∈ S. Here we know only
that the regular node originating {|t|}K is before the node
on which it is received. We do not know any node after
which it must have occurred. We write ; {|B ˆNa|}KA

for
the positive node that must exist as a result of an unsolicited
test.

Summary The authentication tests are summarized in Ta-
ble 1. The last column contains× if the first node on the test
edge is a lower bound (in the ordering�) constraining when
the transforming edge occurs.

We will design ATSPECT so that incoming tests are suf-
ficient to achieve all the authentication properties. A sec-
ond, alternative justification of the goal Authentication, I
uses an outgoing test. An unsolicited test achieves the non-
repudiation goal.

2.3 Recency

In [8] we study recency as a means for ensuring that pro-
tocols cannot be undermined by key compromise. In the
current paper, we use the same notion of recency for a dif-
ferent purpose, namely to ensure that a transaction is not
caused by a dishonest party replaying a stale message.

Regular strands provide a way to measure recency. Im-
plementers always ensure that a local protocol run will time-
out long before cryptanalysis could have succeeded. Thus,
a principal engaged in a strand knows that an event is recent
if it happened after an earlier event on the same strand.

Definition 2.1 (Recency) A node n is recent for a regular
node m1 in B if there is a regular node m0 ∈ B such that
m0 ⇒+ m1 and m0 �B n ≺B m1.

The incoming and outgoing tests entail recency. That is, if
m0 ⇒

+ m1 is a test edge, and n0 ; n1 is the correspond-
ing transforming edge in B, then m0 ≺ n0 ≺ n1 ≺ m1,
so that n0 and n1 are recent for m1. By contrast, the unso-
licited test establishes nothing about recency.

In some cases, we need a more inclusive, “extension lad-
der” notion of recency.

Definition 2.2 (n-Recency) A node n is 1-recent for m1 if
n is recent for m1 as in Definition 2.1. A node n is i + 1-
recent for m1 if there exists a node m0 such that n is i-
recent for m0 and m0 is recent for m1.

If n is i-recent for m, then there are i strands, each overlap-
ping a portion of the preceding one. From beginning to end,
at most i times the time-out for a single regular strand can
have elapsed. In the Authentication, II goal of ATSPECT,
we will be interested in 2-recency. We will arrange that Q,
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Test Test edge Constraint Transforming edge Bound

Outgoing +{|h|}K ⇒ − . . . a . . . K−1 ∈ S {|h|}K ; a ×

Incoming +. . . a . . . ⇒ −{|h|}K K ∈ S a ; {|h|}K ×

Unsolicited −{|h|}K K ∈ S ; {|h|}K

Table 1. The Authentication Tests

executing a strand sQ, can be sure that P ’s data originated
on a strand sP , such that some node of sP comes after some
node of sQ. The data may have originated before any node
of sQ, but how much before is limited by the timeout bound
on the duration of sP .

3 Authentication Tests and Protocol Design

The authentication tests suggest a protocol design pro-
cess. At our level of abstraction, authentication protocol de-
sign is largely a matter of selecting authentication tests, and
constructing a unique regular transforming edge to satisfy
each. We will now examine our security goals and consider
how to achieve them using authentication tests.

Cryptographic Assumptions We will assume that each
principal has two public-private key pairs. In one, the public
key is used for encryption and the private key is used for de-
cryption. In the other, the private key is used for signatures,
and the public key for verification. We assume that the
public keys for any participant can be determined reliably,
e.g. via a public key infrastructure. When P is a principal
with public encryption key KP , we write {|t|}P to stand for
{|t|}KP

. Assuming KP is uncompromised (i.e. K ∈ S),
only P can tractably recover t from this encryption. Like-
wise, [[ t ]]P is the result of signing t using P ’s private sig-
nature key. We assume that only P can tractably construct
[[ t ]]P from a new message t.

One other cryptographic-quality primitive is needed,
namely a hash function; h(t) is the result of applying
the hash function to t. We assume that no principal can
tractably find a pair of values t1, t2 such that h(t1) = h(t2),
or, given v, can tractably find t such that h(t) = v.

We model the cryptographic operators following Dolev-
Yao [5], as formalized in the strand space theory [17, 12].
We regard hashing as encryption with a key for which no
one knows the matching decryption key.

3.1 Payloads and Confidentiality

We will not specify the payloads fully. However, we al-
low one confidential payload to originate at each principal
P , intended for each partner Q. We refer to it as secP.Q, and

a goal of the protocol is to provide a confidentiality protec-
tion for its contents against any principal other than P, Q.

We also allow for a shared payload sharedP sent by P

to both other principals. Confidentiality of sharedP against
any principal other than C, M, B is required. We assume
that the identities of the intended principals may be recov-
ered from sharedP , as well as other core data about the
transaction, via a function core(sharedP ). Each principal
P , having received shared data from Q and R, checks that

core(sharedP ) = core(sharedQ) = core(sharedR)

Since we expect to implement the confidentiality require-
ments using public key cryptography, we will need to have
P encrypt secP.Q, together with sharedP and possibly other
ingredients, using KQ the public key of the recipient Q.

3.2 Designing the Two-Party Subprotocols

To simplify our problem, we will regard the full, three-
party protocol as being composed out of simpler subproto-
cols that involve pairs of parties. This is natural because our
authentication goals are pairwise goals; we simply want to
achieve them for all six ordered pairs of the three principals.
Thus, we focus on an arbitrary pair P, Q. When we have
seen how to achieve the authentication goals for P, Q in a
subprotocol, we will then piece the subprotocols together to
form the full protocol (Section 5), there being several ways
to do this. Our work on protocol independence [11] will
justify the composition.

Achieving Authentication, I Our first authentication goal
is the assertion:

Authentication, I Each participant P should receive a
guarantee that each partner Q has received P ’s data
and Q accepted it.

P ’s data means the two values secP.Q and sharedP , which
we know must be transmitted encrypted with Q’s public
key. The incoming authentication test tells us that one way
to ensure this is to prepare a new value NP.Q, transmitting
NP.Q with {|secP.Q ˆ sharedP |}Q. After receiving and pro-
cessing this unit, Q returns an authenticating message AP.Q
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Figure 3. Edges Achieving Authentication, I

containing [[ . . . ˆ NP.Q ˆ . . . ]]Q, which proves that NP.Q

reached Q and was accepted as part of a successful strand.
We also want to ensure that NP.Q was accompanied by

the payloads secP.Q and sharedP when it was processed.
Therefore we will require the authenticating message AP.Q

to take the form [[ . . . ˆ NP.Q ˆ t ]]Q where t contains
the payloads in some form. Specifically, we require that
they be decrypted and hashed, so that we have AP.Q =
[[ . . . ˆ NP.Q ˆ h(secP.Q ˆ sharedP ) ]]Q. We now have the
behavior shown in Figure 3. This is evidently an incoming
test assuming that Q’s signature key is uncompromised and
NP.Q is uniquely originating.

However, the original message also contains a uniquely
originating value, namely NP.Q, encrypted with Q’s public
key. If we assume that Q’s decryption key is also uncom-
promised, then this is also an outgoing test. Only Q can
decrypt the payload to extract NP.Q.

This is not merely redundant. It may correspond to a
meaningful work-flow within the principal Q. For instance,
if P = C and Q = M , then the transforming edge for
this outgoing test may be performed in the sales department.
They check that the customer’s order is valid, that the price
of each item is correct, and that each item is available in
inventory. Then they transfer the order to the accounts re-
ceivable department. Accounts receivable prepares the hash
h(secP.Q ˆ sharedP ), affixes the signature, and executes
the rest of the protocol. Although all of these steps occur
automatically within the merchant’s information systems,
they are implemented in a distributed way. The decryption
and signature keys may be separately protected on different
computer systems maintained by independent parts of the
corporation.

The decision to include NP.Q within the encrypted unit,
and the decision to hash secP.Q ˆ sharedP rather than the
encrypted component {| . . . ˆ secP.Q ˆ sharedP |}Q, is thus
motivated by a desire to accommodate separation of duty
within enterprises, at least for the case Q = M . Thus, the
portion of the protocol represented in Figure 3 ensures that
the Authentication, I goal will be met in two separate ways.

Achieving Non-Repudiation The behavior displayed in
Figure 3 also achieves the non-repudiation goal.
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Figure 4. Edges Achieving Authentication, II

Non-Repudiation Each participant P should be able to
prove its Authentication, I guarantee to a third party.

If P wishes to hold Q responsible for the transaction, then
P can disclose the plain-texts NP.Q, secP.Q and sharedP ,
together with the signature

[[ . . . ˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q.

This certifies that Q received, processed, and approved the
transaction. The certification depends only on the assump-
tion that Q’s signature key is uncompromised, as it relies
on the unsolicited test that a message of this form can be
produced only by Q. Because Q signs the decrypted values
secP.Q and sharedP , the principal P must disclose the con-
tent of the transaction in order to hold Q responsible. This
seems desirable from a business point of view.

Achieving Authentication, II In order to achieve the sec-
ond authentication goal, we must extend the protocol.

Authentication, II Each participant Q should receive a
guarantee that data purportedly from a partner P in
fact originated with P , freshly in a recent run of this
protocol.

In particular, it originates at a 2-recent node (Definition 2.2).
We enrich the protocol exchange displayed in Fig-

ure 3 by having Q emit a uniquely originating value
NQ.P . P signs NP.Q, NQ.P , and the hash of
the payloads in a recency certificate, taking the form
[[ . . . ˆ NP.Q ˆ NQ.P ˆ h(secP.Q ˆ sharedP ) ]]P . This trans-
forming edge completes an incoming test for Q, assuming
P ’s signature key is uncompromised, as shown (right-to-
left) in the lower rectangle in Figure 4. Q knows that this
signature was generated after NQ.P was created. Moreover,
if P is behaving properly, then this signature is emitted only
in a run that also caused the origination of NP.Q. Thus, m2

is recent for n2, and m0 is recent for m2. Therefore, m0 is
2-recent for n2.

Q can also use the signed component in the bottom line
of Figure 4 as non-repudiation evidence, to establish the
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Authentication, II guarantee to a third party. In this case, Q
must be willing to disclose the values secP.Q and sharedP .

3.3 Distinguishing the Subprotocols

The protocol as described in Figure 4 is a two party pro-
tocol between P and Q. We want a three party protocol
involving C, M , and B, in which each successively plays
the role of P and the role of Q with each of the other prin-
cipals. We will want to interweave these protocols without
undermining the guarantees that each of them would pro-
vide if executed purely in isolation.

By [11], it suffices that no encrypted unit emitted in one
subprotocol could have been emitted in any other. One way
to achieve this is to assign each encrypted component an
identifying tag to show which subprotocol it belongs to.

Since the behavior of Figure 4 occurs with any of the
principals C, M, B as P and any of other principal as Q, we
have six possibilities. We select, then, six distinct constants
c1, . . . , c6, which we refer to as C.M, C.B, etc. Here we do
not intend C, M, and B as names for particular principals,
but as constants referring to the three roles. We use the sans
serif font to emphasize that they are constants, not variables
referring to the identities of the participants.

We will also include a constant distinguishing the mes-
sages; although this is strictly unnecessary, it may ease un-
derstanding. We will use S in message 1, indicating its role
in achieving secrecy; we will use A in message 2, indicat-
ing its role in achieving the first authentication goal; and we
will use R in message 3, indicating its role in achieving the
recency guarantee.

Each subprotocol, involving roles P and Q, takes the
form shown in Figure 5. We refer to an individual subproto-
col as ATSPECTP.Q, and we refer to the union of all strands
containing behaviors according to any of the six subpro-
tocols as ATSPECT†. An initiator strand is one taking the
form shown in the left column of Figure 5, and a responder
strand takes the form shown in the right column of Fig-
ure 5. The parameters of an initiator or responder strand are
the variables P, Q (representing the identities of the partic-
ipants), NP.Q, NQ.P (their respective nonces), and secP.Q

and sharedP (the secret and shared payloads).

4 Correctness

We address the correctness of the individual subproto-
cols first, and then make sure that they remain correct even
when all are executed by the same principals over the same
network.
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Figure 5. Subprotocol P.Q

4.1 Correctness of the Subprotocols

Let us focus on subprotocol ATSPECTP.Q as defined in
Figure 5. We identified four goals. We will now formulate
each as a theorem about the protocol ATSPECTP.Q. We let B
be a bundle in which the regular participants execute strands
of ATSPECTP.Q. Recall from Section 2.1 that if a key K is
safe in B (written K ∈ S), then the penetrator can never
use K for encryption or decryption. In this section, italics
letters such as P and Q are variables over principals, while
sans serif letters such as P.Q refer to a constant such as
C.M, which labels one particular subprotocol.

Proposition 4.1 (Confidentiality for secP.Q) Suppose
that B is a ATSPECTP.Q-bundle in which Q’s private de-
cryption key is safe, and suppose B has an Init-strand
Init[P, Q, NP.Q, NQ.P , secP.Q, sharedP ].

If secP.Q is uniquely originating, then there is no node
n ∈ B such that term(n) = secP.Q.

PROOF. Let κ be the set of inverses of unsafe keys,
i.e. (K \ S)−1. Let τ be {secP.Q} ∪ S. By the honest ideal
theorem, [17, Corollary 6.12], if there is a node m ∈ B with
term(m) ∈ Iκτ , then there a regular node n that is an en-
try point for Iκτ . However, inspecting the positive regular
nodes of ATSPECTP.Q, we see that no value in τ is ever sent,
unless protected by a key whose inverse is safe.

�

Secrecy for sharedP is a property of the composite protocol,
as it is transmitted in more than one subprotocol. We will
prove this in Section 5.3.

In the remaining propositions, we use the notion of the
B-height of a strand (Definition A.4); the B-height of a
strand s is the number of nodes of s contained in B.

Proposition 4.2 (Authentication, I) Suppose that B
is an ATSPECTP.Q-bundle in which Q’s private signa-
ture key K is safe, and suppose B has an Init-strand
Init[P, Q, NP.Q, NQ.P , secP.Q, sharedP ] of B-height at
least 2. If NP.Q is uniquely originating, then B has a match-
ing Resp-strand Resp[P, Q, NP.Q, X, secP.Q, sharedP ] of
B-height at least 2 (for some X).
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PROOF. Apply the inbound authentication test,
given that K ∈ S and NP.Q is uniquely orig-
inating. The only transforming edge producing
[[ ci ˆA ˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q is the first edge of
a responder strand Resp[P, Q, NP.Q, X, secP.Q, sharedP ].

Because P does not occur explicitly in the initiator’s
message, the claim that the first parameter to the respon-
der strand is P relies on the assumption that core(sharedP )
determines that the initiator is P (Section 3.1).

�

This proposition depends only on Q’s signature key being
safe, and the non-repudiation guarantee derives from this.
P need not establish that it has behaved honestly, nor that
he generated NP.Q in such a way as to make it originate
uniquely.

Proposition 4.3 (Non-Repudiation) Suppose that B is
a ATSPECTP.Q-bundle in which Q’s private signature key
K is safe, and suppose there exists a node n ∈ B such
that [[ ci ˆ A ˆ NP.Q ˆ h(secP.Q ˆ sharedP ) ]]Q

�

term(n). Then there is a Resp-strand
Resp[P, Q, NP.Q, X, secP.Q, sharedP ] of B-height at
least 2 (for some X).

PROOF. Immediate consequence of the unsolicited test
principle, together with the observation that no other
strand emits a term with any subterm of the form
[[ ci ˆA ˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q.

�

Proposition 4.4 (Authentication, II) Suppose that B is
a ATSPECTP.Q-bundle in which P ’s private signature key K

is safe, and s ∈ Resp[P, Q, NP.Q, NQ.P , secP.Q, sharedP ]
has B-height 3. Then there exists s′ ∈
Init[P, Q, NP.Q, NQ.P , secP.Q, sharedP ] with B-height
3, and 〈s, 2〉 ≺ 〈s′, 2〉.

PROOF. This also follows immediately from the inbound
authentication test principle.

�

Since 〈s, 2〉 ≺ 〈s′, 2〉, the node 〈s′, 1〉, where NP.Q,
secP.Q, and sharedP originate, is 2-recent for 〈s, 2〉.

We have now established the security goals of ATSPECT,
as holding of the individual subprotocols ATSPECTP.Q, ex-
cept the secrecy property for sharedP.Q.

4.2 Independence of the Subprotocols

A primary protocol Σ1 is independent of other proto-
cols (jointly called the secondary protocol Σ2) if the ques-
tion whether the primary protocol achieves a security goal
never depends on whether that secondary protocol is in use.
In [11] we prove that the independence of Σ1 from Σ2 fol-
lows from “disjoint encryption.” This condition has a some-
what technical definition to allow public key certificates or
Kerberos-style tickets to be created in Σ1 and consumed in
Σ2. However, a simple sufficient condition is “strongly dis-
joint encryption:”

A primary protocol Σ1 and secondary protocol
Σ2 have strongly disjoint encryption if, whenever
n1 is a node on some strand of Σ1, n2 is a node
on some strand of Σ2, and {|h|}K

�
(n1), then

{|h|}K 6
�

(n2).

This is exactly why we included the constants c1, . . . , c6,
which we write as C.M, etc. Let Σ1 be ATSPECTP.Q, and let-
ting Σ2 be all strands of the protocols ATSPECTP′.Q′ , where
P′ 6= P or Q′ 6= Q. If {|h|}K is sent or received on a strand
of Σ1, then h begins with the constant P.Q. If {|h′|}K′

is sent or received on a strand of Σ1, then h begins with
the constant P′.Q′, which is different from P.Q. Therefore
{|h|}K 6= {|h′|}K′ .

Thus, if ATSPECTP.Q achieves a security goal in isola-
tion, it achieves the same goal when run together with all of
the protocols ATSPECTP′.Q′ . We call the union of all these
protocols ATSPECT†, so we have concluded that ATSPECT†

achieves the goals of the individual protocols ATSPECTP.Q.

5 A Three Party Protocol

At this stage, we need only design the message structure
of the combined, three party protocol. There are numer-
ous possibilities here. For instance, in theory the princi-
pals C, M , and B could simply asynchronously engage in
ATSPECT†, i.e. in interleaved runs of the six subprotocols.
This would not be incorrect, but it would be rather anarchic,
and unlikely to complete transactions promptly.

Instead, we will construct a more structured way of in-
terweaving the protocols. We seek to achieve two goals in
doing so. One is the confidentiality for the shared message
ingredients sharedP , which we postponed in Section 4.1
(Proposition 4.1). The other is

Three-Party Agreement Suppose that P completes a run
of ATSPECT with apparent interlocutors Q and R.
Then Q and R have begun runs of ATSPECT with

core(sharedP ) = core(sharedQ) = core(sharedR).

In some sense the collection of two-party protocols
ATSPECT† contains the essence of our protocol; ATSPECT

adds only a convenient temporal ordering for the subpro-
tocols, with the added constraint that Three-Party Agree-
ment holds of this ordering. Alternate orderings could also
serve as well.

5.1 A Triangular Message Structure

The ordering we will present has the message structure
shown in Figure 6. The seven messages flow around a tri-
angle. C, who initiates the exchange, sends three messages,
and the other principals each send two. The sequence of
events is determined by three principles:
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Figure 6. Message Flow for ATSPECT

1. C begins the exchange with C.M and C.B. M and B

begin their subprotocols on receiving messages from
C and M respectively.

2. Each principal, on receiving a component intended for
it in a subprotocol, constructs and transmits the next
component in that subprotocol.

3. Each principal, receiving a component not intended for
it, forwards it to the next principal.

Since some shorthand is useful, we will refer to the message
components in the following way:

SP.Q Payload-bearing units, taking the form

{|P.Q ˆS ˆNP.Q ˆ secP.Q ˆ sharedP |}Q

The subscript P.Q indicates that this component is pre-
pared by P for Q’s consumption.

AP.Q Authenticators, taking the form

NQ.P ˆ [[ P.Q ˆA ˆNP.Q ˆh(secP.Q ˆ sharedP ) ]]Q

where the subscript P.Q indicates that it authenticates
Q’s receipt of SP.Q.

RP.Q Recency confirmations, taking the form

[[ Q.P ˆR ˆNQ.P ˆNP.Q ˆh(secQ.P ˆ sharedQ) ]]Q

where the subscript P.Q indicates that P vouches that
it has freshly generated NP.Q, and has received SQ.P

and AP.Q.

Using the three principles for ordering message compo-
nents, we derive the message sequence shown in Table 2.

1. C → M SC.M ˆSC.B

2. M → B SC.B ˆSM.B ˆSM.C ˆ
AC.M

3. B → C SM.C ˆSB.C ˆSB.M ˆ
AC.M ˆAC.B ˆAM.B

4. C → M SB.M ˆ
AM.B ˆAM.C ˆAB.C ˆ
RC.M ˆRC.B

5. M → B AB.C ˆAB.M ˆ
RC.B ˆRM.B ˆRM.C

6. B → C RM.C ˆRB.C ˆRB.M

7. C → M RB.M

Table 2. Full Message Flow

Each message consists of three portions, containing zero
or more payload-bearing units, followed by zero or more
authenticators and zero or more recency confirmations. In
early messages, payloads predominate, while progressively
authenticators and finally recency confirmations emerge.
We require each principal to check that its shared data
agrees with the shared data sent by the others. In M ’s case
(e.g.), this means that sharedC , as extracted from SC.M,
matches sharedB , as extracted from SB.M, both of which
match the value sharedM as transmitted by M . B makes
this check before sending message 3; C, before sending
message 4; and M , before sending message 5. They refuse
to continue the protocol by sending new authenticators or
recency components if this check fails.

This protocol requires the party playing a role P to gener-
ate four nonces, two within the secrecy units SP.Q and SP.Q

and two within the authenticators AQ.P and AR.P. If we
choose four distinct string constants s1, . . . , s4, then we can
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generate all four nonces from a single random value N of
reasonable length, using the four hashed values h(N ˆ si).

5.2 A Straightened Version

The triangular message flow has a disadvantage from the
implementer’s point of view: it does not match smoothly
with the normal conventions of programming with TCP/IP
and the standard socket library. To solve this problem, we
can revise the message flow, adapting it to use eight mes-
sages:

C
1
−→ M

2
−→ B

B
3
−→ M

4
−→ C

C
5
−→ M

6
−→ B

B
7
−→ M

8
−→ C

This has the advantage that it may be implemented using
a pair of socket connections, one between C and M , and
one between M and B. There are two disadvantages to
this alternative, first, the extra message, and second, that M

controls all communication between C and B, which occurs
only when M forwards components.

We regard the triangular protocol of Section 5.1 as the
authoritative version of ATSPECT, although the straightened
eight-message version achieves the same protocol goals.

In practice, it may be unnecessary to use all six subpro-
tocols. For instance, the subprotocols C.M, C.B, and M.B

may suffice. In this case, we may want to augment the au-
thenticator with some additional payload of information to
be communicated back from responder to initiator. Trun-
cated message flows may be based either on the triangular
scheme or the straightened scheme.

5.3 ATSPECT’s Three-Party Goals

We turn now to the last correctness concerns, whether
ATSPECT achieves confidentiality for sharedP and the
Three-Party Agreement goal.

Proposition 5.1 (Confidentiality) Suppose B is a bun-
dle in which P completes a run of ATSPECT with inter-
locutors Q and R, using shared component sharedP , and
all three principals have safe private decryption keys.

If sharedP is uniquely originating, then there is no node
n ∈ B such that term(n) = sharedP .

PROOF. Apply the honest ideal theorem to κ = (K \ S)−1

and τ = {sharedP } ∪ S, to infer that Iκτ has only reg-
ular entry points. But all regular nodes transmit sharedP

encrypted with a key whose inverse is safe.
�

Proposition 5.2 (Three-Party Agreement) Suppose B
is a bundle in which P completes a run of ATSPECT with
interlocutors Q and R, using shared component sharedP .

Then if Q’s signature key is safe, Q has begun a run of
ATSPECT with P and R, with shared components sharedQ

and sharedR, and

core(sharedP ) = core(sharedQ) = core(sharedR).

PROOF. Q transmits either AP.Q or RP.Q after receiving
both SP.Q and SR.Q; it therefore guarantees to P that the
shared values in these components match (Section 5.1). P

does not transmit its last message until after P has received
this guarantee from Q.

Moreover, P has received SR.Q and has the shared value
matches sharedQ as contained in SQ.P and sharedP as P

transmitted it in SP.Q and SP.R. sharedQ as transmitted in
SQ.R matches because Q is assumed uncompromised. Thus,
all six values match.

�

6 Related Work

Woo and Lam’s 1994 paper on protocol design [19] di-
agnosed the faulty design process leading to a protocol in
an earlier paper [18]. They focused on how to safely re-
move information from a “full information” but inefficient
version of a protocol to a less cluttered version. There
are two limitations to their approach. First, no guidance is
given about how to construct a full information protocol to
achieve given goals, especially if these goals are complex,
as in ATSPECT. Second, the criteria for safely removing in-
formation seem fragile. One might well wonder whether
they are always valid, or whether there are ambiguities in
how to apply them.

Buttyan et al. [3] describes a BAN-style logic that they
say motivates a design method, but it seems hard to abstract
the method from the example they give.

Perrig and Song’s automated protocol generator
APG [14] uses heuristics related to ours to generate
plausible candidate protocols. APG then calls Athena [16]
to use the strand space model to filter protocols, retaining
those proved to meet their specifications. APG does not,
however, capitalize on protocol independence to decom-
pose the design process and to synthesize protocols from
two-party subprotocols.

The bulk of work on protocol design seems to rely on the
skill and ingenuity of the designer. Notable here is Abadi
and Needham [1], which contains a wealth of information
about cryptographic protocols, what makes them correct,
and how to design them so that they will be. However, they
make no claim to be systematic, nor do they base their ad-
vice on a theory of protocol goals and correctness.

7 Conclusion

In this paper, we have illustrated a protocol design
methodology, based on the authentication tests. The method
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has led to a protocol, ATSPECT, that demonstrably meets
precisely stated security goals. The ATSPECT design pro-
cess required less than three weeks of labor, by contrast with
the major effort invested in SET. ATSPECT appears to pro-
vide security guarantees similar to those of SET.

The design process has the following steps:

1. Formulate a number of precise goals that the protocol
is intended to meet, such as those of Section 1.2. Goals
that concern a subset of the principals may be achieved
using subprotocols involving only those principals.

2. For each goal, select an authentication test pattern to
use to achieve it, and design a transforming edge that
will satisfy this authentication goal but no other, as in
Section 3.2. Verify the subprotocols achieve the indi-
vidual goals (Section 4.1). Use disjoint encryption to
ensure that subprotocols are independent (Section 4.2).

3. Piece the subprotocols together to construct a single
protocol as illustrated in Sections 5.1–5.2, and justified
in Section 5.3. There is freedom in choosing the com-
bination, allowing trade-offs in number of messages
and in communication pattern.

More refined methods may improve the last step, in which
the subprotocols are combined, by indicating encrypted
components that can be merged or simplified.

Our protocol design method shows how to construct
special-purpose protocols for specific situations in secure
communication or electronic commerce. It allows us to
meet varied trust objectives with a conceptual toolkit jus-
tified by strand spaces and the authentication tests.
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A Strand Space Definitions

This appendix, derived from [9, 12, 17], defines the basic
strand space notions.

A.1 Strands, Strand Spaces, and Origination

Consider a set A, the elements of which, called terms, are
the possible messages to be exchanged between principals
in a protocol. A subterm relation � is defined on A.

In a protocol, principals send and receive terms. We rep-
resent transmission of a term with a positive sign, and re-
ception of a term with a negative sign.

Definition A.1 A signed term is a pair 〈σ, a〉 with a ∈ A

and σ one of the symbols +,−. We will write a signed
term as +t or −t. (±A)∗ is the set of finite sequences of
signed terms. We will denote a typical element of (±A)∗ by
〈 〈σ1, a1〉, . . . , 〈σn, an〉 〉.

A strand space over A is a set Σ with a trace mapping
tr : Σ → (±A)∗.

By abuse of language, we often treat signed terms as ordi-
nary terms. We represent strand spaces by their underlying
set of strands Σ.

Definition A.2 Fix a strand space Σ.

1. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer
satisfying 1 ≤ i ≤ length(tr(s)). The set of nodes is
denoted by N .

2. If n = 〈s, i〉 ∈ N then index(n) = i and strand(n) =
s. Define term(n) to be (tr(s))i, i.e. the ith signed term
in the trace of s.

3. There is an edge n1 → n2 if and only if term(n1) =
+a and term(n2) = −a for some a ∈ A. Intuitively,
the edge means that node n1 sends the message a,
which is received by n2, recording a potential causal
link between those strands.

4. When n1 = 〈s, i〉 and n2 = 〈s, i + 1〉 are members
of N , there is an edge n1 ⇒ n2. Intuitively, the edge
expresses that n1 is an immediate causal predecessor
of n2 on the strand s. We write n′ ⇒+ n to mean that
n′ precedes n on the same strand.

5. An unsigned term t occurs in n ∈ N iff t
� term(n).

6. Suppose I is a set of unsigned terms. The node n ∈ N
is an entry point for I iff term(n) = +t for some t ∈ I ,
and whenever n′ ⇒+ n, term(n′) 6∈ I .

7. An unsigned term t originates on n ∈ N iff n is an
entry point for the set I = {t′ : t

�
t′}.

8. An unsigned term t is uniquely originating in a set of
nodes S ⊂ N iff there is a unique n ∈ S such that t

originates on n. The term t is non-originating in S ⊂
N iff there is no n ∈ S such that t originates on n.

N together with both sets of edges n1 → n2 and n1 ⇒ n2

is a directed graph 〈N , (→ ∪ ⇒)〉.

A.2 Bundles and Causal Precedence

A bundle is a finite subgraph of 〈N , (→ ∪ ⇒)〉, for
which we can regard the edges as expressing the causal de-
pendencies of the nodes.

Definition A.3 Suppose C = 〈NC , (→C ∪ ⇒C)〉 is a
graph, where NC ⊂ N ; →C ⊂ →; ⇒C ⊂ ⇒. C is a
bundle if:

1. NC and →C ∪ ⇒C are finite.

2. If n2 ∈ NC and term(n2) is negative, then there is a
unique n1 such that n1 →C n2.

3. If n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2.

4. C is acyclic.

In conditions 2 and 3, it follows that n1 ∈ NC , because C is
a graph.

Definition A.4 A node n is in a bundle C = 〈NC ,→C

∪ ⇒C〉, written n ∈ C, if n ∈ NC; a strand s is in C if
all of its nodes are in NC . The C-height of a strand s is the
largest i such that 〈s, i〉 ∈ C.

Definition A.5 If S is a set of edges, i.e. S ⊂→ ∪ ⇒, then
≺S is the transitive closure of S, and �S is the reflexive,
transitive closure of S.

Proposition A.6 Suppose C is a bundle. Then �C is a par-
tial order, i.e. a reflexive, antisymmetric, transitive relation.
Every non-empty subset of the nodes in C has �C-minimal
members.

We regard �C as expressing causal precedence, because
n ≺S n′ holds only when n’s occurrence causally con-
tributes to the occurrence of n′. When a bundle C is under-
stood, we will simply write �. Similarly, “minimal” will
mean �C-minimal.

A.3 Terms, Encryption, and Freeness

We specialize the set of terms A, assuming given:

• A set T ⊆ A of texts (i.e. atomic messages).
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• A set K ⊆ A of cryptographic keys disjoint from T,
equipped with a unary operator inv : K → K. We
assume that inv is an inverse mapping each member of
a key pair for an asymmetric cryptosystem to the other,
and each symmetric key to itself.

• Two binary operators encr : K × A → A and join :
A× A → A.

We follow custom and write inv(K) as K−1, encr(K, m)
as {|m|}K , and join(a, b) as a ˆ b.

We assume that A is freely generated.

Axiom 1 A is freely generated from T and K by encr and
join.

Definition A.7 The subterm relation � is defined induc-
tively, as the smallest relation such that a

�
a; a

�
{|g|}K

if a
�

g; and a
�

g ˆh if a
�

g or a
�

h.

By this definition, for K ∈ K, we have K
�
{|g|}K only if

K
�

g already.

A.4 Penetrator Strands

The atomic actions available to the penetrator are en-
coded in a set of penetrator traces. They summarize his
ability to discard messages, generate well known messages,
piece messages together, and apply cryptographic opera-
tions using keys that become available to him. A protocol
attack typically requires hooking together several of these
atomic actions.

The actions available to the penetrator are relative to the
set of keys that the penetrator knows initially. We encode
this in a parameter, the set of penetrator keys KP .

Definition A.8 A penetrator trace relative to KP is one of
the following:

Mt Text message: 〈+t〉 where t ∈ T.

KK Key: 〈+K〉 where K ∈ KP .

Cg,h Concatenation: 〈−g, −h, +g ˆh〉

Sg,h Separation: 〈−g ˆh, +g, +h〉

Eh,K Encryption: 〈−K, −h, +{|h|}K〉.

Dh,K Decryption: 〈−K−1, −{|h|}K , +h〉.

PΣ is the set of all strands s ∈ Σ such that tr(s) is a pene-
trator trace.

A strand s ∈ Σ is a penetrator strand if it belongs to PΣ,
and a node is a penetrator node if the strand it lies on is a
penetrator strand. Otherwise we will call it a non-penetrator
or regular strand or node. A node n is M, C, etc. node if n

lies on a penetrator strand with a trace of kind M, C, etc.
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