
Authentication Tests and Disjoint Encryption:

a Design Method for Security Protocols∗

Joshua D. Guttman
The MITRE Corporation

guttman@mitre.org

20 August 2003

Abstract

We describe a protocol design process, and illustrate its use by creat-
ing atspect, an Authentication Test-based Secure Protocol for Electronic
Commerce Transactions. The design process is organized around the au-
thentication tests, a method for protocol verification based on the strand
space theory. The authentication tests dictate how randomly generated
values such as nonces may be combined with encryption to achieve au-
thentication and freshness.

atspect offers functionality and security guarantees akin to the pur-
chase request, payment authorization, and payment capture phases of set,
the secure electronic transaction standard created by the major credit
card firms.

1 Introduction

In previous work [12, 14, 9], we have developed a method—called the “authen-
tication test” method—that can be used by hand to verify cryptographic proto-
cols. We also pointed out that the same ideas can be used to guide the protocol
development process, quickly leading to new protocols; proofs of correctness for
these protocols then follow from the development process. In [12, 14] we illus-
trated the point by “reinventing” preexisting protocols. The purpose of this
paper is to use it to create a completely new protocol with highly non-trivial
functionality.

We call our new protocol atspect, an Authentication Test-based Secure
Protocol for Electronic Commerce Transactions. It is intended to achieve the
essential security goals of the existing Secure Electronic Transaction (set) pur-
chase request, payment authorization, and payment capture phases, as we un-
derstand them.

∗Supported by the National Security Agency. An earlier version appears as “Security Pro-
tocol Design via Authentication Tests”in Proceedings, 15th IEEE Computer Security Foun-
dations Workshop, IEEE CS Press, June 2002.

1

The Secure Electronic Transaction protocol [19] was a major effort under-
taken by a consortium of credit card companies and banks in the mid-90s. It
was intended to provide a basis for secure electronic commerce. It is not cur-
rently in use anywhere, presumably partly as a consequence of being complex,
difficult to implement, and difficult to analyze. For these reasons it was viewed
as a high-risk undertaking, something that the financial industry prefers to
avoid. Also, it shifts information away from merchants (for instance, informa-
tion about their clients’ credit cards), and resistance from the retail industry
may be another reason why it languished. However, it would have provided
better functionality for customers and financial institutions and better privacy
protection for customers. The security goals of set are hard to determine in a
precise way, although Bella, Massacci, and Paulson have recently studied it in
its own terms [2]. We will make no strong claim relating set to atspect.

2 ATSPECT Protocol Goals

Our design goals for atspect are to provide authentication and pairwise con-
fidentiality for certain values in a three-way protocol exchange. atspect must
also provide non-repudiation guarantees. However, we give no attention to fair-
ness: different participants achieve their guarantees at different stages of the
protocol. Analyzing fairness requires subtler methods [5, 15].

2.1 Protocol Participants

Principals playing three different roles, typically a Customer, a Merchant, and a
Bank or other financial institution, desire to engage in an authenticated trans-
action. We will refer to the three participants as C, M , and B. Some data
must be agreed among all three participants, for instance their identities and
the total purchase cost for an order C places with M .

Other data must be shared between a pair, while remaining confidential from
the third participant. For instance, C’s credit card number must be agreed be-
tween C and B, but is best withheld from M . Otherwise, when M ’s systems
are hacked, all its customers’ credit card numbers will be stolen. The merchan-
dise being purchased must be agreed between C and M , but is no concern of
B’s. Payment details such as B’s fee for handling the credit card transaction for
the merchant M may be confidential business information that should not be
disclosed to C. No data may be disclosed to principals other than these three.

The same principal may play different roles in different protocol executions.
When merchants order supplies from each other, they alternately play the roles
of C and M . A bank may order supplies from a merchant, playing the role of
C. Possibly it also plays the role of B in the same protocol run. Some firms
may want to use different keys when playing the different roles, but the protocol
should remain sound even if the same keys are used.

2

2.2 Protocol Goals

The goals of the participants are of four kinds:

Confidentiality, I Data intended only for a pair P,Q of participants is not
disclosed to the third participant in the run, or any other principal.

Confidentiality, II Data intended to be shared among the three participants
in the exchange is not disclosed to any other principal.

Authentication, I Each participant P should receive a guarantee that each
partner Q has received P ’s data and Q accepted it.

Non-Repudiation Each participant P should be able to prove the Authen-
tication, I guarantee it has received to a third party.

Authentication, II Each participant Q should receive a guarantee that data
purportedly from a partner P in fact originated with P , freshly in a recent
run of this protocol.

Three-Party Agreement Suppose that P completes a run apparently with
partners Q,R. Then Q and R have begun runs of the protocol, agreeing
on the shared data.

Most of these goals concern just a pair P and Q of principals. We want to
achieve the goals whichever principals P and Q may be. This observation moti-
vates our design strategy, which treats the protocol as a collection of two party
subprotocols (Section 4). When we show that the two-party protocols meet
their goals (Section 5.1), we will also be more precise about which keys must be
uncompromised to establish each goal.

Two of the goals are intrinsically about the interaction of all three parties.
One is Confidentiality, II, which concerns the confidentiality of the informa-
tion shared among all three participants. The other is Three-Party Agree-
ment, which requires that both intended interlocutors have begun runs of the
protocol with compatible shared data. The pairwise secret data of the intended
interlocutors is not constrained by Three-Party Agreement.

We establish the three-party goals directly for the combined protocol (Sec-
tion 6.4). They are easily proved given the structure of the three-party protocol,
and what is already known about confidentiality and authentication for the two-
party subprotocols. We explain the practical usage of the protocol in somewhat
more detail in Section 6.3.

3 The Authentication Tests

In this section, we will introduce the basic ideas of the strand space theory,
and then describe the authentication tests. A more precise summary is in the
Appendix.

3

3.1 Strand Spaces

A strand is a sequence of transmission and reception events local to a particular
run of a principal. If this principal is honest, it is a regular strand. If it is
dishonest, it is a penetrator strand, taking the forms in Definition A.8.

A bundle B is a causally well-founded directed graph containing the trans-
mission and reception events of a number of strands. It represents a global
execution possible for a given protocol (with a penetrator). A node m in the
graph precedes a node n (written m �B n) if the n is accessible from m via 0 or
more edges of the graph. Likewise, m ≺B n means it is accessible via 1 or more
edges. (See Definition A.5.)

We write S for safe keys, i.e. keys we can prove that the penetrator can never
learn. In [14] we show how to define S in a useful way. In our current context,
we are interested only in the private members of public-private key pairs. Since
private keys are never transmitted in the protocols we will consider, they will
belong to S unless compromised before execution of the protocol. Thus, we
will not need any elaborate method to prove that a key is in S. If K ∈ S, the
penetrator can never use K for encryption or decryption.

3.2 The Authentication Test Idea

Suppose a principal in a cryptographic protocol creates and transmits a message
containing a new value v, later receiving v back in a different cryptographic
context. It can conclude that some principal possessing the relevant key K
has received and transformed the message in which v was emitted. If K ∈ S
is safe, this principal cannot be the penetrator, but instead must be a regular
principal. A transforming edge is the action of changing the cryptographic
form in which such a value v occurs. The authentication tests [10, 14, 18] give
sufficient conditions for transforming edges being the work of regular principals.
There are two main types of authentication test.

Outgoing Tests A uniquely originating value a may be transmitted only in
encrypted form {| . . . a . . . |}K where the decryption key K−1 ∈ S is safe. If it
is later received outside the context {| . . . a . . . |}K , then a regular participant,
not the penetrator, must have been responsible the first time it appears in
a different context. We write {| . . . a . . . |}K ; . . . a . . . for a transforming
edge that extracts it from this form. This transforming edge occurs after the
original transmission of {| . . . a . . . |}K at m0 and before the transformed version
is received back at m1, where the temporal relations refer to the ordering �B
generated by the arrows in the bundle B.

It is an outgoing test because the encrypted unit goes out; see Figure 1.
Figure 1 presents a theorem, Proposition 19 of [14] in simplified form.

Incoming Tests If, instead, a is received in encrypted form {| . . . a . . . |}K

although it was not sent in that context, and the encryption key K ∈ S is
safe, then a regular participant must have been responsible when a entered this

4

m0
K−1 ∈ S a @ {|h|}K - n0

m1

�

wwwwwwwwwwww
� a @ term(n1) � a @ t′

n1

�

wwwwwwwwwwww
Assume {|h|}K 6@ term(m1)

a originates uniquely at m0,
a contained only in {|h|}K

Conclude nodes n0, n1 exist in B and are regular
{|h|}K 6@ t′

m0 ≺ n0 ≺ n1 ≺ m1

Figure 1: Outgoing Authentication Test

m0
a @ term(m0) - - n0

m1

�
wwwwwwwww

�{|h|}K @ term(m1) K ∈ Safe �a @ {|h|}K
n1

�
wwwwwwwww

Assume {|h|}K 6@ term(m0)
a originates uniquely at m0

Conclude nodes n0, n1 exist in B and are regular
m0 ≺ n0 ≺ n1 ≺ m1

Figure 2: Incoming Authentication Test

5

Test Test edge Constraint Transforming edge Bound

Outgoing +{|h|}K ⇒ − . . . a . . . K−1 ∈ S {|h|}K ; a ×

Incoming +. . . a . . . ⇒ −{|h|}K K ∈ S a ; {|h|}K ×

Unsolicited −{|h|}K K ∈ S ; {|h|}K

Table 1: The Authentication Tests

context. We refer to this transforming edge as . . . a . . . ; {| . . . a . . . |}K . As
with an outgoing test, the transformation producing {| . . . a . . . |}K must occur
after m0 and before m1. We call this an incoming test because the encrypted
unit comes in, as shown in Figure 2, representing Proposition 20 of [14]. In
public key cryptography, K is serving as a signature key.

Sometimes a uniquely originating value a is transmitted in one encrypted
form {|h|}K and received back in a different {|h′|}K′ . If K−1 ∈ S and K ′ ∈ S,
then this is both an outgoing test and an incoming test. However, these two
views may have different consequences. As an outgoing test, it implies a regular
transforming edge that accepts {|h|}K and extracts a from it. This may be of
some form other than {|h′|}K′ , since another principal may later transform it
again. The incoming test yields a transforming edge creating {|h′|}K′ , although
it may have received a in a form other than {|h|}K .

Unsolicited Tests A third, related but weaker, type of test is the unsolicited
test. If a term {|t|}K is received, and K ∈ S is safe, then {|t|}K originated on
some regular strand. After all, it originated somewhere, and that can not have
been a penetrator strand if K ∈ S. Here we know only that the regular node
originating {|t|}K is before the node on which it is received. We do not know
any node after which it must have occurred. We write ; {|t|}K for the positive
node that must exist as a result of an unsolicited test.

Summary The authentication tests are summarized in Table 1. The last
column contains × if the first node on the test edge is a lower bound (in the
ordering �) constraining when the transforming edge occurs.

We will design atspect so that incoming tests are sufficient to achieve all
the authentication properties. A second, alternative justification of the goal Au-
thentication, I uses an outgoing test. An unsolicited test achieves the non-
repudiation goal.

3.3 Recency

In [9] we study recency as a means for ensuring that protocols cannot be un-
dermined by key compromise. In the current paper, we use the same notion
of recency for a different purpose, namely to ensure that a transaction is not
caused by a dishonest party replaying a stale message.

6

Regular strands provide a way to measure recency. Implementers always
ensure that a local protocol run will timeout long before cryptanalysis could
have succeeded. Thus, a principal engaged in a strand knows that an event is
recent if it happened after an earlier event on the same strand.

Definition 3.1 (Recency) A node n is recent for a regular node m1 in B if
there is a regular node m0 ∈ B such that m0 ⇒+ m1 and m0 �B n ≺B m1.

The incoming and outgoing tests entail recency. That is, if m0 ⇒+ m1 is
a test edge, and n0 ; n1 is the corresponding transforming edge in B, then
m0 ≺ n0 ≺ n1 ≺ m1, so that n0 and n1 are recent for m1. By contrast,
the unsolicited test establishes nothing about recency. If we assume that each
regular strand is implemented so as to time out before the total elapsed time
between its first node and last node reaches some bound b, then recency in the
sense of Definition 3.1 entails that n happened less than b time units before m1.

In some cases, we need a more inclusive, “extension ladder” notion of recency.

Definition 3.2 (i-Recency) A node n is 1-recent for m1 if n is recent for m1

as in Definition 3.1. A node n is (i + 1)-recent for m1 if there exists a node m0

such that n is i-recent for m0 and m0 is recent for m1.

If n is i-recent for m, then there are i strands, each overlapping a portion of the
preceding one. From beginning to end, at most i times b, the time-out bound
for a single regular strand, can have elapsed. In the Authentication, II goal of
atspect, we will be interested in 2-recency. We will arrange that Q, executing
a strand sQ, can be sure that P ’s data originated on a strand sP , such that
some node of sP comes after some node of sQ. The data may have originated
before any node of sQ, but not more than b before.

4 Authentication Tests and Protocol Design

The authentication tests suggest a protocol design process. At our level of ab-
straction, authentication protocol design is largely a matter of selecting authen-
tication tests, and constructing a unique regular transforming edge to satisfy
each. We will now examine our security goals and consider how to achieve them
using authentication tests.

Cryptographic Assumptions We will assume that each principal has two
public-private key pairs. In one, the public key is used for encryption and the
private key is used for decryption. In the other, the private key is used for
signatures, and the public key for verification. We assume that the public keys
for any participant can be determined reliably, e.g. via a public key infrastruc-
ture. When P is a principal with public encryption key KP , we write {|t|}P to
stand for {|t|}KP

. Assuming KP is uncompromised (i.e. K−1
P ∈ S), only P can

tractably recover t from this encryption.
The encryption may be implemented via familiar mechanisms, such as the

following. The sender chooses a temporary symmetric key K, encrypting the

7

payload t with that key; K is transmitted encrypted with the public key of the
recipient. Some additional information tying K to t may also be included. Thus,
to transmit t securely to P , one transmits {|K ˆ . . . |}KP

ˆ {|t|}K . It would be
interesting to develop a general theorem justifying this sort of transformation,
particularly in connection with a model of the underlying cryptography [3, 11].

Likewise, [[t]]P is the result of signing t using P ’s private signature key. We
assume that only P can tractably construct [[t]]P from a new message t.

One other cryptographic-quality primitive is needed, namely a hash function;
h(t) is the result of applying the hash function to t. We assume that no principal
can tractably find a pair of values t1, t2 such that h(t1) = h(t2), or, given v,
can tractably find t such that h(t) = v.

We model the cryptographic operators following Dolev and Yao [6], as for-
malized in the strand space theory [21, 14]. We regard hashing as encryption
with a key for which no one knows the matching decryption key.

4.1 Payloads and Confidentiality

We will not specify the payloads fully. However, we allow one confidential
payload to originate at each principal P , intended for each partner Q. We
refer to it as secP.Q, and a goal of the protocol is to provide a confidentiality
protection for its contents against any principal other than P,Q. We also allow
for a shared payload sharedP sent by P to both other principals. Confidentiality
of sharedP against any principal other than C,M,B is required.

We assume that the identities of the intended principals may be recovered
from sharedP , as well as other core data about the transaction, via a function
core(sharedP). To avoid guessing attacks [16], some unpredictable value should
occur either in sharedP or in secP.Q.

Each principal P , having received shared data from Q and R and having
constructed the shared data P it will itself transmit, checks that

core(sharedP) = core(sharedQ) = core(sharedR)

Since we expect to implement the confidentiality requirements using public key
cryptography, we will need to have P encrypt secP.Q, together with sharedP and
possibly other ingredients, using KQ the public key of the recipient Q.

4.2 Designing the Two-Party Subprotocols

To simplify our problem, we will regard the full, three-party protocol as being
composed out of simpler subprotocols that involve pairs of parties. This is
natural because our authentication goals are pairwise goals; we simply want to
achieve them for all six ordered pairs of the three principals. Thus, we focus on
an arbitrary pair P,Q. When we have seen how to achieve the authentication
goals for P,Q in a subprotocol, we will then piece the subprotocols together to
form the full protocol (Section 6), there being several ways to do this. Our work
on protocol independence [13] will justify the composition.

8

P Q

m0
{| . . . ˆ NP.Q ˆ secP.Q ˆ sharedP |}Q- n0

m1

�
wwwwwwwww

�[[. . . ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q
n1

�
wwwwwwwww

Figure 3: Edges Achieving Authentication, I

4.2.1 Achieving Authentication, I

Our first authentication goal is the assertion:

Authentication, I Each participant P should receive a guarantee that each
partner Q has received P ’s data and Q accepted it.

P ’s data means the two values secP.Q and sharedP , which we know must be
transmitted encrypted with Q’s public key. The incoming authentication test
tells us that one way to ensure this is to prepare a new value NP.Q, transmitting
NP.Q with {|secP.Q ˆ sharedP |}Q. After receiving and processing this unit, Q
returns an authenticating message AP.Q containing [[. . . ˆ NP.Q ˆ . . .]]Q, which
proves that NP.Q reached Q and was accepted as part of a successful strand.

We also want to ensure that NP.Q was accompanied by the payloads secP.Q

and sharedP when it was processed. Therefore we will require the authenticating
message AP.Q to take the form [[. . . ˆ NP.Q ˆ t]]Q where t contains the payloads
in some form. Specifically, we require that they be decrypted and hashed, so
that we have AP.Q = [[. . . ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q. We now have the
behavior shown in Figure 3. This is evidently an incoming test assuming that
Q’s signature key is uncompromised and NP.Q is uniquely originating.

However, the outbound message also contains a uniquely originating value,
namely NP.Q, and this value is encrypted with Q’s public key. If we assume
that Q’s decryption key is also uncompromised, then this is also an outgoing
test. Only Q can decrypt the payload to extract NP.Q.

This is not merely redundant. It may correspond to a meaningful work-flow
within the principal Q. For instance, if P = C and Q = M , then the trans-
forming edge for this outgoing test may be performed in the sales department.
They check that the customer’s order is valid, that the price of each item is cor-
rect, and that each item is available in inventory. Then they transfer the order
to the accounts receivable department. Accounts receivable prepares the hash
h(secP.Q ˆ sharedP), affixes the signature, and executes the rest of the protocol.
Although all of these steps occur automatically within the merchant’s infor-
mation systems, they are implemented in a distributed way. The decryption
and signature keys may be separately protected on different computer systems
maintained by independent parts of the corporation.

9

The decision to include NP.Q within the encrypted unit, and the decision to
hash secP.Q ˆ sharedP rather than the encrypted component

{| . . . ˆ secP.Q ˆ sharedP |}Q,

is thus motivated by a desire to accommodate separation of duty within en-
terprises, at least for the case Q = M . Thus, the portion of the protocol
represented in Figure 3 ensures that the Authentication, I goal will be met
in two separate ways.

4.2.2 Achieving Non-Repudiation

The behavior displayed in Figure 3 also achieves the non-repudiation goal.

Non-Repudiation Each participant P should be able to prove its Authenti-
cation, I guarantee to a third party.

If P wishes to hold Q responsible for the transaction, then P can disclose the
plain-texts NP.Q, secP.Q and sharedP , together with the signature

[[. . . ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q.

This certifies that Q received, processed, and approved the transaction. The
certification depends only on the assumption that Q’s signature key is uncom-
promised, as it relies on the unsolicited test that a message of this form can be
produced only by Q. Because Q signs the decrypted values secP.Q and sharedP ,
the principal P must disclose the content of the transaction in order to hold Q
responsible. This seems desirable from a business point of view.

4.2.3 Achieving Authentication, II

In order to achieve the second authentication goal, we must extend the protocol.

Authentication, II Each participant Q should receive a guarantee that data
purportedly from a partner P in fact originated with P , freshly in a recent
run of this protocol.

In particular, it originates at a 2-recent node (Definition 3.2).
We enrich the protocol exchange displayed in Figure 3 by having Q emit

a uniquely originating value NQ.P . P signs NP.Q, NQ.P , and the hash of the
payloads in a recency certificate, taking the form

[[. . . ˆ NP.Q ˆ NQ.P ˆ h(secP.Q ˆ sharedP)]]P .

This transforming edge completes an incoming test for Q, assuming P ’s signa-
ture key is uncompromised, as shown (right-to-left) in the lower rectangle in
Figure 4. Q knows that this signature was generated after NQ.P was created.
Moreover, if P is behaving properly, then this signature is emitted only in a run
that also caused the origination of NP.Q. Thus, m2 is recent for n2, and m0 is
recent for m2. Therefore, m0 is 2-recent for n2.

10

P Q

m0
- n0

m1

�
wwwww

�NQ.P ˆ [[. . . ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q
n1

�
wwwww

m2

�
wwwww

[[. . . ˆ NP.Q ˆ NQ.P ˆ h(secP.Q ˆ sharedP)]]P - n2

�
wwwww

Figure 4: Edges Achieving Authentication, II

Q can also use the signed component in the bottom line of Figure 4 as non-
repudiation evidence, to establish the Authentication, II guarantee to a third
party. In this case, Q must be willing to disclose the values secP.Q and sharedP .

4.3 Distinguishing the Subprotocols

The protocol as described in Figure 4 is a two party protocol between P and
Q. We want a three party protocol involving C, M , and B, in which each suc-
cessively plays the role of P and the role of Q with each of the other principals.
We will want to interweave these protocols without undermining the guarantees
that each of them would provide if executed purely in isolation.

By [13], it suffices that no encrypted unit emitted in one subprotocol could
have been emitted in any other. One can achieve this by assigning each en-
crypted component an identifying tag showing to which subprotocol it belongs.

Since the behavior of Figure 4 occurs with any of the principals C,M,B as
P and any of other principal as Q, we have six possibilities. We select, then,
six distinct constants c1, . . . , c6, which we refer to as C.M, C.B, etc. Here we
do not intend C, M, and B as names for particular principals, but as constants
referring to the three roles. We use the sans serif font to emphasize that they are
constants, not variables referring to the identities of the participants. Even if the
same participant plays multiple roles in a single protocol run, these constants
distinguish which message component is sent as part of which role.

We will also include a constant distinguishing the messages; although this
is strictly unnecessary, it may ease understanding. We will use S in message 1,
indicating its role in achieving secrecy; we will use A in message 2, indicating its
role in achieving the first authentication goal; and we will use R in message 3,
indicating its role in achieving the recency guarantee.

Each subprotocol, involving roles P and Q, takes the form shown in Figure 5.
We refer to an individual subprotocol as atspectP.Q, and we refer to the union
of all strands containing behaviors according to any of the six subprotocols
as atspect†. An initiator strand is one taking the form shown in the left
column of Figure 5, and a responder strand takes the form shown in the right

11

P Q

m0
{|ci ˆ S ˆ NP.Q ˆ secP.Q ˆ sharedP |}Q - n0

m1

�
wwwww

�NQ.P ˆ [[ci ˆ A ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q
n1

�
wwwww

m2

�
wwwww

[[ci ˆ R ˆ NP.Q ˆ NQ.P ˆ h(secP.Q ˆ sharedP)]]P - n2

�
wwwww

Figure 5: Subprotocol P.Q

column of Figure 5. The parameters of an initiator or responder strand are the
variables P,Q (representing the identities of the participants), NP.Q, NQ.P (their
respective nonces), and secP.Q and sharedP (the secret and shared payloads).

5 Correctness

We address the correctness of the individual subprotocols first, and then make
sure that they remain correct even when all are executed by the same principals
over the same network.

5.1 Correctness of the Subprotocols

Let us focus on subprotocol atspectP.Q as defined in Figure 5. We identified six
goals, of which four are essentially two-party goals. We will now formulate each
of those as a theorem about the protocol atspectP.Q. We let B be a bundle
in which the regular participants execute strands of atspectP.Q. Recall from
Section 3.1 that if a key K is safe in B (written K ∈ S), then the penetrator can
never use K for encryption or decryption. In this section, italics letters such as
P and Q are variables over principals, while sans serif letters such as P.Q refer
to a constant such as C.M, which labels one particular subprotocol.

Proposition 5.1 (Confidentiality, I) Suppose that B is a atspectP.Q-
bundle in which Q’s private decryption key is safe, and suppose B has an Init-
strand Init[P,Q,NP.Q, NQ.P , secP.Q, sharedP].

If secP.Q is uniquely originating, then there is no node n ∈ B such that
term(n) = secP.Q.

Proof. Let κ be the set of inverses of unsafe keys, i.e. (K \ S)−1. Let τ be
{secP.Q} ∪ S. By the honest ideal theorem, [21, Corollary 6.12], if there is a
node m ∈ B with term(m) ∈ Iκ[τ], then there a regular node n that is an entry
point for Iκ[τ]. However, inspecting the positive regular nodes of atspectP.Q,

12

we see that no value in τ is ever sent, unless protected by a key whose inverse
is safe. �

Assuming that secP.Q is uniquely originating is essentially a way of assuming
that no one guesses this value, and the theorem states that no one can discover
it without guessing correctly. If the values secP.Q and sharedP are predictable,
then someone may guess correctly. This would be unfortunate, because the
protocol transmits h(secP.Q ˆ sharedP), and this confirms a correct guess. That
is why we insert some unpredictable ingredient into either secP.Q or sharedP .

The Confidentiality, II goal of secrecy for sharedP is a property of the
composite protocol, as it is transmitted in more than one subprotocol. We will
prove this in Section 6.4. In the remaining propositions, we use the notion of the
B-height of a strand (Definition A.4); the B-height of a strand s is the number
of nodes of s contained in B.

Proposition 5.2 (Authentication, I) Suppose that B is an atspectP.Q-
bundle in which Q’s private signature key K is safe, and suppose B has an
initiator strand

Init[P,Q,NP.Q, NQ.P , secP.Q, sharedP]

of B-height at least 2. If NP.Q is uniquely originating, then B has a matching
responder strand

Resp[P,Q,NP.Q, X, secP.Q, sharedP]

of B-height at least 2 (for some X).

Proof. Apply the inbound authentication test, given that K ∈ S and NP.Q is
uniquely originating. The only transforming edge producing

[[ci ˆ A ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q

is the first edge of a responder strand Resp[P,Q,NP.Q, X, secP.Q, sharedP].
Because P does not occur explicitly in the initiator’s message, the claim that

the first parameter to the responder strand is P relies on the assumption that
core(sharedP) determines that the initiator is P (Section 4.1). �

This proposition depends only on Q’s signature key being safe, and the non-
repudiation guarantee derives from this. P need not establish that it has be-
haved honestly, nor that he generated NP.Q in such a way as to make it originate
uniquely.

Proposition 5.3 (Non-Repudiation) Suppose that B is a atspectP.Q-
bundle in which Q’s private signature key K is safe, and suppose there exists a
node n ∈ B such that [[ci ˆ A ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q @ term(n). Then
there is a responder strand

Resp[P,Q,NP.Q, X, secP.Q, sharedP]

of B-height at least 2 (for some X).

13

Proof. Immediate consequence of the unsolicited test principle, together with
the observation that no other strand emits a term with any subterm of the form
[[ci ˆ A ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q. �

Proposition 5.4 (Authentication, II) Suppose that B is a atspectP.Q

bundle in which P ’s private signature key K is safe, and

s ∈ Resp[P,Q,NP.Q, NQ.P , secP.Q, sharedP]

has B-height 3. Then there exists s′ ∈ Init[P,Q,NP.Q, NQ.P , secP.Q, sharedP]
with B-height 3, and 〈s′, 1〉 is 2-recent for 〈s, 2〉.

Proof. The existence of the originator strand s′ follows immediately from the
inbound authentication test principle. Moreover, by the inbound authentication
test recency guarantee, 〈s, 2〉 ≺ 〈s′, 2〉. Thus, the node 〈s′, 1〉, where NP.Q,
secP.Q, and sharedP originate, is 2-recent for 〈s, 2〉. �

We have now established the security goals of atspect, as holding of the indi-
vidual subprotocols atspectP.Q, except the secrecy property for sharedP.Q.

5.2 Independence of the Subprotocols

A primary protocol Σ1 is independent of other protocols (jointly called the
secondary protocol Σ2) if the question whether the primary protocol achieves
a security goal never depends on whether that secondary protocol is in use.
In [13] we prove that the independence of Σ1 from Σ2 follows from “disjoint
encryption.” This condition has a somewhat technical definition to allow public
key certificates or Kerberos-style tickets to be created in Σ1 and consumed in
Σ2. However, a simple sufficient condition is “strongly disjoint encryption:”

A primary protocol Σ1 and secondary protocol Σ2 have strongly
disjoint encryption if, whenever n1 is a node on some strand of
Σ1, n2 is a node on some strand of Σ2, and {|h|}K @ (n1), then
{|h|}K 6@ (n2).

This is exactly why we included the constants c1, . . . , c6, which we write as
C.M, etc. Let Σ1 be atspectP.Q, and letting Σ2 be all strands of the protocols
atspectP′.Q′ , where P′ 6= P or Q′ 6= Q. If {|h|}K is sent or received on a strand
of Σ1, then h begins with the constant P.Q. If {|h′|}K′ is sent or received on
a strand of Σ1, then h begins with the constant P′.Q′, which is different from
P.Q. Therefore {|h|}K 6= {|h′|}K′ .

Thus, if atspectP.Q achieves a security goal in isolation, it achieves the
same goal when run together with all of the protocols atspectP′.Q′ . We call
the union of all these protocols atspect†, so we have concluded that atspect†

achieves the goals of the individual protocols atspectP.Q.

14

•M • B

•
C

-
2

-5

�
�

�
�

�
�

�
�

��	

3

�
�

�
�

�
�

�
�

��	

6

@
@

@
@

@
@

@
@

@@I

1

@
@

@
@

@
@

@
@

@@I

4

@
@

@
@

@
@

@
@

@@I

7

Figure 6: Message Flow for atspect

6 A Three Party Protocol

At this stage, we need only design the message structure of the combined, three
party protocol. There are numerous possibilities here. For instance, in theory
the principals C, M , and B could simply asynchronously engage in atspect†,
i.e. in interleaved runs of the six subprotocols. This would not be incorrect, but
it would be rather anarchic, and unlikely to complete transactions promptly.

Instead, we will construct a more structured way of interweaving the proto-
cols. We seek to achieve two goals in doing so. One is the confidentiality for
the shared message ingredients sharedP , Confidentiality, II. The other is

Three-Party Agreement Suppose that P completes a run of atspect with
apparent interlocutors Q and R. Then Q and R have begun runs of
atspect with

core(sharedP) = core(sharedQ) = core(sharedR).

In some sense the collection of two-party protocols atspect† contains the
essence of our protocol; atspect adds only a convenient temporal ordering for
the subprotocols, with the added constraint that Three-Party Agreement
holds of this ordering. Alternate orderings could also serve as well.

6.1 A Triangular Message Structure

The first ordering we will present has the message structure shown in Figure 6.
The seven messages flow around a triangle. C, who initiates the exchange, sends
three messages, and the other principals each send two. The sequence of events
is determined by three principles:

15

1. C begins the exchange with C.M and C.B. M and B begin their subpro-
tocols on receiving messages from C and M respectively.

2. Each principal, on receiving a component intended for it in a subprotocol,
constructs and transmits the next component in that subprotocol.

3. Each principal, receiving a component not intended for it, forwards it to
the next principal.

Since some shorthand is useful, we will refer to the message components in the
following way:

SP.Q Payload-bearing units, taking the form

{|P.Q ˆ S ˆ NP.Q ˆ secP.Q ˆ sharedP |}Q

The subscript P.Q indicates that this component is prepared by P for Q’s
consumption.

AP.Q Authenticators, taking the form

NQ.P ˆ [[P.Q ˆ A ˆ NP.Q ˆ h(secP.Q ˆ sharedP)]]Q

where the subscript P.Q indicates that it authenticates Q’s receipt of SP.Q.

RP.Q Recency confirmations, taking the form

[[P.Q ˆ R ˆ NP.Q ˆ NQ.P ˆ h(secQ.P ˆ sharedQ)]]P

where the subscript P.Q indicates that P vouches that it has freshly gen-
erated NP.Q, and has received SQ.P and AP.Q.

Using the three principles for ordering message components, we derive the mes-
sage sequence shown in Figure 7. Each message consists of three portions,
containing zero or more payload-bearing units, followed by zero or more authen-
ticators and zero or more recency confirmations. In early messages, payloads
predominate, while progressively authenticators and finally recency confirma-
tions emerge. We require each principal to check that its shared data agrees
with the shared data sent by the others. In M ’s case (e.g.), this means that
sharedC , as extracted from SC.M, matches sharedB , as extracted from SB.M, both
of which match the value sharedM as transmitted by M . B makes this check
before sending message 3; C, before sending message 4; and M , before sending
message 5. They refuse to continue the protocol by sending new authenticators
or recency components if this check fails. Observe that P prepares components
that will be received by both interlocutors after making this check; for instance,
M transmits RM.B and RM.C in message 5. Thus, when B receives RM.B, it gives
conclusive evidence that M ’s check succeeded.

This protocol requires the party playing a role P to generate four nonces,
two within the secrecy units SP.Q and SP.R and two within the authenticators
AQ.P and AR.P. If we choose four distinct string constants s1, . . . , s4, then we
can generate all four nonces from a single random value N of reasonable length,
using the four hashed values h(N ˆ si).

16

1. C → M SC.M ˆ SC.B

2. M → B SC.B ˆ SM.B ˆ SM.C ˆ AC.M

3. B → C SM.C ˆ SB.C ˆ SB.M ˆ AC.M ˆ AC.B ˆ AM.B

4. C → M SB.M ˆ AM.B ˆ AM.C ˆ AB.C ˆ RC.M ˆ RC.B

5. M → B AB.C ˆ AB.M ˆ RC.B ˆ RM.B ˆ RM.C

6. B → C RM.C ˆ RB.C ˆ RB.M

7. C → M RB.M

Figure 7: Full Message Flow

6.2 A Straightened Version

The triangular message flow has a disadvantage from the implementer’s point of
view: it does not match smoothly with the normal conventions of programming
with TCP/IP and the standard socket library. To solve this problem, we can
revise the message flow, adapting it to use eight messages:

C
1−→ M

2−→ B
B

3−→ M
4−→ C

C
5−→ M

6−→ B
B

7−→ M
8−→ C

This has the advantage that it may be implemented using a pair of socket con-
nections, one between C and M , and one between M and B. There are two
disadvantages to this alternative, first, the extra message, and second, that M
controls all communication between C and B, which occurs only when M for-
wards components. We regard the triangular protocol of Section 6.1 as the
authoritative version of atspect, although the straightened eight-message ver-
sion achieves the same protocol goals.

In practice, it may be unnecessary to use all six subprotocols. For instance,
the subprotocols C.M, C.B, and M.B may suffice. In this case, we may want
to augment the authenticator with some additional payload of information to
be communicated back from responder to initiator. Truncated message flows
may be based either on the triangular scheme or the straightened scheme. A
truncated message flow based on the triangular scheme is displayed in Figure 8.

6.3 ATSPECT Protocol Usage

atspect can be used in various ways, with differing interpretations of the in-
dividual messages and differing actions accompanying the protocol steps. We
will illustrate the workings of the protocol in a specific scenario, focusing on

17

1. C → M SC.M ˆ SC.B

2. M → B SC.B ˆ SM.B ˆ AC.M

3. B → C AC.M ˆ AC.B ˆ AM.B

4. C → M AM.B ˆ RC.M ˆ RC.B

5. M → B RC.B ˆ RM.B

Figure 8: Truncated Message Flow

the truncated version of Figure 8. We aim to explain the practical value of the
guarantees offered by the protocol.

In this scenario, we interpret SC.M as placing an order with the merchant,
so AC.M accepts the order and undertakes to ship the goods, conditional on B
delivering payment. SC.B requests payment to the merchant’s account, and AC.B

gives B’s certification that there are sufficient funds and that B has accepted
any relevant conditions on the transfer. The recency certificates RC.M and RC.B

certify to M and B that the order and payment are fresh, rather than replays.
SM.B proposes payment terms, including B’s fee for handling the transaction.
AM.B accepts those conditions, and RM.B ensures that the proposal was fresh.

The crucial extra-protocol action is for B to transfer funds into M ’s account,
debiting C. In a normal run, this occurs after B receives Message 5. B’s Au-
thentication, II guarantees then allow it to justify the transfer if challenged
by C or by a regulatory authority.

What should happen if one of the participants interrupts execution part-way
through a run? As we mentioned at the beginning of Section 2, this protocol
is not intended to achieve fairness, so fully acceptable answers may not exist
if execution is interrupted at certain stages. However, if C presents B with
the authenticators AC.M and AC.B, confirming that both other participants have
accepted C’s proposal, then B should effect the funds transfer and require M to
provide evidence that the goods have been shipped (possibly after some delay
to restock inventory). If M presents B with a recency certificate RC.M, and
evidence that the goods have been shipped, then B should effect the transfer to
M . A careful treatment of this supplementary protocol would define a message
format, signed by C or M respectively, to deliver these payloads.

Why are these resolution procedures reasonable? If C possesses the authen-
ticators AC.M and AC.B, then the Authentication, I guarantees for the C.M
and C.B subprotocols imply that M and B have executed the first two nodes of
runs matching C’s. Thus, it is reasonable to require M to make the shipment
when the funds are delivered. Likewise, if M possesses a recency certificate
RC.M, then his Authentication, II guarantee implies that C has completed a
strand requesting this merchandise. Moreover, C’s Authentication, I guar-
antee and M ’s Authentication, II guarantee together ensure that if either of
them choose nonces with a high degree of randomness, then these two strands

18

are at worst 2-recent for each other. Evidence that the goods have been shipped
should entitle the merchant to be paid.

Turning to the full message flow defined in Figure 7, we have more oppor-
tunities for the participants to negotiate terms within the framework of the
protocol. For instance, atspectM.C can be used to propose and accept a ship-
ping schedule, and atspectM.B can be used to propose and accept a transaction
fee between M and B. Again, in this version of the protocol, the crucial event
is Message 5. When B receives this message, it possesses Authentication, II
guarantees for runs of atspectC.B and atspectM.B, so that recent executions
by C and M are occurring. Thus, B is now justified in transferring the funds.

6.4 ATSPECT’s Three-Party Goals

We turn now to the last correctness concerns, whether atspect achieves confi-
dentiality for sharedP and the Three-Party Agreement goal.

Proposition 6.1 (Confidentiality, II) Suppose B is a bundle in which P
completes a run of atspect with interlocutors Q and R, using shared compo-
nent sharedP , and all three principals have safe private decryption keys.

If sharedP is uniquely originating, then there is no node n ∈ B such that
term(n) = sharedP .

Proof. Apply the honest ideal theorem to κ = (K\S)−1 and τ = {sharedP }∪S,
to infer that Iκ[τ] has only regular entry points. But all regular nodes transmit
sharedP encrypted with a key whose inverse is safe. �

Proposition 6.2 (Three-Party Agreement) Suppose B is a bundle in
which P completes a run of atspect with interlocutors Q and R, using shared
component sharedP . Then if Q’s signature key is safe, Q has begun a run of
atspect with P and R, with shared components sharedQ and sharedR, and

core(sharedP) = core(sharedQ) = core(sharedR).

Proof. Q transmits either AP.Q or RP.Q after receiving both SP.Q and SR.Q;
it therefore guarantees to P that the shared values in these components match
(Section 6.1). P does not transmit its last message until after P has received
this guarantee from Q.

Moreover, P has received SR.Q and has the shared value matches sharedQ as
contained in SQ.P and sharedP as P transmitted it in SP.Q and SP.R. sharedQ as
transmitted in SQ.R matches because Q is assumed uncompromised. Thus, all
six values match. �

7 Related Work

Woo and Lam’s 1994 paper on protocol design [23] diagnosed the faulty design
process leading to a protocol in an earlier paper [22]. They focused on how to
safely remove information from a “full information” but inefficient version of a

19

protocol to a less cluttered version. There are two limitations to their approach.
First, no guidance is given about how to construct a full information protocol
to achieve given goals, especially if these goals are complex, as in atspect.
Second, the criteria for safely removing information seem fragile. One might
well wonder whether they are always valid, or whether there are ambiguities in
how to apply them.

Buttyan et al. [4] describe a BAN-style logic that they say motivates a design
method, but it seems hard to abstract the method from the example they give.

Perrig and Song’s automated protocol generator APG [18] uses heuristics
related to ours to generate plausible candidate protocols. APG then calls
Athena [20] to use the strand space model to filter protocols, retaining those
proved to meet their specifications. APG does not, however, capitalize on pro-
tocol independence to decompose the design process and to synthesize protocols
from two-party subprotocols.

The bulk of work on protocol design seems to rely on the skill and ingenuity
of the designer. Notable here is Abadi and Needham [1], which contains a
wealth of information about cryptographic protocols, what makes them correct,
and how to design them so that they will be. However, they make no claim to
be systematic, nor do they base their advice on a theory of protocol goals and
correctness.

8 Conclusion

In this paper, we have illustrated a protocol design methodology, based on
the authentication tests. The method has led to a protocol, atspect, that
demonstrably meets precisely stated security goals. The atspect design process
required less than three weeks of labor, by contrast with the major effort invested
in set. atspect appears to provide security guarantees similar to those of set.

The design process has the following steps:

1. Formulate a number of precise goals that the protocol is intended to meet,
such as those of Section 2.2. Goals that concern a subset of the principals
may be achieved using subprotocols involving only those principals.

2. For each goal, select an authentication test pattern to use to achieve it, and
design a transforming edge that will satisfy this authentication goal but no
other, as in Section 4.2.1. Verify the subprotocols achieve the individual
goals (Section 5.1). Use disjoint encryption to ensure that subprotocols
are independent (Section 5.2).

3. Piece the subprotocols together to construct a single protocol as illus-
trated in Sections 6.1–6.2, and justified in Section 6.4. There is freedom
in choosing the combination, allowing trade-offs in number of messages
and in communication pattern.

More refined methods may improve the last step, in which the subprotocols are
combined, by indicating encrypted components that can be merged or simplified

20

(cp. [17] for transformations on concatenated submessages).
Our protocol design method shows how to construct special-purpose proto-

cols for specific situations in secure communication or electronic commerce. It
allows us to meet varied trust objectives with a conceptual toolkit justified by
strand spaces and the authentication tests.

Acknowledgments I am grateful to Sylvan Pinsky for encouragement, sup-
port, and technical discussions. David Basin challenged me to use the authen-
tication test heuristics for the design of a better, simpler electronic commerce
protocol. Andy Gordon and Alan Jeffrey commented on an earlier version and
applied their type system for authentication [7, 8]. Gavin Lowe pointed out the
importance of having an unpredictable ingredient in the payload.

References

[1] M. Abadi and R. Needham. Prudent engineering practice for cryptographic proto-
cols. In Proceedings, 1994 IEEE Symposium on Research in Security and Privacy,
pages 122–136. ieee, ieee Computer Society Press, 1994.

[2] G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET purchase protocols.
Technical report, Cambridge University Computer Laboratory, 2001. Short ver-
sion appeared in International Joint Conference on Automated Reasoning, June,
2001. Available at http://www.cl.cam.ac.uk/users/lcp/papers/protocols.html.

[3] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology – Crypto ’93 Proceedings. Springer-Verlag, 1993. Full version
available at http://www-cse.ucsd.edu/users/mihir/papers/eakd.ps.

[4] L. Buttyán, S. Staamann, and U. Wilhelm. A simple logic for authentication
protocol design. In 11th IEEE Computer Security Foundations Workshop, pages
153–162, 1998.

[5] R. Chadha, M. Kanovich, and A. Scedrov. Inductive methods and contract-
signing protocols. In P. Samarati, editor, Proceedings, 8th ACM Conference on
Computer and Communications Security, pages 176–185, New York, November
2001. ACM Press.

[6] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 29:198–208, 1983.

[7] A. Gordon and A. Jeffrey. Authentication by typing. In Proceedings, 14th Com-
puter Security Foundations Workshop. IEEE Computer Society Press, June 2001.

[8] A. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic pro-
tocols. In Proceedings, 15th Computer Security Foundations Workshop. IEEE
Computer Society Press, June 2002.

[9] J. D. Guttman. Key compromise and the authentication tests. Electronic Notes
in Theoretical Computer Science, 47, 2001. Editor, M. Mislove. URL http://

www.elsevier.nl/locate/entcs/volume47.html, 21 pages.
[10] J. D. Guttman. Security goals: Packet trajectories and strand spaces. In R. Gorri-

eri and R. Focardi, editors, Foundations of Security Analysis and Design, volume
2171 of LNCS, pages 197–261. Springer Verlag, 2001.

[11] J. D. Guttman, F. J. Thayer, and L. D. Zuck. The faithfulness of abstract
protocol analysis: Message authentication. Journal of Computer Security, 2003.
Forthcoming.

21

[12] J. D. Guttman and F. J. Thayer Fábrega. Authentication tests. In Proceedings,
2000 IEEE Symposium on Security and Privacy. May, IEEE Computer Society
Press, 2000.

[13] J. D. Guttman and F. J. Thayer Fábrega. Protocol independence through dis-
joint encryption. In Proceedings, 13th Computer Security Foundations Workshop.
IEEE Computer Society Press, July 2000.

[14] J. D. Guttman and F. J. Thayer Fábrega. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, June 2002.

[15] S. Kremer and J.-F. Raskin. Game analysis of abuse-free contract signing. In
Proceedings, 15th Computer Security Foundations Workshop. IEEE Computer
Society Press, June 2002.

[16] G. Lowe. Analyzing protocols subject to guessing attacks. Journal of Computer
Security, 2003. Forthcoming.

[17] S.-L. Ng. Posets and protocols: Picking the right three-party protocol. IEEE
Journal on Selected Areas in Communication, pages 55–61, January 2003.

[18] A. Perrig and D. X. Song. Looking for diamonds in the desert: Extending auto-
matic protocol generation to three-party authentication and key agreement proto-
cols. In Proceedings of the 13th IEEE Computer Security Foundations Workshop.
IEEE Computer Society Press, July 2000.

[19] SET secure electronic transaction specification, May 1997. Available at
http://www.setco.org/download.html.

[20] D. X. Song. Athena: a new efficient automated checker for security protocol anal-
ysis. In Proceedings of the 12th IEEE Computer Security Foundations Workshop.
IEEE Computer Society Press, June 1999.

[21] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(2/3):191–230, 1999.

[22] T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. Computer,
25(1):39–52, January 1992.

[23] T. Y. C. Woo and S. S. Lam. A lesson on authentication protocol design. Operating
Systems Review, pages 24–37, 1994.

A Strand Space Definitions

This appendix, derived from [10, 14, 21], defines the basic strand space notions.

A.1 Strands, Strand Spaces, and Origination

Consider a set A, the elements of which, called terms, are the possible messages
to be exchanged between principals in a protocol. A subterm relation @ is
defined on A.

In a protocol, principals send and receive terms. We represent transmission
of a term with a positive sign, and reception of a term with a negative sign.

Definition A.1 A signed term is a pair 〈σ, a〉 with a ∈ A and σ one of the
symbols +,−. We will write a signed term as +t or −t. (±A)∗ is the set of
finite sequences of signed terms. We will denote a typical element of (±A)∗ by
〈 〈σ1, a1〉, . . . , 〈σn, an〉 〉.

A strand space over A is a set Σ with a trace mapping tr : Σ → (±A)∗.

22

By abuse of language, we often treat signed terms as ordinary terms. We rep-
resent strand spaces by their underlying set of strands Σ.

Definition A.2 Fix a strand space Σ.

1. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisfying 1 ≤ i ≤
length(tr(s)). The set of nodes is denoted by N .

2. If n = 〈s, i〉 ∈ N then index(n) = i and strand(n) = s. Define term(n) to
be (tr(s))i, i.e. the ith signed term in the trace of s.

3. There is an edge n1 → n2 if and only if term(n1) = +a and term(n2) = −a
for some a ∈ A. Intuitively, the edge means that node n1 sends the message
a, which is received by n2, recording a potential causal link between those
strands.

4. When n1 = 〈s, i〉 and n2 = 〈s, i + 1〉 are members of N , there is an edge
n1 ⇒ n2. Intuitively, the edge expresses that n1 is an immediate causal
predecessor of n2 on the strand s. We write n′ ⇒+ n to mean that n′

precedes n on the same strand.

5. An unsigned term t occurs in n ∈ N iff t @ term(n).

6. Suppose I is a set of unsigned terms. The node n ∈ N is an entry point for
I iff term(n) = +t for some t ∈ I, and whenever n′ ⇒+ n, term(n′) 6∈ I.

7. An unsigned term t originates on n ∈ N iff n is an entry point for the set
I = {t′ : t @ t′}.

8. An unsigned term t is uniquely originating in a set of nodes S ⊂ N iff
there is a unique n ∈ S such that t originates on n. The term t is non-
originating in S ⊂ N iff there is no n ∈ S such that t originates on n.

N together with both sets of edges n1 → n2 and n1 ⇒ n2 is a directed graph
〈N , (→ ∪ ⇒)〉.

A.2 Bundles and Causal Precedence

A bundle is a finite subgraph of 〈N , (→ ∪ ⇒)〉, for which we can regard the
edges as expressing the causal dependencies of the nodes.

Definition A.3 Suppose C = 〈NC , (→C ∪ ⇒C)〉 is a graph, where NC ⊂ N ;
→C ⊂ →; ⇒C ⊂ ⇒. C is a bundle if:

1. NC and →C ∪ ⇒C are finite.

2. If n2 ∈ NC and term(n2) is negative, then there is a unique n1 such that
n1 →C n2.

3. If n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2.

23

4. C is acyclic.

In conditions 2 and 3, it follows that n1 ∈ NC , because C is a graph.

Definition A.4 A node n is in a bundle C = 〈NC ,→C ∪ ⇒C〉, written n ∈ C,
if n ∈ NC; a strand s is in C if all of its nodes are in NC. The C-height of a
strand s is the largest i such that 〈s, i〉 ∈ C.

Definition A.5 If S is a set of edges, i.e. S ⊂→ ∪ ⇒, then ≺S is the transitive
closure of S, and �S is the reflexive, transitive closure of S.

Proposition A.6 Suppose C is a bundle. Then �C is a partial order, i.e. a re-
flexive, antisymmetric, transitive relation. Every non-empty subset of the nodes
in C has �C-minimal members.

We regard �C as expressing causal precedence, because n ≺S n′ holds only when
n’s occurrence causally contributes to the occurrence of n′. When a bundle C is
understood, we will simply write�. Similarly, “minimal” will mean�C-minimal.

A.3 Terms, Encryption, and Freeness

We specialize the set of terms A, assuming given:

• A set T ⊆ A of texts (i.e. atomic messages).

• A set K ⊆ A of cryptographic keys disjoint from T, equipped with a unary
operator inv : K → K. We assume that inv is an inverse mapping each
member of a key pair for an asymmetric cryptosystem to the other, and
each symmetric key to itself.

• Two binary operators encr : K× A → A and join : A× A → A.

We follow custom and write inv(K) as K−1, encr(K, m) as {|m|}K , and join(a, b)
as a ˆ b.

We assume that A is freely generated.

Axiom 1 A is freely generated from T and K by encr and join.

Definition A.7 The subterm relation @ is defined inductively, as the smallest
relation such that a @ a; a @ {|g|}K if a @ g; and a @ g ˆ h if a @ g or a @ h.

By this definition, for K ∈ K, we have K @ {|g|}K only if K @ g already.

A.4 Penetrator Strands

The atomic actions available to the penetrator are encoded in a set of penetrator
traces. They summarize his ability to discard messages, generate well known
messages, piece messages together, and apply cryptographic operations using
keys that become available to him. A protocol attack typically requires hooking
together several of these atomic actions.

24

The actions available to the penetrator are relative to the set of keys that the
penetrator knows initially. We encode this in a parameter, the set of penetrator
keys KP .

Definition A.8 A penetrator trace relative to KP is one of the following:

Mt Text message: 〈+t〉 where t ∈ T.

KK Key: 〈+K〉 where K ∈ KP .

Cg,h Concatenation: 〈−g, −h, +g ˆ h〉

Sg,h Separation: 〈−g ˆ h, +g, +h〉

Eh,K Encryption: 〈−K, −h, +{|h|}K〉.

Dh,K Decryption: 〈−K−1, −{|h|}K , +h〉.

PΣ is the set of all strands s ∈ Σ such that tr(s) is a penetrator trace.

A strand s ∈ Σ is a penetrator strand if it belongs to PΣ, and a node is a
penetrator node if the strand it lies on is a penetrator strand. Otherwise we will
call it a non-penetrator or regular strand or node. A node n is M, C, etc. node
if n lies on a penetrator strand with a trace of kind M, C, etc.

25

Contents

1 Introduction 1

2 ATSPECT Protocol Goals 2
2.1 Protocol Participants . 2
2.2 Protocol Goals . 3

3 The Authentication Tests 3
3.1 Strand Spaces . 4
3.2 The Authentication Test Idea . 4
3.3 Recency . 6

4 Authentication Tests and Protocol Design 7
4.1 Payloads and Confidentiality . 8
4.2 Designing the Two-Party Subprotocols 8

4.2.1 Achieving Authentication, I 9
4.2.2 Achieving Non-Repudiation 10
4.2.3 Achieving Authentication, II 10

4.3 Distinguishing the Subprotocols 11

5 Correctness 12
5.1 Correctness of the Subprotocols 12
5.2 Independence of the Subprotocols 14

6 A Three Party Protocol 15
6.1 A Triangular Message Structure 15
6.2 A Straightened Version . 17
6.3 ATSPECT Protocol Usage . 17
6.4 ATSPECT’s Three-Party Goals 19

7 Related Work 19

8 Conclusion 20

A Strand Space Definitions 22
A.1 Strands, Strand Spaces, and Origination 22
A.2 Bundles and Causal Precedence 23
A.3 Terms, Encryption, and Freeness 24
A.4 Penetrator Strands . 24

26

