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Abstract—Distributed stream processing systems must function
efficiently for data streams that fluctuate in their arrival rates and
data distributions. Yet repeated and prohibitively expensive load
re-allocation across machines may make these systems ineffective,
potentially resulting in data loss or even system failure. To
overcome this problem, we instead propose a load distribution
(RLD) strategy that is robust to data fluctuations. RLD provides
ǫ-optimal query performance under load fluctuations without
suffering from the performance penalty caused by load migration.
RLD is based on three key strategies. First, we model robust
distributed stream processing as a parametric query optimization
problem. The notions of robust logical and robust physical
plans then are overlays of this parameter space. Second, our
Early-terminated Robust Partitioning (ERP) finds a set of robust
logical plans, covering the parameter space, while minimizing
the number of prohibitively expensive optimizer calls with a
probabilistic bound on the space coverage. Third, our OptPrune
algorithm maps the space-covering logical solution to a single
robust physical plan tolerant to deviations in data statistics
that maximizes the parameter space coverage at runtime. Our
experimental study using stock market and sensor networks
streams demonstrates that our RLD methodology consistently
outperforms state-of-the-art solutions in terms of efficiency and
effectiveness in highly fluctuating data stream environments.

I. INTRODUCTION

Motivation. Distributed stream processing systems (DSPSs)

are designed to execute continuous queries over streams of

tuples [1], [2], [3]. Continuous queries place heavy workloads

on precious system resources from CPU processing cycles,

memory, and network bandwidth. Since workloads can vary in

unpredictable ways, exploiting the limited resources requires

robust and effective load distribution techniques.

Load distribution, the placement of the operators in a query

plan to machines (nodes) in the distributed system, is an

important design decision, impacting the query processing

performance [2]. A carefully selected operator placement

may later produce poor performance due to time-varying,

unpredictable stream fluctuations. Data fluctuations may in

fact necessitate repeated expensive load redistributions in such

distributed systems. Such load redistribution may cause delay

and potentially make the system fail to react to short-term load

fluctuations in time. Example 1 illustrates this problem using

a real-world application.

Example 1. Consider a query monitoring stocks that ex-

hibit ”bullish” patterns (upward price movement in the stock

market) [4] in recent business news and research.

SELECT S.company_name, S.symbol, S.price

FROM Stock as S, News as N, Research as R

WHERE matches(S.data, BullishPatterns) /*op1*/

AND contains(S.sector, News[1 hour]) /*op2*/

AND contains(S.company_name, News[1 hour]) /*op3*/

WINDOW 60 seconds

The lookup table BullishPatterns contains ”bullish” patterns

of stock behavior, e.g., ”symmetrical triangle”. Operator op1
performs a similarity-based join on the latest stock data tuples

from the last 60 seconds with the Patterns table. Operators op2
and op3 perform matches on the stock sector and the company

name with news and research streams. Let ci and δi denote

the processing costs and current selectivity of opi respectively.

Fig. 1. Dynamic vs. Robust Load Distribution

Suppose it is a bullish market (i.e., stocks are doing well)

and the following condition holds: δ1 > δ2 > δ3. Given

these statistics, the best query processing order (query plan)

is op3, op2, op1 (c1 > c2 > c3). Assume we have two

machines, n1 and n2, with resources r1 and r2 (i.e. CPU,

memory and network bandwidth) available for processing.

Then the best load distribution plan is op1 on node n1, and

op2 and op3 on node n2, as depicted in the upper illustration

of Figure 1. Now suppose breaking news report poor stock

performance. This will likely result in fewer matches with

the Patterns table and instead more matches with news and

blogs. In this case, δ1 will be relatively lower than δ2 and δ3
for such data tuples. So plan op3, op2, op1 is no longer the

most efficient ordering. In fact, op2 and op3 may overload

n2, namely c2 + c3 > r2. Consequently, the DSPS has to

relocate op3 to n1. However, in the future if the market

exhibits bullish pattern again, the optimizer might need to

revert back to the original query processing order. Then the

query executor would again need to move op3 back to n2.

In this particular scenario, we notice that the load distribution

plan, op1 and op2 on n1, and op3 on n2 (lower Figure 1) would

have been robust to support both query processing orders

op3, op2, op1 and op1, op2, op3 in different scenarios. Proactive

design of this load distribution plan achieves two objectives,

i.e., robust query processing performance and tolerance to data

fluctuations without dynamic load redistribution.
Insufficiency of State-of-The-Art. Traditional distributed

and parallel systems [5], [6] categorize load distribution solu-

tions as either dynamic or static. Dynamic load distribution [1]

instead repeatedly improves the current load distribution plan

by moving operators across machines to adapt to load changes.

However, it comes with several drawbacks, including (1) amor-



tized overhead of repeated load redistributions, (2) adaptation

delays, when redistribution opportunities could be missed, and

(3) expensive maintenance of statistics.
Traditional static optimizers [7] determine a single ”best”

(i.e., cheapest overall execution costs) placement of query

operators at compile time based on the average estimated

statistics of data streams. While this approach imposes low

optimization overhead, it cannot adapt the load distribution

to changing statistics of data streams such as variations in

input rates and selectivities. The most recent work, resilient

operator distribution (ROD) [8], aims to produce a feasible

physical plan to be resilient to time-varying and unpredictable

workloads. However, shortcomings of ROD include: (1) it only

focuses on the physical operator distribution without taking

logical query plan ordering problem into consideration, (2) its

operator distribution plan does not guarantee the given query

processing performance, and (3) it is not proactive to changing

workloads. A detailed comparison can be found in Section VII.
Our Proposed RLD Approach. Given these inevitable dis-

advantages of existing load distribution methods, we now pro-

pose an end-to-end solution called Robust Load Distribution

(RLD) that exploits the key principles from load distribution

methods while overcoming their respective shortcomings by

integrating parametric query optimization. As foundation of

RLD, we introduce the multi-dimensional parameter space

model, a representation of the uncertainties in statistical es-

timates of streaming data. We then introduce the dual model

of matching robust logical and robust physical plans which

together gracefully handle the fluctuations experienced by the

multi-dimensional parameter space.
Considering the intractable complexity of the search space

composed of all combinations of logical plans with associated

physical plan, we adopt a two-step query optimization ap-

proach. First, our proposed algorithm, Early-terminated Robust

Partition (ERP ), identifies a set of robust logical plans (i.e.,

robust logical solution) that together cover the parameter space

with a probabilistic guarantee on the percentage coverage of

the parameter space.
Next we propose a load distribution algorithm, OptPrune

that efficiently produces an optimal robust physical plan (i.e.,

operator allocation plan) that supports the logical plans in a

robust logical solution based on their probability of occurrence

at runtime and their respective area of robustness in the

parameter space. This results in a single robust physical plan

tolerant to expected data statistic deviations at runtime.
Contributions. We introduce an end-to-end solution that

overlays robust logical plans with a single physical plans in

a parameter space. The contributions of this work can be

summarized as follows:
1. We introduce the property of robust logical query

plans (i.e., ǫ-robustness). We efficiently compute a multi-

dimensional parameter space representing uncertainties in

statistic estimates, including stream input rates and query

operator selectivities.
2. ERP , our robust logical solution algorithm efficiently

finds multiple robust logical plans that together assure cover-

age across the entire parameter space, unattainable by a single

plan. ERP forms a probabilistic bound on the total uncovered

area. Individual robust plans with any non-trivial area will be

found with high probability.

3. Given a robust logical solution, we design a family

of algorithms that cover the spectrum from the optimization

complexity to result optimality. GreedyPhy finds a robust

physical plan in polynomial time, whereas OptPrune is

a branch-and-bound algorithm using GreedyPhy as bound,

which succeeds to significantly bound the search without

compromising optimality.

The rest of this paper is organized as follows. We define

the RLD problem in Section II, and overview our solution in

Section III. Sections IV and V describe our algorithms for

generating a robust logical solution and the associated robust

physical solution. The experimental results are presented in

Section VI. Sections VII and VIII discuss related work and

the conclusion, respectively.

II. MODEL & PROBLEM STATEMENT

A. Basics of Distributed Query Plans

Common to other distributed stream work [1], [8], we

assume the distributed stream processing system (DSPS) is

deployed on a shared-nothing homogeneous compute cluster

connected by a high bandwidth network. The DSPS accepts a

continuous query, an expression describing the user’s infor-

mation needs. Then it performs a two-step optimization [7],

namely, plan generation and operator placement, to determine

the most effective strategy to execute the given query. Plan

generation identifies the algebra operator plan with the least

estimated cost for a given input query and estimated data

stream statistics. Operator placement takes the algebra plan as

input and outputs a mapping of each operator in the algebra

plan to a physical machine (node) in the cluster. We refer

to the algebra plan and its operator placement as logical and

physical plans, respectively.

B. Multi-dimensional Parameter Space

Current optimizers [1], [8] tend to use a single-point statistic

estimate for plan generation. However, it is well known that

estimates in streaming environments tend to fluctuate over

time. We thus now model these uncertainties in estimates

via a multi-dimensional space around these estimates, called

parameter space S. This space captures all possible combi-

nations of estimate variations. Each point pnt in space S is

a vector < d1, ..., dn >, where each di is an estimate of the

corresponding statistic modeled by that dimension of the space

such as selectivity or input rate.

Different methodologies for constructing a parameter space

exist, including strict upper and lower bounds [9] or levels of

uncertainty to the optimizer estimates [10]. We use the latter

approach in which the uncertainty level U is computed based

on how statistic estimates E are derived. For example, if a

value of E is available from the representative training data

set, then U = 1 denotes low uncertainty. For simplicity we

henceforth use an integer domain to denote the uncertainty

levels, though other scales of uncertainty could be easily

plugged in. The most crucial statistic estimates E for query

optimization are the selectivities of operators and the input

rates of streams [9]. We assume the statistic estimates E and

the uncertainty level U correctly represent the data stream

fluctuations. If suddenly some totally unexpected fluctuation



arises in the future, our current solution may not be able to

handle it, and we may have to exploit operator migration to

resolve such scenarios after all. The parameter space S is

computed as shown in Example 2.
Example 2. Assume a simplified query Q2 of Q1:
Q2: SELECT *

FROM News as N, Stocks as S, Currency as C

WHERE N.subject = S.industry /*op1*/

AND N.country = C.country /*op2*/

WINDOW 60 seconds

Assume neither the selectivity for operator op1 nor the

input rate of stream News are accurate over time due to

data fluctuations (e.g., breaking news in a certain industry).

To capture this uncertainty, a parameter space is constructed

around the single-point estimate E = {δ1 = 0.4, λN = 100

tuples/sec}. First, an uncertainty level U (e.g., U = 2) is

assigned to each estimate in E. Then the parameter space is

constructed with δ1 ranging between 0.32 and 0.48, and λN

ranging between 80 tuples/sec and 120 tuples/sec.
Similar to parametric queries [11], in practice, each di-

mension of the parameter space is discretized. For ease of

exposition, we henceforth work with a 2D parameter space,

though the extension to higher dimensions is straightforward.

C. Notion of Plan Robustness

Let us now consider the most common queries, namely,

select-project-join (SPJ) queries. Thus the cost model of a

logical plan in a 2D parameter space is of the form:

cost(p, pnt) = c1 · σi + c2 · σj + c3 · σi · σj + c4
where c1, c2, c3, c4 are coefficients, and σi, σj represent

the selectivities of operators opi and opj , respectively. Mod-

eling a specific plan requires suitably choosing the four

coefficients. This is achieved through standard surface-fitting

techniques [11]. Extending the above equation to a general n-

dimensional space is straightforward. Given the notations in

Table I, we introduce the notion of robust query processing.
TABLE I

NOTATIONS AND DEFINITIONS

Term Definition

ni The ith node

opi The ith operator

δi The selectivity of opi

ri Resource limit on node ni

S Parameter space

pnt Parameter instance in the parameter space

pntHi Right top corner of a parameter space

pntLo Left bottom corner of a parameter space

lp Logical query plan

LPi Robust logical solution for S, a subset of LP
pp Robust physical plan

cost(lp, pnt) Cost of a query plan p at pnt
cost(OPi) Cost of a subset of OP on the ith node (i.e., the

workload on the ith node

lpOPT
pnt Optimal query plan at pnt

Definition 1. Given a parameter space Si, a logical plan lp
is ǫ− robust, also called robust logical plan, in Si if its costs

satisfy the condition (see Table 1 for notions):

cost(lp, pntHi) ≤ (1 + ǫ)× cost(lpOPT
pntHi

, pntHi)
The intuition of what a robust logical plan is can be

explained as follows: consider two optimal query plans lp1 and

lp2 for two points pntLo =< d1,1, ..., d1,n > and pntHi =<
d2,1, ..., d2,n > in the parameter space Si respectively, and

pntLo < pntHi, meaning ∀i d1,i ≤ d2,i. If lp1 is a robust

plan in Si, then we can provably bound the costs of plan lp1

between the costs of plan lp1 at pntLo and the costs of plan

lp2 at pntHi.

Definition 2. The robust region of a logical plan lp in S
is the subarea Si where lp satisfies Definition 1 at all points

pnti ∈ Si. For example, the robust region of lp1 in Figure 2

(left) covers the left-top corner of the space S.

Definition 3. Given a set of robust logical plans, also called

robust logical solution LPi and resources ri for node ni

(∀i : 1 ≤ i ≤ N ) for a DSPS, a physical plan pp is robust,
also called robust physical plan, if it satisfies the following

conditions: 1) cost(OPi) ≤ ri, 2)
⋃
OPi = OP , and 3)⋂

OPi = ∅ (∀i : 1 ≤ i ≤ N ), where OPi denotes the set

of operators allocated to machine ni by pp, and OP is the

full set of operators in the query.

Intuitively, a physical plan pp, shown in Figure 2 (right), is

robust, if for each subset of query operators OPi assigned to

node ni, its total cost cost(OPi) is no greater than the resource

capacity ri of ni to execute the sub-plans of all query plans

lpi ∈ LP . Each OPi associated with ni also defined as a

configuration ci, has no overlap with any other OPj , and

the union of all OPi forms the whole operator set OP .

Fig. 2. Robust Load Distribution Solution

D. Problem Statement

Robust distributed query processing aims to 1) identify a

robust logical solution LPi, such that for each point in the

parameter space S, there is at least one logical plan lpi in the

solution LPi that is ǫ-robust by Def. 1 in that sub-space Si,

and to 2) produce a physical plan pp that supports the robust

logical solution, i.e., pp is robust by Def. 2. The key idea is that

the resulting system will be able to withstand the known data

stream fluctuations, meaning, as long as the actual statistics

(i.e., input stream rates and selectivities) remain within the

parameter space. Our robust load distribution (RLD) problem

can be formalized as follows.

Given a query q, resources ri for node ni (∀i : 1 ≤ i ≤ N ),

statistic estimates E =< e1, · · · , ek >, and the associated

uncertainty levels U =< u1, · · · , uk >, the robust load

distribution problem is to find a robust physical plan pp
that supports a robust logical solution LPi in the parameter

space S constructed based on E and U .

Finding the robust solution (Figure 2) for this problem

requires a comparison among all possible subsets of all logical

plans LP and all possible physical plans pp in PP in the worst

case [8]. The above problem is prohibitively expensive as the

search space of finding robust logical and physical plans are

exponential in the number of query operators and the number

of machines in the system, respectively [8]. Furthermore,

finding a robust logical solution LPi and a corresponding

physical plan pp supporting LPi requires the optimizer to

search both logical and physical search spaces. This renders

the solution intractable for large problems.



III. OVERVIEW OF RLD APPROACH

Given the intractability of RLD, we instead employ a

two-step approach towards query optimization popular for

both distributed and parallel database systems [7] due to its

reduction of the overall complexity of the distributed query

optimization problem.

In our context, the two-step optimization works as follows:

1. The first step generates a robust logical solution, in which

each logical plan is designed for a particular sub-region of

the parameter space. 2. The second step produces a single

robust physical plan, determining the machine on which each

operator is placed and supporting the given logical solution

without load redistribution.

The above two steps efficiently work together to achieve

an effective load distribution plan as our experiments confirm.

Our overall RDL strategy conducts load distribution with full

awareness of all possible scenarios at runtime, thus avoiding

costly load redistributions. The RLD architecture consists of

the following three components.

Robust plan optimizer. Our robust plan optimizer uses the

standard query optimizer of a DSPS as a black-box to perform

traditional plan optimization calls. Given a query, it estimates

resource requirements of the query based on the uncertainty

of the estimates. The plan optimizer then produces a robust

logical solution, and determines a single robust physical plan

to support this logical solution.

Robust load executor. Our robust load executor is built

on top of a multiple-plan adaptive query executor [12] that

offers the ability of switching between robust logical plans at

runtime. This is accomplished by means of an online classifier

that associates each computed robust logical plan with its

associated specific statistics. Once a robust load distribution

solution has been produced by the optimizer, the operators

are instantiated by the executor on the machines accordingly.

At runtime, our executor collects up-to-date statistics of run-

ning operators from statistic monitors installed on the DSPS

machines. The classifier then inspects the runtime statistics to

determine the best logical plan from the robust logical solution

for the new batch of tuples.

Statistic monitor. The robust load executor requires runtime

knowledge about the actual values of key parameters. Thus

each machine in a DSPS runs a statistic monitor that period-

ically samples the selectivity of operators and the associated

stream input rates. The monitor then transmits the statistics to

the executor where all statistics are kept up to date.

IV. ROBUST LOGICAL PLAN GENERATION

A. Weighted Partition Algorithm Overview

The parameter space, defined in Section II, requires us to

find the robust logical solution LPi such that each plan lpi ∈
LPi satisfies Def.1. Our approach leverages the fact that we are

not required to identify the optimality region for each plan, but

rather only its robustness region. As our experimental study

validate, this reduces the space significantly.

Consider a two dimensional parameter space containing

6 distinct robust logical plans, with their respective robust

regions depicted in Figure 3(a). In this example, the parameter

space would only need to be partitioned twice (making 10

optimizer calls) to confirm the robustness of all 6 plans. The

resulting partitioned space will contain 10 sub-spaces (Fig-

ure 3(a)). On the contrary, the exhaustive approach depicted

in Figure 3(b) would divide the parameter space into an 8× 8

grid (making 64 optimizer calls) to discover the same 6 plans.

Thus, the exhaustive approach is 6 times more expensive than

needed. Worst yet, such overhead increases significantly with

the number of dimensions of the parameter space.

a) Ideal approach b) Exhaustive approach

Fig. 3. Comparison of Ideal and Exhaustive Approach

Overview of the Logical RDL Steps. The first technical

challenge addressed by our logical plan generation algorithm

is how to efficiently find an effective partition point in the

parameter space (Step 1). By the robust logical plan definition,

to verify the robustness of a logical plan, we must make

expensive optimizer calls in all sub-spaces of its partition.

If that tested plan does not satisfy the robustness criteria, a

finer-grained partition must be found. Therefore, identifying a

good partitioning point is the key to avoid repeated wasteful

attempts of expensive robust logical plan finding. Our insight is

to leverage information about the already known query plans

in the space and encode this knowledge as weights in the

space. In this model, points where a new robust plan is more

likely to exist are assigned higher weights.

The second issue we tackle is how to update the weights

assigned to all points during the parameter space partitioning

process (Step 2). Given the size of the space, we propose an

efficient approach that incrementally updates the weights.

The third issue we address is when to stop partitioning

the parameter space (Step 3). Fine-grained partitioning incurs

significant computational overhead for query optimization.

Moreover, the quality improvement of the resulting robust

logical plans may no longer outweigh its growing expense

of optimizer calls. Thus, we develop a termination condition

that provides a probabilistic guarantee on the space coverage

by the robust logical plans. We show that the possibly missed

robust plans, if any, are guaranteed to not occupy a large area

in the parameter space.

B. Weight Assignment in Parameter Space

We now describe our strategy of exploiting plan cost in-

formation from already identified plans to assign weights to

the remaining points in the parameter space. The weight of

a point should reflect the probability that the robust logical

plan at that point is different from the robust plans in the

bottom-left and top-right corners of the associated space. This

way we would be able to exploit these weights to efficiently

identify distinct robust plans in the parameter space. However,

this is clearly infeasible without knowing what the costs of

previously identified plans would be at all points in the space.

Yet computing all these plan costs is prohibitively expensive

in a large space. Thus, our goal instead is to heuristically

approximate the weights without exhaustively computing all



plan costs in the space. For this, we develop a weight function

based on the following principles.

Principle 1. Two points in the parameter space that are

closer to each other are more likely to have the same robust

plan compared to a more distant pair of points. To motivate

this, consider the cost model in Section II-C. We observe

that the cost of a plan is monotonically increasing along each

dimension of the space [11]. Thus, in a small region of the

space, the costs of a plan lpi on two nearby points are likely

to have the same robust plan by Def.1.

Principle 2. A plan is less likely to be robust at a point if the

slope of the plan’s cost function, defined in Section II-C, at that

point is high. This principle is based on the observation that

the slope of a plan’s cost function is monotonically increasing

in the parameter space. Intuitively, the closer the points move

towards the margin of the plan’s robust region, the higher the

slope of the plan cost function is at these points.

Based on these two principles, we now design a weight

assignment function that increases as the ratio between the

slope of a plan’s cost function and the distance of that point

to the bottom left point pntLo of that space increases. The

weight function decides how quickly the weight decreases as

the distance increases, and how quickly the weight increases as

the slope increases. In practice, assigning weights individually

to each point in the parameter space would be expensive since

there are O(nd) points in a d-dimensional space assuming an n
step discretization of the space along each dimension. Thus,

we consider each dimension independently. A point pnt =
(x1, · · · , xn) ∈ S is projected onto each dimension di, such

that xi ∈ di and the point’s weight on each dimension is

assigned according to the projected distance between pnt and

pntLo (see Table I). The weight of pnt in the i-th dimension,

denoted by weighti(pnt), is defined as:

weighti(pnt) =
min(slope(pnt,pOPT

pntHi
),slope(pnt,pOPT

pntLo
))

dist(pnt,pntiLo)

where dist is a function that measures the distance between

two points. Any distance measure such as Manhattan or

Euclidean Squared Distance [13] could be plugged in.

Weight Re-Assignment Strategy. Unfortunately, the initial

weight assignment will no longer be accurate after partitioning.

That is partitioning produces several sub-spaces, each of which

may have their own optimal plan at bottom-left lpOPT
pntLo

or top-

right corner lpOPT
pntHi

of that sub-space. Recall that the optimizer

finds a distinct robust plan for each sub-space. Thus, each

point’s weight has to be updated accordingly in order to reflect

the cost behavior of the new plans in the sub-spaces.

As described earlier, the cost of the weight assignment

function largely depends on the number of points in the pa-

rameter space. Updating the entire parameter space repeatedly

incurs significant overhead for the weight assignment. We

now introduce a refinement of the above weight assignment

approach where we update the weights of points in a sub-

space as we partition the parameter space S if and only if the

following condition is satisfied.

(lppntLo
= lpOPT

pntLo
) ∧ (lppntHi

= lpOPT
pntHi

) = True

where weight
′

i(pnt) denotes the updated weight assignment

for the current partition point pnt; while Si.pntHi(Si.pntLo)
denotes the top-right (bottom-left) corner of the sub-space

Si ∈ S. Intuitively, the above condition ensures that the update

would not be triggered if the predicted logical plan at top-right

(bottom-left) corner is identical to the optimal plan identified

at the same point after partitioning the space.

Example 3. We illustrate the above weight re-assignment

strategy using Figure 4. The weight is assigned to each point in

the original parameter space in Figure 4(a). Then we partition

the space into 4 sub-spaces, and compute the weights of pntHi

and pntLo for each of the 4 sub-spaces Si (Figure 4(b)).

However, we only update the sub-spaces S4 (Figure 4(c))

as the optimal plan is different from the predicted robust

logical plan at S4.pntHi. Thus, the above condition reduces

the number of sub-spaces to update.

a) Original Weight b) Select Partition Point c) Updating Weight

Fig. 4. Weight Assignment for Parameter Space

Example 3 shows savings by not updating weight assign-

ments in areas where an identified robust logical plan has

a ”large” area of optimality. The reason is that the weight

assignment in a sub-space only depend on its robust plan.

C. Parameter Space Partitioning

1) Weight-driven Robust Partitioning Algorithm: We now

illustrate how the above weight assignment is integrated into

the parameter space partitioning process. The main idea of

parameter space partitioning is to incrementally find robust

plans as the space is partitioned. A straightforward way

to achieve this is using the weight-driven partition (WRP)

procedure (Algorithm 1). First we compute the weights for all

points in the discretized space S. Then, we pick the point with

the highest weight as the partition point to divide the space into

2d sub-spaces, with d denoting the number of dimensions of

S. Each sub-space Si will be further partitioned if its optimal

plan at pntHi is not robust. Finally, the partitioning process

stops once all plans at pntHi of all Si are robust.

This partitioning process could result in unnecessarily small

sub-spaces if the robustness threshold ǫ is not well chosen.

On the contrary, a too large ǫ may end up with a rather

small number of sub-spaces - leading to suboptimal plans.

Our experiments (Section VI-C) show that relatively small

increments in ǫ are sufficient to bring down the number

of plans significantly, without adversely affecting the query

processing quality.

Limitations of WRP. As described above, WRP aims

to minimize the computational overhead of partitioning. Yet

there is a significant explosion in costs associated with an

increasing dimensionality of the parameter space. Moreover, a

large percentage of the computation could be wasted as WRP
treats all sub-spaces in the parameter space equally rather than

targeting specific subareas. The intuition is that a too strict
threshold ǫ may lead the partitioning algorithm to undertake

a too fine-grained job, not merited by the coarseness of the



underlying space. In an extreme case, all optimal logical plans

in the space must be identified if ǫ = 0.

Algorithm 1 Weight-driven robust partitioning algorithm

Input: A parameter space S
Output: A robust logical solution LPi

1: Plan lp← optimize(S.pntHi)

2: if lp is robust in S then

3: LPi.add(lp, S)
4: return LPi

5: else

6: Assign weights to points in S;

7: Choose appropriate point to partition S based on

weights

8: for i = 1→ n(numberofsub− spaces) do

9: Update weight assignments in si ∈ S
10: standardPartitioning(si, LPi);

11: end for

12: end if

13: return LPi

2) Early-terminated Weight Robust Partitioning: Given the

shortcomings of WRP, we now enhance this approach by de-

signing an early termination strategy. This new method, called

ERP , reduces the overhead while providing a probabilistic

guarantee that the robust plans missed cannot occupy a large

area in the parameter space. Our solution uses two key factors:

(a) Region of robustness for a given plan lp refers to the

location where the plan lp is robust in the parameter space.

(b) Size of robustness for a given plan lp corresponds to the

total area in the parameter space where the plan lp is robust.

We exploit the above two factors to trade off between

the partitioning costs and the quality of the resulting plans.

Observe that when we partition the parameter space using

uniform partitioning, the probability of finding a new robust

plan is proportional to its area of robustness. Given that a

finite number of robust plans exists, the probability of finding

a new robust plan decreases as we find more robust plans

from that set of plans when partitioning. The more robust

plans we have already found, the more partitioning steps it

will take on average to find an additional robust plan. We

propose to exploit this insight by terminating the partitioning

process when we have not obtained a new robust plan for a

pre-determined number of partitioning steps.

For this, we maintain an aging counter, which keeps track

of the interval between the last two times that a new robust

plan was detected in the partitioning process. Each time we

call the optimizer at pntHi of a new sub-space, if the plan

at pntHi is a new robust plan that is distinct from all robust

plans observed thus for, we reset the aging counter. Otherwise,

we increment the aging counter.

Assume that after partitioning t times, we found a new

robust plan. Then the aging counter is reset to 0 and we

start counting up again. Let c be the number of additional

partitioning steps after t to find the next new robust plan. The

probability of finding a robust plan is constant between t and t

+ c, since the number of missing robust plans does not change

during this interval. If we denote the probability of identifying

a new robust plan after t partitions by Pr(t),

∀ 0 ≤ t ≤ c - 1, Pr(t + c) = nmiss

ntotal

where nmiss is the number of unidentified robust logical plans

and ntotal is the total number of robust plans.

Theorem 1: With a probability of at least 1 - ε, if we do

not find a new optimal plan in the partitioning process within

c trials, where c ≤ c0 = (1 + ε−1/2) / δ, then the total number

of optimal plans not yet found is bounded by δ (≤ δ).

Details of the proof can be found in our technical re-

port [14]. Intuitively, Theorem 1 states that if the aging counter

reaches a value ≥ c0, then with high probability the missing

optimal plans cover a small area in the parameter space. We

observe that the position to partition the space can have a sig-

nificant impact on how quickly the aging threshold is reached.

The space partitioning technique, which exploits Theorem 1

to early terminate the partitioning process, called ERP , is

shown in Algorithm 2. Since the guarantee in Theorem 1 is

probabilistic, our proposed ERP may miss some robust plans.

The following theorem quantifies the likelihood of missing a

robust plan based on its area of optimality.

Algorithm 2 Early-terminated Robust Partitioning Algorithm

Input: A parameter space S
Output: A robust logical solution LPi

1: LPi ← φ
2: countermiss ← 0

3: age threshold← (1 + ε−1/2) / δ
4: while countermiss ≤ age threshold do

5: pnt← getPartitionPnt(S)
6: pOPT

pnt is the optimal plan at pnt
7: if pOPT

pnt ∈ LPi then

8: countermiss++ and continue

9: else

10: add(pOPT
pnt ) to LPi

11: countermiss = 0

12: end if

13: end while

14: return LPi

Theorem 2: Suppose we stop partitioning according to the

aging threshold in Theorem 1. If the coverage of an optimal

plan lp is area(lp) ≥ γ · δ, for a constant 0 < γ ≤ 1/δ,

then the probability that the plan lp is not found is at most

e−γ(1+ε−1/2).

Details of the proof can be found in our technical re-

port [14]. Theorem 2 states that if an optimal plan has a

”large” area of optimality, then we will find it with high

probability when using the stopping condition of Theorem 1.

From Theorem 2 we know that the probability of missing a

robust plan decreases exponentially with its area.

V. ROBUST PHYSICAL PLAN GENERATION

A. Basic Approach for Robust Physical Plan

A straightforward strategy for robust physical plan genera-

tion would entail the following steps. As input, we accept LPi,

a set of logical plans that together cover the parameter space

by Def.1 produced by the logical optimizer. Then we compute

all physical plans PP for each robust plan lpi ∈ LPi, denoted

by PP (lpi). Thereafter, we find the intersection among all sets

PP (lpi) for all logical plans lpi ∈ LPi. If the intersection is



not empty, then any physical plan in this intersection is a valid

solution, which satisfies all robust logical plans in LPi.

However, if the intersection is empty, then no physical

solution supports all logical plans in LPi. We would need to

locate a suboptimal solution. One simple option would be to

remove a logical plan lpi from solution LPi. Then we repeat

the above procedure until the intersection is not empty and

thus a valid robust physical plan can be produced.

Unfortunately, the number of physical plans for a single log-

ical plan is nm/n! [8], where n is the number of machines and

m the number of operators in the logical plan lp. Moreover,

the number of different logical solutions LPi is 2k−1, where

k is the cardinality of the set of all possible logical plans LP .

As a result, finding the optimal solution for this problem is

intractable for a large number of machines or a large number

of robust logical plans.

Thus, we now propose algorithms that trade off between

the optimization complexity versus the result optimality.

GreedyPhy exploits heuristics to efficiently find a robust

physical plan in polynomial time, whereas OptPrune, using

GreedyPhy as baseline, is guaranteed to find the optimal

physical plan to support the maximum number of logical plans,

though with minimal increase in optimization time.

B. Greedy Physical Plan Generation

Given the complexity of physical plan generation, we now

introduce a heuristic strategy that uses two key principles:

(a) The area of optimality heuristic. Intuitively, we aim

to produce a robust physical plan pp that covers as much as

possible of the parameter space by supporting all logical plans

in LPi. If all logical plans cannot be supported by pp, then we

drop from LPi the least important logical plan, i.e., the plan

associated with the smallest robust region in the parameter

space S from LPi.

(b) The probability of occurrence heuristic. By definition,

the selectivity of an operator fluctuates around its given statis-

tic estimates. Various probability distributions could be used to

model the occurrence of a point in the space S. For simplicity,

we model this probability using a normal distribution as

commonly done in the literature [13]. Therefore, the closer a

point is to the given statistic estimate, the higher the possibility

that the actual selectivity happens at runtime. As a result, we

drop the logical plan whose optimality region is the furthest

away from the given estimate point.

Weight Assignment Policy. Our strategy is to assign a

weight to each robust logical plan that incorporates the above

two factors. Let area(lpi) denote the robust region of plan lpi,
and Pr(pntj) denote the probability of occurrence of a point

pntj at run time. A robust logical plan’s weight weight(lpi)
is defined as:

weight(lpi) =
∑

pntj∈area(lpi)
Pr(pntj)

where Pr(pntj) can be obtained from the normal distribution.

Example 4. Consider a 2-dimensional parameter space with

each dimension discretized into 16 units (see Figure 5). Sup-

pose the space contains 5 different robust logical plans. Each

plan’s robust region is depicted as one or more rectangles.

For example, the robust region of lp1 includes area1, area6,

area11, and area16. The probabilities of the actual run time

statistics to fall within these rectangles are 2.4%, 11.7%,

11.7%, and 2.4%, respectively. Summing the values gives us

the weight of lp1 as 28.2%. The probability of occurrence with

respect to a unit area is calculated as follows using area1 as

an example:
Pr(area1) = Prx(area1) · Pry(area1)

where x and y denote the x-axis and y-axis of a unit area

in the 2-dimensional parameter space, respectively. The above

assumes that the x and y dimensions are independent following

the assumption of independence of selectivity values com-

monly made by query optimizers [15]. Thus the correlation

between dimensions is zero.

Fig. 5. Weight Assignment for Logical Plans

Algorithm 3 GreedyPhy Algorithm

Input: A robust logical solution LPi, resources R
Output: A robust physical plan pp

1: terminate← false

2: lpmax ← updateMax(LPi)
3: while terminate 6= true do

4: pp← LLF (lpmax, R)
5: if pp 6= null then

6: terminate← true

7: else

8: index← getMinWeightP lanWithMaxOp()
9: LPi.remove(index)

10: lpmax ← updateMax(LPi)
11: end if

12: end while

13: return pp

The GreedyPhy Algorithm. After assigning weights to the

logical plans, the plans are stored in a heap sorted by their

weights in descending order. GreedyPhy algorithm exploits

the above weight assignment (Algorithm 3). Given a solution

LPi produced by the logical plan optimizer, then each plan

lpi ∈ LPi has a weight w(lpi), GreedyPhy finds the physical

plan pp that supports a subset of LPi such that the sum of

all weights of the supported logical plans is maximal among

all possible subsets of LPi. Intuitively, the resulting robust

physical plan pp should be robust to the most frequently

occurring data fluctuations. Given a robust logical solution LPi

and resource constraints ri, GreedyPhy generates a logical

plan lpmax, in which the cost of each operator is equal to its

maximum cost for all logical plans lpi ∈ LPi (Lines 1-2).

Thereafter, in each iteration the algorithm tries to produce a

physical plan by using the Largest Load First (LLF) algorithm

(i.e., Longest Processing Time algorithm [8]) (Line 4). LLF

orders the operators by their cost and assigns operators in

descending order to the least loaded machine. If a physical

plan is produced by LLF, it is thus returned as final solution.



If the algorithm fails to find a physical plan, it removes the

least-weighted logical plan lpi from the robust logical solution

LPi (Lines 8-10). After repeating lines 3-10 a maximum of

|LPi| times (LPi is empty after |LPi| times), the algorithm

returns a physical plan that maximizes the total weight of the

subset of logical plans selected from LPi supported by pp.

Complexity Analysis. The worse case for GreedyPhy
is that none of the logical plans in LPi can be supported

by the given resources. In other words, it would iterate k
(the cardinality of |LPi|) times before stopping. Therefore,

the worse case complexity of GreedyPhy is O(n) as the

complexity of LLF is proven to be O(n) [8], and the complex-

ity of getMinWeightP lanWithMaxOp and updateMax
procedures are both linear in the number of operators in lp,

namely O(n). Therefore, GreedyPhy is guaranteed to have

a linear complexity taking O(n) time.

C. OptPrune Physical Plan Generation

The above algorithm, being greedy, cannot always find the

optimal solution. We now design a strategy that guarantees

the optimal solution is found if one exists. Given the pro-

hibitively high complexity of exhaustive search, the key idea

is to devise a pruning methodology that eliminates suboptimal

solutions. OptPrune succeeds in improving the efficiency of

the search costs without compromising result optimality (see

Algorithm 4).

Algorithm 4 OptPrune Algorithm

Input: A set of robust logical plans LPi, resource limits R
Output: A robust physical plan pp

1: C ← all feasible configurations on a single machine

2: greedyP lan← GreedyPhy(LPi, R)
3: bound← score(greedyP lan)
4: pp← NULL

5: sort(C)
6: c0 ← max(C)
7: Search(C, c0){
8: S′ ← removeConflict(C, c0)
9: for all ci ∈ S′ do

10: pp.add(ci)
11: score← updateScore(pp)
12: if completeSolution(pp) then

13: return true

14: else if checkLimit(pp) ∨ score < bound then

15: pp.remove(ci)
16: score← updateScore(pp)
17: continue

18: else if !Search(C ′, ci) then

19: pp.remove(ci)
20: score← updateScore(pp)
21: continue

22: end if

23: end for

24: }
25: return pp

In order to find the optimal solution, OptPrune potentially

needs to examine all possible physical plans. We represent

all physical plan candidates in a weighted directed graph

G = (V,E, SCORE) (Figure 6) where vi ∈ V are vertices,

eij ∈ E are directed edges vi → vj , and a score ∈ SCORE is

associated with each vertex vi, denoted by score(vi). A vertex

vi represents a set of configurations ci defined in Section II-C.

The root, the vertex on level 0, is empty. Each leaf , a vertex

on level N (with N the number of machines), is a robust

physical plan (Def.3). All vertices located between level 0

and level N − 1 correspond to partial physical plans (i.e.,⋃
OPi ❁ OP but

⋃
OPi 6= OP ). A vertex vj is the child

of the vertex vi denoted by the edge eij from vi to vj . The

configurations in a child vertex vi corresponds to the union

of all configurations in vi’s parents. A score is the minimal

weights of the configurations can support in a vertex. For

example, c2 = 0.6 and c4 = 1 in Figure 6, the score of

v8 = min {c2, c4} = 0.6.
The key idea is that OptPrune can leverage the results

generated by GreedyPhy as its pruning criteria for im-

proved efficiency. For simplicity, we here assume that the

machines are homogeneous. Thus a configuration such as

c2 =< op1, op3 > is valid, if op1 and op3 can fit on one

machine.

Fig. 6. Robust Physical Plan Search Graph

OptPrune traverses the above search tree in a depth-first

search (DFS). OptPrune starts at the root, an empty plan, and

continues iteratively down the graph forming a robust physical

plan by adding configurations. As stated in Section V-A, the

goal of OptPrune is to maximize the total score of the

logical plans that a physical plan pp can support, denoted

by score(pp). The algorithm first figures out all possible

configurations on a single machine (Line 1). The score of

a physical plan is the total weight of the logical plans being

supported. It sorts the configurations in decreasing order of

the number of operators in each configuration. c0 is the

configuration with the most number of operators (Lines 2-6).
OptPrune starts its depth-first search (DFS) by adding one

configuration to the current robust physical plan (pp) at a time

(Lines 7-11). If the union of configurations in pp contain all

query operators, then the algorithm terminates and returns pp
(Lines 12-13). We have an effective bound that is guaranteed

to only eliminate suboptimal solutions. If the current partial

pp exceeds the given resource capacity or the score of the

current pp is worse than that of the GreedyPhy solution,

then the algorithm backtracks by removing the newly added

configuration from the current pp and updating the score of

pp accordingly (Lines 14-21).
Theorem 3: The new pp∗ cannot be an optimal solution

if the current pp is not an optimal one. The physical plan

search graph is guaranteed to be safely pruned. OptPrune is

guaranteed to find the optimal solution.
Proofs of the above lemma and theorem can be found in

our technical report [14].
Complexity Discussion. The worse case for OptPrune is

to have to check every configuration in the entire search space.



Therefore, the worse case complexity of OptPrune is the

same as that of exhaustive search, namely, O(nm/n!). How-

ever, in practice our proposed pruning methods are found to

be extremely effective at terminating the search much earlier,

as confirmed by our experimental results (Section VI-D). The

reasons are twofold. First, GreedyPhy produces a relatively

good physical plan - this offers us an excellent bounding

condition, which enables us to stop searching through most

branches early on. Hence it reduces the search space sig-

nificantly without affecting the search accuracy. Secondly,

OptPrune terminates immediately if it finds the first physical

plan (leaf) that supports all robust logical plans.

VI. EXPERIMENTAL STUDY

We have implemented the proposed techniques on D-

CAPE [16], a distributed continuous query processing ar-

chitecture employing stream query engines over a cluster of

shared-nothing processors. The experiments were run on the

D-CAPE system using Linux machines with Intel 2.6GHz

Dual Core CPUs and 4GB memory.
TABLE II

SYSTEM PARAMETERS & DATA DISTRIBUTION

Parameter Value Description

Data Arrival Poisson Data arrival distribution

µ 500 msec Mean inter-arrival rate

|Tdq| 1,000 Maximum # of tuples dequeued by
an operator at a time

Ruster size 100 tuples Minimum ruster size

Data Distributions

Uniform (α = 0, β = 100): min: 0.0, max: 100.0, med: 49.0, mean: 49.7,
ave.dev: 25.2, st.dev: 29.14, var: 849.18, skew: 0.05, kurt: -1.18.

Poisson (λ = 1): min: 0.0, max: 7.0, med: 1.0,mean: 0.97,
ave.dev: 0.74, st.dev: 1.01, var: 1.02,skew: 1.17, kurt: 1.89

A. Data Sets and Queries

Stocks-News-Blogs-Currency data set: We have employed

a data polling application (implemented in QueryMesh [12])

that collects NYSE stock prices, foreign currency exchange

rates from Yahoo Finance, news and blogs via RSS feeds.

Sensor data set: This data set contains readings from

sensors in the Intel Research, Berkeley Lab [9]. The sensor

readings are streamed to D-CAPE in the order they are

generated, as if they were submitted by sensors in real-time.

Synthetic data sets: To study the effectiveness of our

strategies under data fluctuations, we design several data sets

using various data distributions that model real-life phenom-

ena. Default properties, distribution and system parameters are

depicted in Table II.

Queries: We deploy N-way join queries, as those are among

the core and most expensive queries in database systems. The

default settings used in our experiments are listed in Table II.

The queries are equi-joins of 10 streams.

B. Experimental Methodology

Our experiments are categorized into three major classes.

The first class studies the effectiveness of our ERP
algorithm for robust logical plan generation. Specifically,

we compare the compile-time optimization performance and

the quality of the resulting robust logical plans for three

alternative techniques. As baseline for the best quality robust

logical solution, we employ exhaustive search (ES) over the

discretized parameter space. We also implement a search

algorithm which randomly selects points in the parameter

space as plan candidates (RS). RS stops making optimizer

calls if it fails to find a distinct robust logical plan after

a given number of optimizer calls. This corresponds to our

partitioning technique assigning equal weights to all points in

the parameter space. Finally, our weight assignment strategy

with early termination is denoted as ERP .

The second class evaluates the effectiveness of our algo-

rithms, GreedyPhy and OptPrune, for robust physical plan

generation. Specifically, we compare different approaches for

physical plan generation with respect to their optimization time

to find the solution and the space coverage of the solution.

We also measure the total weight of the area covered by

the resulting physical plan. As baseline, we again choose the

results from the exhaustive search over all load distribution

plans, which is guaranteed to find the optimal solution.

The third class is a comparative study assessing the

runtime execution of the overall RLD system. Specifically,

we evaluate the average tuple processing time and runtime

overhead of our RLD solution and compare it to state-of-

the-art approaches, namely, the resilient load distribution [8]

(ROD) and dynamic load redistribution (DYN ) [1].

C. Effectiveness of Logical Plan Generation

Varying Robustness Thresholds and Uncertainty Levels.

This experiment assesses the impact of the robustness thresh-

old ǫ and uncertainty level U on the effectiveness of our logical

plan finder. The value ǫ of the robustness threshold is varied

from 10% to 30% for Q1 (5-way join query). Figure 7 shows

the number of optimization calls made by ERP , RS and ES.

As expected, a lower value for ǫ (tighter robustness bound)

results in a higher number of optimization calls, because

returned plans cannot be much worse than the corresponding

optimal logical plans due to the tight robustness bound ǫ. Fur-

thermore, Figure 7 depicts the optimization efficiency under

different uncertainty levels. The higher uncertainty levels result

in a larger parameter space. Hence, the number of optimizer

calls increases along with the increasing uncertainty level. The

results, showing the parameter space S coverage of the robust

logical plans identified by ES, RS and ERP , can be found

in our technical report [14] due to the space limit.

Varying the Number of Dimensions. Our previous results

are based on a fixed number of statistic estimates (i.e.,

dimensions). We now examine the relative efficiency of the

algorithms for dimensions varying from one to ten. Q2 (10-

way join query) is used because it has a higher number of

logical plans compared to Q1. Thus, it is more likely to

suffer from the exponential growth of complexity with a linear

increase in the number of dimensions.

We consider 3 parameter configurations to evaluate the

efficiency of our algorithm for finding logical plans across

diverse scenarios. Our optimizer, as shown in Figure 9, is

significantly more efficient than the alternative approaches.

It is clear that the more dimensions the parameter space

has, the more subspaces are produced by each partitioning

step. That is, the number of subspaces grows exponentially

with the dimensionality of the parameter space. This issue

drastically affects ES because this approach has to check all

unit subspaces in the discretized space. As depicted in Figure

9, the number of partitioning iterations increases exponentially

with the number of dimensions. In contrast, our proposed
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Fig. 7. Vary Robustness Thresholds and Uncertainty Levels for 3 Partitioning Algorithms
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ERP solution increases almost linearly by wisely choosing

the partitioning areas. Furthermore, we benefit from our early

termination mechanism that successfully avoids wasting com-

putations on already robust areas.

D. Effectiveness of Physical Plan Generation

Next, we address the relative effectiveness of GreedyPhy
versus OptPrune for physical plan generation. We measure

the quality (i.e., space coverage and associated weight) of the

respective algorithms. We vary the number of machines and

also use different queries (equi-join of 10 to 20 streams).
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Fig. 9. Optimizer Performance for Finding Physical Plan

Figure 9 shows the average optimization time used by each

algorithm for different numbers of operators. GreedyPhy is

12 times faster than its alternatives on average. Exhaustive

search (ES) fares the worst because it treats the regions

equally in the parameter space. This is a bad choice because

ES wastes computations on the margin areas (i.e., less likely

to actually occur at runtime) of the parameter space that are

less likely to be supported by the resulting physical plan.

OptPrune does fairly well compared to ES, because it tends

to support the most important logical plans first. Moreover,

it uses the result from GreedyPhy as bound for effective

branch and bound search. In fact, it exhibits an optimization

time similar to our GreedyPhy approach in most cases.

Figure 10 compares the physical plans produced by our

GreedyPhy and OptPrune with the optimal solution (ES)

for different queries (number of operators) given different

system resources (number of machines). We define the average

parameter coverage ratio rtA as a metric to assess the relative

effectiveness of the algorithm. The metric is defined as a

ratio between the area (Area(p.phyA)) covered by algorithm

A’s physical plan and the area (Area(p.phyES)) covered by

the optimal physical plan. The physical plan generated by

OptPrune is identical to ES even in the worst scenario, yet

the search costs are much cheaper than those of ES. As for

rtGreedyPhy , the maximum rt is 0.94 and the minimum rt is

0.62 (ratio varies with different queries). Clearly, GreedyPhy
sacrifices the quality of the robust physical plan for a reduction

in compilation overhead.
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Fig. 10. Space Coverage of Physical Plan Generation

E. Measuring Runtime Performance

Average Tuple Processing Time: While our overarching

goal is to achieve robust processing without load redistribution,

DSPSs must process continuous queries in real-time. Thus, we

now evaluate the average tuple processing performance of the

RLD solution compared to the most prominent approaches,

namely, resilient operator distribution [8] (ROD) and dynamic

load distribution (DYN). Each query is run for 30 minutes



five times using these different solutions with the initial setup

for input rates as shown in Table II. Using synthetic data,

we vary stream rates by scaling the rate by a constant. The

results in Figure 11(a) over such wide range of fluctuations

not only show that RLD is robust in the input rate variations

in most cases, but also point out where it fails. When the

input rate is low (50%), ROD and DYN are almost as good

as our RLD approach. When the input rate increases from

100% to 300%, neither ROD nor DYN are as robust as our

RLD approach. This is likely due to ROD’s performance

suffering from executing sub-optimal logical query plans once

input data fluctuations arise. Without load migration, nodes

may become a bottleneck. Consequently the tuple processing

becomes delayed. DYN approach is also slower since moving

operators may result in temporary poor performance due to

the execution suspension of those operators.

However, DYN’s performance exceeds our RLD approach

when the input rate fluctuation ratio is very large (400%). In

this case, the load of the system cannot be well balanced by

RLD since RLD only adopts one physical plan. DYN, on the

other hand, performs best in such extreme fluctuations. The

reason is that the computational resources are not sufficient

for our RLD approach to handle such fluctuations with one

single physical plan. Our RLD approach targets in particular

to support fluctuations known a priori and does not optimize

for operator movement at runtime.
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Fig. 11. RLD Runtime Performance

Our experiments further inspect whether the RLD approach

is robust in the other two parameters, namely, the number of

nodes and the input stream fluctuation periods. Specifically,

the input stream fluctuation period alternates the input rate of

each input stream periodically between a high rate and a low

rate. The duration of the high rate interval equals the duration

of the low rate interval. Both ROD and DYN do not exhibit

the same robustness to the other two parameters as RLD does.

As indicated in Figure 11(b), when the number of ma-

chines is large, the performance difference among all three

approaches is small. This is because when each machine has

only a small amount of load, all 3 systems succeed to produce

stable solutions that require few or no operator migrations.

However, when the number of nodes is small, our RLD

approach performs much better than the other two because

it pro-actively switches logical plans at runtime. Figure 11(c)

shows that the average tuple processing time of RLD slightly

increases while ROD and DYN suffer from the increasing

fluctuation period. The reason is that ROD neither supports

operator movement nor has multiple logical plans tuned to

support different load fluctuations. Even though DYN supports

physical plan migration, its performance is also slow due to

the execution suspension caused by operator movements. Our

RLD approach avoids load migration and smooths out the

fluctuations by exploiting a combined solution of multiple

robust logical plans and a corresponding robust physical plan.

Total Number of Tuples Produced: Figure 11(d) indicates

the total number of tuples produced by the three load dis-

tributed stream models (i.e., ROD, DYN, and our RLD) over

time, using the system configuration described in Table II.

We ran queries for over an hour and show the average output

for the first 60 minutes. Over time the total number of tuples

output by RLD is significantly larger than those by either ROD

or DYN solution. In ROD, the single logical plan causes a bot-

tleneck in query processing performance, because it becomes

non-optimal when the data streams fluctuate. Whereas DYN

suffers from load migration overhead, whenever states of query

operators get swaped among different machines [17].

Runtime Overhead: Now we compare the runtime over-

head of RLD and DYN solutions. For both RLD and DYN,

we consider any execution costs beyond the actual query

processing to be runtime overhead. In RLD, tuples are grouped

together into batches and assigned the appropriate logical plan

based on the runtime statistics. Thus all tuples in a batch share

the same plan. The only runtime overhead incurred in RLD

is the initial classification to determine the execution plan for

any arriving data, which was measured to be small, on average,

about 2% of the query execution costs. On the contrary, DYN

suffers from continuous load redistribution overhead. Multiple

factors contribute to DYN’s runtime overhead, including the

frequency of operator relocation, the state sizes of the moving

operators, and the scale of operator relocation. The continuous

re-optimization costs of DYN offset the performance gains

achieved from using a better physical plan for short-term data

fluctuations. In RLD, such overheads are avoided by exploiting

a robust physical plan to support multiple logical plans.

VII. RELATED WORK

Robust [9], [18] and parametric query optimization [11],

[19], [20], [21] are closely related areas. Robust query op-

timization [9], [18] aims to find one robust query plan that

performs reasonably well for known uncertainties in statistics.

However, if significant discrepancies exist between estimated

and actual values, a single robust plan may fail to prevent

performance degradation. Our work instead is unique in that

it deploys multiple robust logical plans that together assure

coverage across the entire parameter space, which a single

plan would not be able to accomplish.

Similarly, parametric query optimization finds a set of plans

that are optimal for different parameter settings. The early

work [20], [21] optimized a parametric query for all possible

values of uncertain variables, but postponed the final plan deci-

sions to runtime once the actual statistics become known. Re-

cent works [19], [11] proposes the concept of a plan diagram,



a pictorial enumeration of the query plans over the selectivity

space. The authors propose to reduce the plan diagram for a

query by merging plans whose costs are ”close enough” with

each other. Our problem faces different challenges compared

with the above works. First, in our case the original plan

diagram is not given. Instead, we compute robust logical

plans based on prediction rather than observation on their

cost behavior. Thus, the compile-time overhead is significantly

reduced by our solution by not making traditional optimization

calls repeatedly. Second, none of the above algorithms are

directly applicable to our problem since assumptions made

in these works do not consider the physical plan generation

with resource limitations in distributed environments. Finally,

unlike traditional parametric query optimization, our technique

uses a probability model to capture the occurrence of points in

the space at runtime, and strives to cover the most important

regions in that space.

Our work is done in the context of distributed stream pro-

cessing. The performance and scalability issues in centralized

stream processing systems [17], [22], [23], [24] drew attention

to distributed stream processing systems [2], [1]. Some works

have proposed dynamic load distribution solutions for dis-

tributed stream processing [1], [25], [26]. Xing et al. [1] study

how to minimize the load variances and maximize the correla-

tions across all node pairs by dynamically distributing loads at

runtime. SQPR [25] models query admission, allocation and

reuse as a single constrained optimization formalization, and

solves an approximate version. SODA [26] balances the load

across all resources in the system by minimizing a weighted

average of metrics that model resource utilization. However,

their methodologies consider dynamic operator movements

across machines as a reactive strategy when an imbalance

arises. Our work instead aims to pro-actively produce a robust

load distribution solution without runtime load redistribution

and costly operator migration overhead. Given known data

fluctuations as input, we pro-actively switch among pre-

computed (compile time) robust logical plans at runtime, all of

which are executed on the same physical operator allocation.

ROD [8], which we compared against in our experimental

study (Section VI-E), produces a load distribution plan to keep

the system feasible under workload fluctuations without load

migration. However, our work has two key differences from

ROD: 1. ROD only focuses on producing a feasible physical

plan without exploiting multiple logical plans for a given

query. Our work obtains a many-to-one mapping from a set

of robust logical plans to a single physical plan that provides

robust query processing performance. 2. The query processing

performance is not guaranteed in ROD as it has no knowledge

of the logical plans being executed on top of its feasible load

distribution plan. On the contrary, our work uses proactive

methodology to choose the best logical plan from our robust

logical solution to be executed on a single physical solution.

Thus, the query processing performance is further improved.

VIII. CONCLUSION

The ability to withstand stream data fluctuations is an

important consideration in a distributed stream processing

system. We design a scalable solution in which a DSPS may

benefit from different logical plans at runtime based on vary-

ing characteristics of the system. Our ERP then efficiently

produces a robust logical solution that covers the parameter

space. Taking the robust logical solution as input, OptPrune
produces an optimal robust physical plan that supports the

logical solution at runtime without operator relocation. Due

to the effective bounding strategy, it succeeds to do so with

minimal optimization time. Our experimental results on real

world data show the promise of our RLD solution.
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