
Sessions and Separability in Security Protocols?

Marco Carbone Joshua D. Guttman

IT University of Copenhagen Worcester Polytechnic Institute
carbonem@itu.dk guttman@wpi.edu

Abstract. Despite much work on sessions and session types in non-
adversarial contexts, session-like behavior given an active adversary has
not received an adequate definition and proof methods. We provide a
syntactic property that guarantees that a protocol has session-respecting
executions. Any uncompromised subset of the participants are still guar-
anteed that their interaction will respect sessions. A protocol transfor-
mation turns any protocol into a session-respecting protocol.
We do this via a general theory of separability. Our main theorem ap-
plies to different separability requirements, and characterizes when we
can separate protocol executions sufficiently to meet a particular require-
ment. This theorem also gives direct proofs of some old and new protocol
composition results. Thus, our theory of separability appears to cover
protocol composition and session-like behavior within a uniform frame-
work, and gives a general pattern for reasoning about independence.

Keywords. Sessions, Security Protocols, Strand Spaces

1 Introduction

A transaction or protocol respects sessions if the local runs of the individual par-
ticipants always match up globally in a compatible way. When one participant
receives any message in a session σ, it should have been sent by another par-
ticipant acting within the same session σ. Session-respecting behavior is often
studied using session types [21,22]. However, most work in this tradition studies
sessions within a benign execution environment.

We adapt those ideas to environments containing active adversaries, who may
control the medium of communication [28,15,4]. We define session-respecting
behavior in an adversarial environment, offering syntactic conditions that ensure
a protocol’s behavior respects sessions. We exhibit a transformation that, given
any protocol, yields one with session-respecting behavior.

Our central idea is separability. In an execution, an adversary may receive a
message from one session and deliver it, or its fragments, into another session. In
this case, we would like to separate the sessions by removing the connection that
the adversary has created. Separability means we can do this, possibly applying
a renaming to one of them so that they involve different parameters. Although

? Carbone thanks the Danish Agency for Science, Technology and Innovation, and
Guttman thanks the US National Science Foundation under grant CNS-0952287.
Extended version; shorter version appeared in POST 2013.

the adversary can create connections between different session, these connec-
tions are inessential. They can be removed modulo renaming. Hence, anything
the adversary can achieve in a session, he can also do without relying on any
other session. No successful attack requires unwitting support from participants
engaged in a different session.

Session separability clarifies the real world effects of a protocol. Suppose a
protocol allows a customer to buy merchandise through a broker, who receives
a commission from a manufacturer. Can the broker manipulate the protocol so
one interaction with the customer allows two interactions with the manufacturer?
Can the broker receive his commission for the same transaction twice?

Suppose a compliant customer and manufacturer interact with a dishonest
broker in a separable protocol. If messages from the single customer run reach
local runs M1,M2 for the manufacturer, they will belong to the same session. Al-
ternatively one run M belongs to no session, i.e. it occurs with no involvement of
a customer. These conditions are easy for a protocol designer to analyze. To pro-
tect against the first, the manufacturer should contribute a fresh random value
(“nonce”) to help define the session. Then distinct manufacturer runs always
belong to different sessions. To protect against the second, some authentication
is needed between manufacturer and customer, a familiar and well-understood
problem. Thus, separability reduces the no-double-commission property to sim-
ple characteristics of the protocol.

Strand spaces offer a partially ordered model; protocol executions (“bun-
dles”) are annotated directed acyclic graphs [30,20,18]. The edges represent
causal relations. We interpret separation properties in terms of the absence of
causal paths in these graphs, or the ability to find a related graph without them.

Contributions. Our main result, the Separability Theorem (Thm. 18), tells
how to take an execution of a protocol and modify it into another execution that
satisfies separability. It applies to a range of different separability specifications.
Each separability specification is a partial order that says which kinds of events
are allowed to causally affect which others.

Our result about sessions, Thm. 19, says that the syntactic conditions in
Def. 8—mainly concerning “session nonces” that serve to define sessions—entail
the premise of Thm. 18. Thus, executions can be made to satisfy a separability
specification defined in terms of these nonces. We also provide a transformation
that strengthens any protocol to one that satisfies these conditions (Thm. 10).

Thm. 18 also applies to other separability specifications. We apply it to pro-
tocols with “disjoint encryption” in three slightly different senses (Thms. 21–24),
thereby yielding variants, sometimes sharpenings, of a number of results on pre-
serving security goals under protocol composition [19,1,9,8,11]. Thus, the Sep-
arability Theorem formalizes a pattern of reasoning with wide applicability in
protocol design and analysis. It unites session-oriented reasoning with protocol
composition.

Related work. Various flavors of sessions and separability have already played
roles within protocol analysis and design. Among approaches based on computa-

2

tional methods, a session notion is often used to define the local runs that authen-
tication should connect, as with Bellare and Rogaway [4]; in some models the ses-
sions are defined by a bitstring that may be chosen by the adversary or built out
of random contributions from the participants (e.g. Canetti-Krawczyk [7]). The
Universal Composability model also assumes a random value that contributes
to each cryptographically prepared unit and acts as a session identifier [6]; for a
recent and more flexible alternative, see Küsters and Tuengerthal [24].

If different sessions of a protocol can never affect one another, then this
simplifies analysis. The designer can explore the outcomes possible with a single
instance of each role in the protocol. Indeed, Lowe’s original proof that his
changes to Needham-Schroeder were correct used a separability argument. He
proved that any run could involve at most two non-separable instances of either
role, and then model-checked the possible two-instance runs [25]. Lowe and Allaa
Kamil [23] use separability to establish properties of TLS, such as that the
adversary cannot divert application data from one TLS session to another. Their
path-based methods within the strand space framework motivated some of the
techniques used below in §4.

Cortier et al. [10] propose a protocol transformation, which they prove cor-
rect using session separability. Given a protocol satisfying any security property
in an environment with a passive adversary, their transformation returns a new
protocol that satisfies that property despite an active adversary. Their trans-
formation adds freshly-generated nonces to the original protocol; this suggested
our treatment of nonces in Thm. 10. Their transformation then inserts all of
these nonces in with each message of the original protocol, which is signed and
then encrypted. Our transformation does not add any additional cryptographic
operations, but simply inserts the nonces into any pre-existing cryptographic
units. This simpler treatment suffices because we are here exclusively concerned
with separability, rather than any particular security goals. Another contrast
concerns the adversary model. Their result concerns only sessions in which ev-
ery participant is compliant, whereas our separability holds for the compliant
participants, even in sessions with non-compliant participants.

Arapinis, Delaune, and Kremer [2] also offer a separability argument, leading
to a protocol transformation which guarantees secrecy. The transformation adds
nonces to each encrypted or signed term, although, together with nonces, it
also adds principal names. Only the former is needed for separability; the latter
helps with secrecy. Their transformation appears to generalize Lowe’s fix to
Needham-Schroeder. A subsequent paper with Ryan [12] investigates tagged
password-based protocols, where the “tags” are tuples of session parameters
hashed in with the key. They show that their composition is resistant to guessing
attacks. Their proofs appear to establish particular instances of our Separability
Theorem. We conjecture that our methods reconstruct their results, although
proving this would require reformulating behavioral equivalences (in addition to
trace properties) within our framework.

Deniélou et al. in [5] provide a compiler for generating ML code from mul-
tiparty protocol specifications. Their main result (Session Integrity Theorem)

3

shows that there is no interference between multiple instances of the same pro-
tocol. Such a result could also be modeled in our framework as a variant of
protocol independence. As we have mentioned, our approach also seems to cap-
ture the essence of several protocol composition results [19,1,9,8,11].

Separability also allows full verification within the bounded-session model of
protocol analysis [29,26,3], rendering many classes of problems decidable.

In [17] we offer a logical language that can formalize the security goals that
are preserved when omitting separable local runs.

2 Strand Spaces, with a Session Protocol

We first summarize the strand space terminology we will use in this paper.
See [30,18] for more detail on strand spaces and our terminology.

We also introduce an example to illustrate separability, the Trusted Broker
Service, in which a server S acts as a broker to match clients C1 and C2, who
are executing different roles. S provides them with a key K to use to initiate an
exchange. Clients trust the broker to generate a fresh key; to distribute it only
to compliant principals; and to choose an appropriate pairing of clients.

Messages. Let Alg0 be an algebra equipped with some operators and a set of
homomorphisms η : Alg0 → Alg0. We call the members of Alg0 basic values.

Alg0 is the disjoint union of infinite sets of nonces, basic keys, names, and
texts. The operators sk(a) and pk(a) maps names to signature keys and pub-
lic encryption keys. K−1 maps an asymmetric basic key to its inverse, and a
symmetric basic key to itself. Homomorphisms η are maps that that respect
sorts and the operators sk(a), pk(a), and K−1. An infinite set X disjoint from
Alg0—the indeterminates—act like unsorted variables.

The algebra Alg of messages is freely generated from Alg0 ∪ X by two
operations: encryption {|t0|}t1 and tagged concatenation tag t0 , t1. The tags tag
are drawn from some set TAG . For a distinguished tag nil, we write nil t0 , t1 as
t0 , t1. In {|t0|}t1 , a non-basic key t1 is a symmetric key. To reduce cases in proofs,
we do not introduce digital signature and hashing as separate operations. We can
encode hashes hash(t) as encrypting t with a public key Kh, where no principal
holds the inverse decryption key K−1h . A digital signature [[t]]K is encoded as
the concatenation t , {|hash(t)|}K .

A homomorphism α = (η, χ) : Alg → Alg pairs a homomorphism η on basic
values and a function χ : X → Alg; α(t) is defined by the conditions:

α(a) = η(a), if a ∈ Alg0 α({|t0|}t1) = {|α(t0)|}α(t1)
α(x) = χ(x), if x ∈ X α(tag t0 , t1) = tag α(t0) , α(t1)

We call these homomorphisms substitutions, and use them to plug in values
for parameters. Indeterminates x are blank slots, to be filled by any χ(x) ∈ Alg.

Messages t1, t2 have a common instance when there exist substitutions α, β
that identify them: α(t1) = β(t2). Alg has the most general unifier property. That
is, suppose that for v, w ∈ Alg, there exist any α, β such that α(v) = β(w). Then
there are α0, β0, such that α0(v) = β0(w), and for all α1, β1, if α1(v) = β1(w),
then α1 and β1 are of the forms γ ◦ α0 and γ ◦ β0.

4

Strands, Ingredients, and Origination. A strand is a sequence of local
actions called nodes, each of which is either a message transmission, written
• →, or else a message reception, written • ←. Strands may be written vertically,
or horizontally as in Fig. 1. This figure shows the behaviors of an initiating client
C1 and a responding client C2 with a broker or server S. The protocol, which
we call tbs, allows the broker to pair requests from suitable pairs of clients, and
distribute a session key to them.

If n is a node, and the message t is transmitted or received, then we write
t = msg(n). Double arrows indicate successive events on the same strand, e.g.
• ⇒ • ⇒ •. Each role in Fig. 1, and each local run in Figs. 5, 3, is a strand.

We write s ↓ i to mean the ith node along s, starting at s ↓ 1. The param-
eters of s are the basic values and indeterminates in any msg(s ↓ i).

The ingredients of a message are those subterms that may be reached by
descending through concatenations, and through the plaintext but not the en-
cryption keys. The values that occur in it descend also through encryptions.
We write v (“is an ingredient of”) and � (“occurs in”), resp., for the smallest
reflexive, transitive relation such that

t1 v (t1 , t2) t2 v (t1 , t2) t1 v {|t1|}t2
t1 � (t1 , t2) t2 � (t1 , t2) t1 � {|t1|}t2 t2 � {|t1|}t2 .

We say that t originates on a node n if n is a transmission node, and t v msg(n),
and for all n0, if n0 ⇒+ n, then t 6v msg(n). A basic value a is freshly chosen
if it originates just once. We call it uniquely originating. In this case, a was
chosen by a participant, without the bad luck of any other principal selecting the
same value independently. A key is regarded as uncompromised if it originates
nowhere. We call a basic value a non-originating in B if there exists no node
n ∈ B such that a originates at n. It may still be used in B even if it does not
originate anywhere, since the regular strands may receive and send messages
encrypted by K or K−1, thus using K for encryption and decryption, resp.

A message t0 lies only inside encryptions in t with keys S iff, in t’s
abstract syntax tree, every path from the root to an occurrence of t0 traverses
an encryption, and if that occurrence is in the plaintext, then the key is in S.

Protocols. A protocol Π is a finite set of strands, called the roles of the
protocol. A regular strand for Π is any instance of one of the roles of Π, i.e. the
result α(ρ) of some substitution α on the parameters of a role ρ ∈ Π. Fig. 1 is an
example protocol. A protocol may also specify some parameters of a role that are
always non-originating or uniquely originating. We will also formalize adversary
behavior by strands (which use inverse). We stipulate a syntactic constraint:

Assumption 1 If ρ ∈ Π, then the key inverse symbol does not appear in any
message msg(ρ ↓ i). Moreover, sk(A) 6v msg(ρ ↓ i). If {|t|}K � msg(ρ ↓ i) for
ρ ∈ Π, then K is either a basic value or an encryption (not a concatenation).

5

c11, C1, N1 {|[[c12, N1, N2, K]]sk(S)|}pk(C1)

��
{|Hello, C1, N1, N2|}K

C1 • +3
OO

• +3 •
OO

S • +3 • +3
��

•

��
c11, C1, N1, c21, C2, N2

OO
{|[[c12, N1, N2, K]]sk(S)|}pk(C1) {|[[c22, N1, N2, K]]sk(S)|}pk(C2)

C2 • +3
��

• +3 •

c21, C2, N2 {|[[c22, N1, N2, K]]sk(S)|}pk(C2)

OO
{|Hello, C1, N1, N2|}K

OO

Fig. 1. Trusted Broker Service Protocol, tbs

• a→ t1
��

t2
��

{|t1|}t2

• +3 • +3 •
OO

• +3 • +3 •
��

{|t1|}t2

OO

t2
−1

OO

t1

t1
��

t2
��

tag t1 , t2

• +3 • +3 •
OO

• +3 • +3
��

•
��

tag t1 , t2

OO

t1 t2

. .

◦
{|A ,Na|}pk(C) // •

��
•
��

•
��

•
��

•
pk(B)vv•

pk(C)−1

// •
��

•
��

A 00

•
��

•
��

•

A ,Na

44

•
Na

00

•

A ,Na

44

•
{|A ,Na|}pk(B)// ◦

Fig. 2. Part I: Adversary roles to generate basic value a; encrypt and decrypt; con-
catenate and separate. Part II: A compound adversary activity

The Adversary. Adversary strands consist of zero or more reception nodes
followed by one transmission node. The adversary obtains the transmitted value
as a function of the values received; or creates it, if there are no reception nodes.
The adversary can choose basic values, and operate on complex values using
the strands shown above in Fig. 2. These are often used in patterns, e.g. as in
Fig. 2 Part II, which transport information along paths. Six strands are shown.
Two are of length 1, in which the adversary transmits keys, namely his own
private decryption key pk(C)−1 and B’s public encryption key pk(B). Two are
a (leftmost) decryption strand and a (rightmost) encryption strand. The second
node on a decryption or encryption strand is called the key node, since it
receives the key used to perform the cryptographic operation.

In the middle are a separation strand that breaks A , Na into its two parts,
followed by a concatenation strand that puts them back together. These strands
are unnecessary here. We include them here to illustrate that the adversary can
always break a concatenation down to non-concatenated parts, i.e., either basic
values or encryptions (see Assumption 3).

6

•

c11,N1,C1

++
c11,N1,C1

//
��

S

��
•

c21,N2,C2

oo
c21,N2,C2

//

��

S
′

��
•

��

•
��

oo •
��

{|[[c12,N1,N2,K′]]sk(S)|}pk(C1) //

• // •
��

•
{|[[c22,N1,N2,K′]]sk(S)|}pk(C2)

//

•
{|Hello,C1,N1,N2|}K

// •

Fig. 3. A bundle of protocol tbs

Adversary strands are closed under substitutions along the strand, as they
comprise all the instances of the roles in Fig. 2, Part I. Indeed, this also holds
for regular strands, which are all the substitution instances of the roles ρ ∈ Π:

Lemma 1. If α is a substitution and s is an adversary strand or a regular strand
of Π, then so is α(s).

Bundles. An execution is pieced together from a finite set of strands (or their
initial segments), where these may be regular strands of Π or adversary strands
from §4. Two nodes are connected with a single arrow • → • when the former
transmits a message, and the latter receives that same message directly from it.
A bundle is a causally well founded graph built using strands by →:

Definition 2. Let B = 〈N ,→E ∪ ⇒E〉 be a finite, directed acyclic graph where
(i) n1 ⇒E n2 implies n1 ⇒ n2, i.e. that n1, n2 are successive nodes on the
same strand; and (ii) n1 →E n2 implies that n1 is a transmission node, n2 is a
reception node, and msg(n1) = msg(n2). B is a bundle if:

1. If n1 ⇒ n2, and n2 ∈ N , then n1 ∈ N and n1 ⇒E n2; and
2. If n2 is a reception node, there exists a unique n1 ∈ N such that n1 →E n2.

B is an open bundle if, in condition 2, there is at most one n1 ∈ N such that
n1 →E n2, rather than exactly one.

We write nodes(B) for the nodes of B, and regnodes(B) for its regular (non-
adversary) nodes; edges(B) is the set ⇒E ∪ →E of edges of B. �B is the causal
partial order (→E ∪ ⇒E)∗, and ≺B = (→E ∪ ⇒E)+.

A node n is realized in an open bundle B iff n is a transmission node, or
else n is a reception node and has an incoming → edge, i.e. n′ → n.

(B, unique, non) is an annotated bundle (resp. open bundle) if B is a bundle
(resp. open bundle), unique is a finite set of basic values each originating at most
once in B, and non is a finite set of basic values each originating nowhere in B.

The causal partial order � is well-founded, since B is finite.
Fig. 3 is a bundle. tbs defines a session via a nonce from each client, and the

server-generated session key. It gathers the two incoming messages to the broker
in a single reception, allowing some (untrusted) auxiliary process to propose a
matching. In Fig. 3, the adversary reuses the nonces N1, N2 to start a second

7

server strand. However, we can fix this, separating the second server strand, just
by renaming these nonces to new values N ′1, N

′
2. This yields the new bundle in

Fig. 4, in which the adversary can supply the message coming from the upper
right. Fig. 4 is an open bundle, as shown without adversary activity.

•
c11,N1,C1 //

��
S

��
•

c21,N2,C2oo

��

S
′

��

c11,N′1,C1,c21,N′2,C2oo

•

��

•
��

oo •
��

{|[[c12,N′1,N′2,K′]]sk(S)|}pk(C1) //

• // •
��

•
{|[[c22,N′1,N′2,K′]]sk(S)|}pk(C2)

//

•
{|Hello,C1,N1,N2|}K

// •

Fig. 4. Open bundle separating Fig. 3

These figures are annotated (possibly open) bundles with various choices
of unique, non. An interesting choice would be unique = {N1, N2,K,N

′
1, N

′
2}

for Fig. 4 and unique = {N1, N2,K} for Fig. 3. A relevant choice for both

non = {sk(S), pk(C1)
−1
, pk(C2)

−1
, pk(S)

−1}.
In studying separability we are interested in bundles equipped with a choice of

fresh and uncompromised values. Hence, we will assume that all bundles are an-
notated with sets of uniquely originating and non-originating values unique, non.
When using “bundle” and B, we will mean “annotated bundle” as defined above.

The core pattern for separating a session is:

– removing dependence on an existing session;
– renaming some freshly chosen items in one or more local runs;
– allowing the adversary to supply incoming messages in these runs.

When a protocol ensures that this pattern will succeed in separating behaviors,
it has session behavior.

However, this is not always possible. As an example, consider the protocol
tbsMinus, which is just like tbs, except that the session nonces N1, N2 are
omitted in all the messages. Here we can have the essentially inseparable bundle
Fig. 5. No amount of renaming and pruning edges will produce a bundle in which
C2 and C ′2 do not both depend on the same strand C1.

We assume (i) public encryption keys may be freely sent or used by anyone,
including the adversary; and (ii) when a value a originates uniquely, and is used
on a different regular strand as part of a key for encryption, then it has been
received as an ingredient on that strand. When a v msg(m1), this conclusion
follows from the definition of unique origination. We also assume (iii) that a
basic value is not received from a later transmission when it could be received
from an earlier one. If a bundle violates this property, we can fix it by rerouting
arrows to start from earlier nodes.

Assumption 2 Let (B, unique, non) be an annotated bundle.

8

C1 S C2

•
c11,C1 //

��

•
��
•
��

•
c21,C2oo

��
•

��

•

��

{|[[c12,K]]sk(S)|}pk(C1)oo

C
′
2 •

{|[[c22,K]]sk(S)|}pk(C2)

//

{|[[c22,K]]sk(S)|}pk(C2)
mm

•

��

•
c21,C2

oo

��
•
��
•

•

{|Hello,C1|}K
,,

{|Hello,C1|}K
// •

Fig. 5. An inseparable execution of tbsMinus

1. pk(A) 6∈ unique ∪ non for all names A.
2. Suppose a ∈ unique, a originates on n0, and for some transmission node m1,

a � K and {|t|}K originates at m1. If n0,m1 lie on different strands, then
there is a reception node m0 ⇒+ m1 such that a v msg(m0).

3. If a = msg(n0) = msg(n1) = msg(n2) is a basic value, where n0, n1 are
transmission nodes, with n0 � n1 � n2. Then it is not the case that n1 → n2.

Lemma 3. Suppose B is a bundle with n0,m1 ∈ nodes(B). If a ∈ unique origi-
nates at n0 and a� msg(m1), then n0 � m1.

Proof. If there are any counterexamples m1, choose m to be �-minimal among
them. By clause 2 in the definition of bundle, m is not a reception node. If
a v msg(m1), then m is a point of origination, so by uniqueness m = n0.
Otherwise, Assumption 2, clause 2 contradicts the minimality of m. ut

The “Lies-below” relation. We now define a relation between bundles (or
open bundles) of reducing information. We say that one (open) bundle lies below
another when the latter results by adding information to the ordering relation �
and adding equations between parameters. The key idea is reducing the ordering
relation in a bundle B, possibly renaming some occurrences of parameters, so
as to “rename them apart” in a simpler bundle C. We actually formalize this in
the other direction, by considering a homomorphism α from C into the richer B.
We call this a local renaming, because restricted to portions of C it acts like a
renaming. It acts injectively on each portion separately.

Definition 4 (Local Renaming). Suppose C is an open bundle.
The sets S1, . . . , Sn partition nodes(C) by strands if (i) the Si are disjoint;

(ii)
⋃
Si = nodes(C); and (iii) any two nodes on the same strand are in the same

partition class Si.
A substitution α is a local renaming of C with respect to S1, . . . , Sn if the

sets partition nodes(C) by strands, and moreover, for every j ≤ n, α restricted

9

to the parameters of the strands in Sj is a renaming, i.e. an invertible map from
parameters to parameters.

For instance, in Fig. 4, the part to the left of the white space S1 and the part
to the right S2 form a partition by strands. The map which sends N ′1 7→ N1

and N ′2 7→ N2, and is elsewhere the identity, is a local renaming, which we will
write [N ′1 7→ N1, N

′
2 7→ N2]. It is a renaming (the identity) when restricted to

the parameters that appear in S1, the left half, since N ′1, N
′
2 do not appear on

the left. Moreover, it is a renaming when restricted to S2, the right half, too,
since N1, N2 do not appear as parameters on the right. Thus, it is injective on
the parameters appearing in S2.

Every renaming is a local renaming, but a local renaming α is not a true
(“global”) renaming when α(x) = α(y) holds for parameters x, y to nodes in
different partition classes Sj , Sk. We often think of the action of a local renaming
backward, viewing its source as the result of “renaming apart” values that are
equated in its target. If we view [N ′1 7→ N1, N

′
2 7→ N2] as if it were acting on

Fig. 3 to yield Fig. 4, then it is “renaming apart” different occurrences of N1, N2.

One open bundle lies below another if, after applying a local renaming for-
ward, their regular nodes are the same, as are their uniquely originating and
non-originating values, but one precedence order is a suborder of the other:

Definition 5. 1. C lies below B via α iff, for some S1, . . . , Si, α is a local
renaming for C with respect to S1, . . . , Si, and:

(a) α(regnodes(C)) = regnodes(B);

(b) For all n0, n1 ∈ regnodes(C), n0 �C n1 implies α(n0) �B α(n1);

(c) α−1(unique(B)) = unique(C); and

(d) α−1(non(B)) = non(C)
2. C lies below B if it does so via some α.

3. B and C are equivalent iff each lies below the other via renamings α, β, and
α ◦ β is the identity on the parameters involved.

For instance, Fig. 4 lies below Fig. 3 via [N ′1 7→ N1, N
′
2 7→ N2], given the choices

of unique, non mentioned after Defn. 2.

If C lies below B, then C differs from B only in having a sparser ordering,
and in not yet having equated some parameters that have been equated in B.
We can think of C as a simplified version of B. It is less informative in that the
information that these parameters are equal has not yet been added.

Lemma 6. “Lies below” is a well-founded partial order to within isomorphism:

1. “Lies below” is reflexive and transitive.

2. C and B each lie below the other iff their regular parts are isomorphic.

3. If 〈Bi〉i is an infinite sequence of bundles such that i < j implies Bj lies
below Bi, then for some i, k, i < k and Bi lies below Bk.

10

3 Formalizing Sessions

We now turn to defining when tbs and similar session-oriented protocols are
separable. Suppose that Π is a protocol, and P : Π → Nonce∪Key is a function
that chooses a parameter for each role. As an example, if Π is tbs, we would
be interested in the function P that assigns N1 to the first client role; N2 to the
second client role; and K to the server (broker) role.

We say that x is a session parameter if x ∈ range(P). P associates each
role to the session parameter that it chooses. We call P (ρ) ρ’s proper session
parameter, and we require that P (ρ) originates on ρ.

If x is a session parameter, x is acquired at step i if x� ρ ↓ i but x 6� ρ ↓ j
for j < i. It is acquired by step k if it is acquired at step i for some i ≤ k. A
parameter x is key material at step i if x� K and {|t|}K � msg(ρ ↓ i).

As a convention, we will assume that the parameters of each role have been
chosen (by a renaming if necessary) so that corresponding session parameters
on different roles have the same name. We could of course avoid this convention
at the cost of added notation, in the form of a function which would supply the
necessary correlations.

No Ambiguity. tbs uses the session parameters unambiguously in each encryp-
tion. No encryption in the protocol could be misinterpreted by a receiver so as
to interchange the session parameters. For instance, N1 and N2 always appear
in the same order, and K always appears after them or in key position.

No ambiguity: If encryptions {|t|}K � msg(ρ ↓ i) and {|t′|}K′ � msg(σ ↓ j)
have a common instance α({|t|}K) = β({|t′|}K′), then ρ and σ have acquired
the same session parameters by steps i and j resp., and α(x) = β(x) for each
of those session parameters.

We here follow our convention that corresponding session parameters on different
roles have been given the same parameters names.

Contribution. Every encrypted unit involves the session parameters. This is
akin to the tagging property [12], except that the session parameters do not
have to contribute to the key. The last message of tbs is {|Hello, C1, N1, N2|}K .
Two session parameters are in the plaintext, while K is the encryption key. All
the session parameters could be concentrated in the key; {|Hello, C1|}hash(N1,N2,K)

would also work. Alternatively, they could all be concentrated in the plaintext,
with some public key used for encryption.

In this protocol, the participants agree on all of the session parameters at the
start. They then use them throughout the remainder of the protocol. A protocol
can also have some participants agree on their session parameters, while other
participants join the session later. These “late arrivals” allow for an attractive
flexibility in the session-type literature [13]. Of course, the encrypted units before
the late arrivals are expected to contain only the session parameters that have
already been seen at that point.

Contribution to encryptions: If {|t|}K � msg(ρ ↓ i) and session parameter
x is acquired by step i, then x� {|t|}K .

11

The No-V s property. The observation that session parameters may be ac-
quired piecemeal is an important insight. It implies that “same session,” which
sounds like an equivalence relation, is in fact misleading. A partially defined ses-
sion with session parameters x1, . . . , xi may affect any of its possible extensions
with an additional session parameter x1, . . . , xi, xi+1. However, any one of those
extensions is incompatible with those having a different value x′i+1. Indeed, mes-
sages from a step with extended session parameters x1, . . . , xi, xi+1 should not
affect an event with session parameters x1, . . . , xi. If they did, the latter could
also affect a distinct extension x1, . . . , xi, x

′
i+1. Thus, transitively, there could be

effects from an event with parameters x1, . . . , xi, xi+1 to one with parameters
x1, . . . , xi, x

′
i+1. That would be contrary to the session discipline.

For this reason, we regard the “may influence” relation on partially defined
sessions as a partial order (on the sessions) or as a pre-order (on the transmission
and reception events within the sessions). We will write n1 ; n2 when an event
n1 may influence an event n2.

We require non-influence to persist, specifically when n1 selects a fresh value
that is a parameter to n2. We formulate this as a “no V s” condition. Whenever
we have a V in the may-influence relation, this is not an open V , but a closed
triangle-like configuration, for any n3 � n2:

n1 +++k+k+k n1 +++k+k+k
��
�O

n3 implies n3.
n2

333s3s3s
n2

333s3s3s
(1)

A node n2 that I cannot influence cannot influence a later node that I can
influence, at least when I have uniquely originated a value found in that node.
This no V s property turns out to be crucial to proving the Separability Theorem,
whose proof tries to create new bundles by local renamings.

To see what could go wrong, suppose the tbs server received the two parts
of its first incoming message on separate nodes: (c11, C1, N1)⇒ (c21, C2, N2)⇒
. . .. Then an adversary could deliver C2’s nonce N2 as if it were from C1, on
the first server node n1. C2’s first node n1 should not influence n2, since n1 has
the C2 nonce defined, whereas n2 does not; n2 has only the C1 nonce parameter
defined. However, if the adversary re-delivers the same nonce on the server’s
second node n3, then C2’s first node n1 can influence this second server node n3.
Node n3 has the same value for the only session parameter defined on n1. This
is precisely the open V situation, where n1 6; n2 ; n3, and n1 ; n3.

Acquisition. In order to ensure the no-V s property syntactically, some prop-
erties are needed, constraining how session parameters are acquired. First, some
session parameters x are received in a principal’s first reception. These may be
transported without encryption, such as N1 and N2 in tbs. This is why S re-
ceives both N1 and N2 in a single message in its first node. Second, there are
no transmissions after a reception and before transmitting a strand’s proper
session nonce. Third, when a session includes late-arriving participants, values
freshly chosen after a late arrival in the session will be transmitted under encryp-
tions that cannot be compromised. Various techniques are available for proving

12

this [20,18], but here we will just use a simple sufficient condition, namely that
the decryption key is non-originating. These messages will be received by partic-
ipants that have already joined the session; i.e. their proper nonces have already
been chosen, and must also appear in this encryption by the Contribution re-
quirement. This is a per-bundle requirement, for a bundle B.

Parameter acquisition: Session parameters divide into two groups, x and y.
1. If x in x is acquired on reception node ρ ↓ i, then i is the earliest reception

node on ρ.
2. If x in x is acquired on transmission node ρ ↓ i, and ρ ↓ k is any reception

node with k < i, then there is no transmission node between them.
3. Let y in y be acquired (by reception or transmission) on ρ ↓ i, and let
k ≥ i. There is a set LAK(B) of late-arrival protection keys of B such
that: (a) If α(ρ ↓ k) ∈ nodes(B), then α(y) lies only inside encryptions
in msg(α(ρ ↓ k)) with keys K where α(K−1) ∈ LAK(B).
(b) If a ∈ uniqueB is any value acquired on α(ρ ↓ k), α(y) lies only inside
encryptions in msg(α(ρ ↓ k)) with keys K where α(K−1) ∈ LAK(B).

Condition 3 ensures that y always appears together with all previously de-
fined session parameters. We focus on bundles in which, for any late arrivals
to the session in a bundle B, the strands still active then are all uncompromised,
i.e. LAK(B) ⊆ nonB. In tbs, all session parameters belong to the first group x, as
all of the roles acquire them from their peers on their first reception. For protocol
design, it is desirable that the session key can double as S’s session parameter,
traveling in the encrypted messages from the server.

May-influence relations. Curiously, Thm. 18 depended only on two properties
of a reflexive, transitive may-influence relation, namely, the no V s property,
and the fact that forward influence on a strand is always permitted. Because
of this generality, we sought to specify various degrees of separability, i.e. to
specify how sparse a bundle we would like to obtain in the “lies below” ordering.
To parametrize our reasoning, we define a may-influence relation to be a pre-
ordering n1 ; n2 on regular nodes with these two properties. It specifies the
upper bound on the set of Π nodes allowed to influence other Π nodes.

Definition 7. Let B be an (annotated) bundle for protocol Π. Then a preorder
; is a may-influence relation for B iff for all n1, n2, n3 ∈ regnodes(B),

1. if n1 ⇒ n2 then n1 ; n2; and
2. “No Vs,” Eqn. 1: Suppose (i) a ∈ uniqueB originates at n1 and a� msg(n2)

and (ii) n2 ; n3 and n2 �B n3. If n1 ; n3, then n1 ; n2.

B obeys ; iff, for all m,n ∈ regnodes(B), m �B n implies m; n.
Π obeys ; subject to Φ if, for every Π-bundle B satisfying Φ, there is a

Π-bundle C satisfying Φ such that C lies below B and C obeys ;.

When m; n, we say that m is permitted to influence n.
When m ⇒ n, m must be allowed to influence n, since it is impossible

to prevent the influence; hence condition 1 on influence functions. Condition 2

13

prohibits open, V-shaped configurations. One leg of the V starts at a’s origin
n1, and the other at n2, and the legs join at a jointly influenced n3. When
a� msg(n2), then n1 must be permitted to influence n2. If a’s origin n1 cannot
influence n2, then their causal consequences must remain separated thereafter.

Π obeys ; if Π-bundles either already obey the ordering constraint, or some
bundle lying below is sparse enough to obey it. In weakening the order �, we
are allowed to select preimages under local renamings. We use the constraints Φ
to record assumptions about freshly chosen nonces and uncompromised keys.

Protocols with session parameters. We can now define:

Definition 8. A bundle B satisfies Φs, the session constraint, if the late
arrival protection keys LAK(B) ⊆ nonB and, for every node α(ρ ↓ i) ∈ nodes(B),
where ρ acquires its proper session nonce at step i, α(P (ρ)) ∈ uniqueB.

Π has session parameters P for B if No ambiguity, Contribution to en-
cryptions, and Parameter acquisition hold for Π, P , and B.

The session may-influence relation ;s holds between Π-nodes n1 and n2,
written n1 ;s n2, iff (i) n1 = α(ρ ↓ i) and n2 = β(σ ↓ j) where ρ, σ ∈ Π; (ii)
every session parameter x that has been acquired by step i on ρ has been acquired
by step j on σ; and (iii) α(x) = β(x) for each session parameter x acquired by
step i on ρ.

Essentially, n1 ;s n2 means that the partial function assigning session param-
eters to values in node n1 is a subfunction of the partial function assigning
session parameters to values in node n2. The may-influence relation is fixed by
the ordering of definedness on these partial functions.

Lemma 9. If B is a Π-bundle satisfying Φs, and Π has session parameters P
in B, then ;s is a may-influence relation for B.

Proof. Condition 1, that ;s is preserved by ⇒, is immediate from the fact that
session parameters are unchanged once defined.

For the no-V s property 2, suppose that a originates uniquely on n1 = α(ρ ↓
i), and is received on n2 = β(σ ↓ j). Suppose first that i is before any y parameter
originates or is acquired. By the Parameter acquisition condition 1, all of the x
parameters except possibly P (σ) are determined on n2. If n1 6;s n2, then either
n2 disagrees with n1 on a session parameter, or n2 has not yet acquired a x
acquired on n1.

If the former, this disagreement persists to any n3 � n2 such that n2 ;s n3.
If the latter, it can only be P (σ). Since B satisfies Φs, when the strand of n2

acquires a value for its proper session parameter, it will be uniquely originating,
hence distinct from the value previously defined on n1. Moreover, by Parameter
acquisition condition 2, P (σ) is chosen by the time of the next transmission
after n2. Hence, any subsequent node that n2 can influence has a value for P (σ)
incompatible with n1’s.

Finally, suppose that i is at or after the acquisition of some late-arriving
y session parameter. Then a is transmitted inside a safe encryption, and any
regular strand that receives it must retransmit it safely. Hence, a is accompanied

14

by all session parameters in force at that point, inside the same encrypted unit
(Contribution to encryptions). Moreover, any recipient must agree on the values
of those parameters, by No ambiguity. Thus n1 ;s n2, which implies No-V s. ut

A transformation yielding protocols with session parameters. Theo-
rem 20 suggests a transformation to produce protocols with session parameters.

The transformation has two parts. The first part prepends before σ a node
that transmits a session parameter, and a node that receives a concatenated
tuple containing session nonces from each of the other roles:

+Ni ⇒ −(N1 , . . . , Ni−1 , Ni+1 , . . . , Nk) ⇒ σ

In the second part, we transform all encrypted units {|t|}K contained in σ, to
{|t , Ñ |}K , where Ñ is the sequence of all the session nonces introduced in the
first step. Thus, letting TÑ be this transformation,

Theorem 10. TÑ (Π) has session parameters for each TÑ (Π)-bundle B.

It is easy to very that No Ambiguity, Contribution to Encryptions, and Parameter
Acquisition are all true, where the late-arriving parameters y are vacuous.

4 The Separability Theorem

Penetrator paths. The ways that adversary strands manipulate messages are
tightly constrained by their syntactic forms. We introduce penetrator paths to
be able to express these relations conveniently.

Definition 11. A key node is the middle node on an adversary encryption or
decryption strand, which receives the key to be used (Fig. 2).

A penetrator path in B is a sequence p = 〈n0, n1, . . . , nk〉 with k > 0 and
each ni ∈ nodes(B), such that:

1. n1, . . . , nk−1 are all penetrator nodes;
2. if ni is a reception node and i < k, then ni+1 is a transmission node and

ni ⇒+ ni+1;
3. if ni is a transmission node, then ni → ni+1 in B.

We often focus on the penetrator paths that stretch from a regular node to
a regular node, traversing penetrator strands. These represent activities of the
adversary that extract useful materials from regular transmissions, and use them
to construct messages to satisfy regular receptions.

We write p(i) for the node ni, and |p| for k, the number of arrows traversed
by p, so p(|p|) is the last node on p. Two paths are shown in Fig. 2. In both
cases, p(0) is the hollow circle at the upper left, indicating an unshown regular
node, and p(9) is the hollow circle at lower right. One path traverses the edge A
in the middle, and the other traverses Na. We generally write first(p) and last(p)
for p(0) and p(|p|).

15

Definition 12. The penetrator path p is direct if no key node appears in p,
except possibly as last(p).
B is normal if, on every direct penetrator path, each destructive penetrator

strand (decryption, separation) appears before any constructive strand (encryp-
tion, concatenation).

The penetrator paths in Fig. 2 are direct. We speak of an extended path when
we wish to emphasize that it may not be direct.

Lemma 13 ([20]). Every bundle B has a normal bundle C lying below B via
the identity Id. If C is any normal bundle, and p is a direct penetrator path in
C, then there is a pair of nodes pj → pj+1 such that, for all i ≤ j ≤ k:

1. msg(p(i)) v msg(first(p)) and msg(p(k)) v msg(last(p));
2. If p(i) is an adversary node, then p(i) lies on a destructive strand (decryp-

tion, separation); and
3. If p(k + 1) is an adversary node, then p(k + 1) lies on a constructive strand

(encryption, concatenation).

This lemma still holds in our current context, which includes compound keys,
because it is restricted to direct paths p. Since a key node in p must be the last
node, and we never continue along its encryption or decryption strand, we never
encounter any case different from those already shown in the proof in [20].

By this lemma, when proving that there exists a bundle lying below B with
a particular property, it is sound to silently assume that B is normal.

The bridge term of a direct penetrator path p in a normal B is the mes-
sage msg(p(j)) on the edge that follows all destructive penetrator strands and
precedes all constructive penetrator strands. We will write bt(p) to refer to the
bridge term of p. A single communication edge first(p) → p(1), with no adver-
sary strands in between, is a direct path of length 1; bt(p) = msg(first(p)) =
msg(p(1)). The two edges leading to n1 and n2 in Fig. 3 are examples with the
concatenated bridge terms c11, N1, C1 and c21, N2, C2. The bridge terms for the
two direct paths shown in Fig. 2 are A and Na. The adversary can always break
concatenations down in this way:

Assumption 3 If p(i) → p(i + 1) is a bridge in bundle B, then msg(p(i)) is
either an encryption or a basic value, but not a concatenation.

For any bundle C, there is an equivalent B in which the adversary separates
every concatenated value to its basic or encrypted parts, and then subsequently
reconcatenates these parts, as in Fig. 2, Part II [20, Prop. 9]. Assumption 3
restricts our attention to these equivalent but more convenient B.

The direct paths form a framework that supports the extended paths:

Lemma 14. Let B be a bundle, and p an extended penetrator path in B that is
not direct. Let p(i) be the earliest key node along p.

1. The part of p leading to p(i) forms a direct path.

16

2. Let p(j) be any key node along p, lying on an encryption or decryption strand
s, m1 ⇒ p(j)⇒ m3. There are direct paths q such that m1,m3 lie on q.

3. If s is an encryption strand, then msg(p(j))� msg(last(q)). If s is a decryp-
tion strand, then msg(p(j))� msg(first(q)).

Proof. Claim 1 holds by the definition. Clause 2 is by induction on the �-initial
subgraphs of B. Clause 3 follows by Lemma 13. ut

We end our discussion of extended penetrator paths with a few key lemmas.
The first says that a uniquely originating value that reaches a part of an exe-
cution must be transported there by a direct path. The second (an immediate
consequence of Lemma 13) says that the adversary gains access to a basic value
a along every direct path between endpoints that share no encryptions. This is
important to us, because it means that the adversary can substitute a new value
a′ for a, causing a renaming at the end of the direct path, if nothing goes wrong
later in the renamed bundle.

Lemma 15. Let B be normal, and let S1, S2 partition B by strands. If a orig-
inates uniquely on n1 ∈ S1 and a � msg(n2), where n2 ∈ S2, then there is a
direct path p crossing from S1 to S2 such that n1 � first(p), last(p) � n2, and
a v bt(p).

Proof. First assume that a v msg(n2).
Let M = {m ∈ S2 : a v msg(m) and m � n2}. M is non-empty, so M has

�-minimal members; let m0 be one of them. If m0 is a transmission node, then
a originates there, contrary to the assumption that it originates uniquely in S1.
So m0 is a reception node. Let P = {p : last(p) = m0}. Suppose a v bt(p) for
some p ∈ P . By the minimality of m0, first(p) 6∈ S2, so p is the desired path.

If, however, a 6v bt(p) for all p ∈ P , then there must be an adversary node

• a→ originating a, contradicting unique origination on n1.
Finally, if a � msg(n2), but a 6v msg(n2), use Assumption 2 to obtain an

earlier node n′2 ⇒ n2 in which it is an ingredient, and apply the preceding. ut

Corollary 1 If, for all encryptions {|t|}K , {|t|}K v first(p) implies {|t|}K 6v
last(p), then bt(p) is a basic value.

Lemma 16. Let B be a normal bundle, and let p be an extended path in B. If
p(j)→ p(j + 1) is the last bridge along p, msg(p(j))� msg(last(p)).

Proof. If p(j), . . . , last(p) lies on a single direct penetrator path, then msg(p(j)) v
msg(last(p)) by Lemma 13, whence msg(p(j))� msg(last(p)).

So suppose that the last bridge lies on an extended path that ends at a
key node p(k). Since there is no subsequent bridge, by the definition of normal
bundle, this key node cannot lie on a destructive decryption strand; it must lie on
a constructive encryption strand. Thus, msg(p(j)) v msg(p(k)) and msg(p(k)) is
the key of msg(p(k+ 1)) = {|t|}msg(p(k)). Since the remainder of p is constructive,
msg(p(k + 1))� msg(last(p)). ut

17

The Separability Theorem. An extended path p is critical iff its source
first(p) is not permitted to influence its target last(p).

We wish to remove the critical paths, since this will reduce a bundle to one
that obeys the influence specification. If the adversary uses a path to influence
a node, contrary to our ;, we want to clip this path. If we can always remove
these paths, and replace a Π-bundle containing critical paths with one with no
critical paths, then even the adversary gets no advantage from critical paths. No
violation of the influence specification is essential. Everything that can happen
in Π can happen without violating the influence specification. If this is true in
Π, we can assume ; when analyzing Π; nothing that matters will be left out.

A sufficient condition for this to hold is that Π’s executions be “reparable:”

Definition 17. A path p is ;-critical in B iff first(p) 6; last(p).
B is ;-reparable iff ; is a may-influence relation for B, and every ;-critical

path p has a bridge p(i)→ p(i+ 1) where msg(p(i)) = a is a basic value.

When ; is understood, we omit it and write “critical” or “reparable.” We can
assume no bridge term of p is a concatenation by Assumption 3. Thus, when p
is reparable, bt(p) is a basic value. In Fig. 3, the most interesting bridge terms
are N1 and N2, which are the uniquely originating values.

Theorem 18 (Separability). For every ;-reparable Π-bundle B, there is a
Π-bundle C lying below B such that C obeys ;.

Separability for protocols with session parameters. We will first apply
Thm. 18 to the main case of protocols with session parameters, and ;s. The key
thing is to show that every critical path is of the first or second kind. The main
reason why this is true is that—unless first(p) ;s last(p) and last(p) ;s first(p)—
all encryptions at the two ends contain different sets of session parameters. Thus,
the bridge terms are basic values.

Theorem 19. If Π is a protocol with session parameters, then every Π-bundle
satisfying Φs is ;s-reparable. Hence, by Thm. 18, Π obeys ;s subject to Φs.

If each strand succeeds in choosing its session parameter freshly, then no two
instances of the same role are related by the causal order in a reduced bundle,
i.e. one obeying ;s. This holds because any two instances supply different values
for the session parameter, which are thus incompatible in ;s.

Theorem 20. Suppose that Π is a protocol with session parameters, and B
obeys ;s and satisfies Φs. Then s1 ↓ i 6� s2 ↓ j when (i) s1 = α(ρ) and
s2 = β(ρ); and (ii) P (ρ) is acquired on ρ by step min(i, j).

5 Protocol Independence

We turn now from our focus on sessions to combining protocols. We organize
the results by the choice of may-influence relation.

18

The discrete may-influence relation. Let Π1 and Π2 be protocols, i.e. sets
of strands satisfying the assumptions mentioned in 2–3. For simplicity assume
that the protocols are disjoint, in the sense that no strand (or initial segment) is
an instance of a role of Π1 and also an instance of a role of Π2. Let Π = Π1∪Π2

be the protocol that contains all the roles of Π1 and Π2.
Define n1 ;1 n2 to hold for n1, n2 ∈ regnodes(Π) just in case n1, n2 ∈

regnodes(Π1) or n1, n2 ∈ regnodes(Π2). That is, nodes of the two source protocols
may not influence each other.

We can use this may-influence relation to infer a protocol independence re-
sult, à la [1,9]. Define Π1, Π2 to have sharply disjoint encryption if

1. every key used for encryption on any node of either is a basic value; and
2. if e1 is any encryption occurring in Π1 and e2 is any encryption occurring

in Π2, then e1 and e2 have no common instance.

The two conditions here are essentially syntactic. Condition 2 says that unifica-
tion fails for the two encryptions. One way to satisfy condition 2 is using tags.
If Π1, Π2 may have distinct tags τ1, τ2, such that every encryption in Πi begins
with tag τi, then condition 2 is certainly satisfied.

Theorem 21. If Π1, Π2 have sharply disjoint encryption, then all Π1∪Π2 bun-
dles are ;1-reparable. Hence, by Thm. 18, Π1 ∪Π2 obeys ;1.

Proof. If p is a critical extended path, then the last bridge p(k) → p(k + 1) on
p either precedes a key node—which is a basic value by condition 1—or lies on
an direct penetrator path from Πi to Πj . By Lemma 13, then, bt(p) v first(p)
and bt(p) v last(p). Since these have no common encrypted ingredients, bt(p) is
thus a basic value. ut

This is the essential idea behind [1,9]. The clever extension to algebras with
convergent subterm rewrite rules in Ciobaca and Cortier’s [8] appears to involve
related ideas.

In our formalism, condition 1 is in fact unnecessary:

Theorem 22. Let Π1, Π2 satisfy Condition 2 of sharply disjoint encryption,
and let B be any bundle of Π1 ∪Π2. There is a bundle C lying below B such that
C is ;1-reparable. Hence, by Thm. 18, Π1 ∪Π2 obeys ;1.

The proof relies on two lemmas. If S is a set of nodes, let enc(S) = { {|t|}K : ∃n ∈
S . {|t|}K � msg(n) }, the set of all encryptions occurring anywhere in the
messages of S.

Lemma 23. Let B be normal, S,D ⊆ regnodes(B) contain regular nodes, and
let n ∈ nodes(B) be any node, such that enc(S) ∩ enc(D ∪ {n}) = ∅, n 6∈ S,
and bfringe(n) ⊆ S ∪D. Then, any crossing path p from S to {n} has a bridge
p(k)→ p(k + 1) where msg(p(k)) is a basic value a, and either

1. a� msg(n); or else

19

2. After step k, there is a decryption strand s on which p joins a direct path q
with first(q) ∈ D. Moreover, a � K−1 where K is the key in msg(s ↓ 1) =
{|t|}K ∈ enc(D).

Proof. Let n be a reception node, since otherwise the claim is vacuous. We work
by induction on the ordering �. Our induction hypothesis is that the lemma
holds for all nodes (whether regular or adversary nodes) n0 ≺ n such that
bfringe(n0) ⊆ S ∪D for the same S,D.

If p is a direct path, then by Lemma 13, bt(p) v first(p) and bt(p) v msg(n),
and since no encryption occurs in both, bt(p) is a basic value.

Otherwise, there is a key node along p; let p(k + 1) be the last one, i.e. the
one with the greatest value of k. Then this key node is the middle node on an
encryption or decryption strand m⇒ p(k + 1)⇒ p(k + 2).

First, suppose that m⇒ p(k + 1)⇒ p(k + 2) is an encryption strand. Since
this is constructive and B is normal, p(k + 2), . . . , last(p) consists of construc-
tive strands (encryptions and pairing) only. Thus msg(p(k + 2)) v msg(n), and
msg(p(k))� msg(n). Hence msg(p(k)) ∈ enc(D ∪ {n}). Applying the induction
hypothesis to p(k), path p has the desired bridge no later than p(k).

Next, suppose that m⇒ p(k + 1)⇒ p(k + 2) is a decryption strand. By the
definition of extended path, m must lie on a direct penetrator path q. The bridge
of q must lie after the destructive strand m ⇒ p(k) ⇒ p(k + 1), and hence on
the portion shared with p.

If first(q) ∈ S, then by the case for a direct path, bt(q) satisfies the conditions.
Otherwise, first(q) ∈ D. If p(k) is a basic value, then condition 2 is satisfied.

If p(k) is an encryption t2, then msg(m) is of the form {|t1|}t2 . By Lemma 13,
{|t1|}t2 v first(q), so that t2 ∈ enc(D). Thus, the induction hypothesis, applied
to p(k), tells us that there is a basic value a = p(i), where i < k, such that either
a � msg(p(k)), or else a � K−1 for some {|t|}K ∈ enc(D). In the first case,
a� msg(p(k)) = t2 � {|t1|}t2 ∈ enc(D), as desired. In the second case, p(i) and
a satisfy the desired assertion. ut

We may now return to the proof of Theorem 22.

Proof. Let p be a critical extended path, say with first(p) ∈ regnodes(Π1) and
last(p) ∈ regnodes(Π2). Apply Lemma 23 with S = regnodes(Π1)∩bfringe(first(p))
and D = regnodes(Π2) ∩ bfringe(last(p)). Thus, p has a bridge p(k) → p(k + 1)
with a basic bridge term msg(p(k)) = a.

We prepare C by breaking the paths for which condition 2 holds for a. If
a 6∈ unique or if it originates on an adversary strand, we can immediately break
the path.

Suppose a ∈ unique and originates on some n1 ∈ regnodes(Π1). Then by
Assumption 2, clause 2, there is a reception node m0 ⇒+ last(p) such that
a v msg(m0). Hence, by Lemma 15, there is a direct path q crossing from
regnodes(Π1) to regnodes(Π2) such that last(q) � m0 and a v bt(q). But since
the endpoints have disjoint encryptions, bt(p) = a. Thus, we can connect the
bridge of q to p(k + 1).

20

Suppose a ∈ unique and originates on some n2 ∈ regnodes(Π2). Then (again
via Lemma 15) there is a direct path q crossing from regnodes(Π2) to regnodes(Π1)
such that last(q) � first(p) and bt(q) = a. Thus, we can connect the bridge of q
to p(k + 1). ut

This shows a pitfall in interpreting strand-based results in the applied pi-calculus.
In applied pi, letting w = hash(k1, k2), the two protocols P1 and P2:

P1 = ν k1s . 〈k1〉 . 〈{|t1, s|}w〉 P2 = ν k2s . 〈k2〉 . 〈{|t2, s|}w〉

compose to yield ν k1k2s . P1 | P2. In strands, by contrast, parameters in in-
dividual roles are essentially locally bound, since their possible instances are
all substitution instances. Thus, there is no sense in which the two roles share
the “same” k1, k2. Moreover, ν-binding expresses a notion of local choice that
is somewhat different from both our unique origination and non-origination. It
appears to be that the adversary never originates the ν-bound value. Thus, this
result appears to be strong, but not truly comparable to results such as [9].

Another limitation of our result is that it is proved for a particular message
algebra, and an adversary model for that, rather than for a class of algebras. We
conjecture that there is a substantial class for which the lemmas of §§2, 4 hold,
and that our results will hold throughout that class.

A one-way influence relation. Here we consider an asymmetric relation be-
tween the protocols Π1, Π2. Our goal is to ensure that adding the auxiliary
protocol cannot undermine the main protocol Π1. In many cases, Π2 consumes
cryptographically prepared units such as digital signatures or encrypted tickets
(as in Kerberos), for instance, when it resumes sessions created by the main
protocol. Thus, the main protocol may influence the auxiliary, but the reverse
should not occur [19]. Let Π = Π1 ∪ Π2, and define n1 ;2 n2 to hold for
n1, n2 ∈ regnodes(Π) just in case n1 ∈ regnodes(Π1) or n2 ∈ regnodes(Π2).

With a more delicate definition of disjoint encryption, and stipulating the
condition Φ that no uniquely originating value is contributed by Π2, we obtain
a properly stronger result. We say that t0 is a visible ingredient in t1, written
t0 vv t1 iff t1 may be obtained from t0 by 0 or more pairings. That is, vv is the
smallest reflexive transitive relation such that t vv t , t′ and t vv t′ , t.

Define Π1 to have disjoint encryption from Π2 iff:

1. If {|t|}K originates on any n2 ∈ regnodes(Π2), then {|t|}K 6� msg(n1), for any
n1 ∈ regnodes(Π1).
That is, encryptions created on Π2 nodes are never accepted on Π1 nodes.

2. Suppose {|t|}K originates on n1 ∈ regnodes(Π1), and {|t|}K � msg(n2) where
n2 ∈ regnodes(Π2). If t0 v t and t0 vv msg(m2), where n2 ⇒+ m2, then
there is an m such that m⇒+ m2 and t0 vv msg(m).
That is, when Π2 nodes receive Π1 encryptions and extract new values from
them, they never retransmit those values in visible form.

On these assumptions, the critical paths backward from Π2 \ Π1 to Π1 may
involve encryptions, but only if these were already transmitted forward, i.e. they

21

are eliminated by Assumption 2. Similarly for fresh values originating on Π1

nodes. This key idea in [19] is thus an instance of Thm. 18. There is however,
one fine point. We must satisfy the “No open Vs” property of influence functions
(Defn. 7, Cause 2), and this does not hold in all bundles. Namely, if a originates
uniquely on a node m2 ∈ regnodes(Π2), and reaches a node m1 ∈ regnodes(Π1),
it is permitted to flow back to a node m3 ∈ regnodes(Π2). To exclude these
bundles, we use a constraint Φ. This constraint singles out the bundles in which
no value required to be uniquely originating originates on a node of Π2:

a ∈ unique and a originates on n implies n 6∈ regnodes(Π2). (Φ)

Any bundle has a subbundle satisfying this constraint Φ, namely one that omits
the offending values from unique. If any security goal of Π1 has a counterexample,
it has a counterexample satisfying Φ; cf. [17].

Theorem 24. Let Π1, Π2 satisfy disjoint encryption, and let B be any bundle
of Π1 ∪Π2 satisfying Φ. There is a bundle C lying below B such that C is ;2-
reparable. Hence, by Thm. 18, Π1 ∪Π2 obeys ;2.

Proof. If p is a critical path, then first(p) ∈ regnodes(Π2) and last(p) ∈ regnodes(Π1).
Suppose t vv first(p) and t v t1, where t1 is an encryption transmitted on a
Π1 node. Then by condition 2, t was received as a visible ingredient on some
m ⇒ first(p). Thus, there is a bundle lying below B in which p receives this
ingredient directly from some path leading to m.

Otherwise, we may apply Lemma 23 with S = bfringe(last(p))∩ regnodes(Π2)
and D = bfringe(last(p)) ∩ regnodes(Π1). Condition 1 ensures the disjointness.
We infer that there is a basic bridge term a along p. If a� msg(last(p)), then p
is of the second kind.

Otherwise, a is a decryption key a = K−1 for some {|t|}K ∈ enc(D). If
a 6∈ unique, or if a originates on an adversary node, then we can immediately
break p and connect its bridge to an adversary node.

Otherwise, if a ∈ unique, then by constraint Φ, a originates uniquely on a
regular node n1 ∈ regnodes(Π1). Using Lemma 15, there is a direct path q such
that last(q) ∈ regnodes(Π1), last(q) ∈ regnodes(Π2), and last(q) � first(p). If
bt(q) is an encryption, then we again use condition 2. If bt(q) is the basic value
a, then p is again of the first kind. Hence we have a reparable bundle. ut

We may also use this second form of protocol independence to explain the
“sequential composition” of Datta et al. [11]. Here, the nodes of the auxiliary
protocol are placed after nodes of the primary protocol, but on the same strands;
the formalization is unchanged. In particular, h maps nodes of the primary
protocol to π1 and nodes of the secondary protocol to π2. The Clause 1 in
Defn. 7 allows this to work when nodes of the secondary protocol never appear
before a node of the primary protocol on any strand.

Vertical composition. Suppose that a protocol achieves a goal, assuming that
it uses channels that provide particular kinds of protection against the adversary,
e.g. that the adversary cannot spoof messages on these channels, or cannot snoop

22

on their contents. Does that yield a secure protocol when these channels are
replaced by subprotocols that ensure that the assumptions are met? This is the
“vertical composition problem” [14,16,27]. Our methods seem highly relevant
to this problem, but they require a way to express the channel assumptions as
restrictions on the set of relevant bundles. We plan to explore this.

Conclusion. Two further main areas of future work remain. The more sub-
stantial is to adapt this approach to cover a notion of observational equivalence.
This appears to involve enriching the adversary model to include a strand that
detects the equality of two basic values. We also intend to soften the no V s
condition, which is tighter than necessary. For instance, it permits a tuple of
messages to be received in a unit, but prohibits these same messages from being
received successively, even when there are no intervening transmissions. More
careful methods should relax this condition.

Acknowledgments. We are extremely grateful to Véronique Cortier, John
Ramsdell, Paul Rowe, and the anonymous referees at POST.

References

1. S. Andova, C. Cremers, K. Gjøsteen, S. Mauw, S. Mjølsnes, and S. Radomirović.
Sufficient conditions for composing security protocols. Information and Computa-
tion, 2007.

2. M. Arapinis, S. Delaune, and S. Kremer. From one session to many: Dynamic tags
for security protocols. In Proc. of LPAR’08, 2008.

3. A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The avispa tool for the automated validation of internet security protocols and
applications. In CAV, pages 281–285, 2005.

4. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology – Crypto ’93 Proceedings. Springer-Verlag, 1993.

5. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. J. Leifer. Cryp-
tographic protocol synthesis and verification for multiparty sessions. In IEEE
Computer Security Foundations Symposium, 2009.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Technical Report 2000/067, IACR, Oct. 2001. Appeared in FOCS, 2001.

7. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Advances in Cryptology—EUROCRYPT 2001, LNCS,
pages 453–474. Springer, 2001.

8. Ş. Ciobâcă and V. Cortier. Protocol composition for arbitrary primitives. In CSF,
pages 322–336. IEEE Computer Society Press, July 2010.

9. V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods
in System Design, 34(1):1–36, 2009.

10. V. Cortier, B. Warinschi, and E. Zalinescu. Synthesizing secure protocols. In
ESORICS: European Symposium On Research In Computer Security, volume 4734
of Lecture Notes in Computer Science, pages 406–421. Springer, 2007.

23

11. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and com-
positional logic for security protocols. Journal of Computer Security, 13(3):423–
482, 2005.

12. S. Delaune, S. Kremer, and M. D. Ryan. Composition of password-based proto-
cols. In Proceedings of the 21st IEEE Computer Security Foundations Symposium
(CSF’08), pages 239–251. IEEE Computer Society Press, June 2008.

13. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL, pages
435–446, 2011.

14. C. Dilloway and G. Lowe. Specifying secure transport channels. In CSF, pages
210–223. IEEE, 2008.

15. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 29:198–208, 1983.

16. T. Groß and S. Modersheim. Vertical protocol composition. In CSF, pages 235–250.
IEEE, 2011.

17. J. D. Guttman. Security goals and protocol transformations. In S. Mödersheim
and C. Palamidessi, editors, Tosca: Theory of Security and Applications, LNCS.
Springer, March 2011.

18. J. D. Guttman. Shapes: Surveying crypto protocol runs. In V. Cortier and
S. Kremer, editors, Formal Models and Techniques for Analyzing Security Pro-
tocols, Cryptology and Information Security Series. IOS Press, 2011.

19. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryp-
tion. In Computer Security Foundations Workshop. IEEE CS Press, 2000.

20. J. D. Guttman and F. J. Thayer. Authentication tests and the structure of bundles.
Theoretical Computer Science, 283(2):333–380, June 2002.

21. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disciplines
for structured communication-based programming. In ESOP’98, volume 1381 of
LNCS, pages 22–138. Springer-Verlag, 1998.

22. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In Proc. of POPL, volume 43(1), pages 273–284. ACM, 2008.

23. A. Kamil and G. Lowe. Analysing TLS in the strand spaces model. Journal of
Computer Security, 19(5):975–1025, 2011.

24. R. Küsters and M. Tuengerthal. Composition theorems without pre-established
session identifiers. In CCS, pages 41–50. ACM, 2011.

25. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proceeedings of tacas, volume 1055 of LNCS, pages 147–166, 1996.

26. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In CCS, pages 166–175. ACM, 2001.

27. S. Mödersheim and L. Viganò. Secure pseudonymous channels. ESORICS, pages
337–354, 2009.

28. R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. CACM, 21(12), Dec. 1978.

29. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In Computer Security Foundations Workshop, pages 174–, 2001.

30. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(2/3):191–230, 1999.

24

	Sessions and Separability in Security Protocols

