
Beyond Proof-of-compliance: Security Analysis in
Trust Management

NINGHUI LI
Purdue University
JOHN C. MITCHELL
Stanford University
and
WILLIAM H. WINSBOROUGH
George Mason University

Trust management is a form of distributed access control that allows one principal to delegate some
access decisions to other principals. While the use of delegation greatly enhances flexibility and
scalability, it may also reduce the control that a principal has over the resources it owns. Security
analysis asks whether safety, availability, and other properties can be maintained while delegating
to partially trusted principals. We show that in contrast to the undecidability of classical Harrison-
Ruzzo-Ullman safety properties, our primary security properties are decidable. In particular, most

security properties we study are decidable in polynomial time. The computational complexity
of containment analysis, the most complicated security property we study, forms a complexity

hierarchy based on the expressive power of the trust management language.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]: Security
and Protection; D.4.6 [Operating Systems]: Security and Protection—Access controls; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Complexity of proof procedures

General Terms: Security, Theory, Languages

Additional Key Words and Phrases: access control, trust management, distributed system security,
logic programs

1. INTRODUCTION

Access control techniques, which govern whether one party can access resources and ob-
jects controlled by another party, are useful in protectingthe confidentiality, integrity, and
availability of information. Traditional access control schemes make authorization deci-
sions based on the identity of the requester. However, in decentralized or multicentric
environments, the resource owner and the requester often are unknown to one another,
making access control based on identity ineffective. For example, although a certificate
authority may assert that the requester’s name is John Q. Smith, if this name is unknown to

A preliminary version of this paper appeared inProceedings of 2003 IEEE Symposium on Security and Privacy
under the title “Beyond proof-of-compliance: Safety and availability analysis in trust management”. Most of this
work was performed while the first author was at the Department of Computer Science, Stanford University in
Stanford, CA 94305, and the third author was at Network Associates Laboratories in Rockville, MD 20850.
Authors’ addresses: Ninghui Li, Department of Computer Sciences, Purdue University, 656 Oval Drive, West
Lafayette, IN 47907-2086, USA; email:ninghui@cs.purdue.edu. John C. Mitchell, Department of Com-
puter Science, Gates 4B, Stanford, CA 94305-9045, USA; email: mitchell@cs.stanford.edu. William
H. Winsborough, Center for Secure Information Systems, George Mason University, Fairfax, VA 22030-4444,
USA; email:wwinsborough@acm.org.

2 ·

the access mediator, the name itself does not aid in making anauthorization decision. What
is needed is information about the rights, qualifications, responsibilities and other charac-
teristics assigned to John Q. Smith by one or more authorities, as well as trust information
about the authorities themselves.

Trust management [Blaze et al. 1996; Blaze et al. 1999a; 1999b; Rivest and Lampson
1996; Ellison et al. 1999; Clarke et al. 2001; Gunter and Jim 2000; Jim 2001; Li et al.
2003; Li et al. 2003; Li et al. 2002; Li and Mitchell 2003a; Weeks 2001] is an approach to
access control in decentralized distributed systems with access control decisions based on
policy statements made by multiple principals. In trust management systems, statements
that are maintained in a distributed manner are often digitally signed to ensure their au-
thenticity and integrity; such statements are calledcredentialsor certificates. A key aspect
of trust management is delegation: a principal may transferlimited authority over one or
more resources to other principals. While the use of delegation greatly enhances flexibil-
ity and scalability, it may also reduce the control that a principal has over the resources it
owns. As delegation gives a certain degree of control to a principal that may be only par-
tially trusted, a natural security concern is whether a resource owner nonetheless has some
guarantees about who can access their resources. If we thinkof the union of all policies
of all principals as the state of a trust management (TM) system, then a state may change
as the result of a single step that adds or removes a policy statement, or as the result of a
finite sequence of such steps. A resource owner generally hascontrol over some part of
the state, but cannot control all possible changes. In this paper, we consider thesecurity
analysisproblem, which asks what accesses may be allowed or prevented by prospective
changes in the state of a TM system.

A few definitions are useful for stating the security analysis problem more precisely. In
general, a TM language has a syntax for specifyingpolicy statementsandqueries, together
with an entailment relatioǹ. We call a setP of policy statements astateof a TM system.
Given a stateP and a queryQ, the relationP ` Q means thatQ is true inP. When
Q arises from an access request,P ` Q means that accessQ is allowed inP; a proof
demonstratingP ` Q is then called aproof-of-compliance.

Recognizing that a principal or a coalition of cooperating principals may control only
a part of the global state, we assume there is arestriction rule, R, that defines how states
may be changed. For example, the principal in question may consider the part of the state
controlled by fully trusted principals to be fixed, while considering that other principals
may remove some policy statements and/or add new ones. Givena stateP and a restriction
ruleR, we writeP 7→R P

′ if the change fromP to P ′ is allowed byR, andP
∗
7→R P

′

if a sequence of zero or more allowed changes leads fromP to P ′. If P
∗
7→R P

′, we say
thatP ′ isR-reachablefrom P , or simplyP ′ is reachable, whenP andR are clear from
context.

DEFINITION 1. LetP be a state,R a restriction rule, andQ a query. Existential se-
curity analysistakes the form: Does there existP ′ such thatP

∗
7→R P

′ andP ′ ` Q?
When the answer is affirmative, we sayQ is possiblegivenP andR. Universal security
analysistakes the form: For everyP ′ such thatP

∗
7→R P

′, doesP ′ ` Q? If so, we sayQ
is necessarygivenP andR.

Here are some motivating examples of security analysis problems.

Simple Safety.(Existential) Does there exist a reachable state in which a specific (pre-

· 3

sumably untrusted) principal has access to a given resource?

Simple Availability.(Universal) In every reachable state, does a specific (presumably
trusted) principal have access to a given resource?

Bounded Safety.(Universal) In every reachable state, is the set of all principals that have
access to a given resource bounded by a given set of principals?

Liveness.(Existential) Does there exist a reachable state in which noprincipal has ac-
cess to a given resource?

Mutual Exclusion.(Universal) In every reachable state, are two given properties (or two
given resources) mutually exclusive, i.e., no principal has both properties (or access to both
resources) at the same time?

Containment.(Universal) In every reachable state, does every principalthat has one
property (e.g., has access to a resource) also have another property (e.g., is an employee)?
Containment can express safety or availability (e.g., by interchanging the two example
properties in the previous sentence).

Simple safety analysis was first formalized by Harrison et al. [Harrison et al. 1976] in
the context of the well-known access matrix model [Lampson 1971; Graham and Denning
1972]. Simple safety analysis was referred to assafety analysisbecause other analysis
problems were not considered. The model in [Harrison et al. 1976] is commonly known
as the HRU model. In the general HRU model,safety analysisis undecidable [Harrison
et al. 1976]. A number of protection models were developed tomake safety analysis more
tractable. Lipton and Snyder introduced the take-grant model [Lipton and Snyder 1977],
in which simple safety can be decided in linear time. Sandhu introduced the Schematic
Protection Model [Sandhu 1988], and the Typed Access Matrixmodel [Sandhu 1992].
In these previous works, only simple safety analysis are considered; the other kinds of
analysis listed above were not. As some of the analysis problems are about properties
other than safety (e.g., availability), we use the termsecurity analysisrather than safety
analysis.

To the best of our knowledge, security analysis for TM systems has not been investigated
previously as such. In this paper, we define a precise model for security analysis in trust
management. The policy languages we consider are languagesin theRT family of Role-
based Trust-management languages [Li et al. 2003; Li et al. 2002; Li and Mitchell 2003a].
TheRT family combines the strengths of Role-Based Access Control(RBAC) [Sandhu
et al. 1996] and previous trust-management (TM) systems. Semantics for theRT family
is defined by translating each statement into a logic programming clause. In this paper,
we consider four languages in theRT family; they are denoted byRT[], RT[∩], RT[�],
andRT[�,∩]. RT[] is the most basic language in the family; it has two types of state-
ments:simple memberandsimple inclusion. RT[∩] adds toRT[] intersection inclusion
statements.RT[�] adds toRT[] linking inclusionstatements, which can be used to express
attribute-based delegation.RT[�,∩] has both intersection inclusion and linking inclusion;
RT[�,∩] is a slightly simplified (yet expressively equivalent) version of theRT0 language
described in [Li et al. 2003].

All the security analysis problems listed above are considered. While the TM language
we are studying supports delegation and the kinds of analysis problems we consider are
more general, somewhat surprisingly, these problems are decidable. Simple safety, simple
availability, bounded safety, liveness, and mutual exclusion analysis forRT[�,∩] (and

4 ·

hence for the other three sub-languages ofRT[�,∩]) can all be answered in time polyno-
mial in the size of the stateP. These analysis problems are answered by evaluating queries
against logic programs derived from the stateP and the restriction ruleR.

Containment analysis is the most interesting case, both in terms of usefulness and in
terms of technical challenge. The computational complexity of containment analysis de-
pends on the language features. InRT[], the most basic language, containment analysis is
in P. Containment analysis become more complex when additionalpolicy language fea-
tures are used. Containment analysis iscoNP-complete forRT[∩], PSPACE-complete
for RT[�], and decidable incoNEXP for RT[�,∩]. These complexity properties are
proved using techniques and results from logic programming, formal languages, and au-
tomata theory. ForRT[], we use logic programs derived fromP andR to perform con-
tainment analysis. These logic programs use negation-as-failure in a stratified manner [Apt
et al. 1988]. ForRT[∩], we show that containment analysis is essentially equivalent
to determining validity of propositional logic formulas. The RT[�] language is expres-
sively equivalent to SDSI (Simple Distributed Security Infrastructure) [Rivest and Lamp-
son 1996; Clarke et al. 2001], and is related to a class of string rewriting systems modelled
using pushdown systems [Bouajjani et al. 1997]. We show thatcontainment analysis in
RT[�] can be reduced to determining containment among reachable configurations of
pushdown systems, which is again reduced to determining containment of languages ac-
cepted by Nondeterministic Finite Automata (NFAs). For thecase ofRT[�,∩], we show
that if a containment does not hold, then there must exist a counter-example state (i.e., a
reachable state in which the containment does not hold) of size at most exponential in the
size of the input.

The rest of this paper is organized as follows. In Section 2, we define the model we use
to study security analysis in TM. In Section 3, we handle simple safety, simple availability,
liveness, and mutual exclusion. In Section 4, we present results about containment analy-
sis. We discuss related work in Section 5, and conclude in Section 6. An appendix contains
proofs that are not included in the main body.

2. A CONCRETE SECURITY ANALYSIS PROBLEM

The abstract definition of security analysis in Definition 1 has three parameters: the lan-
guage used to express the stateP, the form of queryQ, and the form of restriction ruleR.
In this section, we define concrete security analysis problems by supplying these param-
eters. We give the syntax of the language for specifying policy statements in Section 2.1
and the semantics for the language in Section 2.2. We presentthe formulation of queries
in Section 2.3 and the restriction rules in Section 2.4. In Section 2.5, we explain our query
formulation in light of how restriction rules are defined. Finally, in Section 2.6 we discuss
how security analysis can be used to achieve security objectives.

2.1 Syntax of The TM Language

The policy languages we consider are in theRT family of Role-based Trust-management
languages [Li et al. 2002]. More specifically, we considerRT[�,∩] and its three sub-
languages:RT[], RT[�], andRT[∩]. The basic constructs ofRT[�,∩] areprincipals
and role names. In this paper, we useA, B, D, E, F , X, Y , andZ, sometimes with
subscripts, to denote principals. A role name is a word over some given standard alphabet.
We user, u, andw, sometimes with subscripts, to denote role names. Arole takes the
form of a principal followed by a role name, separated by a dot, e.g.,A.r andX.u. A role

· 5

defines a set of principals that are members of this role. EachprincipalA has the authority
to designate the members of each role of the formA.r. An access control permission is
represented as a role as well; for example, thatB is a member of the role ofA.r may
represent thatB has the permission to do actionr on the objectA.

There are four types of policy statements inRT[�,∩], each corresponding to a different
way of defining role membership. Each statement has the formA.r ←− e, whereA.r is a
role ande is a role expression, to be defined below. We read “←−” as “includes”, and say
the policy statementdefinesthe roleA.r.

— Simple Member: A.r ←− D
This statement means thatA asserts thatD is a member ofA’s r role.

— Simple Inclusion: A.r ←− B.r1
This statement means thatA asserts that itsr role includes (all members of)B’s r1 role.
This represents a delegation fromA toB, asB may add principals to become members
of the roleA.r by issuing statements definingB.r1.

— Linking Inclusion: A.r ←− A.r1.r2
We callA.r1.r2 a linked role. This statement means thatA asserts thatA.r includes
B.r2 for everyB that is a member ofA.r1. This represents a delegation fromA to all
the members of the roleA.r1.

— Intersection Inclusion: A.r ←− B1.r1 ∩B2.r2
We callB1.r1 ∩ B2.r2 an intersection. This statement means thatA asserts thatA.r
includes every principal who is a member of bothB1.r1 andB2.r2. This represents
partial delegations fromA toB1 and toB2.

A role expressionis a principal, a role, a linked role, or an intersection. Given a setP
of policy statements, we define the following:Principals(P) is the set of principals inP,
Names(P) is the set of role names inP, andRoles(P) = {A.r | A ∈ Principals(P), r ∈
Names(P)}. RT[�,∩] is a slightly simplified (yet expressively equivalent) version of
RT0 [Li et al. 2003].1

In this paper, we consider also the following sub-languagesof RT[�,∩]: RT[] has only
simple member and simple inclusion statements,RT[�] adds toRT[] linking inclusion
statements, andRT[∩] adds toRT[] intersection inclusion statements.

EXAMPLE 1. An example that uses the four types of statements is given in Figure 1.

The four types of statements inRT[�,∩] cover the most common delegation relation-
ships in other TM languages such as SPKI/SDSI [Ellison et al.1999; Clarke et al. 2001]
and KeyNote [Blaze et al. 1999a]. The sub-languageRT[�] can be viewed as a simpli-
fied yet expressively equivalent version of SDSI. SDSI allows long linked names, which
correspond to expressions of the formA.r1.r2.r2. · · · .rn. As observed in [Li et al. 2003],
such expressions can be broken up by introducing intermediate roles and additional state-
ments. With the exception of thresholds, the delegation relationships (though, not the
S-expression-based representation of permission) in SPKI’s 5-tuples, can be captured by
using simple member statements and a restricted form of simple inclusion statements. A

1RT[�,∩] simplifiesRT0 in that intersection inclusion statements inRT[�,∩] allow the intersection of only
two roles; inRT0, the intersection may containk components, each of which can be a principal, a role, or a
linked role.RT0 statements using such intersections can be equivalently expressed inRT[�,∩] by introducing
intermediate roles and additional statements. This helps simplify the proofs in this paper.

6 ·

The stateP consists of the following statements:

SA.access←− SA.manager (1)
SA.access←− SA.delegatedAccess∩ HR.employee (2)
SA.manager←− HR.manager (3)
SA.delegatedAccess←− SA.manager.access (4)
HR.employee←− HR.manager (5)
HR.employee←− HR.programmer (6)
HR.manager←− Alice (7)
HR.programmer←− Bob (8)
HR.programmer←− Carl (9)
Alice.access←− Bob (10)

Given the stateP above, we have.

Principals(P) = {SA, HR, Alice, Bob, Carl}
Names(P) = {access, manager, delegatedAccess, employee, programmer}

Roles(P) = {A.r | A ∈ Principals(P), r ∈ Names(P)}
= {SA.access, SA.manager,· · · , SA.programmer, HR.access,· · · , Carl.programmer}

Fig. 1. An example of a stateP in RT[�,∩]. The system administrator of a company, SA, controls access to
some resource, which we abstractly denote by SA.access. The company policy is the following: managers always
have access to the resource; managers can delegate the accessto other principals, but only to employees of the
company; HR is trusted for defining employees and managers.

SPKI 5-tuple in whichA delegates a permissionr toB can be represented asA.r ←− B.
A SPKI 5-tuple in whichA delegatesr to B and allowsB to further delegater can be
represented as twoRT[�,∩] statements:A.r ←− B andA.r ←− B.r. Similar analogies
can be drawn for KeyNote [Blaze et al. 1999a].

SPKI/SDSI does not have intersection inclusion statementsbut allows threshold subjects
in 5-tuples. Using threshold subjects in SPKI/SDSI, one canexpress a policy that grants
a permission to a principal ifk or more principals from a list ofn principals grant the
permission to the principal. The capabilities of the intersection operator inRT[�,∩] and
the threshold subjects in SPKI/SDSI are largely incomparable. One cannot express in
SPKI/SDSI a policy that grants a permission to any principalwho has both attributer1 and
attributer2, a policy easily expressed using intersection. On the otherhand, one cannot
use intersection statements to achieve the effects of threshold subjects either. In theRT
family, the functionalities of threshold subjects are achieved using manifold roles and two
new kinds of statements, which are introduced in [Li et al. 2002]. Security analysis for
RT languages with these additional features is beyond the scope of this paper. See [Li
and Mitchell 2003b] for a more detailed comparison of SPKI/SDSI and theRT family of
languages, .

Although RT[�,∩] is limited in that role names are constants, extending role names
in RT[�,∩] to have parameterized roles does not change the nature of security analysis.
The main techniques we use for security analysis inRT[�,∩] uses logic programs, which
can be easily extended to handle parameterized roles. Therefore, we believe that many of
the results and techniques developed forRT[�,∩] can be carried over to more expressive
languages, e.g.,RT1 [Li et al. 2002], which adds toRT0 the ability to have parameterized
roles,RTC

1 [Li and Mitchell 2003a], which adds constraints toRT1, and, to a certain
extent, SPKI/SDSI and KeyNote.

The security analysis problem forRT[�,∩] involves new concepts and techniques. Se-
mantics and inference for SDSI, which is essentially the sub-languageRT[�], has been

· 7

extensively studied [Abadi 1998; Clarke et al. 2001; Halpern and van der Meyden 2001;
Jha and Reps 2002; Li 2000; Li et al. 2003]. Some of these studies consider only answer-
ing queries in a fixed state. Some consider universal analysis where no restriction is placed
on how the state may grow [Abadi 1998; Halpern and van der Meyden 2001]. However,
the most interesting aspect of security analysis — answering queries when restrictions are
placed on state changes — has not been addressed in the previous studies.

2.2 Semantics of the TM Language

We give a formal characterization of the meaning of a setP of policy statements by trans-
lating each policy statement into a datalog clause. (Datalog is a restricted form of logic
programming (LP) with variables, predicates, and constants, but without function sym-
bols.) We call the resulting program thesemantic programof P.

DEFINITION 2 SEMANTIC PROGRAM. Given a setP of policy statements, theseman-
tic program, SP(P), of P, has one ternary predicatem. Intuitively, m(A, r,D) means
thatD is a member of the roleA.r. SP(P) is the set of all datalog clauses produced from
policy statements inP. The rules to generate the Semantic ProgramSP(P) from P are
shown below. Symbols that start with “?” represent logical variables.

For eachA.r←−D in P, add
m(A, r,D) (m1)

For eachA.r←−B.r1 in P, add
m(A, r, ?Z) :− m(B, r1, ?Z) (m2)

For eachA.r←−A.r1.r2 in P, add
m(A, r, ?Z) :− m(A, r1, ?Y), m(?Y, r2, ?Z) (m3)

For eachA.r←−B1.r1 ∩B2.r2 in P, add
m(A, r, ?Z) :− m(B1, r1, ?Z), m(B2, r2, ?Z) (m4)

A datalog program is a set of datalog clauses. Given a datalogprogram,DP, its seman-
tics can be defined through several equivalent approaches. The model-theoretic approach
viewsDP as a set of first-order sentences and uses the minimal Herbrand model as the
semantics. We writeSP(P) |= m(X,u, Z) whenm(X,u, Z) is in the minimal Herbrand
model ofSP(P). This semantics is equivalent to the set-theoretic semantics ofRT0 in [Li
et al. 2003].

We now summarize a standard fixpoint characterization of theminimal Herbrand model,
which we will use in the proofs in this paper. Given a datalog programDP, letDPinst

be the ground instantiation ofDP using constants inDP; the immediate consequence
operator, TDP , is defined as follows. Given a setK of ground logical atoms,TDP(K)
consists of all logical atoms,a, such thata :− b1, . . . , bn ∈ DP

inst, wheren ≥ 0, and
eithern = 0 or bj ∈ K for 1 ≤ j ≤ n. The least fixpoint ofTDP is given by

TDP↑
ω=

∞
⋃

i=0

TDP↑
i, whereTDP↑

0= ∅ andTDP↑
i+1= TDP(TDP↑

i), i ≥ 0

The sequenceTDP ↑
i is an increasing sequence of subsets of a finite set. Thus, there

exists anN such thatTDP(TDP ↑
N) = TDP ↑

N. TDP ↑
ω is identical to the minimal

Herbrand model ofDP [Lloyd 1987]; therefore,SP(P) |= m(X,u, Z) if and only if
m(X,u, Z) ∈ TSP(P)↑

ω.

8 ·

The semantic program,SP(P), of theP given in Figure 1, is as follows.

m(SA, access, ?Z) :− m(SA, manager, ?Z) (1)

m(SA, access, ?Z) :− m(SA, delegatedAccess, ?Z), m(HR, employee, ?Z) (2)

m(SA, manager, ?Z) :− m(HR, manager, ?Z) (3)

m(SA, delegatedAccess, ?Z) :− m(SA, manager, ?Y), m(?Y, access, ?Z) (4)

m(HR, employee, ?Z) :− m(HR, manager, ?Z) (5)

m(HR, employee, ?Z) :− m(HR, programmer, ?Z) (6)

m(HR, manager, Alice) (7)

m(HR, programmer, Bob) (8)

m(HR, programmer, Carl) (9)

m(Alice, access, Bob) (10)

The minimal Herbrand model of the above program has the following facts.

Iteration 0 m(HR, manager, Alice) m(HR, programmer, Bob)
m(HR, programmer, Carl) m(Alice, access, Bob)

Iteration 1 m(SA, manager, Alice) m(HR, employee, Alice)
m(HR, employee, Bob) m(HR, employee, Carl)

Iteration 2 m(SA, delegatedAccess, Carl) m(SA, access, Alice)
Iteration 3 m(SA, access, Bob)

Fig. 2. The semantic program,SP(P), of theP given in Figure 1 and the minimal Herbrand model of the
program.

It has been shown that the minimal Herbrand model ofDP can be computed in time
linear in the size ofDPinst [Dowling and Gallier 1984]. If the total size ofDP isM , then
there areO(M) constants inDP. Assuming that the number of variables in each clause
is bounded by a constant,v, the number of instances of each clause is thereforeO(Mv),
so the size ofDPinst isO(Mv+1). As |SP(P)| = O(|P|) and each rule inSP(P) has at
most two variables, the worst-case complexity of evaluating SP(P) isO(|P|3).

EXAMPLE 2. The semantic program of the example in Figure 1 is given in Figure 2.

2.3 Queries

In this paper, we consider the following three forms of queryQ:

— Membership: A.r w {D1, . . . ,Dn}

Intuitively, this means that all the principalsD1, . . . ,Dn are members ofA.r. Formally,
P ` A.r w {D1, . . . ,Dn} if and only if{Z | SP(P) |= m(A, r, Z)} ⊇ {D1, . . . ,Dn}.

— Boundedness: {D1, . . . ,Dn} w A.r

Intuitively, this means that the member set ofA.r is bounded by the given set of prin-
cipals. Formally,P ` {D1, . . . ,Dn} w A.r if and only if {D1, . . . ,Dn} ⊇ {Z |
SP(P) |= m(A, r, Z)}.

— Inclusion: X.u w A.r

Intuitively, this means that all the members ofA.r are also members ofX.u. Formally,
P ` X.u w A.r if and only if {Z | SP(P) |= m(X,u, Z)} ⊇ {Z | SP(P) |=
m(A, r, Z)}.

EXAMPLE 3. If P is the state given in Figure 1, the following queries yield the indi-

· 9

cated results:
Membership: P ` SA.accessw {Eve} (False)
Membership: P ` SA.accessw {Alice} (True)
Boundedness: P ` {Alice,Bob} w SA.access (True)
Inclusion: P ` HR.employeew SA.access (True)

We consider alternate formulations for queries below afterfirst considering what kinds
of state change rules we consider in the analysis.

2.4 Restriction Rules on State Changes

Using statements inRT[�,∩], one can delegate control over resources to other princi-
pals. In Figure 1, the two statements SA.access←−SA.delegatedAccess∩ HR.employee
and SA.delegatedAccess←− SA.manager.access together mean that any principal that
is a manager can affect who can access the resource. For example, Alice could add
Alice.access←− Carl giving Carl access. In the resulting stateP ′, P ′ ` {Alice,Bob} w
SA.access is false, whereas the result is true forP. From the System Administrator (SA)’s
perspective, roles such as Alice.access are not under its control. New statements defining
Alice.access may be issued by Alice and existing statementsdefining Alice.access may be
revoked. In order for SA to understand the effect of the two statements mentioned above,
SA may want to know whether some desirable security properties always hold even though
statements defining roles such as Alice.access can be changed arbitrarily.

We now present a concrete formulation of restriction rules that enable one to articulate
analysis questions concerning the states that are reachable based on changes to policy. To
model control over roles, we use restriction rules of the formR = (GR,SR), which consist
of a pair of finite sets of roles. (In the rest of the paper we drop the subscripts fromG and
S, asR is clear from context.)

—Roles inG are calledgrowth-restricted(or g-restricted); no policy statements defin-
ing these roles can be added. Roles not inG are calledgrowth-unrestricted(or g-
unrestricted).

—Roles inS are calledshrink-restricted(or s-restricted); policy statements defining
these roles cannot be removed. Roles not inS are calledshrink-unrestricted(or s-
unrestricted).

If a roleA.r that is g-restricted is defined to include a roleB.r1 that is g-unrestricted,
then no new statement definingA.r can be added; however, new statements definingB.r1
can be added, indirectly adding new members toA.r.

An example ofR is (∅,Roles(P)), under which every role may grow without restriction,
and no statement defining roles inRoles(P) can be removed. This models the case of
having incomplete knowledge of a global policy state. In this case, one sees a setP of
statements but thinks that there are other statements in theglobal state that are currently
unknown, and one wants to know whether certain security properties always hold no matter
what these unknown statements may be.

Another example isR = (G,S), whereG = S = {X.u | X ∈ {X1, . . . ,Xk}, u ∈
Names(P)}. This corresponds to the scenario in which there are principals that are
trusted and one wants to analyze the effect of policy changesof untrusted principals. Here
X1, . . . ,Xk are identified as trusted, and other principals are not trusted.

If a principalX does not appear in the restriction ruleR, then for every role namer, by

10 ·

definitionX.r is g/s-unrestricted. This models that the roles of unknown principals may
be defined arbitrarily.

We allow some roles controlled by one principal to be g-restricted while other roles
controlled by the same principal may be g-unrestricted. We also allow a role to be g-
restricted while being s-unrestricted. These generalizations provide more flexibility than
simply identifying principals as either trusted or untrusted. This flexibility in practice helps
reduce the number of times that security analysis needs to beperformed. For example, if
a security property holds when a role is g-unrestricted, then the property will continue to
hold after adding new statements defining the role, so the analysis need not be repeated.

EXAMPLE 4. Referring again to the example in Figure 1, consider the restriction rule
R given as follows:

G = { SA.access, SA.manager, SA.delegatedAccess, HR.employee}
S = { SA.access, SA.manager, SA.delegatedAccess, HR.employee, HR.manager}

In this restriction rule, SA and HR are assumed to be trusted;howeverG allows statements
to be added defining HR.manager and HR.programmer. Thus adding such statements can-
not invalidate any security property obtained by usingR.

Given the aboveR, statements (1) to (7) cannot be removed, statements (8) to (10) may
be removed, new statements defining roles inG cannot be added, and one can add new
statements defining HR.manager, HR.programmer, Alice.access, Bob.access, Carl.access,
etc. We now list some example analysis problem instances, together with the answers:

Simply safety analysis: Is “SA.accessw {Eve}” possible? (Yes)
Simple availability analysis: Is “SA.accessw {Alice}” necessary? (Yes)
Bounded safety analysis: Is “{Alice, Bob} w SA.access” necessary. (No)
Containment analysis: Is “HR.employeew SA.access” necessary? (Yes)

Observe that the availability property “SA.accessw {Alice} is necessary” depends on
HR.manager being s-restricted. Together with our observations above concerning repeated
analysis, this illustrates the advantage of allowingG 6= S.

The restrictions we consider are static in the sense that whether or not a state change
is allowed byR does not depend on the current state. A dynamic restriction could, for
instance, haveB.r2 be g-restricted ifB is a member ofA.r1, which depends on the current
state. Security analysis with dynamic restrictions is potentially interesting future work.

2.5 Alternate Query Formulations

We now examine the way we formulate queries in Section 2.3 by considering some of the
alternatives. A membership queryA.r w {D1, . . . ,Dn} can be translated to an inclusion
queryA.r w B.u, in whichB.u is a new role, by addingB.u←−D1, . . . , B.u←−Dn

to P and makingB.u g/s-restricted. Similarly, boundedness queries can be translated
to inclusion queries as well. We include membership and bounded queries nonetheless
because they can be answered more efficiently than inclusionqueries.

Each form of query can be generalized to allow compound role expressions that use
linking and intersection. However, these generalized queries can be reduced to the forms
above by adding new roles and statements to the policy. For instance,{} w A.r∩A1.r1.r2
can be answered by addingB.u1←−A.r ∩B.u2,B.u2←−B.u3.r2, andB.u3←−A1.r1
toP, in whichB.u1,B.u2, andB.u3 are new g/s-restricted roles, and by posing the query

· 11

{} w B.u1.
The three forms of queries can be varied to consider cardinality of roles rather than exact

memberships. A cardinality variant of membership queries has the form “|A.r| ≥ n”,
which means that the number of principals who are members ofA.r is no less thann. A
cardinality variant of boundedness queries has the form “n ≥ |A.r|”. Cardinality variants
of membership and boundedness queries can be answered similarly to the base queries. We
do not consider a cardinality variant of inclusion queries in this paper.

2.6 Usage of Security Analysis

Security analysis can be used to help ensure that security requirements are met, and that
they continue to be met after policy changes are made by autonomous, possibly malicious
principals.

For the purposes of the current section, let us say that a query Q, a restriction ruleR,
and asign, either+ or −, together formalize arequirement. For instance, one require-
ment might consider whether every who can access a particular confidential resource is
an employee of the organization. In this case, the sign used would be+ to indicate that
the condition should always hold, as this ensures that no oneoutside the organization can
access the confidential resource. A policyP complies witha requirement〈Q,R,+〉 if Q
is necessary givenR andP, andP complies with〈Q,R,+〉 if Q is necessary givenR and
P.

An organization’s System Security Officer (SSO) writes a setof requirements based on a
restriction ruleR that forbids changing roles that are under the control of trusted principals
in the organization. Assuming that we start in a policy statethat complies with all the re-
quirements, security analysis ensures that this compliance can be preserved across changes
to the policy state as long as principals identified as trusted in R cooperate as follows.
When a change is made by a principal that is untrusted, it must be to a g/s-unrestricted
role; such a change has been taken into account by the analysis and does not affect the
compliance. When a change is made by a trusted principal but isallowed byR, then noth-
ing needs to be done, as such changes are taken into account bythe analysis. When a
change is made by a trusted principal and is not allowed byR, i.e., adding a statement that
defines a g-restricted role or removing a statement that defines a s-restricted role, the prin-
cipal should perform security analysis to determine whether the security requirements are
met for the state that would result from the prospective change and make the change only
if the requirements are satisfied. Thus, the preservation ofcompliance does not depend on
untrusted principals.

In the above usage, the SSO determines a set of requirements based on a single restric-
tion rule. In general, other principals may specify requirements they wish to have main-
tained by the TM system. They may have differing sets of principals that they are willing to
trust with running the analysis and preserving the requirements, which will consequently
be using differing restriction rules.

It is significant that the usage pattern we are suggesting enables the enforcement of re-
quirements that cannot be achieved by constructs inRT[�,∩], or most other trust manage-
ment languages. This is because those languages are monotonic in the sense that adding
statements to a policy cannot remove a principal from a role.By contrast, many of the
requirements formalized above are non-monotonic, in the sense that adding statements to
a policy that satisfies the requirement can yield a policy that does not. This is illustrated
by the example of mutual exclusion of two roles. Monotonicity makes it impossible to

12 ·

express withinRT[�,∩] that a principal cannot be added to both roles. However this is
easily achieved by using security analysis as described above.

3. ANSWERING MEMBERSHIP AND BOUNDEDNESS QUERIES

RT[�,∩] and its sub-languages are monotonic in the sense that more statements will de-
rive more role membership facts. This follows from the fact that the semantic program is a
positive logic program. This important monotonicity property allows us to derive efficient
algorithms for membership and boundedness queries.

To answer a universal membership (simple availability) analysis instance that asks
whether “A.r w {D1, . . . ,Dn}” is necessary givenP andR, one can consider the set
of principals that are members ofA.r in every reachable state. We call this set thelower-
boundof A.r. If the lower-bound ofA.r is a superset of{D1, . . . ,Dn}, then the answer
to the analysis is “yes”; otherwise, the answer is “no”.

To compute the lower-bound of a role, consider the state obtained fromP by removing
all statements whose removal is permitted byR. We denote this state byP|R. BecauseR
is static, the order of removing these statements does not matter, andP|R uniquely exists.
Clearly,P|R is reachable; furthermore,P|R ⊆ P ′ for every reachableP ′. AsRT[�,∩] is
monotonic, the lower-bound ofA.r is the same as the set of principals who are members
of the roleA.r in P|R.

The lower-bound ofA.r can also be used to answer an existential boundedness (liveness)
analysis that asks whether “{D1, . . . ,Dn} w A.r” is possible givenP andR. If the lower-
bound ofA.r is a subset of{D1, . . . ,Dn}, then the answer is “yes”; otherwise, the answer
is “no”.

Existential membership (simple safety) analysis and universal boundedness (bounded
safety) analysis can be answered by computing an “upper-bound” of role memberships.
The upper-bound of a role is the set of principals that could become a member of the
role in some reachable state. Intuitively, such bounds can be computed by considering a
“maximal reachable state”. However, such a “state” may contain an infinite set of policy
statements, and the upper-bounds of roles may be infinite. Wewill show that one can
simulate the upper bounds by a finite set and derive correct answers.

In Section 3.1, we show how to compute the lower-bounds and how to use them to per-
form universal membership and existential boundedness analysis. In Section 3.2, we show
how to simulate the upper-bounds and how to use them to perform existential membership
and universal boundedness analysis.

3.1 The Lower-Bound

We now present the lower-bound program for a stateP and a restrictionR; this program
enables one to compute the lower-bounds of every role.

DEFINITION 3 THE LOWER-BOUND PROGRAM. Given P andR, the lower-bound

· 13

programfor them,LB(P,R), is constructed as follows:

For eachA.r←−D in P|R, add
lb(A, r,D) (b1)

For eachA.r←−B.r1 in P|R, add
lb(A, r, ?Z) :− lb(B, r1, ?Z) (b2)

For eachA.r←−A.r1.r2 in P|R, add
lb(A, r, ?Z) :− lb(A, r1, ?Y), lb(?Y, r2, ?Z) (b3)

For eachA.r←−B1.r1 ∩B2.r2 in P|R, add
lb(A, r, ?Z) :− lb(B1, r1, ?Z), lb(B2, r2, ?Z) (b4)

The worst-case complexity of evaluating the lower-bound program isO(|P|3), as noted at
the end of Section 2.2.

Observe that the above lower-bound program is essentially the same as the semantic
program for the minimal stateP|R. They differ in that anywhereLB(P,R) uses the
predicatelb, SP(P|R) uses the predicatem. Therefore, we have the following fact.

FACT 3.1. LB(P,R) |= lb(A, r,D) if and only ifSP(P|R) |= m(A, r,D).

PROOF. This follows directly from the observation stated before this fact.

The following proposition asserts that the programLB(P,R) correctly computes the
lower-bounds for every roleA.r.

PROPOSITION 3.2. LB(P,R) |= lb(A, r,D) if and only if for every reachableP ′,
SP(P ′) |= m(A, r,D).

PROOF. The “only if” part: If LB(P,R) |= lb(A, r,D), then from Fact 3.1,
SP(P|R) |= m(A, r,D). For everyP ′ that is reachable,P|R ⊆ P ′. Furthermore, the
languageRT[�,∩] is monotonic; therefore,SP(P ′) |= m(A, r,D).

The “if” part: if for every reachableP ′, SP(P ′) |= m(A, r,D), thenSP(P|R) |=
m(A, r,D), becauseP|R is reachable. From Fact 3.1,LB(P,R) |= lb(A, r,D).

The methods to use the lower-bound program to answer universal membership analysis
and existential boundedness analysis instances and the correctness of these methods are
formally stated as the following two corollaries. Cardinality variants of these queries can
be answered similarly.

COROLLARY 3.3. GivenP andR, a membership queryA.r w {D1, . . . ,Dn} is nec-
essary if and only ifLB(P,R) |= lb(A, r,Di) for everyi, 1 ≤ i ≤ n.

PROOF. The “if” direction: If LB(P,R) |= lb(A, r,Di) for everyi such that1 ≤ i ≤
n, then by Proposition 3.2,D1, . . . ,Dn are members ofA.r in all reachable states, the
query is therefore necessary.

The “only if” direction: if A.r w {D1, . . . ,Dn} is necessary, then for every reachable
stateP ′, SP(P ′) |= m(A, r,Di) for everyi such that1 ≤ i ≤ n. By Proposition 3.2,
LB(P,R) |= lb(A, r,Di) for everyi such that1 ≤ i ≤ n.

COROLLARY 3.4. GivenP andR, a boundedness query{D1, . . . ,Dn} w A.r is pos-
sible if and only if{D1, . . . ,Dn} ⊇ {Z | LB(P,R) |= lb(A, r, Z)}.

14 ·

PROOF. For the “if” part, we must show that if{D1, . . . ,Dn} ⊇ {Z | LB(P,R) |=
lb(A, r, Z)}, then there exists a reachableP ′ such that eachD satisfyingP ′ |= m(A, r,D)
also satisfiesD ∈ {D1, . . . ,Dn}. It is easily seen by using Fact 3.1 thatP|R is such aP ′.

The “only if” part follows from Proposition 3.2 as follows. Suppose there existsZ such
that LB(P,R) |= lb(A, r, Z) andZ 6∈ {D1, . . . ,Dn}. By Proposition 3.2, for every
reachableP ′, SP(P ′) |= m(A, r, Z); therefore, the query is not possible.

EXAMPLE 5. Based onP given in Figure 1 andR given in Example 4, the stateP|R
consists of the following statements:

SA.access←− SA.manager (1)
SA.access←− SA.delegatedAccess∩ HR.employee (2)
SA.manager←− HR.manager (3)
SA.delegatedAccess←− SA.manager.access (4)
HR.employee←− HR.manager (5)
HR.employee←− HR.programmer (6)
HR.manager←− Alice (7)

The minimal Herbrand model ofLB(P,R) has the following facts:

lb(HR, manager, Alice) lb(HR, employee, Alice)
lb(SA, manager, Alice) lb(SA, access, Alice)

This enables us to determine that “SA.accessw {Alice}” is necessary.

3.2 The Upper-Bound

The upper-bound of a role consists of all principals that could be a member of the role in
some reachable state. One main difficulty in computing the upper-bounds of roles is that
they may be infinite. We say that a role isg-unboundedif for every principalZ, there exists
a reachable stateP ′ such thatSP(P ′) |= m(A, r, Z). In other words, the upper-bound of
A.r contains every principal. A g-unrestricted role is clearlyg-unbounded, as one can add
a new statement to add an arbitrary principal to be a member ofthe role. A g-restricted
role may also be g-unbounded, as it may (directly or indirectly) include a g-restricted role.

The following fact about g-unbounded roles says that one needs to consider only one
principal that does not occur inP (instead of every principal) to determine whether a role
is g-unbounded.

FACT 3.5. GivenP,R, a roleA.r, and a principalE that does not occur inP,A.r is g-
unbounded if and only if there exists a reachable stateP ′ such thatSP(P ′) |= m(A, r,E).

See Appendix A.1 for the proof. This fact enables us to use oneprincipal that does not
already occur to be the representative of all new principals.

We now present the upper-bound program for a stateP and a restriction ruleR. This
program enables one to simulate the upper-bound of any role.

DEFINITION 4 THE UPPER-BOUND PROGRAM. Given P and R = (G,S), their
upper-bound program,UB(P,R), is constructed as follows. (> is a special principal

· 15

symbol not occurring inP,R, or any queryQ.)

Add ub(>, ?r, ?Z) (u)
For eachA.r ∈ Roles(P)− G, add

ub(A, r, ?Z) (u0)
For eachA.r←−D in P, add

ub(A, r,D) (u1)
For eachA.r←−B.r1 in P, add

ub(A, r, ?Z) :− ub(B, r1, ?Z) (u2)
For eachA.r←−A.r1.r2 in P, add

ub(A, r, ?Z) :− ub(A, r1, ?Y), ub(?Y, r2, ?Z) (u3)
For eachA.r←−B1.r1 ∩B2.r2 in P, add

ub(A, r, ?Z) :− ub(B1, r1, ?Z), ub(B2, r2, ?Z) (u4)

The rules(u1) to (u4) follow from the meanings of the four types of statements and
are similar to the semantic program construction in Definition 2. The rule(u0) means that
for any roleA.r that is g-unrestricted, the upper-bound ofA.r contains every principal.
It is incorrect to useub(A, r,>) instead ofub(A, r, ?Z) here, because givenB.r1 ←−
A.r ∩ B.r2 andB.r2←−D whereA.r is g-unbounded andB.r2 is g-restricted, we need
to ensure thatub(B, r1,D) is true. The rule(u) means that for any role namer, the
upper-bound of>.r contains every principal. This is so because> does not appear inR,
therefore,>.r is not g-restricted. The rule(u) is needed because givenA.r←−A.r1.r2,
whereA.r is g-restricted andA.r1 is g-unrestricted, we should ensure that the upper-bound
of A.r contains every principal.

The following proposition asserts that the upper-bound program correctly computes the
upper-bounds of roles inRoles(P) when we restrict our attention to roles inPrincipals(P)∪
{>}.

PROPOSITION 3.6. Given anyP, R = (G,S), A.r ∈ Roles(P), and Z ∈
Principals(P) ∪{>}, UB(P,R) |= ub(A, r, Z) if and only if there exists a reachable
P ′ such thatSP(P ′) |= m(A, r, Z).

See Appendix A.1 for the proof. The following corollary shows that the upper-bound
program can correctly tell whether a role is g-unbounded or not.

COROLLARY 3.7. A roleA.r is g-unbounded if and only ifUB(P,R) |= ub(A, r,>).

PROOF. Follows directly from Fact 3.5 and Proposition 3.6.

The methods to use the upper-bound program to answer existential membership analysis
and universal boundedness analysis and the correctness of these methods are stated in the
following two corollaries. Cardinality variants of these queries can be answered similarly.

COROLLARY 3.8. Given P and R = (G,S), a membership queryA.r w
{D1, . . . ,Dn} is possible if and only if at least one of the following three conditions hold:
(1)A.r 6∈ G, (2) UB(P,R) |= ub(A, r,>), or (3) UB(P,R) |= ub(A, r,Di) for everyi,
1 ≤ i ≤ n.

PROOF. Consider two cases. Case one:A.r 6∈ Roles(P). In this case, conditions (2)
and (3) will not hold, because no clause inUB(P,R) definesA.r. We now show that the
query is possible if and only if condition (1), i.e.,A.r 6∈ G, holds. IfA.r ∈ G, then the

16 ·

roleA.r will always be empty in every reachable state and the query will not be possible.
If A.r 6∈ G, then the roleA.r is g-unbounded; therefore, the query is possible.

Case two:A.r ∈ Roles(P). In this case, the first condition implies the second condition,
following from Corollary 3.7. Condition (2) and condition (3) each implies that the query
is possible. Therefore, if at least one of the three conditions hold, the query is possible.
If none of the three conditions holds, then there existsDj such that1 ≤ j ≤ n and
UB(P,R) 6|= ub(A, r,Dj). If Dj ∈ Principals(P), then from Proposition 3.6,Dj is
not a member ofA.r in any reachable state; therefore, the query is not possible. If Dj 6∈
Principals(P), thenDj is not a member ofA.r in any reachable state either. Because if
Dj is a member ofA.r in some reachable state, thenA.r is g-unbounded according to
Fact 3.5, andUB(P,R) |= ub(A, r,>) according to Corollary 3.7, which contradicts the
assumption that Condition 2 does not hold.

In Corollary 3.8, condition (1) is needed in addition to (2) to deal with the situation that
eitherA or r does not occur inP, in which caseA.r 6∈ Roles(P) andUB(P,R) does
not correctly compute the upper-bound ofA.r. Condition (2) is needed in addition to (1)
to deal with roles that are g-restricted, but g-unbounded. Condition (3) is needed to deal
with the case thatA.r is not g-unbounded, but its upper-bound contains all principals in
{D1, . . . ,Dn} nonetheless.

COROLLARY 3.9. GivenP andR = (G,S), a boundedness query{D1, . . . ,Dn} w
A.r is necessary if and only ifA.r ∈ G and {D1, . . . ,Dn} ⊇ {Z|UB(P,R) |=
ub(A, r, Z)}.

PROOF. Consider two cases. Case one:A.r 6∈ Roles(P). In this case,{Z|UB(P,R) |=
ub(A, r, Z)} = ∅; therefore,{D1, . . . ,Dn} ⊇ {Z|UB(P,R) |= ub(A, r, Z)} always
holds. If suffices to show that the query{D1, . . . ,Dn} w A.r is necessary if and only if
A.r ∈ G. If A.r ∈ G, then the roleA.r is empty in any reachable state; the query is thus
necessary. IfA.r 6∈ G, then consider the stateP ′ = P ∪A.r←−E, whereE is a principal
not appearing inP. The query is false inP ′.

Case two:A.r ∈ Roles(P). In this case, assume thatA.r ∈ G and{D1, . . . ,Dn} ⊇
{Z|UB(P,R) |= ub(A, r, Z)}, we show that for any principalZ that is a mem-
ber of A.r in some reachable stateP ′ (i.e., SP(P ′) |= m(A, r, Z)), it must be that
Z ∈ {D1, . . . ,Dn}, thereby proving that the query is necessary. We first show that
Z ∈ Principals(P); otherwise, it follows from Fact 3.5 thatA.r is g-unbounded, and
it follows from Corollary 3.7 thatUB(P,R) |= ub(A, r,>), which contradicts the as-
sumption that{D1, . . . ,Dn} ⊇ {Z|UB(P,R) |= ub(A, r, Z)}. As Z ∈ Principals(P),
it follows from Proposition 3.6 thatUB(P,R) |= ub(A, r, Z). From the assumption,
Z ∈ {D1, . . . ,Dn}.

If eitherA.r 6∈ G or{D1, . . . ,Dn} 6⊇ {Z|UB(P,R) |= ub(A, r, Z)}, then it is straight-
forward to show that the query is not necessary.

EXAMPLE 6. Based onP given in Figure 1 andR given in Example 4, the minimal
Herbrand model ofUB(P,R) has the following facts, in whichprincipal is Alice, Bob,

· 17

Carl or> androle is access, manager, delegatedAccess, employee, or programmer2:

ub(HR, manager, principal) ub(HR, programmer, principal)
ub(Alice, access, principal) ub(>, role, principal)
ub(HR, employee, principal) ub(SA, delegatedAccess, principal)
ub(SA, manager, principal) ub(SA, access, principal)

This enables us to determine that “SA.accessw {Eve}” is possible and “{Alice, Bob} w
SA.access” is not necessary.

In the example, we see that the policy is not safe according toeither the simple safety
instance or the bounded safety instance. One reason is that the role HR.manager is g-
unrestricted, meaning that new managers may be added. Another reason is that the role
HR.programmer is g-unrestricted; therefore, new programmers may be added and access
may be delegated to them. However, if the company knows that Eve is an enemy, then the
company probably will not hire Eve as a manager or a programmer. In fact, simple safety is
quite unnatural: to use it effectively, one has to be able to identify the principals that should
never have access, the number of such principals could be arbitrary large. Bounded safety
is also unnatural, one does not know, for example, who in the future the company will hire
as a manager. A more natural policy is to ensure that, for example, only employees of the
company are allowed to access the resource. This can be done by using inclusion queries.

3.3 Summary and Computational Complexities

The approaches that we have taken to answer membership queries utilize the facts that
membership queries are monotonic, that is, given a membership queryQ, if P ` Q, then
for everyP ′ such thatP ⊆ P ′, P ′ ` Q. Because of this, universal membership queries
can be answered by considered the minimal reachable state. If a membership query is true
in the minimal state, then it is true in all states. Similarly, existential membership queries
can be answered by considering the maximal reachable state.

Boundedness queries are anti-monotonic, that is, given a boundedness queryQ, if P `
Q, then for everyP ′ such thatP ′ ⊆ P, P ′ ` Q. Therefore, existential bounded queries
can be answered by considering the minimal state. If the query is false in that state, then the
query will be false in all other states. Similarly, universal bounded queries can be answered
by considering the maximal reachable state.

As the lower-bound program is essentially the semantic program of P|R ⊆ P, the
computational complexity for evaluating it isO(|P|3).

As noted at the end of Section 2.2, the computational complexity for evaluating
UB(P,R) is linear in the size of the ground instantiation ofUB(P,R). There areO(|P|)
rules inUB(P,R) corresponding to(u), (u1), (u2), (u3), and(u4), which have at most
two variables per rule; therefore, the ground instantiation of these rules has total size
O(|P|3). There areO(|P|2) instance rules of(u0), because there areO(|P|) principals and
O(|P|) role names inP. However, each such rule has only one variable, and so the ground
instantiation of these rules has sizeO(|P|3). Therefore, the computational complexity for
evaluatingUB(P,R) isO(|P|3).

2Actually, there are more of these, likeub(HR, manager, access), but when the third parameter is not a principal,
these facts have no effect, so we elide them. Similarly, we elide the facts in which the second parameter is not a
role name.

18 ·

4. CONTAINMENT ANALYSIS: ANSWERING UNIVERSAL INCLUSION
QUERIES

Inclusion queries are neither monotonic nor anti-monotonic. Given an inclusion query
X.u w Z.w and three statesP ′ ⊆ P ⊆ P ′′, it is possible thatP ` Q, but bothP ′ 6` Q and
P ′′ 6` Q. As a result, the approach taken with membership and boundedness queries is not
applicable. We cannot simply look at a specific minimal (or maximal) state and answer the
query.

In this paper, we restrict our attention to universal inclusion queries, as this is more
interesting in terms of security properties than existential inclusion queries.

We say that a roleX.u containsanother roleA.r if X.u w A.r is necessary, i.e.,X.u
includesA.r in every reachable state. Observe that we use “contains” and“includes” as
two technical terms that have different meanings.

We call the problem of determining whether a role contains another role thecontain-
ment analysisproblem. Note that “containment” is also used in information security to
mean other things. Our definition of containment in this paper is specific to comparing
memberships of two roles in all reachable states.

The problem of determining whetherX.u containsA.r when one ofX.u andA.r is
not in Roles(P) can be answered easily as follows. IfA.r 6∈ Roles(P), then eitherA or
r does not occur inP. WhenA.r is g-restricted,A.r will always be empty; therefore,
X.u containsA.r. WhenA.r is g-unrestricted, then one may add arbitrary members to
A.r, yetA.r is not used to define any role, soX.u does not containA.r. In short, when
A.r 6∈ Roles(P), X.u containsA.r if and only if A.r is g-restricted. IfA.r ∈ Roles(P)
andX.u 6∈ Roles(P), thenX.u containsA.r if and only ifA.r has an upper-bound that is
empty.

In the rest of this section, we consider the case that bothX.u andA.r are inRoles(P).
As we show in this section, the computational complexity of containment analysis depends
very much upon the delegation features of the langauge. In the four subsections in this sec-
tion, we study containment analysis inRT[], RT[∩], RT[�], andRT[�,∩], respectively.

4.1 Containment Analysis in RT[] is in P

Recall that the languageRT[] has only simple member and simple inclusion statements.
We now show that containment analysis inRT[] is in P by giving an efficient algorithm
to perform containment analysis inRT[]. This algorithm uses the logic program called the
role-containment program.

Intuitively, there are two cases in which a roleX.u contains a roleA.r. The first case is
that this containment isforcedby the statements that are inP. For example, if a statement
X.u ←− A.r exists and cannot be removed, thenX.u containsA.r. A containment may
be forced by a chain of statements. Forced containment can becomputed by a method
similar to that used for computing role memberships.

In the second case, containment is caused by the nonexistence of statements inP. In the
extreme case, ifA.r has no definition and is g-restricted, thenA.r is contained in every
role, as the member set ofA.r is empty in every reachable state. To compute this kind
of containment, we observe that a g-restricted roleA.r is contained in another roleX.u
if every definition ofA.r is contained inX.u. If A.r has no definition at all, then it is
contained in every role. However, a straightforward translation of this into a positive logic
program does not work. Consider the following example:

· 19

EXAMPLE 7. P = {A.r←−A.r1, A.r←−D, A.r1←−A.r, X.u←−D} andR is
such thatG = {A.r,A.r1} andS = {A.r,A.r1,X.u}. In anyP ′ that isR-reachable from
P, the member sets ofA.r andA.r1 are always{D}, and so both roles are contained by
X.u.

A straightforward positive logic program cannot make the above inference.X.u contains
A.r only if X.u containsA.r1 and vice versa; as a result, neither containment relationship
will be in the minimal model. To deal with this problem, we take the approach to prove non-
containment using the minimal model of a logic program, and derive containment using
negation-as-failure. Intuitively,X.u containsA.r unless we can find a witness principalE

that is a member ofA.r in some state but not a member ofX.u in the same state.

DEFINITION 5. (The Role Containment Program for RT[]) Given anRT[] stateP
andR, the role containment program,BCP(P,R), includes the lower-bound program
LB(P,R) in Definition 3. In addition, it defines two 4-ary predicates:fc andnc. An atom
fc(X,u, Z,w) means thatX.u is forced to containZ.w. An atomnc(X,u, Z,w) means
thatX.u does not containZ.w. The programBCP(P,R) is derived fromLB(P,R) as
follows. (Recall thatP|R is the minimal state that isR-reachable fromP, obtained from
P by removing all statements defining s-unrestricted roles; any statement inP|R exists in
every reachable state.)

Add fc(?X, ?u, ?X, ?u) (c)
For eachA.r←−B.r1 in P|R, add

fc(A, r, ?Z, ?w) :− fc(B, r1, ?Z, ?w) (c1)
For eachA.r ∈ Roles(P)− G, add

nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r) (n0)
For eachA.r ∈ G, do the following:

For eachA.r←−D in P, add
nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r),∼ lb(?X, ?u,D) (n1)

For eachA.r←−B.r1 in P, add
nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r),nc(?X, ?u,B, r1) (n2)

Rule (c) says that every role is forced to contain itself. The intuition behind(c1) is that,
if A.r←− B.r1 exists in every reachable state, thenA.r is forced to containB.r1. The
intuition behind(n0) is that forX.u to contain a g-unrestricted roleA.r, X.u has to be
forced to containA.r, because arbitrary new members may be added toA.r. The intuition
behind(n1) is that, asA.r containsD, if X.u’s lower-bound does not containD, then
X.u does not containA.r unlessX.u is forced to containA.r. The “∼ fc” part is needed,
because it may be the case thatA.r←−D can be removed andX.u ←− A.r exists and
cannot be removed, in which caseD may not be inX.u’s lower-bound butX.u contains
A.r nontheless. Rule(n2) means thatX.u does not containA.r if it does not containB.r1
and is not forced to containA.r.

We now discuss the semantics of the logic programBCP(P,R), which uses negation-
as-failure, but in a stratified manner. Given a logic programDP, a predicatep (directly)
depends on another predicateq if p is defined usingq in the body. A predicatep negatively
depends onq if ∼q (the negation ofq) is used to definep. For example, inBCP(P,R), fc
depends on itself,nc depends on itself and negatively depends onfc andlb. A program is
stratifiedif the predicates defined in it can be classified into strata such that each predicate

20 ·

depends only on predicates in the same or lower strata and negatively depends only on
predicates in lower strata. A program without negation is trivially stratified, as no pred-
icate depends negatively on any predicate at all. The program BCP(P,R) is stratified.
Predicates inBCP(P,R) are classified into two strata; the lower stratum haslb and fc,
and the only predicate in the higher stratum isnc.

Most commonly accepted semantics for logic programming with negation-as-failure
agree on stratified programs. Given a stratified datalog programDP, letDP1 ∪ · · · ∪DPs

be a partition ofDPInst such thatDPj consists of clauses defining predicates in the
j’th stratum; we callDP1 ∪ · · · ∪ DPs a stratification ofDPInst. The semantics is ob-
tained by first computing the minimal Herbrand model ofDP1 and then using this model
to determine the truthfulness of negative literals inDP2 while computing a fixpoint for
DP1 ∪ DP2, and so on.

EXAMPLE 8. Consider againP andR of Example 7.BCP (P,R) is given by the
following:

DP1

lb(A, r, ?X) :− lb(A, r1, ?X) (1)
lb(A, r,D) (2)
lb(A, r1, ?X) :− lb(A, r, ?X) (3)
lb(X,u,D) (4)

fc(A, r, ?Z, ?w) :− fc(A, r1, ?Z, ?w) (5)
fc(A, r1, ?Z, ?w) :− fc(A, r, ?Z, ?w) (6)
fc(?X, ?u, ?X, ?u) (7)

DP2

nc(?X, ?u,X, u) :− ∼fc(?X, ?u,X, u) (8)
nc(?X, ?u,A, r) :− ∼fc(?X, ?u,A, r),∼ lb(?X, ?u,D) (9)
nc(?X, ?u,A, r) :− ∼fc(?X, ?u,A, r), nc(?X, ?u,A, r1) (10)
nc(?X, ?u,A, r1) :− ∼fc(?X, ?u,A, r1), nc(?X, ?u,A, r) (11)

The minimal Herbrand model ofDP1 contains the following facts:

lb(A, r,D) lb(A, r1,D) lb(X,u,D)
fc(A, r,A, r) fc(A, r1, A, r1) fc(X,u,X, u)
fc(A, r,A, r1) fc(A, r1, A, r)

Using this to determine the truthfulness of negative literals inDP2, computing the minimal
Herbrand model ofDP1 ∪ DP2 adds the following facts:

nc(A, r,X, u) nc(A, r1,X, u)

The following lemma says that thefc predicate inBCP(P,R) is always sound for role
containment, i.e., iffc(X,u,A, r) can be proved fromBCP(P,R), thenX.u contains
A.r. Furthermore, ifA.r is g-unrestricted andX.u containsA.r, thenfc(X,u,A, r) can
be proved fromBCP(P,R). In other words,fc is complete when the second role is g-
unrestricted.

LEMMA 4.1. Given anRT[] stateP, R, two rolesX.u andA.r, if BCP(P,R) |=
fc(X,u,A, r), thenX.u containsA.r. If X.u containsA.r andA.r is g-unrestricted, then
BCP(P,R) |= fc(X,u,A, r).

See Appendix A.2 for the proof. The following proposition says that role containment in
RT[] can be answered by using the programBCP(P,R).

· 21

PROPOSITION 4.2. Given anRT[] stateP,R, and two rolesX.u andA.r in Roles(P),
BCP(P,R) |= nc(X,u,A, r) if and only ifX.u does not containA.r.

See Appendix A.2 for the proof.
Evaluating the semantics of a stratified program can be performed in time polynomial in

the size of the program; therefore, containment analysis inRT[] is in P.

4.2 Containment Analysis in RT[∩] is coNP-complete

RT[∩] adds toRT[] type-4 statements, which use the intersection operator. This makes
the containment analysis problem inRT[∩] to becomecoNP-complete. The intuition of
the problem’scoNP-completeness is as follows. Determining whetherX.u contains a
g-restricted roleA.r is the same as determining whether all the waysA.r is defined are
“contained” in the ways thatX.u is defined. InRT[∩], a role can be defined by multiple
statements, which have the effect of disjunction, and a rolecan be defined using inter-
sections, which have the effect of conjunction. As a result,one can use roles inRT[∩]
to encode positive (only using conjunctions and disjunctions) formulas in propositional
logic, and containment analysis subsumes the problem of determining validity of whether
one positive propositional formula implies another such formula, a problem that iscoNP-
complete.

Consider the following example:P = {X.u←−A.r1∩A.r2, A.r1←−B.r1, A.r1←−
B.r2, A.r2←−B.r1, A.r2←−B.r3, A.r←−B.r2 ∩ B.r3}, R is such thatG = S =
{X.u,A.r1, A.r2}. Each role that is g-restricted can be written as a positive propositional
formula where the g-unrestricted roles are used as propositional variables. In this example,
A.r1’s definition isB.r1 ∨ B.r2, A.r2’s definition isB.r1 ∨ B.r3, X.u’s definition is
(B.r1 ∨ B.r2) ∧ (B.r1 ∨ B.r3), andA.r’s definition isB.r2 ∧ B.r3. BecauseA.r’s
definition impliesX.u’s definition, then any way one adds a principal toA.r results in the
same principal being added toX.u; therefore,X.u containsA.r.

THEOREM 4.3. Containment analysis inRT[∩] is coNP-complete.

See Appendix A.3 for the proof. ThecoNP-hard part is by reducing the monotone 3SAT
problem, which isNP-complete, to the complement of containment analysis inRT[∩].
The reduction uses only g-unrestricted roles, and it is straightforward to change the proof
to use only s-unrestricted roles. This shows that containment analysis inRT[∩] where all
roles are g-restricted or where all roles are s-restricted is still coNP-complete.

4.3 Containment Analysis in RT[�] is PSPACE-complete

RT[�] adds toRT[] type-4 statements, which use linked roles. This makes the contain-
ment analysis problem to go fromP to PSPACE-complete. The intuition is as follows.
With the linking feature inRT[�], the ways in which a role is defined are encoded as a
set of strings accepted by NFA’s. The computational complexity of containment analysis
in RT[�] is thus the same as the computational complexity to determine containment of
languages accepted by two NFA’s, which isPSPACE-complete.

The main result of this section if the following theorem, which gives the computational
complexity of containment analysis when we do not consider roles shrinking.

THEOREM 4.4. Containment analysis inRT[�] where all roles inRoles(P) are s-
restricted isPSPACE-complete.

22 ·

This theorem will be proved in Sections 4.3.1, 4.3.2, and 4.3.3. Using Theorem 4.4, we
can establish the exact complexity bound for containment analysis inRT[�] in the general
case.

THEOREM 4.5. Containment analysis inRT[�] is PSPACE-complete.

PROOF. As the cases where all roles inRoles(P) are s-restricted are special cases of
containment analysis inRT[�], PSPACE-hardness follows immediately from Theo-
rem 4.4.

We now show that the problem is inPSPACE. Given a containment analysis problem
instance:RT[�] stateP, a restriction ruleR = (G,S), and an inclusion queryQ, use
the following algorithm. For eachP ′ such thatP ′ ⊆ P andP ′ is R-reachable from
P, perform containment analysis forP ′, R′ = (G,Roles(P)), andQ, reusing the space
each time. The algorithm answers “no” if there exists aP ′ such that containment analysis
answers no. Otherwise, the algorithm answers “yes”.

If the containment does hold, then clearly this algorithm answers “yes”. If the con-
tainment does not hold, then there exists a reachable stateP1 and a principalE such that
SP(P1) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). ConsiderP0 = P ∩ P1, P0 is reach-
able; furthermore,P1 isR′-reachable fromP0; therefore, the algorithm answers “no”.

From Theorem 4.4, we know that containment analysis withP ′ andR′ takes space
polynomial inn = |P ′|+ |R′|. Asn ≤ |P|+ |R|, this algorithm takes space polynomial
in the size of the original input.

In the following, we prove Theorem 4.4. In Section 4.3.1, we introduce equivalence re-
lationships between statements inRT[�] and string rewriting systems; these relationships
are useful in the proof. In Section 4.3.2, we prove that containment inRT[�] without
shrinkable roles is inPSPACE by showing that the problem can be reduced to check-
ing containment of languages accepted by two NFA’s. In Section 4.3.3, we prove that the
problem isPSPACE-hard. In Section 4.3.4, we prove that containment inRT[�] with-
out growable roles iscoNP-complete, establishing a tighter complexity bound for this
special case of containment inRT[�].

4.3.1 RT[�] as String Rewriting Systems.Statements inRT[�] can be viewed as
rewriting rules. For example, the statementA.r←−B.r1 can be viewed as the rewriting
ruleA r 7→ B r1. The alphabet consists of all principals and role names. We consider
rewriting over the set ofname strings, i.e., strings that have the form of a principal fol-
lowed by zero or more role names. When rewriting a name stringω using rewriting rules
corresponding to statements inRT[�], the rewriting occurs only on the left most, and the
resulting string is also a name string.

DEFINITION 6 RS[P]. Given a setP of RT[�] statements, letRS[P] be the rewriting
system generated by viewing each statement inP as a rewriting rule. Given two name
stringsω1 andω2, we writeRS[P] � ω1 � ω2 if one can rewriteω1 into ω2 in one step

using a rewriting rule inRS[P]. We writeRS[P] � ω1
∗

� ω2 if using rewriting rules in
RS[P], one can rewriteω1 into ω2 in zero or more steps.

We definestrP(A.r) to denote the set{ω | RS[P] �A.r
∗

� ω}.

PROPOSITION 4.6. Given a setP of RT[�] statements,SP(P) |= m(A, r,D) if and

only if RS[P] �A r
∗

� D.

· 23

See Appendix A.4 for the proof.
RT[�] is equivalent to SDSI [Clarke et al. 2001]. Jha and Reps [Jha and Reps 2002]

pointed out that SDSI string rewriting systems correspond exactly to the class of string
rewriting systems modelled using push-down systems [Bouajjani et al. 1997]. The same
applies to the rewriting systems generated byRT[�] statements.

Pushdown systems (PDSs) are similar to pushdown automata; however, unlike push-
down automata they do not have an input alphabet. Thus PDSs should not be viewed
as language recognizers, but as mechanisms that specify possibly infinite-state transition
systems.

A pushdown system is a triplet(Π,Γ,∆), whereΠ is a finite set of states,Γ is a fi-
nite stack alphabet, and∆ ⊆ (Π × Γ) × (Π × Γ∗) is a finite set of transition rules. If
((q, γ), (q′, ω)) ∈ ∆, then we write it as〈q, γ〉 ↪→ 〈q′, ω〉.

A configurationof a PDS is a pair〈q, ω〉, whereq ∈ Π is a state andω ∈ Γ∗ represents
the stack contents (from the top of the stack to the bottom of astack). A configuration can
be represented as a stringq ‖ ω (q concatenated withω).

We say that a configuration〈q, ω1〉 can directly reacha configuration〈q′, ω2〉 if the
following three conditions hold: (1)γ is the symbol on top of the stackω1, (2) there
is a transition rule〈q, γ〉 ↪→ 〈q′, ω〉, and (3)ω2 is obtained fromω1 by first popingγ
and then pushingω, i.e, ω1 = γω′

1 andω2 = ωω′
1. We then define reachability among

configurations in the straightforward manner.
Esparza et al. [Esparza et al. 2000] showed that given a PDS(Π,Γ,∆) and a setC of

configurations that is recognized by an NFAA, the set of all configurations reachable from
C is recognized by an NFA that has size polynomial inn = |Π|+ |Γ|+ |∆|+ |A| and that
can be constructed in time polynomial inn. This result is used in showing that containment
analysis inRT[�] is in PSPACE.

4.3.2 Containment analysis inRT[�] without shrinking is inPSPACE . The key
relationship between an instance of containment analysis and string rewriting lies in the
following definition of characteristic sets.

DEFINITION 7 CHARACTERISTIC SET. Given anRT[�] stateP, a restriction ruleR,
and a roleA.r, the characteristic set ofA.r, denoted byχP,R(A.r), is defined to be
strP(A.r) ∩ κ[P,R], where

κ[P,R] = Principals(P) ∪ {B r γ |B.r is g-unrestricted andγ ∈ Names(P)∗}

The roleX.u contains the roleA.r if no matter how one adds a principal as a new mem-
ber toA.r, X.u also gets the principal as a member. Intuitively, each string in χP,R(A.r)
represents a distinct source of adding new members to the roleA.r. Furthermore, the set
χP,R(A.r) describes all the ways of adding new members of the roleA.r. Therefore, one
can use characteristic sets to solve containment analysis.

LEMMA 4.7. Given P and R, X.u containsA.r if and only if χP,R(X.u) ⊇
χP,R(A.r).

PROOF. We first prove that ifχP,R(X.u) 6⊇ χP,R(A.r) thenX.u does not con-
tain A.r. If χP,R(X.u) 6⊇ χP,R(A.r), then there exists a stringω = B r1 · · · rk
such thatω ∈ χP,R(A.r) and ω 6∈ χP,R(X.u). ConsiderP ′ = P ∪ {B.r1 ←−
C1, C1.r2 ←− C2, · · · , Ck−1.rk ←− Ck}, whereC1, C2, · · · , Ck do not occur inP

24 ·

or R. P ′ is a reachable state.RS[P ′] � A r
∗

� B r1 · · · rk
∗

� Ck. From Proposi-
tion 4.6, SP(P ′) |= m(A, r, Ck). We now show thatSP(P ′) 6|= m(X,u,Ck). Sup-
pose, for the sake of contradiction, thatSP(P ′) |= m(X,u,Ck). From Proposition 4.6,

RS[P ′]�X u
∗

� Ck. Consider the rewriting sequence, the rule applied in the last step has
to beCk−1 rk 7→ Ck, because that is the only rule having aCk on its right hand side. The
rule applied in the second to last step has to beCk−2 rk−1 7→ Ck−1, because that is the
only rule havingCk−1 on its right-hand side, and so on. Therefore, the rewriting sequence
must contain in its middle a sequence rewriting fromX u toB r1 · · · rk. Further observe
that the rules inP ′ but not inP cannot be applied in this middle sequence. Therefore,

RS[P] �X u
∗

� ω. This contradicts the assumption thatω 6∈ χP,R(X.u).
We now prove that ifX.u does not containA.r thenχP,R(X.u) 6⊇ χP,R(A.r). If X.u

does not containA.r, then there exists a reachable stateP ′ and a principalE such that
SP(P ′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). From Proposition 4.6, it follows that

RS[P ′] � A r
∗

� E. Consider the rewriting sequence that rewritesA r into E; let the

sequence beA r
∗

� ω1 � ω2
∗

� E, such that the step fromω1 to ω2 is the first step that
uses a statement not inP. Clearly,ω1 ∈ χP,R(A.r) andω1 6∈ χP,R(X.u).

From the above lemma, we know that whether a role contains another can be determined
by checking containment among characteristic sets.

PROPOSITION 4.8. Containment analysis inRT[�] where all roles inRoles(P) are
s-restricted is inPSPACE.

PROOF. Given anRT[�] stateP and a restriction ruleR, to determine whetherX.u
containsA.r, it suffices to check whetherχP,R(X.u) ⊇ χP,R(A.r). One can construct
an NFA to recognizeχP,R(A.r) in time polynomial in|P| + |R|, and the NFA has size
polynomial in |P| + |R|. This is becauseχP,R(A.r) = strP(A.r) ∩ κ[P,R], and both
strP(A.r) andκ[P,R] are recognized by NFAs that can be constructed in time polyno-
mial in |P| + |R|. Similarly, one can construct a polynomial size NFA to recognize
χP,R(X.u). It is known that determining containment of languages accepted by NFAs
is in PSPACE [Hunt et al. 1976].

4.3.3 Containment Analysis inRT[�] is PSPACE-hard. To prove that containment
analysis inRT[�] is PSPACE-hard, we use a reduction from the problem of check-
ing containment among regular languages that are represented using NFAs. The prob-
lem is known to bePSPACE-complete, even when the alphabet has just two elements.
(When regular languages are described using DFAs, the complexity is NLOGSPACE-
complete.)

We consider regular languages over{0, 1} that do not contain the empty string. They can
be represented by a form of right linear grammars such that each production rule has one of
the following two forms:N1 ::= N2b, andN1 ::= b, whereN1 andN2 are nonterminals
andb ∈ {0, 1}.

PROPOSITION 4.9. Containment Analysis inRT[�] where all roles inRoles(P) are
s-restricted isPSPACE-hard.

PROOF. Given two empty-string free regular languages over{0, 1}, L1 andL2, letG1

andG2 be the production rules for generatingL1 andL2, and letS1 andS2 be the two start
symbols. Wlog, assume thatG1 andG2 do not share any non-terminal. LetG = G1 ∪G2.

· 25

For any nonterminalN in G, we writeLG(N) to denote the language generated byG

when usingN as the start symbol.
We now reduce the problem of determining whetherLG(S1) ⊇ LG(S2) to a contain-

ment analysis problem. We use two principalsA andB, two role namesu0 andu1 for
the two terminals0 and 1, and one role namerN for each nonterminalN . We define
PG to have the following statements. For each productionN ::= N ′b in G, PG has
A.rN←−A.rN ′ .ub. For each productionN ::= b, introduce a statementA.rN←−B.ub.
We defineRG to be such that all roles started withA are g/s-restricted, and all roles started
with B are g-unrestricted.

It is not hard to see that a stringb1b2 · · · bk ∈ L(N) if and only if RS[PG] � A rN
∗

�

B.ub1 .ub2 . · · · .ubk
. One can further verify that there exists a one-to-one mapping from

strings in LG(N) to χPG,RG
(A.rN) such thatLG(N1) ⊇ LG(N2) if and only if

χPG,RG
(A.rN1

) ⊇ χPG,RG
(A.rN2

). From Lemma 4.7, it follows thatLG(N1) ⊇
LG(N2) if and only ifA.rN1

containsA.rN2
.

4.3.4 Containment analysis inRT[�] without growable roles.Theorem 4.4 asserts
that containment analysis inRT[�] without shrinkable roles isPSPACE-complete. We
now show that containment analysis inRT[�] without growable roles iscoNP-complete.

THEOREM 4.10. Containment analysis inRT[�] where all roles inRoles(P) are g-
restricted iscoNP-complete.

See Appendix A.3 for the proof. The key observation used in the proof is that linked
roles, similar to intersection, can simulate logical conjunction. Recall that the semantic
rule for linking inclusion statements,(m3), has a conjunction in the body, similar to that
for intersection inclusion statements,(m4).

4.4 Containment Analysis for RT[�,∩] is in coNEXP

We now study the computational complexity of containment analysis inRT[�,∩], which
has both intersection and linked roles.

THEOREM 4.11. Containment analysis inRT[�,∩] is in coNEXP.

See Appendix A.5 for the proof. The proof shows that if there exists a counter example to
the containment relation, i.e., there exists a reachable state in which the inclusion does not
hold, then there exists such a reachable state of size at mostexponential in the input size.

We have shown that containment analysis forRT[�,∩] is PSPACE-hard (from The-
orem 4.4) and is incoNEXP. The exact complexity is still unknown. We have tried
applying the approach forRT[�] to the case ofRT[�,∩], and we now discuss the diffi-
culties of this approach. There is a natural mapping betweenRT[�] and pushdown sys-
tems.RT[�,∩], which adds toRT[�] intersection inclusion statements, can be mapped
to alternating pushdown systems. An alternating pushdown system (APDS for short) is a
triplet (Π,Γ,∆), whereΠ andΓ are the same as for PDSs, and∆ is a function that assigns
to each element of(Π × Γ) a negation-free boolean formula over elements ofΠ × Γ∗. If
∆(q, γ) = (q1, ω1) ∧ (q2, ω2), then for everyω ∈ Γ∗, the immediate successor of〈q, γω〉
is the set{〈q1, ω1ω〉, 〈q2, ω2ω〉}. Intuitively, at the configuration〈q, γω〉 the APDS forks
into two copies in the configurations〈q1, ω1ω〉 and 〈q2, ω2ω〉. Because of the mapping
from RT[�,∩] to APDSs, theRT[�,∩] containment analysis problem is reduced to de-
termining containment of the reachable frontiers of two APDSs. Each frontier is a set

26 ·

of configurations of a set of PDSs. It is known that given an APDS the set of all con-
figurations that can reach a particular configuration can be encoded using an alternating
finite automata (AFA). It is known that determining containment between two languages
accepted by AFA’s isPSPACE-complete. However, there exists no result on characteriz-
ing the frontiers reachable from a particular configuration. In particular, it is not clear how
to encode all the reachable frontiers (a set of sets of strings) succinctly.3

5. DISCUSSIONS AND RELATED WORK

We have shown that containment analysis is intractable inRT[∩], RT[�], andRT[�,∩].
This means that it is extremely unlikely that we will find an algorithm that is both sound and
complete, and also has a worst-case polynomial time complexity. However, heuristic ap-
proaches are still possible. For example, it is not difficultto extend our LP-based approach
for containment analysis inRT[] to the case ofRT[�] andRT[�,∩], such that contain-
ment relationships in our running example can be proved correctly. A possible approach
is to use a sound but incomplete method and a complete but unsound method together to
approximate the exact answer. Such a heuristic approach maybe useful in practice, as it
can give an exact answer in most cases. How to evaluate the effectiveness of such methods
is interesting future work.

On the other hand, we have shown that in our TM model, simple safety analysis can
be solved efficiently. As discussed in Section 1, security analysis in the form of simple
safety analysis has been studied in the HRU model [Harrison et al. 1976], and shown to
be undecidable there. In this section we study the relationships between the two models,
arguing informally that the HRU model does not include our TMmodel as a special case,
and showing that there is an intuitive reason why security analysis in our model is decid-
able. We also seek to clarify the relationship between how trusted users are modelled in
the two approaches. After this discussion of related work insafety analysis, we go on to
discuss related work in trust management.

5.1 Comparison with the HRU Access Matrix Model

In the HRU model [Harrison et al. 1976], aprotection systemhas a finite set of rights and a
finite set of commands. Aconfigurationof a protection system is an access control matrix,
with rows corresponding to subjects, and columns corresponding to objects; each cell in
the matrix is a set of rights. A command takes the form of “if a list of conditions hold,
execute a sequence of primitive operations.” Each condition tests whether a right exists in
a cell in the matrix. There are six kinds of primitive operations: enter a right into a specific
cell in the matrix, delete a right from a cell in the matrix, create a new subject, create a
new object, destroy an existing subject, and destroy an existing object. A command may
be parameterized, with parameters being subjects or objects. In [Harrison et al. 1976],
Harrison et al. proved that for the HRU model, the safety question is undecidable, by
showing that any Turing machine can be simulated by a protection system. For a fixed set
of mono-operational commands, safety can be determined in time polynomial in the size
of the access control matrix. However, if commands are a parameter to the problem, the
safety problem isNP-complete.

3The difficulty of encoding such a set of frontiers was pointedout to us by Ahmed Bouajjani in personal com-
munication.

· 27

In our model, given a stateP, the minimal Herbrand model ofSP(P) is a set of ground
logical atoms. An atomm(A, r,D) means thatD is a member ofA’s r role. When
A represents a resource, this can be viewed asD having the rightr overA. Therefore,
one can view principals as both subjects and objects and viewrole names as rights. This
defines a straightforward mapping between the semantics ofP and an access matrix. If all
we have are simple member statements, then adding (or removing)A.r←−D corresponds
to adding (or removing)r to the cell on rowD and columnA. Therefore, if we consider
safety analysis in the sub-language ofRT[�,∩] that has only simple member statements,
this problem is a sub-problem of the HRU safety problem.

Adding a simple inclusion statementA.r←−B.r1 can be viewed as adding a trigger pro-
gram, which for each rowD, use parametersA,B,D to execute the following command:
“a2(x, y, z) { if r1 in cell (y, z), addr to cell (x, z) }”. Note that this trigger program
needs to be executed whenever the matrix changes. For example, if afterA.r←− B.r1
is added, addingB.r1←−E will need to result inr being added to the cell(A,E). The
statementA.r←−B.r1 givesB the power to add things toA’s column, which represents a
delegation. Similarly, adding a linking inclusion statementA.r←−A.r1.r2 can be viewed
as adding a trigger program that executes the following command with parametersA,D,E
for everyD andE: “a3(x, y, z) { if r1 in cell (x, y), andr2 in cell (y, z), addr to cell
(x, z) }”. Adding intersection inclusion statement can be viewed ina similar manner. It is
not clear how to model removing a statement using this approach.

There might be other ways of encoding our TM model in the HRU access matrix model,
but the above encoding seems quite natural. From it, we make the following observations.

It seems unlikely that the HRU model subsumes the TM model as aspecial case, even
when we restrict ourself toRT[], which has simple inclusion as well as simple member
statements. First, in the TM model, creating and removing principals are implicit. A
principal can be viewed as created if it is used. A principal is considered removed if no
statement mentions it. One could view the matrix as having aninfinite number of rows and
columns; however, only finitely many cells are nonempty. Second, one step of change in
the TM model corresponds to executing many (one for every object when adding a simple
inclusion or an intersection inclusion statement, or one for every pair of objects when
adding a linking inclusion statement) simple commands in the HRU model. Third, triggers
need to be used in order to achieve the effect of propagation.The last two are the main
power of the TM model, and they do not exist in the HRU model.

That our TM model cannot subsume the HRU model is immediate from the complexity
bounds. The underlying reason is that the HRU commands we useto partially simulate our
TM model have fixed schemas, instead of being arbitrary programs. As a result, we can
exploit the properties of these fixed schemas. This seems to be the main reason that safety
analysis, or the even more powerful containment analysis, is decidable in our model, but
not in the HRU model.

Handling Trusted Subjects.Intuitively, a specific protection system is “safe” if access
to resources without concurrence of the owner is impossible. However, protection systems
often allow the owner to share rights to the resources. In that sense, they are not safe; the
HRU model uses a weaker notion of safety: a user should be ableto tell whether what he is
about to do can lead to the further leakage of that right to untrusted subjects. The following
is quoted from [Harrison et al. 1976].

To avoid a trivial “unsafe” answer becauses himself can confer generic rightr,

28 ·

we should in most circumstances deletes itself from the matrix. It might also
make sense to delete from the matrix any other “reliable” subjects who could
grantr, but whoms “trusts” will not do so. It is only by using the hypothetical
safety test in this manner, with “reliable” subjects deleted, that the ability to
test whether a right can be leaked has a useful meaning in terms of whether it
is safe to grant a right to a subject.

Note that deleting a “reliable” subject from the matrix is stronger than stopping it from
granting a right. Deleting a subject from the matrix will prevent the analysis from suc-
cessfully simulating the execution of commands that check rights in the row or column
corresponding the subject. However, it is inappropriate toignore such commands: they
may add undesirable rights and they may be initiated by “unreliable” subjects. In such
cases, a system that is safe after the “reliable” subjects are removed is not safe in the actual
system, even if “reliable” subjects do not initiate any command.

In our TM model, the restriction ruleR represents the intuitive notion that certain princi-
pals are trusted. In practice, principals are controlled byusers. When principals represent
resources, the controller is the subject who controls access to the resource. When principals
represent public keys, the controller is the user who knows the private key.

5.2 Related Work in Trust Management

To our knowledge, no prior work investigates security analysis for trust management sys-
tems in the sense of verifying security properties that consider state changes in which
(parametric) restrictions are placed on allowed changes. In [Chander et al. 2001], a state
transition model is used for comparing the expressive powerof different access control
mechanisms such as access control lists and trust management. There, security analysis is
not the purpose. The languageRT[�,∩] is closely related to SDSI, whose semantics and
evaluation has been the subject of many previous works [Abadi 1998; Clarke et al. 2001;
Halpern and van der Meyden 2001; Jha and Reps 2002; Li 2000; Liet al. 2003]. One main
difference our work has is that we consider restricted statechanges. We now list some
similarities. The semantic approach we use is very similar to the semantics in [Halpern
and van der Meyden 2001]. Both [Abadi 1998] and [Halpern and van der Meyden 2001]
consider inclusion queries in additional to membership queries. In some sense, they try to
answer queries that hold when arbitrary new statements could be added, i.e., every role is
g-unrestricted and s-restricted; the case that some roles are g-restricted is not considered.
In [Jha and Reps 2002], evaluating queries given a set of SDSIstatements is reduced to
model checking pushdown systems; there, only a fixed set of SDSI statements is consid-
ered, which are encoded as transition rules in the automata.Other works [Clarke et al.
2001; Li 2000; Li et al. 2003] do not handle inclusion queriesor consider restricted state
changes.

The notion of delegation here is similar to the notion of “speaks for” in the ABLP logic
for authentication and access control [Abadi et al. 1993; Lampson et al. 1992]. In ABLP
logic, thatA speaks forB means that, if principalA makes a statement, then we can
believe that principalB makes it, too. ThatA speaks forB can be viewed as a delegation
of all authority fromB to A. The ABLP logic is designed mainly for authentication; its
total delegation has too coarse a granularity for access control. To limit the authority being
delegated in the logic, a principal can adopt a role before delegating. By using roles, one
can achieve effects roughly similar to decentralized attributes and delegation of attribute

· 29

authority. However, SRC logic does not ave attribute-baseddelegation supported using
linked roles.

6. CONCLUSION

Trust management systems such asRT allow independent principals to delegate partial
authority over resources. While this is useful in many situations, delegation also raises
the possibility of unanticipated and undesirable access. If Alice delegates access to her
friend Bob, how can she be sure that Bob does not give permissions to her enemy Carol?
We address this question by studying several forms of safetyand availability properties,
including general containment analysis that capture both safety and availability.

Although the trust management primitives we consider are more expressive than some
aspects of the HRU model [Harrison et al. 1976], our main results show that persistence
of nontrivial safety and availability properties may be algorithmically tractable. Specifi-
cally, membership queries and boundedness queries, both involving containment between
a role and a fixed set of principals, can be answered using datalog programs that run in
polynomial time. For general inclusion queries, we look at several cases involving differ-
ent policy sub-languages. ForRT[], which only allows membership and delegation policy
statements, containment for all reachable states is computable by a stratified datalog pro-
gram with negation in polynomial time. ForRT[∩], which isRT[] plus intersection, the
problem becomescoNP-complete. Intuitively, the reason is that multiple statements about
a role represent disjunction, while intersection of roles provides a corresponding form of
conjunction. ForRT[�], which isRT[] plus role linking, role containment for all reach-
able policy states isPSPACE-complete. ForRT[�,∩], which includes role linking, the
problem remains decidable; our current upper bound iscoNEXP (or double-exponential
time) and lower bound isPSPACE-hard.

We believe that security analysis is a critical problem for trust management. While com-
bining policy statements from independent principals has practical appeal, the flexibility of
distributed policy comes at a price. An individual or organization that owns a resource no
longer has a direct way to determine who may be able to access the resource in the future.
The key to providing assurance to trust management users is to develop security analysis
methods. The present paper identifies and solves certain security analysis problems, but
additional work remains. Exact complexity bound for containment analysis inRT[�,∩]
is still open. Although containment analysis has no efficient algorithm in the worst case,
there may be tractable subcases or useful heuristics. We also leave open for future work the
consequences of more intricate restriction on policy changes. For example, it may be use-
ful to impose restrictions that depend on the current policy, possibly formulated as policy
invariants in some specification language.

Acknowledgement

This work is supported by DARPA through SPAWAR contracts N66001-00-C-8015 and
N66001-01-C-8005. It is also supported by DOD MURI “Semantics Consistency in
Information Exchange” as ONR Grant N00014-97-1-0505 and byDOD University Re-
search Initiative (URI) program administered by the Office of Naval Research under Grant
N00014-01-1-0795.

We thank Fred Schneider and Somesh Jha for discussions that led to our study of safety
and availability properties in Trust Management. We also thank the anonymous reviewers
for their encouragement and helpful comments.

30 ·

REFERENCES

ABADI , M. 1998. On SDSI’s linked local name spaces.Journal of Computer Security 6,1–2, 3–21.

ABADI , M., BURROWS, M., LAMPSON, B., AND PLOTKIN , G. 1993. A calculus for access control in distributed
systems.ACM Transactions on Programming Languages and Systems 15,4 (Oct.), 706–734.

APT, K. R., BLAIR , H. A., AND WALKER , A. 1988. Towards a theory of declarative knowledge. InFoundations
of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan Kaufmann, Los Altos, CA, 89–148.

BLAZE , M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. D. 1999a. The KeyNote trust-
management system, version 2. IETF RFC 2704.

BLAZE , M., FEIGENBAUM, J., IOANNIDIS, J.,AND KEROMYTIS, A. D. 1999b. The role of trust management
in distributed systems. InSecure Internet Programming. Lecture Notes in Computer Science, vol. 1603.
Springer, 185–210.

BLAZE , M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. InProceedings of the
1996 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 164–173.

BOUAJJANI, A., ESPARZA, J.,AND MALER, O. 1997. Reachability analysis of pushdown automata: Applica-
tion to model-checking. InProceedings of CONCUR’97. Number 1256 in Lecture Notes in Computer Science.
Springer, 135–150.

CHANDER, A., DEAN, D., AND M ITCHELL , J. C. 2001. A state-transition model of trust management and
access control. InProceedings of the 14th IEEE Computer Security FoundationsWorkshop. IEEE Computer
Society Press, 27–43.

CLARKE , D., ELIEN , J.-E., ELLISON, C., FREDETTE, M., MORCOS, A., AND RIVEST, R. L. 2001. Certificate
chain discovery in SPKI/SDSI.Journal of Computer Security 9,4, 285–322.

DOWLING, W. F.AND GALLIER , J. H. 1984. Linear-time algorithms for testing the satisfiability of propositional
horn formulae.Journal of Logic Programming 1,3, 267–284.

ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLONEN, T. 1999. SPKI certificate
theory. IETF RFC 2693.

ESPARZA, J., HANSEL, D., ROSSMANITH, P.,AND SCHWOON, S. 2000. Efficient algorithms for model check-
ing pushdown systems. InProceedings of the 12th International Conference on Computer Aided Verification
(CAV 2000). LNCS, vol. 1855. Springer, 232–247.

GAREY, M. R. AND JOHNSON, D. J. 1979. Computers And Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company.

GRAHAM , G. S.AND DENNING, P. J. 1972. Protection — principles and practice. InProceedings of the AFIPS
Spring Joint Computer Conference. Vol. 40. AFIPS Press, 417–429.

GUNTER, C. A. AND JIM , T. 2000. Policy-directed certificate retrieval.Software: Practice & Experience 30,15
(Sept.), 1609–1640.

HALPERN, J. AND VAN DER MEYDEN, R. 2001. A logic for SDSI’s linked local name spaces.Journal of
Computer Security 9,1-2, 47–74.

HARRISON, M. A., RUZZO, W. L., AND ULLMAN , J. D. 1976. Protection in operating systems.Communica-
tions of the ACM 19,8 (Aug.), 461–471.

HUNT, H. B., ROSENKRANTZ, D. J.,AND SZYMANSKI . 1976. On the equivalence, containment, and covering
problems for the regular and context-free languages.Journal of Computer and System Sciences 12,2 (Apr.),
222–268.

JHA , S. AND REPS, T. 2002. Analysis of SPKI/SDSI certificates using model checking. In Proceedings of the
15th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press, 129–144.

JIM , T. 2001. SD3: A trust management system with certified evaluation. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 106–115.

LAMPSON, B., ABADI , M., BURROWS, M., AND WOBBER, E. 1992. Authentication in distributed systems:
Theory and practice.ACM Transactions on Computer Systems 10,4 (Nov.), 265–310.

LAMPSON, B. W. 1971. Protection. InProceedings of the 5th Princeton Conference on InformationSciences
and Systems. Reprinted in ACM Operating Systems Review, 8(1):18-24, Jan1974.

L I , N. 2000. Local names in SPKI/SDSI. InProceedings of the 13th IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, 2–15.

L I , N., GROSOF, B. N., AND FEIGENBAUM, J. 2003. Delegation Logic: A logic-based approach to distributed
authorization.ACM Transaction on Information and System Security 6,1 (Feb.), 128–171.

· 31

L I , N. AND M ITCHELL , J. C. 2003a. Datalog with constraints: A foundation for trust management languages.
In Proceedings of the Fifth International Symposium on Practical Aspects of Declarative Languages (PADL
2003). Springer, 58–73.

L I , N. AND M ITCHELL , J. C. 2003b. RT: A role-based trust-management framework. InThe Third DARPA
Information Survivability Conference and Exposition (DISCEX III). IEEE Computer Society Press.

L I , N., MITCHELL , J. C.,AND WINSBOROUGH, W. H. 2002. Design of a role-based trust management frame-
work. In Proceedings of the 2002 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
114–130.

L I , N., WINSBOROUGH, W. H., AND M ITCHELL , J. C. 2003. Distributed credential chain discovery in trust
management.Journal of Computer Security 11,1 (Feb.), 35–86.

L IPTON, R. J.AND SNYDER, L. 1977. A linear time algorithm for deciding subject security. Journal of the
ACM 24,3, 455–464.

LLOYD , J. W. 1987.Foundations of Logic Programming, Second Edition. Springer.
RIVEST, R. L. AND LAMPSON, B. 1996. SDSI — a simple distributed security infrastructure. Available at

http://theory.lcs.mit.edu/∼rivest/sdsi11.html.
SANDHU , R. S. 1988. The schematic protection model: Its definition andanalysis for acyclic attenuating sys-

tems.Journal of the ACM 35,2, 404–432.
SANDHU , R. S. 1992. The typed access matrix model. InProceedings of the 1992 IEEE Symposium on Security

and Privacy. IEEE Computer Society Press, 122–136.
SANDHU , R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN , C. E. 1996. Role-based access control

models.IEEE Computer 29,2 (February), 38–47.
WEEKS, S. 2001. Understanding trust management systems. InProceedings of 2001 IEEE Symposium on

Security and Privacy. IEEE Computer Society Press, 94–105.

A. PROOFS

A.1 Proofs of Fact 3.5 and Proposition 3.6

Fact 3.5: GivenP, R, a roleA.r, and a principalE that does not occur inP, A.r is g-
unbounded if and only if there exists a reachable stateP ′ such thatSP(P ′) |= m(A, r,E).

PROOF. The “only if” part follows from the definition of g-unbounded roles.
In the “if” part, becauseRT[�,∩] is monotonic, we can assume without loss of general-

ity thatP ′ is derived fromP by adding some statements; letP ′ = P ∪P1. Given any prin-
cipalZ, one can replace withZ all occurrence ofE in the bodies of statements inP1, ob-
taining a new set of statements,P2. LetP ′′ = P ′ ∪P2. P ′′ is reachable fromP because it
modifies the definitions of the same roles as doesP ′. We show thatSP(P ′′) |= m(A, r, Z)
by using induction oni to show that for allA.r, if m(A, r,E) ∈ TSP(P′) ↑

i, then
SP(P ′′) |= m(A, r, Z). The basis is trivially satisfied becauseTSP(P′) ↑

0= ∅. In the
step,m(A, r,E) ∈ TSP(P′)↑

i+1. This must be due to one of the four rules inSP(P ′),
(m1), (m2), (m3), or (m4), which gives us the four following cases:

Case(m1): A.r←− E ∈ P ′. By construction ofP ′′, A.r←− Z ∈ P ′′. SP(P ′′) |=
m(A, r, Z) follows from (m1).

Case(m2): A.r←−B.r1 ∈ P ′ andm(B, r1, E) ∈ TSP(P′)↑
i. The induction hypothe-

sis now gives usSP(P ′′) |= m(B, r1, Z), from whichSP(P ′′) |= m(A, r, Z) follows by
(m2).

Case(m3): A.r←−A.r1.r2 ∈ P ′ andm(A, r1, B),m(B, r2, E) ∈ TSP(P′)↑
i for some

B. The induction hypothesis now gives usSP(P ′′) |= m(B, r2, Z). Fromm(A, r1, B) ∈
TSP(P′)↑

i, we haveSP(P ′) |= m(A, r1, B), which gives usSP(P ′′) |= m(A, r1, B) by
monotonicity ofRT[�,∩]. We now haveSP(P ′′) |= m(A, r, Z) by (m3).

Case(m4): A.r←−B1.r1 ∩B2.r2 ∈ P
′ andm(B1, r1, E),m(B2, r2, E) ∈ TSP(P′)↑

i.
This case proceeds similarly to case(m2) above.

32 ·

Proposition 3.6: Given anyP, R = (G,S), A.r ∈ Roles(P), andZ ∈ Principals(P) ∪

{>}, UB(P,R) |= ub(A, r, Z) if and only if there existsP ′ such thatP
∗
7→R P

′ and
SP(P ′) |= m(A, r, Z).

PROOF. The “only if” part (Soundness): IfUB(P,R) |= ub(A, r, Z), considerP ′ =
P ∪ {X.u←−Z |X.u ∈ Roles(P)−G}. We show by induction oni that if ub(A, r, Z) ∈
TUB(P,R)↑

i, thenSP(P ′) |= m(A, r, Z). The basis is trivial. In the step,ub(A, r, Z) ∈
TUB(P,R)↑

i+1, one of the rules inUB(P,R) is used to derive this. Case(u) is impossible,
asA 6= >. Case(u0): A.r ∈ Roles(P) − G, by construction ofP ′, A.r←−Z ∈ P ′. So
SP(P ′) |= m(A, r, Z) follows immediately by(m1). Case(u1): A.r←−Z ∈ P ⊆ P ′.
In this case,SP(P ′) |= m(A, r, Z) also follows immediately by(m1).

Case(u2): A.r←−B.r1 ∈ P ⊆ P ′ andub(B, r1, Z) ∈ TUB(P,R)↑
i. The induction

assumption now gives usSP(P ′) |= m(B, r1, Z), from which SP(P ′) |= m(A, r, Z)
follows by (m2).

Case (u3): A.r ←− A.r1.r2 ∈ P ⊆ P ′ and ub(A, r1, B), ub(B, r2, Z) ∈
TUB(P,R) ↑

i for some B. The induction assumption now gives usSP(P ′) |=
m(A, r1, B),m(B, r2, Z), from whichSP(P ′) |= m(A, r, Z) follows by (m3).

Case(u4): A.r ←− B1.r1 ∩ B2.r2 ∈ P ⊆ P
′ andub(B1, r1, Z), ub(B2, r2, Z) ∈

TUB(P,R) ↑i. The induction assumption now gives usSP(P ′) |=
m(B1, r1, Z),m(B2, r2, Z), from whichSP(P ′) |= m(A, r, Z) follows by (m4).

The “if” part (Completeness): Suppose that there exists a reachable stateP ′ such that
SP(P ′) |= m(A, r, Z). If A.r 6∈ G, thenUB(P,R) |= ub(A, r, Z) from (u0). For the
case in whichA.r ∈ G, we use induction oni to show that ifm(A, r, Z) ∈ TSP(P′)↑

i, then
UB(P,R) |= ub(A, r, Z). The basis is trivial. In the step, there are four cases. Case(m1):
A.r←−Z ∈ P ′. FromA.r ∈ G, we haveA.r←−Z ∈ P. SoUB(P,R) |= ub(A, r, Z)
follows by using(u1).

Case(m2): A.r←−B.r1 ∈ P ′ andm(B, r1, Z) ∈ TSP(P′)↑
i. The induction hypoth-

esis gives usUB(P,R) |= ub(B, r1, Z), from which we obtain the desiredUB(P,R) |=
ub(A, r, Z) by (u2).

Case(m3): A.r←−A.r1.r2 ∈ P ′ andm(A, r1, B),m(B, r2, Z) ∈ TSP(P′)↑
i for some

B. The induction hypothesis gives usUB(P,R) |= ub(A, r1, B), ub(B, r2, Z), from
which we obtain the desiredUB(P,R) |= ub(A, r, Z) by (u3).

Case(m4): A.r←−B1.r1 ∩B2.r2 ∈ P
′ andm(B1, r1, Z),m(B2, r2, Z) ∈ TSP(P′)↑

i.
This case is similar to the ones above.

A.2 Proof of Lemma 4.1 and Proposition 4.2

We introduce the following terminology for the proof. To define the semantics of
a stratified logic program, we define an operatorΦ, which is parameterized by a
ground logic programDP ′ and a set of ground atomsM . Given a set of ground
logical atomsK, ΦDP′,M (K) consists of all ground logic atoms,a, such that
a :− b1, . . . , bn,∼bn+1, . . . ,∼bn+m ∈ DP ′ and bi ∈ K and bn+j 6∈ M . Given a
logic programDP andDP1 ∪ · · · ∪ DPs a stratification ofDPInst, defineΓ1

DP to be
ΦDP1,∅↑

ω, i.e., the least fixpoint ofΦDP1,∅. DefineΓk+1
DP to beΦDP1∪···∪DPk+1,Γk

DP

↑ω

for 1 ≤ k ≤ s − 1. Then the model ofDP is Γs
DP . EachΓi

DP can be calculated in poly-
nomial time, so the semantics of a stratified program can alsobe computed in polynomial

· 33

time.
The programBCP(P,R) has a stratification of two strata. DefineBCP1 to be the

ground instantiation of clauses defininglb andfc in BCP(P,R), andBCP2 to the ground
instantiation of clauses definingnc. (We useBCP instead ofBCP(P,R) for succinct-
ness.) We writeBCP |= a if a ∈ Γ2

BCP
. Whena is a ground instance offc or lb, we write

BCP |=i a if a ∈ ΦBCP1,∅↑
i. Whena is a ground instance ofnc, we writeBCP |=i a is

a ∈ ΦBCP1∪BCP2,Γ1
BCP

↑i.

Lemma 4.1: Given anRT[] stateP, R, two rolesX.u and A.r, if BCP(P,R) |=
fc(X,u,A, r), thenX.u containsA.r. If X.u containsA.r andA.r is g-unrestricted,
thenBCP(P,R) |= fc(X,u,A, r).

PROOF. Soundness: IfBCP |= fc(X,u,A, r), then there exists an integeri such that
BCP |=i fc(X,u,A, r). Induction oni. The basis is trivial, asΦBCP1,∅↑

0= ∅. Consider
the step; eitherc or (c1) is used to deduce thatBCP |=i+1 fc(X,u,A, r). Case(c): it must
be thatX.u = A.r, so it is trivial thatX.u containsA.r. Case(c1): X.u←−B.r1 ∈ P|R
andBCP |=i fc(B, r1, A, r). By induction hypothesis,B.r1 containsA.r. Furthermore,
X.u←−B.r1 exists in every reachable state; therefore,X.u containsA.r.

Completeness: SupposeX.u containsA.r andA.r is g-unrestricted. ConsiderP ′ =
P|R ∪ (A.r ←− E), in which E does not occur inP. Observe thatX.u includes
A.r is true, becauseP ′ is reachable. AsSP(P ′) |= m(A, r,E), it must be that
m(X,u,E) ∈ TSP(P′) ↑

i for somei. To complete the proof, we use induction oni to
show that for eachY.u, if m(Y, u,E) ∈ TSP(P) ↑

i, thenBCP |= fc(Y, u,A, r). Ba-
sis is trivial. In the step, one of(m1) and (m2) is used to deduce thatm(Y, u,E) ∈
TSP(P′) ↑

i+1. Case(m1): Y.u ←− E ∈ P ′, it must be thatY.u = A.r, asE does
not occur inP. From (c), BCP |= fc(Y, u,A, r). Case(m2): Y.u ←− Y1.u1 ∈ P

′,
andm(Y1, u1, E) ∈ TSP(P′) ↑

i. By definition ofP ′, Y.u ←− Y1.u1 ∈ P|R. From
(c1), fc(Y, u, ?Z, ?w) :− fc(Y1, u1, ?Z, ?w) ∈ BCP . By induction hypothesis,BCP |=
fc(Y1, u1, A, r), clearlyBCP |= fc(Y, u,A, r).

Before proving Proposition 4.2, we first prove two auxiliarylemmas. Readers may wish
to read the main proof first and refer to the two lemmas when they needed. The following
lemma is used to prove the soundness of(n1).

LEMMA A.1. Assume we are givenP in RT[], R, two rolesX.u and A.r, and a
principal D such thatSP(P|R) 6|= m(X,u,D). Let P ′ = P|R ∪ {A.r ←− D}. If
SP(P ′) |= m(X,u,D), thenBCP |= fc(X,u,A, r).

PROOF. We use induction oni to prove that for anyZ.w such thatSP(P|R) 6|=
m(Z,w,D), if m(Z,w,D) ∈ TSP(P′)↑

i, thenBCP |= fc(Z,w,A, r).
The basis is trivial. In the step, one of(m1) and(m2) is used to derivem(Z,w,D) ∈

TSP(P′) ↑
i+1. Case(m1): Z.w ←− D ∈ P ′. It must be thatZ.w = A.r, as it cannot

be thatZ.w ←− D ∈ P|R. By (c), BCP |= fc(Z,w,A, r). Case(m2): Z.w ←−
Z1.w1 ∈ P

′ andm(Z1, w1,D) ∈ TSP(P′) ↑
i. It follows thatZ.w ←− Z1.w1 ∈ P|R,

by definition ofP ′. And it follows thatSP(P|R) 6|= m(Z1, w1,D), because otherwise
SP(P|R) |= m(Z,w,D), which is contradictory. Now, by induction hypothesis,BCP |=
fc(Z1, w1, A, r), so the desired result holds by(c1).

The following lemma says that(n2) is sound.

34 ·

LEMMA A.2. Assume we are given anRT[] stateP, R, and three rolesX.u, A.r,
B.r1, such thatA.r ←− B.r1 ∈ P, BCP(P,R) 6|= fc(X,u,A, r), andX.u does not
containB.r1. ThenX.u does not containA.r.

PROOF. AsX.u does not containB.r1, there exists a reachable stateP ′ and a principal
E such thatSP(P ′) |= m(B, r1, E) andSP(P ′) 6|= m(X,u,E). We now construct aP ′′

such thatSP(P ′′) |= m(A, r,E) andSP(P ′′) 6|= m(X,u,E). P ′′ is obtained fromP ′ by
first removing anyZ.w←−Z1.w1 ∈ P

′ − P|R such thatSP(P ′) 6|= m(Z1, w1, E), and
then addingA.r←−B.r1. Clearly,P ′′ is reachable. By induction on howm(A, r,E) is
proven inSP(P ′), it is easy to show thatSP(P ′′) |= m(A, r,E).

To prove thatSP(P ′′) 6|= m(X,u,E), we use induction oni to prove that for any
Z.w such thatSP(P ′) 6|= m(Z,w,E), if m(Z,w,E) ∈ TSP(P′′) ↑

i, then BCP |=
fc(Z,w,A, r). The basis is trivial. In the step, one of(m1) and(m2) is used to derive
m(Z,w,E) ∈ TSP(P′′)↑

i+1. Case(m1): Z.w←−E ∈ P ′′. This is impossible, as this
means thatZ.w←−E ∈ P ′, which is contradictory withSP(P ′) 6|= m(Z,w,E). Case
(m2): Z.w←−Z1.w1 ∈ P

′′ andm(Z1, w1, E) ∈ TSP(P′′)↑
i. By definition ofP ′′, either

Z.w = A.r andZ1.w1 = B.r1, orZ.w←−Z1.w1 ∈ P
′. In the former case,fc(Z,w,A, r)

follows from (c). In the latter case, it follows thatSP(P ′) 6|= m(Z1, w1, E), from
SP(P ′) 6|= m(Z,w,E), and, by induction hypothesis, thatBCP |= fc(Z1, w1, A, r). Now
the desired result holds by(c1), provided we haveZ.w←−Z1.w1 ∈ P|R. This follows
from the construction ofP ′′ and the case assumption thatm(Z1, w1, E) ∈ TSP(P′′)↑

i.

Proposition 4.2: Given anRT[] stateP, R, and two rolesX.u andA.r in Roles(P),
BCP(P,R) |= nc(X,u,A, r) if and only ifX.u does not containA.r.

PROOF. The “only if” part (Soundness): We use induction oni to show that if
BCP |=i nc(X,u,A, r), thenX.u does not containA.r. Basis is trivial. In the step,
one of (n0), (n1), and (n2) is used to derive thatBCP |=i+1 nc(X,u,A, r). Case
(n0): A.r must be g-unrestricted, andBCP |= ∼ fc(X,u,A, r); therefore,BCP 6|=
fc(X,u,A, r). From Lemma 4.1,X.u does not containA.r. Case(n1): A.r←−D ∈ P,
BCP |= ∼ lb(X,u,D), andBCP |= ∼ fc(X,u,A, r). ThenSP(P|R) 6|= m(X,u,D) by
Fact 3.1. LetP ′ = P|R ∪ {A.r←− D}. From Lemma A.1 it follows thatSP(P ′) 6|=
m(X,u,D); thereforeX.u does not containA.r. Case(n2): A.r ←− B.r1 ∈ P,
BCP |=n nc(X,u,B, r1), andBCP |= ∼ fc(X,u,A, r). By induction hypothesis,X.u
does not containB.r1; from Lemma A.2,X.u does not containA.r.

The “if” part (Completeness): IfX.u does not containA.r, then we show thatBCP |=
nc(X,u,A, r). WhenA.r is g-unrestricted. ¿From Lemma 4.1,BCP 6|= fc(X,u,A, r),
and soBCP |= ∼ fc(X,u,A, r). From (n0), BCP |= nc(X,u,A, r). In the rest
of the proof, we only need to consider the case thatA.r is g-restricted. IfX.u does
not containA.r, then there exists a reachable stateP ′ and a principalE such that
SP(P ′) |= m(A, r,E) and SP(P ′) 6|= m(X,u,E). We use induction oni to show
that if m(A, r,E) ∈ TSP(P′) ↑

i, thenBCP |= nc(X,u,A, r). First observe that, from
Lemma 4.1, it follows thatBCP 6|= fc(X,u,A, r), and soBCP |= ∼ fc(X,u,A, r). The
basis is trivial. In the step, one of(m1) and(m2) is used to deduce thatm(A, r,E) ∈
TSP(P′) ↑

i+1. Case(m1): A.r ←− E ∈ P ′, A.r ←− E must be inP asA.r is g-
restricted. From Proposition 3.2 andSP(P ′) 6|= m(X,u,E), BCP 6|= lb(X,u,E),
and soBCP |= ∼ lb(X,u,E). ¿From(n1), BCP(P,R) |= nc(X,u,A, r). Case
(m2): A.r ←− B.r1 ∈ P

′ andm(B, r1, E) ∈ TSP(P′) ↑
i. As A.r is g-restricted,

· 35

A.r ←− B.r1 ∈ P. By induction hypothesis,BCP(P,R) |= nc(X,u,B, r1). There-
fore,BCP(P,R) |= nc(X,u, Z,w) by an instance of(n2).

A.3 Proofs of Theorems 4.3 and 4.10

We first prove a lemma that will be used in establishing lower bounds on the complexity
of containment analysis. The lemma says that if a containment does not hold, then there
exists a counter-example state that only adds simple memberstatements toP and only uses
role names inP.

LEMMA A.3. GivenP andR, two rolesX.u andA.r in Roles(P), ifX.u does not con-
tainA.r, then there exists aP ′ such thatSP(P ′) |= m(A, r,E), SP(P ′) 6|= m(X,u,E),
P ′ − P only has simple member statements, andP ′ only uses role names inP.

PROOF. If X.u does not containA.r, then there exists aP ′ thatSP(P ′) |= m(A, r,E)
and SP(P ′) 6|= m(X,u,E). Given such aP ′, we first deriveP ′′ by replacing every
statementA.r←−e ∈ P ′−P, wheree is a role, a linked role, or an intersection, with a set
of statements{A.r←−Y | SP(P ′) |= m(A, r, Y)}. Using induction, it is straightforward
to show that the resulting state computes the exact same rolememberships.

Now P ′′ − P consists of only simple member statements. FromP ′′, we deriveP ′′′

by removing all simple member statements that use role names(not roles) not appearing
in P. For example, a statementA.v ←− D in P ′′, wherev does not appear inP, will
not be inP ′′′. Using induction, it is straightforward to show that, for roles inRoles(P),
P ′′′ computes exactly the same memberships asP ′′. Intuitively,A.v ←− D cannot affect
members of roles inRoles(P ′′) unless the body of some statement refers to the role name
v, which is impossible, as every statement inP ′′′ that could have role names in its body is
also inP, and so does not usev.

Theorem 4.3: Containment analysis inRT[∩] is coNP-complete.

PROOF. To showcoNP-hardness, we reduce the monotone 3SAT problem to the com-
plement of the universal containment problem inRT[∩]. Monotone 3SAT is 3SAT with
each clause containing either only positive literals or only negative literals; it is known to
beNP-complete [Garey and Johnson 1979].

Given an instance of monotone 3SAT:φ = c1 ∧ · · · ∧ c` ∧ c`+1 ∧ · · · ∧ cn, in which
c1, . . . , c` are positive clauses andc`+1, . . . , cn are negative clauses. Letp1, . . . , ps be
all the propositional variables inφ. For each negative clauseck = (¬pk1

∨ ¬pk2
∨ ¬pk3

),
definedk = (pk1

∧pk2
∧pk3

), thenck ⇔ ¬dk. Thenφ⇔ c1∧· · ·∧cm∧¬(d`+1∨· · ·∨dn).
The formulaφ is satisfiable if and only ifψ = (c1 ∧ · · · ∧ c`)→ (d`+1 ∨ · · · ∨ dn) is not
valid. We now constructP,R, with the goal thatA.d w A.c is necessary if and only ifψ is
valid. In the construction, we use the roleA.pi to denote the propositional variablepi,A.cj
to denote the clausecj , andA.dk to denote the clausedk. DefineP = P1 ∪P2 ∪P3 ∪P4,
in which

P1 = {A.c←−A.c1 ∩ A.c
′
1, A.c

′
1←−A.c2 ∩ A.c

′
2, · · · , A.c

′
`−1←−A.c`−1 ∩

A.c`}.
P2 = {A.cj ←− A.pj1 , A.cj ←− A.pj2 , A.cj ←− A.pj3 | 1 ≤ j ≤ `, cj =

pj1 ∨ pj2 ∨ pj3}
P3 = {A.d←−A.dk | `+ 1 ≤ k ≤ n}
P4 = {A.dk←−A.pk1

∩ A.d′k, A.d
′
k←−A.pk2

∩ A.pk3
| ` + 1 ≤ k ≤ n, dk =

pk1
∧ pk2

∧ pk3
}

36 ·

DefineR to be the restriction rule such that all theA.pi’s are g-unrestricted and s-
restricted, and all other roles are g/s-restricted.

We now show thatA.d w A.c is not necessary if and only ifψ is not valid. First, the
“only if” part: If A.d w A.c is not necessary, then there exists a reachable stateP ′ and
a principalE such thatSP(P ′) |= m(A, c,E) andSP(P ′) 6|= m(A, d,E). Consider the
truth assignmentI defined as follows, for everyi such that1 ≤ i ≤ s, I(pi) = true if
SP(P ′) |= m(A, pi, E), andI(pi) = false otherwise. Then underI, (c1 ∧ · · · ∧ c`) is true
andd`+1 ∨ · · · ∨ dn is false; thereforeψ is not valid. The “if” part: Ifψ is not valid, then
there exists a truth assignmentI such that(c1 ∧ · · · ∧ c`) is true and(d`+1 ∨ · · · ∨ dn) is
false. ConsiderP ′ = P ∪ {A.pi ←− Z | 1 ≤ i ≤ s ∧ I(pi) = true}. P ′ is reachable, and
SP(P ′) |= m(A, c, Z) andSP(P ′) 6|= m(A, d, Z).

We now show that containment analysis inRT[∩] is in coNP. GivenP andR, if X.u
does not containA.r, then there exists a reachable stateP ′ and a principalE such that,
SP(P ′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). From Lemma A.3, we can assume,
without loss of generality, thatP ′ − P consists of only simple member statements and
P ′ uses the same role names. FromP ′, we constructP ′′ as follows, letP ′′ = P ′ ∩
(P ∪ {Z.w←− E ∈ P ′ | Z.w ∈ Roles(P)}). Clearly,P ′′ ⊆ P ′ andP ′′ is reachable.
By induction on howm(A, r,E) is proven inSP(P ′), it is easy to see thatSP(P ′′) |=
m(A, r,E). The size ofP ′′ is polynomial inP. This means that if a containment does not
hold, then there exists a short (polynomial in the size of theinput programP) counterproof
such that one can check in polynomial time. This shows that the problem is incoNP. The
method we use to construct the counter exampleP ′′ also yields an exponential algorithm
for determining containment.

Theorem 4.10:Containment analysis inRT[�] where all roles inRoles(P) are g-restricted
is coNP-complete.

PROOF. As one can nondeterministically guess a subsetP ′ of P and verify that the
containment does not hold, the problem is clearly incoNP. To provecoNP-hardness,
we reduce the monotone 3SAT problem to the complement of universal role containment
in RT[�]; the reduction is similar to that in the proof of Theorem 4.3.Given an instance
φ of monotone 3SAT, we constructψ = (c1 ∧ · · · ∧ c`)→ (d`+1 ∨ · · · ∨ dn) such thatφ is
satisfiable if and only ifψ is not valid.

We now constructP, R, such thatA.d w A.c is necessary if and only ifψ is valid.
DefineP to beP1 ∪ P2 ∪ P3 ∪ P4 ∪ P5, in which

P1 = {A.c ←− A.c′1.c1, A.c′1 ←− A.c′2.c2, · · · , A.c′`−2 ←−
A.c′`−1.c`−1, A.c

′
`−1←−A.c`}

P2 = {A.cj ←− A.pj1 , A.cj ←− A.pj2 , A.cj ←− A.pj3 | 1 ≤ j ≤ `, cj =
pj1 ∨ pj2 ∨ pj3}

P3 = {A.d←−A.dk | `+ 1 ≤ k ≤ n}
P4 = {A.dk ←− A.d′k.pk1

, A.d′k ←− A.pk2
.pk3

| ` + 1 ≤ k ≤ n, dk =
pk1
∧ pk2

∧ pk3
}

P5 = {A.pi ←− A | 1 ≤ i ≤ s}
Let R be the restriction rule such that all theA.pi’s are g-restricted and s-unrestricted,

and all other roles mentioned inP are g/s-restricted.
In every reachable state, the definitions of someA.pi’s are removed, which correspond

to assigning false to some of thepi’s. In every reachable state,A.c andA.d either includes

· 37

onlyA or is empty.A.c includesA if and only if the corresponding truth assignment makes
c1∧· · ·∧cm true, andA.d includesA if and only the corresponding truth assignment makes
(dm+1 ∨ · · · ∨ dn) true. Therefore,A.c containsA.d if and only ifψ is valid.

A.4 Proof of Proposition 4.6

Proposition 4.6: Given a setP of RT[�] statements,SP(P) |= m(A, r,D) if and only if

RS[P] |= A r
∗

� D.

PROOF. We prove the only if part by using induction oni to show that ifm(A, r,D) ∈

TSP(P)↑
i, thenRS(P) �A r

∗
� D. The basis is trivially satisfied becauseTSP(P)↑

0= ∅.
In the step,m(A, r,D) ∈ TSP(P)↑

i+1, one of(m1), (m2), (m3) is used to derive this.
Case(m1): A.r←−D ∈ SP(P), this means thatA r 7→ D ∈ P. Clearly,RS[P] �

A r
∗

� D.
Case(m2): A.r ←− B.r1 ∈ SP(P), andm(B, r1,D) ∈ TSP(P) ↑

i. In this case,

Ar 7→ B r1 ∈ P, and by induction hypothesis,RS[P]�B r1
∗

� D. Using rewriting rules

in RS[P], one can rewriteA r first toB r1, and then toD; soRS[P] �A r
∗

� D.
Case(m3): A.r←−A.r1.r2 ∈ SP(P) andm(A, r1, E), m(E, r2,D) ∈ TSP(P)↑

i. By

induction hypothesis,RS[P] � B r1
∗

� E, E r2
∗

� D. Using rewriting rules inRS[P],
one can rewriteA r first toA r1 r2, then intoE r2, and finally intoD.

We prove the if part by using induction oni to show that if usingRS[P] one can rewrite
A r intoD in i steps, thenSP(P) |= m(A, r,D). Base case,i = 1 andA.r←−D ∈ P,
clearlySP(P) |= m(A, r,D). Consider the step, consider the first rewriting step. One of
the following two cases apply.

Case one:credA.rB.r1 ∈ P is used in the first step. By induction hypothesis,SP(P) |=
m(B, r1,D). Furthermore,m(A, r, ?X) :− m(B, r1, ?X) ∈ SP(P); thus SP(P) |=
m(A, r,D).

Case two: credA.rA.r1.r2 ∈ P is used in the first step. There

must exist a principalE such that RS[P] � A r1 r2
∗

� E.r2
∗

� D.
By induction hypothesis,SPP |= m(A, r1, E), m(E, r2,D). Furthermore,
m(A, r, ?X) :− m(A, r1, ?Y),m(?Y, r2, ?X) ∈ SP(P); thusSP(P) |= m(A, r,D).

A.5 Proof of Theorem 4.11

Theorem 4.11: Containment analysis inRT[�,∩] is in coNEXP.

PROOF. GivenP andR, if a queryX.u w A.r is not necessary, i.e.,X.u does not
containA.r, then there exists a reachable stateP ′ and a principalE such thatSP(P ′) |=
m(A, r,E) andSP(P ′) 6|= m(X,u,E). From Lemma A.3, we can assume, without lose
of generality, thatP ′−P consists of only simple member statements andP ′ uses the same
role names asP.

Given such aP ′ andE, we show that one can construct another stateP ′′ that has size
exponential inP andSP(P ′′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). The way we
constructP ′′ is through collapsing equivalent principals inP ′ into one, to be made precise
as follows. LetSigRoles(P,P ′,Q) be{X.u} ∪ {A.r1 | A.r←−A.r1.r2 ∈ P ∩ P ′} ∪
{B1.r1, B2.r2 | A.r←−B1.r1 ∩ B2.r2 ∈ P ∩ P

′}. Define a binary relation≡ over the

38 ·

principals inP ′ as follows:Y1 ≡ Y2 if one of the following two conditions is satisfied:
(1) Y1 = Y2; (2) Y1, Y2 6∈ Principals(P) and for every roleZ.w ∈ SigRoles(P,P ′,Q),
SP(P ′) |= m(Z,w, Y1) if and only if SP(P ′) |= m(Z,w, Y2). The relation≡ is easily
seen to be an equivalence relation. For each equivalence class, we pick one principal in it
as a unique representative; for a given principalY , we use[Y] to denote the representative
of the equivalence class ofY . We assume that[E] = E. P ′′ is constructed fromP ′

as follows: for each statement, replace all the principals with their representatives; then
remove duplicate statements.

GivenP that has sizeN , clearlySigRoles(P,P ′,Q) hasO(N) roles. Therefore, there
are in totalM = O(2O(N)) principals inP ′′, these principals will result inO(M2N)
new simple member statements. Therefore, if a containment does not hold, there exists a
counter-example state that has size exponential inP. Once the state is guessed correctly,
it can be verified in time polynomial in the size of the state. This shows that the problem
is in coNEXP. An obvious algorithm that has double exponential time complexity is
as follows: first collectSigRoles(P,P,Q) fromX.u and all simple inclusion and linking
inclusion statements fromP, and add one principal for each subset ofSigRoles(P,P,Q);
then enumerate all reachable sub-states using the resulting set of principals to see whether
a containment holds.

It remains to prove that our construction ofP ′′ works, i.e., thatSP(P ′′) |= m(A, r,E)
andSP(P ′′) 6|= m(X,u,E).

To proveSP(P ′′) |= m(A, r,E), we use induction to prove the following claim: For
any roleZ.w in Roles(P ′) andY in Principals(P ′), if m(Z,w, Y) ∈ TSP(P′) ↑

i, then
SP(P ′′) |= m([Z], w, [Y]). The basis is trivial, asTSP(P′) ↑

0= ∅. Now consider the
step. One of(m1), (m2), (m3), and(m4) is used to derivem(Z,w, Y) ∈ TSP(P′)↑

i+1.
Case(m1): Z.w←− Y ∈ P ′. By construction ofP ′′, [Z].w←− [Y] ∈ P ′′; therefore,
SP(P ′′) |= m([Z], w, [Y]). In the next three cases, a statementA.r←−e that is not a sim-
ple member statement exists inP ′. It must also exist inP, asP ′−P only has simple mem-
ber statements; therefore, principals inA.r←− e are each in their own equivalence class.
The statement must also exist inP ′′, as the equivalence substitution forA.r ←− e will
not change the statement. Case(m2): Z.w←−Z1.w1 ∈ P

′,P,P ′′ andm(Z1, w1, Y) ∈
TSP(P′) ↑

i. From induction hypothesis,SP(P ′′) |= m([Z1], w1, [Y]). It must be that
[Z1] = Z1. The claim then follows from(m2). Case(m3): Z.w←−Z.w1.w2 ∈ P

′,P,P ′′

andm(Z,w1, F),m(F,w2, Y) ∈ TSP(P′) ↑
i. It must be that[Z] = Z. By induc-

tion hypothesis,SP(P ′′) |= m([Z], w1, [F]), and SP(P ′′) |= m([F], w2, [Y]). The
claim follows from (m3). Case(m4): Z.w ←− Z1.w1 ∩ Z2.w2 ∈ P

′,P,P ′′ and
m(Z1, w1, Y),m(Z2, w2, Y) ∈ TSP(P′)↑

i. This case is similar to(m2).

We now prove thatSP(P ′′) 6|= m(X,u,E), by proving the following claim: for any role
Z.w ∈ Roles(P ′′) and any principalY in Principals(P ′′), if m(Z,w, Y) ∈ TSP(P′′)↑

i,
then there existsZ ′, Y ′ such that[Z ′] = Z and[Y ′] = Y andSP(P ′) |= m(Z ′, w, Y ′).
Given this claim, ifSP(P ′′) |= m(X,u,E), then there existsX ′ andE′ in Principals(P ′)
such that[X ′] = X, [E′] = E, andSP(P ′) |= m(X ′, u, E′). AsX ∈ Principals(P), it
must be thatX ′ = X. And by definition of≡, [E′] = E means thatE is also a member of
X.u, giving us a contradiction with our assumption onP ′.

We now use induction to prove the claim. The basis is trivial,asTSP(P′′)↑
0= ∅. Now

consider the step. One of(m1), (m2), (m3), and(m4) is used to derivem(Z,w, Y) ∈
TSP(P′′)↑

i+1. Case(m1): Z.w←−Y ∈ P ′′. By definition ofP ′′, there existsZ ′.w←−

· 39

Y ′ ∈ P ′ such that[Z ′] = Z and[Y ′] = [Y]. From this we haveSP(P ′) |= m(Z ′, w, Y ′)
by (m1). In the following three cases, a non-simple-member statementA.r←−e of P ′′ is
used; such a statement must be mapped from a non-simple-member statement inP ′. As all
such statements inP ′ are also inP and do not change in the mapping,A.r←−e ∈ P ∩P ′.
Case(m2): Z.w ←− Z1.w1 ∈ P

′′,P,P ′ andm(Z1, w1, Y) ∈ TSP(P′′) ↑
i. From

induction hypothesis, there existZ ′
1 and Y ′

1 such thatSP(P ′) |= m(Z ′
1, w1, Y

′) and
[Z ′

1] = Z1 and [Y ′] = Y . BecauseZ1 ∈ Principals(P), it must be thatZ ′
1 = Z1.

The conclusion follows from(m2). Case(m3): Z.w ←− Z.w1.w2 ∈ P
′′,P,P ′ and

m(Z,w1, F),m(F,w2, Y) ∈ TSP(P′′) ↑
i for some principalF . By induction hypoth-

esis, SP(P ′) |= m(Z,w1, F
′),m(F ′′, w2, Y

′) and [F ′] = [F ′′] = F . As Z.w1 ∈
SigRoles(P,P ′,Q), by definition of≡ applied toF ′ ≡ F ′′, SP(P ′) |= m(Z,w1, F

′′).
The claim follows from(m3). Case(m4): Z.w ←− Z1.w1 ∩ Z2.w2 ∈ P

′′,P,P ′ and
m(Z1, w1, Y),m(Z2, w2, Y) ∈ TSP(P′′)↑

i. By induction hypothesis and the factZ1, Z2 ∈
Principals(P), SP(P ′) |= m(Z1, w1, Y

′),m(Z2, w2, Y
′′) and[Y ′] = [Y ′′] = Y . By defi-

nition of≡, SP(P ′) |= m(Z2, w2, Y
′). Therefore,SP(P ′) |= m(Z,w, Y ′).

Observe that in the proof, only roles in the body of linking inclusion and intersection
inclusion statements need to be collected. This may be used to explain why containment
in RT[] is efficiently decidable.

