Beyond Proof-of-compliance: Security Analysis in
Trust Management

NINGHUI LI

Purdue University

JOHN C. MITCHELL

Stanford University

and

WILLIAM H. WINSBOROUGH
George Mason University

Trust management is a form of distributed access control that allows one principal to delegate some
access decisions to other principals. While the use of delegation greatly enhances flexibility and
scalability, it may also reduce the control that a principal has over the resources it owns. Security
analysis asks whether safety, availability, and other properties can be maintained while delegating
to partially trusted principals. We show that in contrast to the undecidability of classical Harrison-
Ruzzo-Ullman safety properties, our primary security properties are decidable. In particular, most
security properties we study are decidable in polynomial time. The computational complexity
of containment analysis, the most complicated security property we study, forms a complexity
hierarchy based on the expressive power of the trust management language.

Categories and Subject Descriptors: K.@Wbghagement of Computing and Information Systems]: Security
and Protection; D.4.6Jperating Systems]: Security and ProtectionAccess controld-.2.2 JAnalysis of Algo-
rithmsand Problem Complexity]: Nonnumerical Algorithms and ProblemsSemplexity of proof procedures

General Terms: Security, Theory, Languages
Additional Key Words and Phrases: access control, trust management, distributed system security,
logic programs

1. INTRODUCTION

Access control techniques, which govern whether one partyaccess resources and ob-
jects controlled by another party, are useful in protectivgconfidentiality, integrity, and
availability of information. Traditional access contrah&mes make authorization deci-
sions based on the identity of the requester. However, ierteslized or multicentric
environments, the resource owner and the requester ofeenrd&nown to one another,
making access control based on identity ineffective. Fangxe, although a certificate
authority may assert that the requester’'s name is John QhSfithis name is unknown to

A preliminary version of this paper appearedHdroceedings of 2003 IEEE Symposium on Security and Privacy
under the title “Beyond proof-of-compliance: Safety andilabdlity analysis in trust management”. Most of this
work was performed while the first author was at the Departme@oonputer Science, Stanford University in
Stanford, CA 94305, and the third author was at Network Aisges Laboratories in Rockville, MD 20850.
Authors’ addresses: Ninghui Li, Department of Computer SmenPurdue University, 656 Oval Drive, West
Lafayette, IN 47907-2086, USA; emaiti nghui @s. pur due. edu. John C. Mitchell, Department of Com-
puter Science, Gates 4B, Stanford, CA 94305-9045, USA; emmatl chel | @s. st anf or d. edu. William

H. Winsborough, Center for Secure Information Systems, Gebtgson University, Fairfax, VA 22030-4444,
USA; email:wwi nsbor ough@cm or g.

the access mediator, the name itself does not aid in makiagthorization decision. What

is needed is information about the rights, qualificatioesponsibilities and other charac-
teristics assigned to John Q. Smith by one or more authsrie well as trust information

about the authorities themselves.

Trust management [Blaze et al. 1996; Blaze et al. 1999a;1;9R~est and Lampson
1996; Ellison et al. 1999; Clarke et al. 2001; Gunter and J0i(2 Jim 2001; Li et al.
2003; Li et al. 2003; Li et al. 2002; Li and Mitchell 2003a; V8e2001] is an approach to
access control in decentralized distributed systems witiess control decisions based on
policy statements made by multiple principals. In trust agement systems, statements
that are maintained in a distributed manner are often dligiséggned to ensure their au-
thenticity and integrity; such statements are catlestientialsor certificates A key aspect
of trust management is delegation: a principal may trarlsfeted authority over one or
more resources to other principals. While the use of delegafieatly enhances flexibil-
ity and scalability, it may also reduce the control that agipal has over the resources it
owns. As delegation gives a certain degree of control torecjpal that may be only par-
tially trusted, a natural security concern is whether auesmowner nonetheless has some
guarantees about who can access their resources. If wedhthk union of all policies
of all principals as the state of a trust management (TM)esgsthen a state may change
as the result of a single step that adds or removes a polinstat, or as the result of a
finite sequence of such steps. A resource owner generallgdrdsol over some part of
the state, but cannot control all possible changes. In #iiep we consider theecurity
analysisproblem, which asks what accesses may be allowed or pre/bgtprospective
changes in the state of a TM system.

A few definitions are useful for stating the security anaymioblem more precisely. In
general, a TM language has a syntax for specifyialicy statementandqueries together
with an entailment relatior. We call a seP of policy statements stateof a TM system.
Given a state? and a queryQ, the relation? F Q means tha© is true in?. When
Q arises from an access requeBt Q means that accesg is allowed inP; a proof
demonstrating® - Q is then called groof-of-compliance

Recognizing that a principal or a coalition of cooperatimppgpals may control only
a part of the global state, we assume thererss#iction rule R, that defines how states
may be changed. For example, the principal in question magider the part of the state
controlled by fully trusted principals to be fixed, while sidering that other principals
may remove some policy statements and/or add new ones. &bstate® and a restriction
rule R, we write? —x P’ if the change fron to P’ is allowed byR, andP > P’
if a sequence of zero or more allowed changes leads ffdmP’. If P > P’, we say
that P’ is R-reachablefrom P, or simply P’ is reachable when? andR are clear from
context.

DEFINITION 1. LetP be a stateR a restriction rule, and a query. Existential se-
curity analysistakes the form: Does there exiBf such thatP >z P’ andP’ + Q?
When the answer is affirmative, we s@yis possiblegiven’? andR. Universal security
analysistakes the form: For ever’ such thatP? >z P’, doesP’ - Q2 If so, we sayQ
is necessargiven? andR.

Here are some motivating examples of security analysis|@nod

Simple Safety(Existential) Does there exist a reachable state in whigbeaifc (pre-

sumably untrusted) principal has access to a given resgurce

Simple Availability. (Universal) In every reachable state, does a specific (prably
trusted) principal have access to a given resource?

Bounded Safety(Universal) In every reachable state, is the set of all fpils that have
access to a given resource bounded by a given set of prie@ipal

Liveness.(Existential) Does there exist a reachable state in whicprirwipal has ac-
cess to a given resource?

Mutual Exclusion.(Universal) In every reachable state, are two given prage(or two
given resources) mutually exclusive, i.e., no principa bath properties (or access to both
resources) at the same time?

Containment.(Universal) In every reachable state, does every prindipat has one
property (e.g., has access to a resource) also have anotiperiy (e.g., is an employee)?
Containment can express safety or availability (e.g., grohanging the two example
properties in the previous sentence).

Simple safety analysis was first formalized by Harrison eftéirrison et al. 1976] in
the context of the well-known access matrix model [Lamps®ril] Graham and Denning
1972]. Simple safety analysis was referred tosafety analysidbecause other analysis
problems were not considered. The model in [Harrison et@6)is commonly known
as the HRU model. In the general HRU modsdfety analysiss undecidable [Harrison
et al. 1976]. A number of protection models were developeddke safety analysis more
tractable. Lipton and Snyder introduced the take-grantehfidpton and Snyder 1977],
in which simple safety can be decided in linear time. Sandinoduced the Schematic
Protection Model [Sandhu 1988], and the Typed Access Matrixiel [Sandhu 1992].
In these previous works, only simple safety analysis aresidened; the other kinds of
analysis listed above were not. As some of the analysis @nablare about properties
other than safety (e.g., availability), we use the tesaurity analysigather than safety
analysis.

To the best of our knowledge, security analysis for TM systbas not been investigated
previously as such. In this paper, we define a precise modskfturity analysis in trust
management. The policy languages we consider are languatesRT family of Role-
based Trust-management languages [Li et al. 2003; Li eD@RA i and Mitchell 2003a].
The RT family combines the strengths of Role-Based Access CofRBAC) [Sandhu
et al. 1996] and previous trust-management (TM) systemsiaB#ics for theRT family
is defined by translating each statement into a logic progriam clause. In this paper,
we consider four languages in t#" family; they are denoted bRT[], RT[N], RT[«],
andRT[«,N]. RT[] is the most basic language in the family; it has two types atest
ments: simple membeandsimple inclusion RT[N] adds toRT[] intersection inclusion
statementsRT[«] adds toRT[] linking inclusionstatements, which can be used to express
attribute-based delegatioRT [«, N] has both intersection inclusion and linking inclusion;
RT[«,N] is a slightly simplified (yet expressively equivalent) versof the RT;, language
described in [Li et al. 2003].

All the security analysis problems listed above are comsitle\While the TM language
we are studying supports delegation and the kinds of arsafyrsiblems we consider are
more general, somewhat surprisingly, these problems aidatde. Simple safety, simple
availability, bounded safety, liveness, and mutual exolusnalysis forRT[«,N] (and

hence for the other three sub-languageR6f«, N]) can all be answered in time polyno-
mial in the size of the statB. These analysis problems are answered by evaluating querie
against logic programs derived from the st&tand the restriction rul&.

Containment analysis is the most interesting case, bothring of usefulness and in
terms of technical challenge. The computational complexitcontainment analysis de-
pends on the language featuresRIf|[|, the most basic language, containment analysis is
in P. Containment analysis become more complex when additolady language fea-
tures are used. Containment analysiea®NP-complete foRT[N], PSPACE-complete
for RT[«], and decidable ikoNEXP for RT[«,N]. These complexity properties are
proved using techniques and results from logic programpnforgnal languages, and au-
tomata theory. FORT[], we use logic programs derived froMand R to perform con-
tainment analysis. These logic programs use negatioaiased in a stratified manner [Apt
et al. 1988]. ForRT[N], we show that containment analysis is essentially equivale
to determining validity of propositional logic formulas.h&@ RT[«] language is expres-
sively equivalent to SDSI (Simple Distributed Securityrfigtructure) [Rivest and Lamp-
son 1996; Clarke et al. 2001], and is related to a class ofgstewriting systems modelled
using pushdown systems [Bouajjani et al. 1997]. We showdbatainment analysis in
RT[«] can be reduced to determining containment among reachahbfigarations of
pushdown systems, which is again reduced to determinintatonent of languages ac-
cepted by Nondeterministic Finite Automata (NFAs). Fort¢hse ofRT[«, N], we show
that if a containment does not hold, then there must exisuateo-example state (i.e., a
reachable state in which the containment does not holdyefati most exponential in the
size of the input.

The rest of this paper is organized as follows. In Sectionedefine the model we use
to study security analysis in TM. In Section 3, we handle $inspfety, simple availability,
liveness, and mutual exclusion. In Section 4, we presentteeabout containment analy-
sis. We discuss related work in Section 5, and conclude itide8. An appendix contains
proofs that are not included in the main body.

2. A CONCRETE SECURITY ANALYSIS PROBLEM

The abstract definition of security analysis in Definitiondshhree parameters: the lan-
guage used to express the stBtehe form of queryQ, and the form of restriction rul®&.

In this section, we define concrete security analysis problby supplying these param-
eters. We give the syntax of the language for specifyingcgdtatements in Section 2.1
and the semantics for the language in Section 2.2. We présefdrmulation of queries
in Section 2.3 and the restriction rules in Section 2.4. IctiBa 2.5, we explain our query
formulation in light of how restriction rules are definedné&ily, in Section 2.6 we discuss
how security analysis can be used to achieve security dgsct

2.1 Syntax of The TM Language

The policy languages we consider are in fRE family of Role-based Trust-management
languages [Li et al. 2002]. More specifically, we consi@8i«, N] and its three sub-
languages:RT[], RT[«], andRT[N]. The basic constructs &&T[«,N] are principals
androle names In this paper, we usel, B, D, E, F', X, Y, andZ, sometimes with
subscripts, to denote principals. A role name is a word owetesgiven standard alphabet.
We user, u, andw, sometimes with subscripts, to denote role namesolé takes the
form of a principal followed by a role name, separated by aelgt,A.r andX.u. A role

defines a set of principals that are members of this role. Renhipal A has the authority
to designate the members of each role of the fefm. An access control permission is
represented as a role as well; for example, thats a member of the role ofi.r may
represent thaB has the permission to do actieron the objectA.

There are four types of policy statement&if[«, N|, each corresponding to a different
way of defining role membership. Each statement has the form+— ¢, whereA.r is a
role ande is a role expression, to be defined below. We read-" as “includes”, and say
the policy statemerdefineshe roleA.r.

— Simple Member Ar«——D
This statement means thatasserts thab is a member ofd’s r role.

— Simple Inclusion Ar «—— B.rg
This statement means thatasserts that itg role includes (all members of’s r; role.
This represents a delegation frofrto B, asB may add principals to become members
of the role A.r by issuing statements definirgyr;.

— Linking Inclusion Ar — Ay
We call A.r1.r alinked role This statement means thdtasserts thatl.r includes
B.ro for every B that is a member ofi.r;. This represents a delegation frafnto all
the members of the rolé.r;.

— Intersection Inclusion A.r «—— By.r1 N Ba.19
We call B;.r; N Bs.ro anintersection This statement means thdtasserts thatd.r
includes every principal who is a member of bdéh.r; and By.r,. This represents
partial delegations froml to B, and toBs.

A role expressions a principal, a role, a linked role, or an intersection. €ia set?
of policy statements, we define the followinBtincipals(P) is the set of principals ifP,
Names(P) is the set of role names iR, andRoles(P) = {A.r | A € Principals(P),r €
Names(P)}. RT[«,N] is a slightly simplified (yet expressively equivalent) versof
RT, [Li et al. 2003].}

In this paper, we consider also the following sub-languad&SsT [«—, N]: RT[] has only
simple member and simple inclusion statemeRfE[«] adds toRT[] linking inclusion
statements, anBT|[N] adds toRT][] intersection inclusion statements.

ExAMPLE 1. An example that uses the four types of statements is giveigure 1.

The four types of statements Ril [«—, N] cover the most common delegation relation-
ships in other TM languages such as SPKI/SDSI [Ellison e12899; Clarke et al. 2001]
and KeyNote [Blaze et al. 1999a]. The sub-languR@é«| can be viewed as a simpli-
fied yet expressively equivalent version of SDSI. SDSI afideng linked names, which
correspond to expressions of the fordnr.ro.r5. - - - .r,. As observed in [Li et al. 2003],
such expressions can be broken up by introducing interrteediées and additional state-
ments. With the exception of thresholds, the delegatioatimiships (though, not the
S-expression-based representation of permission) in 'SBKUples, can be captured by
using simple member statements and a restricted form ofisimplusion statements. A

LRT[«, N] simplifies RTy in that intersection inclusion statementsRii [«—, N] allow the intersection of only
two roles; in RTp, the intersection may contai components, each of which can be a principal, a role, or a
linked role. RTy statements using such intersections can be equivalenthgssed irRT[«—, N] by introducing
intermediate roles and additional statements. This helpsli§jntipe proofs in this paper.

6

The stateP consists of the following statements:

SA.access— SA.manager (1)
SA.access— SA.delegatedAccess HR.employee 2)
SA.manager— HR.manager 3)
SA.delegatedAccess— SA.manager.access (4)
HR.employee— HR.manager (5)
HR.employee— HR.programmer (6)
HR.manager— Alice (@)
HR.programmer— Bob (8)
HR.programmer— Carl 9)
Alice.access— Bob (20)

Given the staté® above, we have.

Principals(P) {SA, HR, Alice, Bob, Car}

Names(P) {access, manager, delegatedAccess, employee, programmer

Roles(P) {A.r | A € Principals(P),r € Names(P)}

{SA.access, SA.manager,-, SA.programmer, HR.access, , Carl.programmeyr

Fig. 1. An example of a statf in RT[«, N]. The system administrator of a company, SA, controls access to
some resource, which we abstractly denote by SA.access.ofiggany policy is the following: managers always
have access to the resource; managers can delegate thetaocotes principals, but only to employees of the
company; HR is trusted for defining employees and managers.

SPKI 5-tuple in whichA4 delegates a permissiofto B can be represented dsr «—— B.
A SPKI 5-tuple in whichA delegates: to B and allowsB to further delegate can be
represented as twe'T [«, N] statementsA.r — B andA.r — B.r. Similar analogies
can be drawn for KeyNote [Blaze et al. 19994].

SPKI/SDSI does not have intersection inclusion statentarttallows threshold subjects
in 5-tuples. Using threshold subjects in SPKI/SDSI, one@gress a policy that grants
a permission to a principal i or more principals from a list of principals grant the
permission to the principal. The capabilities of the intetson operator iRT[«, N] and
the threshold subjects in SPKI/SDSI are largely incomgaralone cannot express in
SPKI/SDSI a policy that grants a permission to any princiglad has both attribute, and
attributer,, a policy easily expressed using intersection. On the dihad, one cannot
use intersection statements to achieve the effects oftibigsubjects either. In th&T
family, the functionalities of threshold subjects are agbd using manifold roles and two
new kinds of statements, which are introduced in [Li et aDZJ0 Security analysis for
RT languages with these additional features is beyond theesobfhis paper. See [Li
and Mitchell 2003b] for a more detailed comparison of SPRI&S and theRT family of
languages, .

Although RT[«,] is limited in that role names are constants, extending ratees
in RT[«,N] to have parameterized roles does not change the naturewftgemalysis.
The main techniques we use for security analysRi«—, N] uses logic programs, which
can be easily extended to handle parameterized roles. foherave believe that many of
the results and techniques developedRdi«, N] can be carried over to more expressive
languages, e.gR1; [Li et al. 2002], which adds t&Tj the ability to have parameterized
roles, RTC [Li and Mitchell 2003a], which adds constraints R, and, to a certain
extent, SPKI/SDSI and KeyNote.

The security analysis problem f&T [«, N] involves new concepts and techniques. Se-
mantics and inference for SDSI, which is essentially thelanguageRT[«], has been

extensively studied [Abadi 1998; Clarke et al. 2001; Hatpand van der Meyden 2001;
Jha and Reps 2002; Li 2000; Li et al. 2003]. Some of theseesudinsider only answer-
ing queries in a fixed state. Some consider universal asalsére no restriction is placed
on how the state may grow [Abadi 1998; Halpern and van der iey2D01]. However,
the most interesting aspect of security analysis — ansgeyireries when restrictions are
placed on state changes — has not been addressed in theugrsttidies.

2.2 Semantics of the TM Language

We give a formal characterization of the meaning of a3ef policy statements by trans-
lating each policy statement into a datalog clause. (Dgtal@a restricted form of logic

programming (LP) with variables, predicates, and constamit without function sym-

bols.) We call the resulting program teemantic progranof P.

DEFINITION 2 SEMANTIC PROGRAM. Given a sefP of policy statements, theeman-
tic program SP(P), of P, has one ternary predicate. Intuitively, m(A,r, D) means
that D is a member of the rold.r. SP(P) is the set of all datalog clauses produced from
policy statements irP. The rules to generate the Semantic ProgigPiP) from P are
shown below. Symbols that start witi™represent logical variables.

For eachA.r +— D in P, add

m(A,r, D) (ml)
For eachA.r —— B.r; in P, add
m(A,r,?Z) :— m(B,r,?7Z) (m2)

For eachA.r «—— A.r1.r9 in P, add

m(A,r,7Z) :— m(A,r1,7Y), m(?Y,re,7Z) (m3)
For eachA.r «—— By.ry N By.ry in P, add

m(A,r,7Z) :— m(By1,r1,?Z), m(Ba,re,7Z) (m4)

A datalog program is a set of datalog clauses. Given a dapatmgram,DP, its seman-
tics can be defined through several equivalent approachesnibdel-theoretic approach
views DP as a set of first-order sentences and uses the minimal Herlbmadel as the
semantics. We writéP(P) = m(X,u, Z) whenm(X,u, Z) is in the minimal Herbrand
model of SP(P). This semantics is equivalent to the set-theoretic sewmafiRTy in [Li
et al. 2003].

We now summarize a standard fixpoint characterization ofrtimémal Herbrand model,
which we will use in the proofs in this paper. Given a dataloogsamDP, let DP"s!
be the ground instantiation @»P using constants irDP; the immediate consequence
operator, Tpp, is defined as follows. Given a sét of ground logical atoms]pp (K)
consists of all logical atoms;, such that : — by, ...,b, € DP"™! wheren > 0, and
eithern = 0orb; € K for1 < j < n. The least fixpoint of 'pp is given by

Tppl“= U Tppl', whereTpp1%= 0 andTpp!" ™' = Tpp(Tppl?),i > 0
=0

The sequenc&pp 17 is an increasing sequence of subsets of a finite set. Thusg, the
exists anN such thatl'pp(Tpp TV) = Tpp 1. Tpp 1¢ is identical to the minimal
Herbrand model of0P [Lloyd 1987]; therefore,SP(P) = m(X,u,Z) if and only if
m(X, u, Z) S Tsp(fp)Tw.

8

The semantic progran§P(P), of the’P given in Figure 1, is as follows.

m(SA, access?Z) : — m(SA, managey?2) (1)
m(SA, access?Z) : — m(SA, delegatedAcces8Z), m(HR, employee?Z) (2)
m(SA, manager?Z) : — m(HR, manager?2) 3)
m(SA, delegatedAcces8Z) : — m(SA, manager?’Y’), m(?Y,access?Z) (4)
m(HR, employee?Z) : — m(HR, manager?2) (5)
m(HR, employee?Z) : — m(HR, programmey?2) (6)
m(HR, manager Alice) (7)
m(HR, programmey Bob) (8)
m(HR, programmey Carl) 9)
m(Alice, access Bob) (10)
The minimal Herbrand model of the above program has the follgfants.
Iteration 0 m(HR, managey Alice) m(HR, programmey Bob)
m(HR, programmey Carl) m(Alice, access Bob)
Iteration 1 m(SA, manager Alice) m(HR, employee Alice)
m(HR, employee Bob) m(HR, employee Carl)

Iteration 2 m(SA, delegatedAcces<Carl) m(SA, accessAlice)
Iteration 3 m(SA, access Bob)

Fig. 2. The semantic prograns,P(P), of the P given in Figure 1 and the minimal Herbrand model of the
program.

It has been shown that the minimal Herbrand modeD@f can be computed in time
linear in the size oDP"**! [Dowling and Gallier 1984]. If the total size @7 is M, then
there areO(M) constants irDP. Assuming that the number of variables in each clause
is bounded by a constant, the number of instances of each clause is therefd@ "),
so the size oDP™*! is O(M"*'). As|SP(P)| = O(|P|) and each rule itl§P(P) has at
most two variables, the worst-case complexity of evalgafiR (P) is O(|P|?).

ExAMPLE 2. The semantic program of the example in Figure 1 is giverigare 2.

2.3 Queries
In this paper, we consider the following three forms of qué@ry

— Membership Ar 3{Dy,...,D,}
Intuitively, this means that all the principal%,, . .., D,, are members ofi.r. Formally,
PrAr3{Dy,...,D,}ifandonlyif{Z | SP(P) Em(A,r,Z)} 2 {D1,...,Dy}.
— Boundedness {D;,...,D,} 3 Ar
Intuitively, this means that the member set4f is bounded by the given set of prin-
cipals. Formally,? + {Dy,...,D,} 3 Arifand only if {Dy,...,D,} 2 {Z |
SP(P) Em(A,r, Z)}.
— Inclusion XudAr
Intuitively, this means that all the membersAf- are also members of.w. Formally,
PF Xu d Arifandonly if {Z | SP(P) E m(X,u,Z)} 2 {Z | SP(P) E
m(A,r, Z)}.

ExamMpPLE 3. If P is the state given in Figure 1, the following queries yield thdi-

cated results:

Membership: P I SA.access] {Eve} (False)
Membership: P - SA.access] {Alice} (True)

Boundedness: P {Alice,Bob} O SA.access (True)
Inclusion: P + HR.employeed SA.access (True)

We consider alternate formulations for queries below dftst considering what kinds
of state change rules we consider in the analysis.

2.4 Restriction Rules on State Changes

Using statements iRT[«, N], one can delegate control over resources to other princi-
pals. In Figure 1, the two statements SA.aceesSA.delegatedAccess HR.employee
and SA.delegatedAccess— SA.manager.access together mean that any principal that
is a manager can affect who can access the resource. For lexaftipe could add
Alice.access— Carl giving Carl access. In the resulting st@g P’ + {Alice, Bob} 3
SA.access is false, whereas the result is truéPfoFrom the System Administrator (SA)'s
perspective, roles such as Alice.access are not underriteotoNew statements defining
Alice.access may be issued by Alice and existing statentksfilsing Alice.access may be
revoked. In order for SA to understand the effect of the tvedeshents mentioned above,
SA may want to know whether some desirable security pragseatiways hold even though
statements defining roles such as Alice.access can be chartgtarily.

We now present a concrete formulation of restriction rulheg enable one to articulate
analysis questions concerning the states that are reacbadéd on changes to policy. To
model control over roles, we use restriction rules of thelf® = (Gz, Sz), which consist
of a pair of finite sets of roles. (In the rest of the paper wedhe subscripts frorg and
S, asR is clear from context.)

—Roles inG are calledgrowth-restricted(or g-restricted; no policy statements defin-
ing these roles can be added. Roles notjimre calledgrowth-unrestricted(or g-
unrestricted.

—Roles inS are calledshrink-restricted(or s-restricted; policy statements defining
these roles cannot be removed. Roles noSiare calledshrink-unrestricted(or s-
unrestricted.

If a role A.r that is g-restricted is defined to include a rd¥er; that is g-unrestricted,
then no new statement definingr can be added; however, new statements defibing
can be added, indirectly adding new memberd to.

An example ofR is (), Roles(P)), under which every role may grow without restriction,
and no statement defining roles Roles(P) can be removed. This models the case of
having incomplete knowledge of a global policy state. Irsttése, one sees a getof
statements but thinks that there are other statements igidbal state that are currently
unknown, and one wants to know whether certain securitygts always hold no matter
what these unknown statements may be.

Another example iR = (G,S), whereG = S = {Xu | X € {X1,.... Xy },u €
Names(P)}. This corresponds to the scenario in which there are preithat are
trusted and one wants to analyze the effect of policy chaafjestrusted principals. Here
X4,..., X, are identified as trusted, and other principals are notedust

If a principal X does not appear in the restriction riRe then for every role name by

10

definition X.r is g/s-unrestricted This models that the roles of unknown principals may
be defined arbitrarily.

We allow some roles controlled by one principal to be g-ret&td while other roles
controlled by the same principal may be g-unrestricted. We allow a role to be g-
restricted while being s-unrestricted. These generadizatprovide more flexibility than
simply identifying principals as either trusted or untagstThis flexibility in practice helps
reduce the number of times that security analysis needs petfermed. For example, if
a security property holds when a role is g-unrestricted; the property will continue to
hold after adding new statements defining the role, so thigsinaeed not be repeated.

ExAMPLE 4. Referring again to the example in Figure 1, consider tet&iotion rule
R given as follows:

g { SA.access, SA.manager, SA.delegatedAccess, HR.empjoyee
S { SA.access, SA.manager, SA.delegatedAccess, HR.empldiRemanage}

In this restriction rule, SA and HR are assumed to be trustedeverg allows statements
to be added defining HR.manager and HR.programmer. Thus@ddtch statements can-
not invalidate any security property obtained by usig

Given the abov&, statements (1) to (7) cannot be removed, statements (8Djor(ay
be removed, new statements defining roleg/inannot be added, and one can add new
statements defining HR.manager, HR.programmer, Alicess;dBob.access, Carl.access,
etc. We now list some example analysis problem instancgether with the answers:

Simply safety analysis: Is “SA.access{Eve}” possible? (Yes)
Simple availability analysis: Is “SA.access{Alice}" necessary? (Yes)
Bounded safety analysis: I§Alice, Bob} J SA.access” necessary. (No)
Containment analysis: Is “HR.employeeSA.access” necessary? (Yes)

Observe that the availability property “SA.accesqAlice} is necessary” depends on
HR.manager being s-restricted. Together with our obsemnsgabove concerning repeated
analysis, this illustrates the advantage of allowéhg S.

The restrictions we consider are static in the sense thath@her not a state change
is allowed byR does not depend on the current state. A dynamic restricooitdc for
instance, havé3.r, be g-restricted ifB is a member ofd.r;, which depends on the current
state. Security analysis with dynamic restrictions is ptédly interesting future work.

2.5 Alternate Query Formulations

We now examine the way we formulate queries in Section 2.3bgidering some of the
alternatives. A membership quedyr J {D,..., D, } can be translated to an inclusion
query A.r J B.u, in which B.u is a new role, by addin@.u «— D, ..., B.u+— D,

to P and makingB.u g/s-restricted. Similarly, boundedness queries can beslated
to inclusion queries as well. We include membership and Bedrgueries nonetheless
because they can be answered more efficiently than inclagieries.

Each form of query can be generalized to allow compound mefgessions that use
linking and intersection. However, these generalized iggaran be reduced to the forms
above by adding new roles and statements to the policy. Banoe{} J A.rNA;.ry.ro
can be answered by addidgyu, «— A.r N B.ug, B.ug «— B.ug.re, andB.ug «— Ay.ry
to P, in which B.uy, B.us, andB.ug are new g/s-restricted roles, and by posing the query

11

The three forms of queries can be varied to consider caitirdlroles rather than exact
memberships. A cardinality variant of membership queries the form {A.r| > n”,
which means that the number of principals who are memberksofs no less tham. A
cardinality variant of boundedness queries has the forme“| A.r|”. Cardinality variants
of membership and boundedness queries can be answereatitoithe base queries. We
do not consider a cardinality variant of inclusion querigthiis paper.

2.6 Usage of Security Analysis

Security analysis can be used to help ensure that secugityreenents are met, and that
they continue to be met after policy changes are made by anttous, possibly malicious
principals.

For the purposes of the current section, let us say that g qdea restriction ruler,
and asign, either+ or —, together formalize aequirement For instance, one require-
ment might consider whether every who can access a particafdidential resource is
an employee of the organization. In this case, the sign useddwe+ to indicate that
the condition should always hold, as this ensures that nmatside the organization can
access the confidential resource. A poleycomplies witha requirementQ, R, +) if Q
is necessary giveR andP, andP complies with(Q, R, +) if Q is necessary giveR and
P.

An organization’s System Security Officer (SSO) writes a$e¢quirements based on a
restriction ruleR that forbids changing roles that are under the control atéd principals
in the organization. Assuming that we start in a policy stagt complies with all the re-
guirements, security analysis ensures that this comm@iaan be preserved across changes
to the policy state as long as principals identified as trugteéR cooperate as follows.
When a change is made by a principal that is untrusted, it masb fa g/s-unrestricted
role; such a change has been taken into account by the aalydidoes not affect the
compliance. When a change is made by a trusted principal billbised byR, then noth-
ing needs to be done, as such changes are taken into accotm byalysis. When a
change is made by a trusted principal and is not alloweR biye., adding a statement that
defines a g-restricted role or removing a statement thateteéirs-restricted role, the prin-
cipal should perform security analysis to determine whretihe security requirements are
met for the state that would result from the prospective ghaand make the change only
if the requirements are satisfied. Thus, the preservati@omipliance does not depend on
untrusted principals.

In the above usage, the SSO determines a set of requirenssgd bn a single restric-
tion rule. In general, other principals may specify requieats they wish to have main-
tained by the TM system. They may have differing sets of s that they are willing to
trust with running the analysis and preserving the requamres) which will consequently
be using differing restriction rules.

It is significant that the usage pattern we are suggestingleshe enforcement of re-
quirements that cannot be achieved by construd®li—, N}, or most other trust manage-
ment languages. This is because those languages are migriattime sense that adding
statements to a policy cannot remove a principal from a r&8g.contrast, many of the
requirements formalized above are non-monotonic, in thees¢éhat adding statements to
a policy that satisfies the requirement can yield a policy tleees not. This is illustrated
by the example of mutual exclusion of two roles. Monotoricitakes it impossible to

12

express withirRT[«, N] that a principal cannot be added to both roles. However ¢his i
easily achieved by using security analysis as describedeabo

3. ANSWERING MEMBERSHIP AND BOUNDEDNESS QUERIES

RT[«,N] and its sub-languages are monotonic in the sense that nateensnts will de-
rive more role membership facts. This follows from the faetttthe semantic program is a
positive logic program. This important monotonicity proyeallows us to derive efficient
algorithms for membership and boundedness queries.

To answer a universal membership (simple availability)lysis instance that asks

whether “A.r 3 {D,,...,D,}" is necessary giverP and R, one can consider the set
of principals that are members dfr in every reachable state. We call this set ltheer-
boundof A.r. If the lower-bound ofd.r is a superset of Dy, ..., D, }, then the answer

to the analysis is “yes”; otherwise, the answer is “no”.

To compute the lower-bound of a role, consider the stateirmddgrom? by removing
all statements whose removal is permitted/byWe denote this state 19| . BecauseR
is static, the order of removing these statements does ntemnandP | uniquely exists.
Clearly,P|r is reachable; furthermor®|r C P’ for every reachabl®’. ASRT[«,N] is
monotonic, the lower-bound of.r is the same as the set of principals who are members
of the roleA.r in P|x.

The lower-bound ofd.r can also be used to answer an existential boundedness@isken
analysis that asks whethef D, ..., D, } O A.r"is possible giver? andR. If the lower-
bound ofA.r is a subsetof Dy, ..., D, }, then the answer is “yes”; otherwise, the answer
is “no”.

Existential membership (simple safety) analysis and usaleboundedness (bounded
safety) analysis can be answered by computing an “uppandioef role memberships.
The upper-bound of a role is the set of principals that cowdome a member of the
role in some reachable state. Intuitively, such bounds eacdmputed by considering a
“maximal reachable state”. However, such a “state” may a@iordn infinite set of policy
statements, and the upper-bounds of roles may be infinite. wiWehow that one can
simulate the upper bounds by a finite set and derive correstens.

In Section 3.1, we show how to compute the lower-bounds amdtbase them to per-
form universal membership and existential boundednedgsisaln Section 3.2, we show
how to simulate the upper-bounds and how to use them to pedgistential membership
and universal boundedness analysis.

3.1 The Lower-Bound

We now present the lower-bound program for a sfat@nd a restrictiorR; this program
enables one to compute the lower-bounds of every role.

DEFINITION 3 THE LOWER-BOUND PROGRAM. Given P and R, the lower-bound

13

programfor them,LB(P, R), is constructed as follows:

For eachd.r < D in P|r, add

Ib(A,r,D) (01)
For eachA.r < B.ry in P|r, add
(A, r,?Z):— Ib(B,r1,77) (b2)

For eachd.r «—— A.ry.r in P|g, add

(A, r,2Z) :— Ib(A,r1,?Y), (?Y,75,2Z) (b3)
For eachA.r < B;.ry N By.ro in P|z, add

lb(A, r, ?Z) L= lb(Bl, 1, 72), lb(Bg, T2, 72) (b4>

The worst-case complexity of evaluating the lower-bouraypam isO(|P|?), as noted at
the end of Section 2.2.

Observe that the above lower-bound program is essentladlysame as the semantic
program for the minimal stat®|z. They differ in that anywherd B(P,R) uses the
predicatelb, SP(P|r) uses the predicate. Therefore, we have the following fact.

FacT 3.1. LB(P,R) = lb(A,r, D) ifand only if SP(P|r) = m(A,r, D).
PrRooOF This follows directly from the observation stated befdris fact. O

The following proposition asserts that the program (P, R) correctly computes the
lower-bounds for every rold.r.

PropPosITION 3.2. LB(P,R) = Ib(A,r, D) if and only if for every reachablé”’,
SP(P") Em(A,r, D).

ProoFk The “only if” part: If LB(P,R) k= I[b(A,r, D), then from Fact 3.1,
SP(P|r) E m(A,r,D). For everyP’ that is reachableP|r C P’. Furthermore, the
languageRT[«, N] is monotonic; thereforeyP(P’) = m(A,r, D).

The “if” part: if for every reachable?’, SP(P’) = m(A,r,D), thenSP(P|r) =
m(A,r, D), becauséP|r is reachable. From Fact 3.LB(P,R) = Ib(A,r,D). O

The methods to use the lower-bound program to answer uaiv@esmbership analysis
and existential boundedness analysis instances and thectaass of these methods are
formally stated as the following two corollaries. Cardihablariants of these queries can
be answered similarly.

COROLLARY 3.3. GivenP andR, a membership quent.r 3 {Dy,..., D, } is nec-
essary ifand only iL B(P,R) |= Ib(A,r, D;) for everyi, 1 <i < n.

PrRoOF The “if” direction: If LB(P,R) = Ib(A,r, D;) for everyi such thatl < ¢ <

n, then by Proposition 3.2D, ..., D, are members ofl.r in all reachable states, the
query is therefore necessary.
The “only if” direction: if A.r J {D,..., D,} is necessary, then for every reachable

state?’, SP(P’') &= m(A,r,D;) for everyi such thatl < ¢ < n. By Proposition 3.2,
LB(P,R) = Ib(A,r, D;) for everyi such thatl <i <n. O

COROLLARY 3.4. GivenP andR, a boundedness quefyD,,..., D, } 3 A.ris pos-
sibleifand only if{ D1,...,D,} 2{Z | LB(P,R) = Ib(A,r, Z)}.

14

ProOF For the “if” part, we must show that §D,,...,D,} 2 {Z | LB(P,R) E
Ib(A,r, Z)}, then there exists a reachaftésuch that eact satisfyingP’ = m(A,r, D)
also satisfied € {D,,...,D,}. Itis easily seen by using Fact 3.1 tfRitz is such &P’.

The “only if” part follows from Proposition 3.2 as follows.ugpose there exists such
that LB(P,R) = Wb(A,r,Z) andZ ¢ {D,,...,D,}. By Proposition 3.2, for every
reachableP’, SP(P') = m(A,r, Z); therefore, the query is not possible.]

ExamMPLE 5. Based orP given in Figure 1 andR given in Example 4, the stafe|r
consists of the following statements:

SA.access— SA.manager (1)
SA.access— SA.delegatedAccess HR.employee (2)
SA.manager— HR.manager 3)
SA.delegatedAccess— SA.manager.access 4)
HR.employee— HR.manager (5)
HR.employee— HR.programmer (6)
HR.manager— Alice @)

The minimal Herbrand model diB(P, R) has the following facts:

Ib(HR, manager Alice) [b(HR, employee Alice)
Ib(SA, manager Alice) Ib(SA, accessAlice)

This enables us to determine that “SA.accasgAlice}” is necessary.

3.2 The Upper-Bound

The upper-bound of a role consists of all principals thatdtde a member of the role in
some reachable state. One main difficulty in computing theetqpounds of roles is that
they may be infinite. We say that a rolegisinboundedf for every principalZ, there exists
a reachable state’ such thatSP(P’) = m(A4,r, Z). In other words, the upper-bound of
A.r contains every principal. A g-unrestricted role is cleaflynbounded, as one can add
a new statement to add an arbitrary principal to be a membtveofole. A g-restricted
role may also be g-unbounded, as it may (directly or indiy@a@tclude a g-restricted role.
The following fact about g-unbounded roles says that onels\é@ consider only one
principal that does not occur iR (instead of every principal) to determine whether a role
is g-unbounded.

FacT 3.5. GivenP, R, arole A.r, and a principalE' that does not occur i, A.r is g-
unbounded if and only if there exists a reachable sRtsuch thatSP(P’) = m(A,r, E).

See Appendix A.1 for the proof. This fact enables us to usepoimeipal that does not
already occur to be the representative of all new principals

We now present the upper-bound program for a skatend a restriction rul&kR. This
program enables one to simulate the upper-bound of any role.

DEFINITION 4 THE UPPERBOUND PROGRAM. Given P and R = (G,S), their
upper-bound program{/B(P,R), is constructed as follows. T(is a special principal

15

symbol not occurring irP, R, or any queryo.)

Add ub(T,?r,72) (u)
For eachA.r € Roles(P) — G, add

ub(A,r,?77) (u0)
For eachA.r<—— D in P, add

ub(A,r, D) (ul)
For eachA.r —— B.r; in P, add

ub(A,r,?Z) :— ub(B,r1,?2) (u2)

For eachA.r «—— A.r;.r9 in P, add

ub(A,m,?Z) i — ub(A,r1,?Y), ub(?Y,r2,?Z) (u3)
For eachA.r «—— By.r; N By.ry in P, add

ub(A,r,?Z) :— ub(B1,71,77Z), ub(Ba,12,77Z) (ud)

The rules(ul) to (u4) follow from the meanings of the four types of statements and
are similar to the semantic program construction in De@ini2. The rulg«0) means that
for any role A.r that is g-unrestricted, the upper-boundAf- contains every principal.

It is incorrect to useub(A,r, T) instead ofub(A,r,?Z) here, because giveB.r; «——

A.r N B.ro and B.ro «—— D where A.r is g-unbounded ané.r, is g-restricted, we need

to ensure thaub(B,r1, D) is true. The rule(u) means that for any role name the
upper-bound ofT.r contains every principal. This is so becauseloes not appear iR,
therefore,T.r is not g-restricted. The rulg:) is needed because givehr «— A.r.rs,
whereA.r is g-restricted andl.r; is g-unrestricted, we should ensure that the upper-bound
of A.r contains every principal.

The following proposition asserts that the upper-boundjrm correctly computes the
upper-bounds of roles iRoles(P) when we restrict our attention to rolesRrincipals(P)U

{T}

ProPOSITION 3.6. Given anyP, R = (G,S), Ar € Roles(P), and Z €
Principals(P) U{T}, UB(P,R) = ub(A,r,Z) if and only if there exists a reachable
P’ such thatSP(P’) = m(A,r, Z).

See Appendix A.1 for the proof. The following corollary stothat the upper-bound
program can correctly tell whether a role is g-unboundecdobr n

COROLLARY 3.7. Arole A.r is g-unbounded if and only 7B (P, R) = ub(A,r, T).
ProoOF Follows directly from Fact 3.5 and Proposition 3.6.]

The methods to use the upper-bound program to answer eti@gt@embership analysis
and universal boundedness analysis and the correctnesssef tnethods are stated in the
following two corollaries. Cardinality variants of theseeagies can be answered similarly.

COROLLARY 3.8.Given P and R = (G,S), a membership queryA.r 3
{D,...,D,} is possible if and only if at least one of the following threaditions hold:
V)Ar¢G,(2)UB(P,R) = ub(A,r, T),or (3) UB(P,R) = ub(A,r, D;) for everyi,
1 <1< n.

PrROOF Consider two cases. Case onkr ¢ Roles(P). In this case, conditions (2)
and (3) will not hold, because no clauseliB (P, R) definesA.r. We now show that the
query is possible if and only if condition (1), i.ed.r € G, holds. If A.r € G, then the

16

role A.r will always be empty in every reachable state and the quehnat be possible.
If A.r € G, then the roled.r is g-unbounded; therefore, the query is possible.

Case two:A.r € Roles(P). In this case, the first condition implies the second coaditi
following from Corollary 3.7. Condition (2) and conditioB)(each implies that the query
is possible. Therefore, if at least one of the three conulitioold, the query is possible.
If none of the three conditions holds, then there exiS{ssuch thatl < j < n and
UB(P,R) W= ub(A,r,Dj). If D; € Principals(P), then from Proposition 3.6D; is
not a member ofd.r in any reachable state; therefore, the query is not possible; ¢
Principals(P), thenD; is not a member ofd.r in any reachable state either. Because if
D; is a member ofd.r in some reachable state, thely is g-unbounded according to
Fact 3.5, and/B(P,R) |= ub(A,r, T) according to Corollary 3.7, which contradicts the
assumption that Condition 2 does not holdl

In Corollary 3.8, condition (1) is needed in addition to (@)deal with the situation that
either A or r does not occur irP, in which caseA.r ¢ Roles(P) and UB(P,R) does
not correctly compute the upper-bound4f-. Condition (2) is needed in addition to (1)
to deal with roles that are g-restricted, but g-unboundeahd@ion (3) is needed to deal
with the case thatl.r is not g-unbounded, but its upper-bound contains all ppaisiin
{Ds,...,D,} nonetheless.

COROLLARY 3.9. GivenP andR = (G, S), a boundedness quef\Ds, ..., D,} 3
A.r is necessary if and only id.r € G and {D;,...,D,} 2 {Z|UB(P,R) [
ub(A,r, Z)}.

PROOF Consider two cases. Case oner ¢ Roles(P). Inthis case{Z|UB(P,R) =
ub(A,r, Z)} = 0; therefore,{D1,...,D,} 2 {Z|UB(P,R) = ub(A,r, Z)} always
holds. If suffices to show that the quefy, ..., D, } 3 A.r is necessary if and only if
Ar e G. If Ar € G, then the roled.r is empty in any reachable state; the query is thus
necessary. Ifd.r ¢ G, then consider the stal® = P U A.r—— E, whereF is a principal
not appearing irP. The query is false iP’.

Case two:A.r € Roles(P). In this case, assume thdtr € G and{Ds,...,D,} D
{Z|UB(P,R) E ub(A,r,Z)}, we show that for any principaZ that is a mem-
ber of A.r in some reachable sta®’ (i.e., SP(P') E m(A,r, Z)), it must be that
Z € {Ds,...,D,}, thereby proving that the query is necessary. We first shaw th
Z € Principals(P); otherwise, it follows from Fact 3.5 that.r is g-unbounded, and
it follows from Corollary 3.7 thatUB(P,R) &= ub(A,r, T), which contradicts the as-
sumption tha{ Dy, ..., D, } 2 {Z|UB(P,R) = ub(A,r,Z)}. As Z € Principals(P),
it follows from Proposition 3.6 thal/B(P,R) = ub(A,r, Z). From the assumption,
Ze{Dy,...,Dy,}.

IfeitherA.r € Gor{Dy,...,D,} 2{Z|UB(P,R) E ub(A,r, Z)}, thenitis straight-
forward to show that the query is not necessay.

EXAMPLE 6. Based orP given in Figure 1 andR given in Example 4, the minimal
Herbrand model oV B(P, R) has the following facts, in whicprincipal is Alice, Bob,

17

Carl or T androle is access, manager, delegatedAccess, employee, or program

ub(HR, manager principal) ub(HR, programmey principal)
ub(Alice, accessprincipal) ub(T,role, principal)

ub(HR, employee principal) ub(SA, delegatedAccesprincipal)
ub(SA, manageyr principal) ub(SA, access principal)

This enables us to determine that “SA.acc8ssEve}” is possible and {Alice, Bob} J
SA.access” is hot necessary.

In the example, we see that the policy is not safe accordirgther the simple safety
instance or the bounded safety instance. One reason ishinable HR.manager is g-
unrestricted, meaning that new managers may be added. émmathson is that the role
HR.programmer is g-unrestricted; therefore, new programsmmay be added and access
may be delegated to them. However, if the company knows thaifsan enemy, then the
company probably will not hire Eve as a manager or a programiméact, simple safety is
quite unnatural: to use it effectively, one has to be abldéniify the principals that should
never have access, the number of such principals could iteaaydarge. Bounded safety
is also unnatural, one does not know, for example, who indheé the company will hire
as a manager. A more natural policy is to ensure that, for pigronly employees of the
company are allowed to access the resource. This can be glarsing inclusion queries.

3.3 Summary and Computational Complexities

The approaches that we have taken to answer membershigsgjugilize the facts that
membership queries are monotonic, that is, given a memipegslery Q, if P - Q, then
for everyP’ such thatP C P/, P’ Q. Because of this, universal membership queries
can be answered by considered the minimal reachable statendmbership query is true
in the minimal state, then it is true in all states. Similadyistential membership queries
can be answered by considering the maximal reachable state.

Boundedness queries are anti-monotonic, that is, giveruad®tiness querg, if P
Q, then for everyP’ such thatP’ C P, P’ + Q. Therefore, existential bounded queries
can be answered by considering the minimal state. If theygaéalse in that state, then the
qguery will be false in all other states. Similarly, univdisaunded queries can be answered
by considering the maximal reachable state.

As the lower-bound program is essentially the semantic naragof P|z C P, the
computational complexity for evaluating itd(|P|?).

As noted at the end of Section 2.2, the computational contpldrr evaluating
UB(P,R) is linear in the size of the ground instantiation’éB (P, R). There are(|P|)
rules in UB(P, R) corresponding tdu), (ul), (u2), (u3), and(u4), which have at most
two variables per rule; therefore, the ground instantmmtié these rules has total size
O(|P|3). There are)(|P|?) instance rules ofu0), because there aé¥(|P|) principals and
O(|P|) role names iP. However, each such rule has only one variable, and so thmgro
instantiation of these rules has si2¢|P|*). Therefore, the computational complexity for
evaluatingUB(P, R) is O(|P|?).

2Actually, there are more of these, likd(HR, managey acces}, but when the third parameter is not a principal,
these facts have no effect, so we elide them. Similarly, we=¢he facts in which the second parameter is not a
role name.

18

4. CONTAINMENT ANALYSIS: ANSWERING UNIVERSAL INCLUSION
QUERIES

Inclusion queries are neither monotonic nor anti-monaoriven an inclusion query
X.u 3 Z.w and three stateB’ C P C P”, itis possible thaP - Q, but bothP’ I/ Q and
P" ¥ Q. As aresult, the approach taken with membership and bomedsdjueries is not
applicable. We cannot simply look at a specific minimal (oximeal) state and answer the
query.

In this paper, we restrict our attention to universal inidasgueries, as this is more
interesting in terms of security properties than existgticlusion queries.

We say that a roleX.u containsanother roled.r if X.uw J A.r is necessary, i.eX.u
includesA.r in every reachable state. Observe that we use “contains™iaollides” as
two technical terms that have different meanings.

We call the problem of determining whether a role containstizr role thecontain-
ment analysigproblem. Note that “containment” is also used in informatgecurity to
mean other things. Our definition of containment in this papespecific to comparing
memberships of two roles in all reachable states.

The problem of determining whethéf.u containsA.r when one ofX.u and A.r is
not in Roles(P) can be answered easily as follows.Afr ¢ Roles(P), then either4 or
r does not occur iP. When A.r is g-restricted, A.r will always be empty; therefore,
X.u containsA.r. WhenA.r is g-unrestricted, then one may add arbitrary members to
A.r, yet A.r is not used to define any role, s6.u does not contail.r. In short, when
A.r & Roles(P), X.u containsA.r if and only if A.r is g-restricted. IfA.r € Roles(P)
andX.u ¢ Roles(P), thenX.u containsA.r if and only if A.» has an upper-bound that is
empty.

In the rest of this section, we consider the case that Bothand A.r are inRoles(P).
As we show in this section, the computational complexityaftainment analysis depends
very much upon the delegation features of the langauge elfotlr subsections in this sec-
tion, we study containment analysisRT [], RT[N], RT[«], andRT[«, N], respectively.

4.1 Containment Analysis in RT[]isin P

Recall that the languad®T|[] has only simple member and simple inclusion statements.
We now show that containment analysisRfi| | is in P by giving an efficient algorithm

to perform containment analysisRT []. This algorithm uses the logic program called the
role-containment program.

Intuitively, there are two cases in which a roteu contains a roled.r. The first case is
that this containment iforcedby the statements that are’h For example, if a statement
X.u +— A.r exists and cannot be removed, th&€n: containsA.r. A containment may
be forced by a chain of statements. Forced containment caofeuted by a method
similar to that used for computing role memberships.

In the second case, containment is caused by the nonex@stéstatements i®. In the
extreme case, ifi.r has no definition and is g-restricted, thdn- is contained in every
role, as the member set af.r is empty in every reachable state. To compute this kind
of containment, we observe that a g-restricted tdle is contained in another rol& .«
if every definition of A.r is contained inX.u. If A.r has no definition at all, then it is
contained in every role. However, a straightforward tratish of this into a positive logic
program does not work. Consider the following example:

19

ExamPLE 7. P = {Ar«—Aury, Ar—D, Ari«— Ar, Xu«— D} andR is
suchthaG = {A.r, Ar;} andS = {A.r, A.ry, X.u}. InanyP’ that isR-reachable from
P, the member sets of.r and A.r, are always{ D}, and so both roles are contained by
X.u.

A straightforward positive logic program cannot make thewvabinference X.u contains
A.r only if X.u containsA.r; and vice versa; as a result, neither containment relatipnsh
will be in the minimal model. To deal with this problem, we ¢gtke approach to prove non-
containment using the minimal model of a logic program, aedve containment using
negation-as-failure. IntuitivelyX.« containsA.r unless we can find a witness princigal
that is a member ofl.r in some state but not a memberXfu in the same state.

DerINITION 5. (The Role Containment Program for RT[]) Given anRT]] stateP
and R, the role containment progranBCP(P,R), includes the lower-bound program
LB(P,R) in Definition 3. In addition, it defines two 4-ary predicat¢gsandnc. An atom
fe(X,u, Z,w) means thafX .« is forced to contairZ.w. An atomnc(X, u, Z,w) means
that X.« does not contait¥.w. The programBCP (P, R) is derived fromLB(P,R) as
follows. (Recall thatP| is the minimal state that iR-reachable fronP, obtained from
P by removing all statements defining s-unrestricted roleg;statement irP|z exists in
every reachable state.)

Add fe(?X, Tu,7X, Tu) (¢)
For eachA.r —— B.ry in P|, add

fe(Ar,?Z tw) - — fe(B,r1,7Z, Tw) (c1)
For eachA.r € Roles(P) — G, add

ne(?X,u, A1) i — ~fe(?X, tu, A, 1) (n0)

For eachA.r € G, do the following:
For eachA.r—— D in P, add
ne(?X, tu, A1) i — ~fe(?X, Tu, A1), ~1b(?X,?u, D) (nl)
For eachA.r +— B.r; in P, add
ne(?X, tu, A,r) i — ~fe(?X, Tu, A1), ne(?X, Tu, Byr) (n2)

Rule (¢) says that every role is forced to contain itself. The intuitbehind(c1) is that,
if A.r —— B.ry exists in every reachable state, thén is forced to containB.r;. The
intuition behind(n0) is that for X.« to contain a g-unrestricted rolé.r, X.u has to be
forced to contaimd.r, because arbitrary new members may be addetltoThe intuition
behind(n1) is that, asA.r containsD, if X.u's lower-bound does not contaiR?, then
X.u does not contaid.r unlessX.u is forced to contaim.r. The “~ fc¢” part is needed,
because it may be the case tat —— D can be removed and.« «—— A.r exists and
cannot be removed, in which cagemay not be inX.u’s lower-bound butX.u contains
A.r nontheless. Rulén2) means thak .« does not containl.r if it does not contair3.r
and is not forced to contaid.r.

We now discuss the semantics of the logic prog@a&¥’ (P, R), which uses negation-
as-failure, but in a stratified manner. Given a logic prog@, a predicate (directly)
depends on another predicat# p is defined using in the body. A predicatg negatively
depends og if ~ ¢ (the negation of) is used to defing. For example, iBBCP (P, R), fc
depends on itselfyc depends on itself and negatively dependgoandib. A program is
stratifiedif the predicates defined in it can be classified into strath shiat each predicate

20

depends only on predicates in the same or lower strata arativiely depends only on
predicates in lower strata. A program without negationiigally stratified, as no pred-
icate depends negatively on any predicate at all. The pnod?&P(P,R) is stratified.
Predicates ilBCP(P,R) are classified into two strata; the lower stratum Ffaand fc,
and the only predicate in the higher stratumis

Most commonly accepted semantics for logic programmindn wiégation-as-failure
agree on stratified programs. Given a stratified datalograro®P, letDP, U---UDP,
be a partition ofDP'™*! such thatDP; consists of clauses defining predicates in the
j'th stratum; we callDP, U --- U DP, a stratification ofDP™**| The semantics is ob-
tained by first computing the minimal Herbrand modef®; and then using this model
to determine the truthfulness of negative literalsi®, while computing a fixpoint for
DP,UDP,, and so on.

ExaMPLE 8. Consider agairP and R of Example 7. BCP(P,R) is given by the
following:

b(A,r,?X) :— Ib(A,71,7X) (1)
b(A,r, D) (2)
Ib(A,r1,7X) :— 1b(A,r,7X) (3)
DPy { (X, u, D) (4)
fe(A,r, 2 Z,tw) :— fe(A,r,?7Z, Tw) (5)
fe(Ayr, 72, %7w) i — fe(A,r, 77, T7w) (6)
fe(?X, %u,7X, M) (7)
nce(?X, tu, X,u) i — ~ fe(?X, Tu, X, u) (8)
PP ne(?X, tu, A, r) 1 — ~ fe(?X, tu, A1), ~1b(? X, Tu, D) 9)
2 ne(?X, 2u, A,r) i — ~ fe(?X, Tu, A, 1), ne(?X, Tu, A,) (10)
ne(?X,tu, A,ry) i — ~ fe(?X, Tu, A, r), ne(?X, tu, A,) (11)

The minimal Herbrand model @»P; contains the following facts:

(A, D) (A, D) Ib(X,u,D)
fC(A,?",A,’I") fC(A,'I“l,A,’I"l) fC(X,U,X, U)
fe(A,r, Ajry) fe(A ri, Agr)

Using this to determine the truthfulness of negative liei@D P, computing the minimal
Herbrand model oDP; U DP, adds the following facts:

nc(A,r, X, u) nc(A,ry, X, u)

The following lemma says that thfe predicate inBCP(P, R) is always sound for role
containment, i.e., iffc(X,u, A, r) can be proved frorBCP(P,R), then X.u contains
A.r. Furthermore, ifA.r is g-unrestricted an .« containsA.r, thenfe(X, u, A, r) can
be proved fromBCP(P,R). In other words,fc is complete when the second role is g-
unrestricted.

LEMMA 4.1. Given anRT[] stateP, R, two rolesX.u and A.r, if BCP(P,R) =
fe(X,u, A, r), thenX . containsA.r. If X.u containsA.r and A.r is g-unrestricted, then
BCP(P,R) = fe(X,u, A, r).

See Appendix A.2 for the proof. The following propositiorysdhat role containment in
RT[] can be answered by using the progr&aP (P, R).

21

PrROPOSITION 4.2. Given anRT][] stateP, R, and two rolesX.u and A.r in Roles(P),
BCP(P,R) = nc(X,u, A,r) if and only if X.« does not contaim.r.

See Appendix A.2 for the proof.
Evaluating the semantics of a stratified program can be pegd in time polynomial in
the size of the program,; therefore, containment analydisif] is in P.

4.2 Containment Analysis in RT[N] is coNP-complete

RT[N] adds toRT[] type-4 statements, which use the intersection operatois Makes
the containment analysis problemRT[N] to becomecoNP-complete. The intuition of
the problem’scoNP-completeness is as follows. Determining whetbér, contains a
g-restricted roled.r is the same as determining whether all the ways is defined are
“contained” in the ways thak.« is defined. InRT[N], a role can be defined by multiple
statements, which have the effect of disjunction, and a cale be defined using inter-
sections, which have the effect of conjunction. As a resauig can use roles iRT[N)]
to encode positive (only using conjunctions and disjums)dformulas in propositional
logic, and containment analysis subsumes the problem efrmdéating validity of whether
one positive propositional formula implies another suaimfgla, a problem that isoNP-
complete.

Consider the following examplé? = {X.u«— A.riNA.ry, Ary— Bory, Airp—
B.ry, Airg«— B.ry, Arg«— B.urg, Ar «—— B.ra N Burg}, Rissuchthag = § =
{X.u, A.r1, Ars}. Each role that is g-restricted can be written as a positivpgsitional
formula where the g-unrestricted roles are used as prapasitvariables. In this example,
A.ri’s definition is B.ry V B.rg, A.ry’s definition is B.ry V B.rs, X.u's definition is
(B.r1 V B.rg) A (B.rq V B.rs), and A.r’s definition is B.ry A B.rs. BecauseA.r’s
definition impliesX.u’s definition, then any way one adds a principal4o results in the
same principal being added #6.u; therefore X .u containsA.r.

THEOREM 4.3. Containment analysis iRT[N] is coNP-complete.

See Appendix A.3 for the proof. TheINP-hard part is by reducing the monotone 3SAT
problem, which iSNP-complete, to the complement of containment analysiBTiN].
The reduction uses only g-unrestricted roles, and it isgttBorward to change the proof
to use only s-unrestricted roles. This shows that contammealysis inRRT[N] where all
roles are g-restricted or where all roles are s-restrictestili coNP-complete.

4.3 Containment Analysis in RT[«] is PSPACE-complete

RT[«] adds toRT[] type-4 statements, which use linked roles. This makes th&aoe
ment analysis problem to go froid to PSPACE-complete. The intuition is as follows.
With the linking feature irRT[«], the ways in which a role is defined are encoded as a
set of strings accepted by NFA's. The computational conipleX containment analysis
in RT[«] is thus the same as the computational complexity to detereomtainment of
languages accepted by two NFA's, whiclHHS PA CE-complete.

The main result of this section if the following theorem, anigives the computational
complexity of containment analysis when we do not considlsrshrinking.

THEOREM 4.4. Containment analysis iRT[«] where all roles inRoles(P) are s-
restricted isPSPA CE-complete.

22

This theorem will be proved in Sections 4.3.1, 4.3.2, and34.3sing Theorem 4.4, we
can establish the exact complexity bound for containmealyais inRT|[«] in the general
case.

THEOREM 4.5. Containment analysis iRT[«] is PSPACE-complete.

PROOF As the cases where all roles lRoles(P) are s-restricted are special cases of
containment analysis iRT[«], PSPACE-hardness follows immediately from Theo-
rem4.4.

We now show that the problem isIPSPACE. Given a containment analysis problem
instance:RT[«] state’P, a restriction ruleR = (G, S), and an inclusion querg, use
the following algorithm. For eac®’ such thatP’ C P and P’ is R-reachable from
P, perform containment analysis f@&', R’ = (G, Roles(P)), and Q, reusing the space
each time. The algorithm answers “no” if there exis®’asuch that containment analysis
answers no. Otherwise, the algorithm answers “yes”.

If the containment does hold, then clearly this algorithrsveers “yes”. If the con-
tainment does not hold, then there exists a reachableBtaa@d a principalE such that
SP(P;) =m(A,r, E) andSP(P’) = m(X, u, E). ConsiderPy, = P NPy, Py is reach-
able; furthermorep; is R’-reachable fronPy; therefore, the algorithm answers “no”.

From Theorem 4.4, we know that containment analysis Withand R’ takes space
polynomial inn = |P’| + |R/|. Asn < |P|+ |R|, this algorithm takes space polynomial
in the size of the original input. [J

In the following, we prove Theorem 4.4. In Section 4.3.1, wedduce equivalence re-
lationships between statementsRifi[«—] and string rewriting systems; these relationships
are useful in the proof. In Section 4.3.2, we prove that domant in RT[«] without
shrinkable roles is ilPPSPACE by showing that the problem can be reduced to check-
ing containment of languages accepted by two NFAs. In $acti3.3, we prove that the
problem isPSPACE-hard. In Section 4.3.4, we prove that containmerRT{«] with-
out growable roles igoNP-complete, establishing a tighter complexity bound fos thi
special case of containmentRT [«].

4.3.1 RT[«] as String Rewriting System$&tatements irRT[«] can be viewed as
rewriting rules. For example, the statemeht «—— B.r; can be viewed as the rewriting
rule A » — B ry. The alphabet consists of all principals and role names. dvsider
rewriting over the set ohame stringsi.e., strings that have the form of a principal fol-
lowed by zero or more role names. When rewriting a name stsinging rewriting rules
corresponding to statementsRT [«]|, the rewriting occurs only on the left most, and the
resulting string is also a name string.

DEFINITION 6 RS[P]. Given a sef of RT[«] statements, IeRS[P] be the rewriting
system generated by viewing each statemer® ias a rewriting rule. Given two name
stringsw; andws, we writeRS[P] > w; — wo if one can rewritev; into wo in one step
using a rewriting rule irRS[P]. We write RS[P] > w; 5wy if using rewriting rules in
RS[P], one can rewrites; into w in zero or more steps.

We definestrp (A.r) to denote the setw | RS[P] > A.r - w}.

PROPOSITION 4.6. Given a setP of RT[«] statementsSP(P) = m(A,r, D) if and
only if RS[P] > A7~ D.

23

See Appendix A.4 for the proof.

RT[«] is equivalent to SDSI [Clarke et al. 2001]. Jha and Reps [3idaReps 2002]
pointed out that SDSI string rewriting systems correspaxattly to the class of string
rewriting systems modelled using push-down systems [Baniagt al. 1997]. The same
applies to the rewriting systems generatedRdy«|] statements.

Pushdown systems (PDSs) are similar to pushdown automet&vier, unlike push-
down automata they do not have an input alphabet. Thus PD&sdshot be viewed
as language recognizers, but as mechanisms that spec#iplyoisfinite-state transition
systems.

A pushdown system is a tripléll, T, A), wherell is a finite set of stated; is a fi-
nite stack alphabet, anfl C (IT x I') x (IT x T'*) is a finite set of transition rules. If
((g,7), (¢',w)) € A, then we write it agq,v) — (¢, w).

A configurationof a PDS is a paitq, w), whereq € Il is a state and € I'* represents
the stack contents (from the top of the stack to the bottomstéek). A configuration can
be represented as a string) w (¢ concatenated witt).

We say that a configuratiofy,w;) candirectly reacha configuration(¢’, ws) if the
following three conditions hold: (1) is the symbol on top of the stack;, (2) there
is a transition rule(¢,v) — (¢’,w), and (3)ws is obtained fromw; by first poping~y
and then pushing, i.e,w; = yw}] andwy = ww}. We then define reachability among
configurations in the straightforward manner.

Esparza et al. [Esparza et al. 2000] showed that given a DB, A) and a setC of
configurations that is recognized by an NFAthe set of all configurations reachable from
C is recognized by an NFA that has size polynomiabis- |TII| + |T'| + |A| + |.A] and that
can be constructed in time polynomiakin This result is used in showing that containment
analysis inRT[«] is in PSPACE.

4.3.2 Containment analysis iRT[«] without shrinking is InPSPACE . The key
relationship between an instance of containment analysiss&ing rewriting lies in the
following definition of characteristic sets.

DEFINITION 7 CHARACTERISTIC SET. Given anRT[«] stateP, a restriction ruler,
and a roleA.r, the characteristic set ol.r, denoted byyp z(A.r), is defined to be
strp(A.r) N k[P, R], where

k[P, R] = Principals(P) U {B r v | B.r is g-unrestricted ang € Names(P)*}

The roleX .« contains the roled.r if no matter how one adds a principal as a new mem-
ber toA.r, X.u also gets the principal as a member. Intuitively, eachgirinp = (A.7)
represents a distinct source of adding new members to thedrel Furthermore, the set
xp.r(A.r) describes all the ways of adding new members of the Aote Therefore, one
can use characteristic sets to solve containment analysis.

LEMMA 4.7. Given P and R, X.u contains A.r if and only if xp g(X.u) D
X’P7R(A.T).

PrRoOF We first prove that ifyp z(X.u) 2 xp r(A.r) then X.u does not con-
tain A.r. If xpr(Xw) 2 xpr(Ar), then there exists a string = Bry -+« 7y
such thatw € xpr(Ar) andw ¢ xpr(X.u). ConsiderP’ = P U {B.or; «—
Cy, Cyrg «— Cq, --+, Cx_1.1, — Ci}, whereCy,Cy,--- ,Cy do not occur inP

24

or R. P’ is a reachable stateRS[P'] > A r = B Lo Tk s Cy. From Proposi-
tion 4.6, SP(P') = m(A,r,Cy). We now show thalSP(P’) = m(X,u,Ck). Sup-
pose, for the sake of contradiction, th&®(P’) = m(X,u,Cy). From Proposition 4.6,
RS[PIt> X u > C,. Consider the rewriting sequence, the rule applied in thiestep has

to beCy_ r — Cy, because that is the only rule having'a on its right hand side. The
rule applied in the second to last step has ta’he, r,_1 — Cy_1, because that is the
only rule havingC_; on its right-hand side, and so on. Therefore, the rewriteguence
must contain in its middle a sequence rewriting frém: to B ry - - - r. Further observe
that the rules P’ but not in? cannot be applied in this middle sequence. Therefore,

RS[P]> X u + w. This contradicts the assumption that? xp.r(X).

We now prove that if{.« does not contaitd.r thenyp g (X.u) 2 xp r(Ar). If Xu
does not contaim.r, then there exists a reachable st&feand a principalE’ such that
SP(P") E m(A,r,E)andSP(P’) £ m(X,u, E). From Proposition 4.6, it follows that
RS[P|> A r ~» E. Consider the rewriting sequence that rewrites: into E; let the

sequence bd r s w1 — Wy s E, such that the step from; to ws is the first step that
uses a statement not Clearly,w; € xp r(A.r) andw; € xpr(X.w). O

From the above lemma, we know that whether a role containthanoan be determined
by checking containment among characteristic sets.

PROPOSITION 4.8. Containment analysis iRT[«] where all roles inRoles(P) are
s-restricted is iAPSPACE.

PROOF Given anRT[«] state? and a restriction rulk, to determine whetheX .«
containsA.r, it suffices to check whethegp z(X.u) O xp r(A.r). One can construct
an NFA to recognize p (A.r) in time polynomial in|P| + |R|, and the NFA has size
polynomial in|P| + |R|. This is becausgp r(A.r) = strp(A.r) N k[P, R], and both
strp(A.r) and k[P, R] are recognized by NFAs that can be constructed in time pelyno
mial in |P| + |R|. Similarly, one can construct a polynomial size NFA to rauag
xp r(X.u). Itis known that determining containment of languages jpiszk by NFAs
isin PSPACE [Hunt et al. 1976]. [

4.3.3 Containment Analysis IRT[«] is PSPACE-hard. To prove that containment
analysis inRT[«] is PSPACE-hard, we use a reduction from the problem of check-
ing containment among regular languages that are repesbeising NFAs. The prob-
lem is known to bédPSPA CE-complete, even when the alphabet has just two elements.
(When regular languages are described using DFAs, the cgitypie NLOGSPACE-
complete.)

We consider regular languages oyér 1} that do not contain the empty string. They can
be represented by a form of right linear grammars such tteditgaduction rule has one of
the following two forms: Ny ::= Nyb, and Ny ::= b, whereN; and N, are nonterminals
andb € {0, 1}.

PROPOSITION 4.9. Containment Analysis iRT[«] where all roles inRoles(P) are
s-restricted iSPSPA CE-hard.

PROOF Given two empty-string free regular languages oMgrl }, L; and Lo, let Gy
andG, be the production rules for generatihg andL», and letS; andS; be the two start
symbols. Wlog, assume th&t;, andG> do not share any non-terminal. L&t= G, U Gs.

25

For any nonterminalV in G, we write Lo (N) to denote the language generated®y
when usingV as the start symbol.

We now reduce the problem of determining whethern(S;) 2 L (S2) to a contain-
ment analysis problem. We use two principalsaand B, two role names., andu, for
the two terminald) and1, and one role namey for each nonterminalV. We define
P to have the following statements. For each productéén:= N'b in G, Pg has
A.rny — A.rnrup. For each productioV ::= b, introduce a statement.r y «—— B.uy,.
We defineR ¢ to be such that all roles started withare g/s-restricted, and all roles started
with B are g-unrestricted.

It is not hard to see that a strifbgbs - - - b, € L(V) if and only if RS[Pg| > A ry .
B.up, up,. - -+ .up,,. One can further verify that there exists a one-to-one nmapfriom
strings in Lg(N) t0 xpy,re(Arn) such thatLg(N:) 2 Lg(Ng) if and only if
XPoRe(ArN,) 2 XPore(Arn,). From Lemma 4.7, it follows thaL.g(N;) 2
La(N,) ifand only if A.ry, containsA.ry,. O

4.3.4 Containment analysis iRT[«] without growable roles.Theorem 4.4 asserts
that containment analysis RiT [«—] without shrinkable roles iPSPACE-complete. We
now show that containment analysisRit [«] without growable roles isoNP-complete.

THEOREM 4.10. Containment analysis iRT[«] where all roles inRoles(P) are g-
restricted iscoNP-complete.

See Appendix A.3 for the proof. The key observation used énpioof is that linked
roles, similar to intersection, can simulate logical cawjiion. Recall that the semantic
rule for linking inclusion statement$;n3), has a conjunction in the body, similar to that
for intersection inclusion statements;4).

4.4 Containment Analysis for RT[«,N] is in coNEXP

We now study the computational complexity of containmerathgsis inRT[«—, N], which
has both intersection and linked roles.

THEOREM 4.11. Containment analysis iRT[«, N] is in coNEXP.

See Appendix A.5 for the proof. The proof shows that if thedists a counter example to
the containment relation, i.e., there exists a reachahbte 8t which the inclusion does not
hold, then there exists such a reachable state of size ataxypshential in the input size.
We have shown that containment analysisRai«, N] is PSPACE-hard (from The-
orem 4.4) and is icoNEXP. The exact complexity is still unknown. We have tried
applying the approach f®T[«] to the case oRT[«,N], and we now discuss the diffi-
culties of this approach. There is a natural mapping betviR¥eR-] and pushdown sys-
tems. RT[«, N], which adds tRT][«] intersection inclusion statements, can be mapped
to alternating pushdown systems. An alternating pushdgwtem (APDS for short) is a
triplet (I1, T", A), wherelIl andT" are the same as for PDSs, afids a function that assigns
to each element dfil x I') a negation-free boolean formula over elementslof I'*. If
A(q,v) = (q1,w1) A (g2,w2), then for everyw € T'*, the immediate successor @f, yw)
is the set{{q1,w1w), (g2, waw)}. Intuitively, at the configuratiorq, yw) the APDS forks
into two copies in the configurationg;,wiw) and (g2, wow). Because of the mapping
from RT[«,N] to APDSs, theRT[«, N] containment analysis problem is reduced to de-
termining containment of the reachable frontiers of two ARD Each frontier is a set

26

of configurations of a set of PDSs. It is known that given an SPbe set of all con-
figurations that can reach a particular configuration cannm®d@ed using an alternating
finite automata (AFA). It is known that determining contaegmhbetween two languages
accepted by AFAs iPSPA CE-complete. However, there exists no result on characteriz-
ing the frontiers reachable from a particular configuratiorparticular, it is not clear how

to encode all the reachable frontiers (a set of sets of sfyisgccinctly3

5. DISCUSSIONS AND RELATED WORK

We have shown that containment analysis is intractabReTifn], RT[«], andRT[«, N].
This means that it is extremely unlikely that we will find agadithm that is both sound and
complete, and also has a worst-case polynomial time corityplétowever, heuristic ap-
proaches are still possible. For example, it is not diffitukéxtend our LP-based approach
for containment analysis iRT]] to the case oRT[«] andRT[«, N], such that contain-
ment relationships in our running example can be provececty: A possible approach
is to use a sound but incomplete method and a complete butindsoethod together to
approximate the exact answer. Such a heuristic approactomageful in practice, as it
can give an exact answer in most cases. How to evaluate #wtiedness of such methods
is interesting future work.

On the other hand, we have shown that in our TM model, simffietysanalysis can
be solved efficiently. As discussed in Section 1, securigyasis in the form of simple
safety analysis has been studied in the HRU model [Harris@h 4976], and shown to
be undecidable there. In this section we study the reldtipeshetween the two models,
arguing informally that the HRU model does not include our friddel as a special case,
and showing that there is an intuitive reason why securifyais in our model is decid-
able. We also seek to clarify the relationship between howatéd users are modelled in
the two approaches. After this discussion of related workafety analysis, we go on to
discuss related work in trust management.

5.1 Comparison with the HRU Access Matrix Model

In the HRU model [Harrison et al. 1976] peotection systerhas a finite set of rights and a
finite set of commands. Aonfigurationof a protection system is an access control matrix,
with rows corresponding to subjects, and columns corredipgrto objects; each cell in
the matrix is a set of rights. A command takes the form of “ifsa 6f conditions hold,
execute a sequence of primitive operations.” Each condigists whether a right exists in
a cell in the matrix. There are six kinds of primitive opesas: enter a right into a specific
cell in the matrix, delete a right from a cell in the matrixeate a new subject, create a
new object, destroy an existing subject, and destroy arnimgisbject. A command may
be parameterized, with parameters being subjects or gbjént[Harrison et al. 1976],
Harrison et al. proved that for the HRU model, the safety tjoeds undecidable, by
showing that any Turing machine can be simulated by a piiotesystem. For a fixed set
of mono-operational commands, safety can be determindch@angolynomial in the size
of the access control matrix. However, if commands are anpeter to the problem, the
safety problem iNP-complete.

3The difficulty of encoding such a set of frontiers was pointed to us by Ahmed Bouajjani in personal com-
munication.

27

In our model, given a statg, the minimal Herbrand model &fP(P) is a set of ground
logical atoms. An atomm(A,r, D) means thatD is a member ofd’s r role. When
A represents a resource, this can be vieweddsaving the right- over A. Therefore,
one can view principals as both subjects and objects andnglanames as rights. This
defines a straightforward mapping between the semantiPsasfd an access matrix. If all
we have are simple member statements, then adding (or reg)ovir <—— D corresponds
to adding (or removingy to the cell on rowD and columnA. Therefore, if we consider
safety analysis in the sub-languageRdf[«, N] that has only simple member statements,
this problem is a sub-problem of the HRU safety problem.

Adding a simple inclusion statementr «—— B.r, can be viewed as adding a trigger pro-
gram, which for each rowD, use parameterd, B, D to execute the following command:
“a2(x,y,z) { if 1 in cell (y,z), addr to cell (z,z) }". Note that this trigger program
needs to be executed whenever the matrix changes. For exaifngfter A.r «—— B.rq
is added, addind3.r; «— E will need to result in- being added to the cel4, E). The
statemen#d.r «—— B.ry givesB the power to add things td’s column, which represents a
delegation. Similarly, adding a linking inclusion staterhd.r —— A.r;.r, can be viewed
as adding a trigger program that executes the following carmiwvith parameterg, D, £
for everyD and E: “a3(z,y, z) { if r1 in cell (z,y), andrs in cell (y, z), addr to cell
(z, z) }". Adding intersection inclusion statement can be viewed gimilar manner. It is
not clear how to model removing a statement using this agproa

There might be other ways of encoding our TM model in the HR&kas matrix model,
but the above encoding seems quite natural. From it, we nekiliowing observations.

It seems unlikely that the HRU model subsumes the TM modelspeaial case, even
when we restrict ourself t&T[], which has simple inclusion as well as simple member
statements. First, in the TM model, creating and removirigcjpals are implicit. A
principal can be viewed as created if it is used. A princigatansidered removed if no
statement mentions it. One could view the matrix as havingfamte number of rows and
columns; however, only finitely many cells are nonempty. ddel¢c one step of change in
the TM model corresponds to executing many (one for evergatlyhen adding a simple
inclusion or an intersection inclusion statement, or orreefgery pair of objects when
adding a linking inclusion statement) simple commandsé&HRU model. Third, triggers
need to be used in order to achieve the effect of propagafibe. last two are the main
power of the TM model, and they do not exist in the HRU model.

That our TM model cannot subsume the HRU model is immediata the complexity
bounds. The underlying reason is that the HRU commands wieysetially simulate our
TM model have fixed schemas, instead of being arbitrary progr As a result, we can
exploit the properties of these fixed schemas. This seemes tisebmain reason that safety
analysis, or the even more powerful containment analysidecidable in our model, but
not in the HRU model.

Handling Trusted Subjectdntuitively, a specific protection system is “safe” if acses
to resources without concurrence of the owner is impossHibsvever, protection systems
often allow the owner to share rights to the resources. Inghase, they are not safe; the
HRU model uses a weaker notion of safety: a user should be@t## whether what he is
about to do can lead to the further leakage of that right toustéd subjects. The following
is quoted from [Harrison et al. 1976].

To avoid a trivial “unsafe” answer becauskimself can confer generic right

28

we should in most circumstances deletiéself from the matrix. It might also
make sense to delete from the matrix any other “reliablejestb who could
grantr, but whoms “trusts” will not do so. Itis only by using the hypothetical
safety test in this manner, with “reliable” subjects dedetinat the ability to
test whether a right can be leaked has a useful meaning irs tefrmhether it
is safe to grant a right to a subject.

Note that deleting a “reliable” subject from the matrix isosiger than stopping it from
granting a right. Deleting a subject from the matrix will yeat the analysis from suc-
cessfully simulating the execution of commands that chéghts in the row or column
corresponding the subject. However, it is inappropriategtmre such commands: they
may add undesirable rights and they may be initiated by ‘liable” subjects. In such
cases, a system that is safe after the “reliable” subjeeteeanoved is not safe in the actual
system, even if “reliable” subjects do not initiate any coama.

In our TM model, the restriction rul& represents the intuitive notion that certain princi-
pals are trusted. In practice, principals are controllediggrs. When principals represent
resources, the controller is the subject who controls adogse resource. When principals
represent public keys, the controller is the user who knbwgtivate key.

5.2 Related Work in Trust Management

To our knowledge, no prior work investigates security asialyor trust management sys-
tems in the sense of verifying security properties that iemsstate changes in which
(parametric) restrictions are placed on allowed changeg§Chander et al. 2001], a state
transition model is used for comparing the expressive pafalifferent access control
mechanisms such as access control lists and trust managérhere, security analysis is
not the purpose. The languaBd [«, M| is closely related to SDSI, whose semantics and
evaluation has been the subject of many previous works [AH2@B; Clarke et al. 2001;
Halpern and van der Meyden 2001; Jha and Reps 2002; Li 20@Q;dli 2003]. One main
difference our work has is that we consider restricted statmnges. We now list some
similarities. The semantic approach we use is very simdahé semantics in [Halpern
and van der Meyden 2001]. Both [Abadi 1998] and [Halpern aendl der Meyden 2001]
consider inclusion queries in additional to membershiprigge In some sense, they try to
answer queries that hold when arbitrary new statementsldmubdded, i.e., every role is
g-unrestricted and s-restricted; the case that some rodeg-gestricted is not considered.
In [Jha and Reps 2002], evaluating queries given a set of SB&ments is reduced to
model checking pushdown systems; there, only a fixed set & S@tements is consid-
ered, which are encoded as transition rules in the auton@thaer works [Clarke et al.
2001; Li 2000; Li et al. 2003] do not handle inclusion queesonsider restricted state
changes.

The notion of delegation here is similar to the notion of ‘&gefor” in the ABLP logic
for authentication and access control [Abadi et al. 1993njhson et al. 1992]. In ABLP
logic, that A speaks forB means that, if principald makes a statement, then we can
believe that principaB makes it, too. Thatl speaks for3 can be viewed as a delegation
of all authority fromB to A. The ABLP logic is designed mainly for authentication; its
total delegation has too coarse a granularity for accessatomo limit the authority being
delegated in the logic, a principal can adopt a role befotega¢ing. By using roles, one
can achieve effects roughly similar to decentralizedlaites and delegation of attribute

29

authority. However, SRC logic does not ave attribute-batsldgation supported using
linked roles.

6. CONCLUSION

Trust management systems suchiRi5 allow independent principals to delegate partial
authority over resources. While this is useful in many sitret, delegation also raises
the possibility of unanticipated and undesirable accekdlide delegates access to her
friend Bob, how can she be sure that Bob does not give peonsso her enemy Carol?
We address this question by studying several forms of safetyavailability properties,
including general containment analysis that capture baftg and availability.

Although the trust management primitives we consider areeregpressive than some
aspects of the HRU model [Harrison et al. 1976], our mainltesiow that persistence
of nontrivial safety and availability properties may beaithmically tractable. Specifi-
cally, membership queries and boundedness queries, hatlviimg containment between
a role and a fixed set of principals, can be answered usindodapaograms that run in
polynomial time. For general inclusion queries, we lookeatesal cases involving differ-
ent policy sub-languages. FBIT|], which only allows membership and delegation policy
statements, containment for all reachable states is cahleuby a stratified datalog pro-
gram with negation in polynomial time. F&T[N], which isRT[] plus intersection, the
problem becomesoNP-complete. Intuitively, the reason is that multiple stagers about
a role represent disjunction, while intersection of rolesvjrles a corresponding form of
conjunction. FORT[«], which isRT[] plus role linking, role containment for all reach-
able policy states iPSPACE-complete. FORT[«, N], which includes role linking, the
problem remains decidable; our current upper bourebSEXP (or double-exponential
time) and lower bound i SPA CE-hard.

We believe that security analysis is a critical problem fost management. While com-
bining policy statements from independent principals hastiral appeal, the flexibility of
distributed policy comes at a price. An individual or orgaation that owns a resource no
longer has a direct way to determine who may be able to ackesssource in the future.
The key to providing assurance to trust management usessdsvelop security analysis
methods. The present paper identifies and solves certaimityeanalysis problems, but
additional work remains. Exact complexity bound for contaént analysis ilRT [«—, N]
is still open. Although containment analysis has no efficagorithm in the worst case,
there may be tractable subcases or useful heuristics. \Wéealge open for future work the
consequences of more intricate restriction on policy ckangor example, it may be use-
ful to impose restrictions that depend on the current pppogsibly formulated as policy
invariants in some specification language.

Acknowledgement

This work is supported by DARPA through SPAWAR contracts 8&6-00-C-8015 and
N66001-01-C-8005. It is also supported by DOD MURI “SemestConsistency in
Information Exchange” as ONR Grant N0O0014-97-1-0505 and®pD University Re-
search Initiative (URI) program administered by the Offi€&laval Research under Grant
N00014-01-1-0795.

We thank Fred Schneider and Somesh Jha for discussiongthiat dur study of safety
and availability properties in Trust Management. We alsmkhthe anonymous reviewers
for their encouragement and helpful comments.

30 .

REFERENCES

ABADI, M. 1998. On SDSI’s linked local name spacésurnal of Computer Security -2, 3-21.

ABADI, M., BURROWS, M., LAMPSON, B.,AND PLOTKIN, G. 1993. A calculus for access control in distributed
systems ACM Transactions on Programming Languages and System&(Tit.), 706—734.

APT, K. R., BLAIR, H. A., AND WALKER, A. 1988. Towards a theory of declarative knowledge-dnndations
of Deductive Databases and Logic ProgrammifgMinker, Ed. Morgan Kaufmann, Los Altos, CA, 89-148.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. D. 1999a. The KeyNote trust-
management system, version 2. IETF RFC 2704.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J.,AND KEROMYTIS, A. D. 1999b. The role of trust management
in distributed systems. I®ecure Internet Programmind ecture Notes in Computer Science, vol. 1603.
Springer, 185-210.

BLAZE, M., FEIGENBAUM, J.,AND LACY, J. 1996. Decentralized trust managementPlaceedings of the
1996 IEEE Symposium on Security and PrivdBEE Computer Society Press, 164-173.

BouAJJANI, A., ESPARZA, J.,AND MALER, O. 1997. Reachability analysis of pushdown automata: Appli
tion to model-checking. IProceedings of CONCUR’9Rumber 1256 in Lecture Notes in Computer Science.
Springer, 135-150.

CHANDER, A., DEAN, D., AND MITCHELL, J. C. 2001. A state-transition model of trust management and
access control. IProceedings of the 14th IEEE Computer Security Foundatiaskshop IEEE Computer
Society Press, 27-43.

CLARKE, D., ELIEN, J.-E., ELISON, C., FREDETTE M., MORCOS A., AND RIVEST, R. L. 2001. Certificate
chain discovery in SPKI/SDSlournal of Computer Security 8, 285-322.

DOWLING, W. F.AND GALLIER, J. H. 1984. Linear-time algorithms for testing the satisfighof propositional
horn formulaeJournal of Logic Programming 13, 267—284.

ELLISON, C., RRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLONEN, T. 1999. SPKI certificate
theory. IETF RFC 2693.

ESPARZzA, J., HANSEL, D., ROSSMANITH, P.,AND SCHWOON, S. 2000. Efficient algorithms for model check-
ing pushdown systems. Proceedings of the 12th International Conference on CoepAided Verification
(CAV 2000) LNCS, vol. 1855. Springer, 232—-247.

GAREY, M. R. AND JOHNSON, D. J. 1979. Computers And Intractability: A Guide to the Theory of NP-
CompletenessV.H. Freeman and Company.

GRAHAM, G. S.AND DENNING, P. J. 1972. Protection — principles and practicePtaceedings of the AFIPS
Spring Joint Computer Conferencéol. 40. AFIPS Press, 417-429.

GUNTER, C. A. AND JiM, T. 2000. Policy-directed certificate retriev8loftware: Practice & Experience 305
(Sept.), 1609-1640.

HALPERN, J. AND VAN DER MEYDEN, R. 2001. A logic for SDSI’s linked local name space¥urnal of
Computer Security 94,-2, 47-74.

HARRISON, M. A., Ruzzo, W. L., AND ULLMAN, J. D. 1976. Protection in operating syster@@mmunica-
tions of the ACM 198 (Aug.), 461-471.

HUNT, H. B., ROSENKRANTZ, D. J.,AND SZYMANSKI. 1976. On the equivalence, containment, and covering
problems for the regular and context-free languagdesirnal of Computer and System Sciences21@&pr.),
222-268.

JHA, S.AND REPS T. 2002. Analysis of SPKI/SDSI certificates using model &imeg. In Proceedings of the
15th IEEE Computer Security Foundations WorksH&fEE Computer Society Press, 129-144.

Jm, T. 2001. SD3: A trust management system with certified evi@aoatin Proceedings of the 2001 IEEE
Symposium on Security and PrivatiyEE Computer Society Press, 106—-115.

LAMPSON, B., ABADI, M., BURROWS M., AND WOBBER, E. 1992. Authentication in distributed systems:
Theory and practiceACM Transactions on Computer Systems4l(Nov.), 265-310.

LampPsoNn, B. W. 1971. Protection. IRProceedings of the 5th Princeton Conference on Informafioiences
and SystemsReprinted in ACM Operating Systems Review, 8(1):18-24,1Bi4.

L1, N. 2000. Local names in SPKI/SDSI. Rroceedings of the 13th IEEE Computer Security Foundations
Workshop|IEEE Computer Society Press, 2—-15.

L1, N., GROSOF B. N., AND FEIGENBAUM, J. 2003. Delegation Logic: A logic-based approach to ithisted
authorization ACM Transaction on Information and System Security @seb.), 128-171.

31

L1, N. AND MITCHELL, J. C. 2003a. Datalog with constraints: A foundation fostnmanagement languages.
In Proceedings of the Fifth International Symposium on PradtAspects of Declarative Languages (PADL
2003) Springer, 58-73.

L1, N. AND MITCHELL, J. C. 2003b. RT: A role-based trust-management frameworkhenThird DARPA
Information Survivability Conference and Exposition (DEX 1lI). IEEE Computer Society Press.

L1, N., MITCHELL, J. C.,AND WINSBOROUGH W. H. 2002. Design of a role-based trust management frame-
work. InProceedings of the 2002 IEEE Symposium on Security and &tiVBEE Computer Society Press,
114-130.

L1, N., WINSBOROUGH W. H., AND MITCHELL, J. C. 2003. Distributed credential chain discovery inttrus
managementJournal of Computer Security 11,(Feb.), 35-86.

LIPTON, R. J.AND SNYDER, L. 1977. A linear time algorithm for deciding subject seturiJournal of the
ACM 24,3, 455-464.

LLoyp, J. W. 1987 Foundations of Logic Programming, Second Editi&@pringer.

RIVEST, R. L. AND LAMPSON, B. 1996. SDSI — a simple distributed security infrastruetuAvailable at
http://theory.lcs.mit.edu/~rivest/sdsill.html.

SANDHU, R. S. 1988. The schematic protection model: Its definitionamalysis for acyclic attenuating sys-
tems.Journal of the ACM 352, 404-432.

SANDHU, R. S. 1992. The typed access matrix modePioceedings of the 1992 IEEE Symposium on Security
and Privacy IEEE Computer Society Press, 122-136.

SANDHU, R. S., @YNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control
models.|IEEE Computer 292 (February), 38—47.

WEEKS, S. 2001. Understanding trust management systemsPrdoeedings of 2001 IEEE Symposium on
Security and PrivacylEEE Computer Society Press, 94-105.

A. PROOFS
A.1 Proofs of Fact 3.5 and Proposition 3.6

Fact 3.5: GivenP, R, a role A.r, and a principal E' that does not occur ifP, A.r is g-
unbounded if and only if there exists a reachable sfiteuch thatSP(P’) = m(A,r, E).

PrRoOOF The “only if” part follows from the definition of g-unboundeoles.

In the “if” part, becaus®T[«—, N] is monotonic, we can assume without loss of general-
ity thatP’ is derived fronmP by adding some statements; et = P U7P;. Given any prin-
cipal Z, one can replace wit® all occurrence of in the bodies of statements iy, ob-
taining a new set of statement®,. Let P = P’ UP,. P" is reachable fron®P because it
modifies the definitions of the same roles as dBesNe show thatSP(P") = m(A,r, Z)
by using induction oni to show that for allA.r, if m(A,r,E) € Tspepr) 1%, then
SP(P") = m(A,r, Z). The basis is trivially satisfied becau$gpp/) 1°= 0. In the
step,m(A,r, E) € Tsppy1"t!. This must be due to one of the four rulesd®(P’),
(ml), (m2), (m3), or (m4), which gives us the four following cases:

Case(ml): A.r—— E € P’. By construction ofP”, A.r — Z € P". SP(P") =
m(A,r, Z) follows from (m1).

Case(m2): A.r«—— B.ry € P'andm(B,ry, E) € Tspp/)1*. The induction hypothe-
sis now gives u$SP(P") = m(B,ry, Z), from whichSP(P") = m(A,r, Z) follows by
(m2).

Case(m3): A.r«— A.ry.ry € P'andm(A,ry, B),m(B,rs, E) € Tsppr)1* for some
B. The induction hypothesis now gives 88 (P") = m(B,rs, Z). Fromm(A,r1, B) €
Tsppiy1', we haveSP(P’) |= m(A,rq, B), which gives usSP(P"”) |= m(A,r1, B) by
monotonicity ofRT[«, N]. We now haveSP(P") = m(A,r, Z) by (m3).

Case(m4): Ar«—Bi.riNBy.ry € P’ al’]dTn(Bl7 r1, E), m(BQ, 9, E) S TSP('p/)Ti.
This case proceeds similarly to cgse2) above. [

32

Proposition 3.6: Given anyP, R = (G,S), A.r € Roles(P), andZ € Principals(P) U
{T}, UB(P,R) = ub(A,r, Z) if and only if there exist$’ such thatP +>z P’ and
SP(P") Em(A,r, Z).

PROOF The “only if” part (Soundness): IWB(P,R) = ub(A,r, Z), considerP’ =
PU{X.u—Z| X.u € Roles(P) — G}. We show by induction onthat if ub(A,r, Z) €
Tugp,r)1" thenSP(P') |= m(A,r, Z). The basis is trivial. In the stepb(A,r, Z) €
Tupp,r)1"t!, one of the rules iVB(P, R) is used to derive this. Case) is impossible,
asA # T. Case(u0): A.r € Roles(P) — G, by construction ofP’, Ar—Z € P’. So
SP(P") = m(A,r, Z) follows immediately by(m1). Case(ul): Ar«— 2 € P C P'.
In this caseSP(P’) = m(A,r, Z) also follows immediately bym1).

Case(u2): Ar«— B.ry € P C P’ andub(B,r1,7Z) € Tygp,r) 1" The induction
assumption now gives usSP(P’) = m(B,r, Z), from which SP(P) E m(A,r,Z)
follows by (m2).

Case (u3): Ar «— Ariry € P C P and ub(A,r,B),ub(B,r2,Z) €
Tugp,r) 1° for some B. The induction assumption now gives W (P’) |=
m(A,r1, B),m(B,rs, Z), fromwhichSP(P’) = m(A,r, Z) follows by (m3).

Case(ud): Ar «—— By.ry N Baorg € P C P andub(By,r1,2), ub(Ba, 1, Z) €
Tuprpr) 1% The induction assumption now gives usP(P’) =
m(B1,71,2Z), m(Ba,r2, Z), from whichSP(P’) = m(A,r, Z) follows by (m4).

The “if” part (Completeness): Suppose that there existsaah&ble stat®’ such that
SP(P") E m(A,r,Z). If Ar & G, thenUB(P,R) = ub(A,r, Z) from (u0). For the
case in whichA.r € G, we use induction onto show that ifim(A,r, Z) € Tsp(p/)Ti, then
UB(P,R) E ub(A,r,Z). The basis is trivial. In the step, there are four cases. Gasg
Ar——Z e P'. FromAr € G,we haved.r — Z € P. SOUB(P,R) = ub(A,r, Z)
follows by using(u1).

Case(m2): A.r«— B.ry € P andm(B,r1,Z) € Tspip1*. The induction hypoth-
esis gives ud/B(P,R) = ub(B, r1, Z), from which we obtain the desiré®B3 (P, R) =
ub(A,r, Z) by (u2).

Case(m3): A.r«— A.ry.rg € PP andm(A, r1, B),m(B,rs, Z) € Tsppr)T* for some
B. The induction hypothesis gives UsB(P,R) = ub(4,r1, B), ub(B,rs, Z), from
which we obtain the desird@B (P, R) = ub(A,r, Z) by (u3).

Case(m4): Ar«—Bi.riNByry €P andm(Bl, 1, Z), WL(BQ, T2, Z) S Tsp(p/)Ti.
This case is similar to the ones abové]

A.2 Proof of Lemma 4.1 and Proposition 4.2

We introduce the following terminology for the proof. To defithe semantics of
a stratified logic program, we define an operafer which is parameterized by a
ground logic progranDP’ and a set of ground atom&/. Given a set of ground
logical atoms K, ®pp/ p(K) consists of all ground logic atomsg, such that
a:—bi,...,by,~byi1,...,~byim € DP" andb; € K andb,,; ¢ M. Given a
logic programDP andDP; U --- U DP, a stratification ofDP™5", definel'},, to be
Opp, 91¢, i-e., the least fixpoint obpyp, . Definel5 to bedpp, ..upp, ., 1%
for1 <k < s — 1. Thenthe model 6DP isT'%p. Eachl“%p can be calculated in poly-
nomial time, so the semantics of a stratified program cantssmomputed in polynomial

33

time.

The programBCP(P,R) has a stratification of two strata. DefigCP; to be the
ground instantiation of clauses definitigandfc in BCP(P,R), and BCP, to the ground
instantiation of clauses defininge. (We useBCP instead of BCP(P,R) for succinct-
ness.) We writdBCP |= a if a € I'% 5. Whena is a ground instance gt or b, we write
BCP ' aif a € Dpep, ¢1". Whena is a ground instance ofc, we write BCP =" a is

K3
a € ®pep,upep, i, 1"

Lemma 4.1: Given anRT]] state’?, R, two rolesX.u and A.r, if BCP(P,R) =
fe(X,u, A, r), then X.u containsA.r. If X.u containsA.r and A.r is g-unrestricted,
thenBCP(P,R) | fe(X,u, A, r).

PROOF Soundness: IBCP = fc(X,u, A,r), then there exists an integésuch that
BCP E' fe(X,u, A,r). Induction oni. The basis is trivial, a® zcp, ¢1°= 0. Consider
the step; either or (c1) is used to deduce th&CP =1 fe(X,u, A, 7). Casgc): it must
be thatX.u = A.r, so itis trivial thatX.u containsA.r. Case(cl): X.u+— B.r; € P|g
and BCP = fe(B,r1, A,r). By induction hypothesisB3.r; containsA.r. Furthermore,
X.u«— B.rq exists in every reachable state; therefofey containsA.r.

Completeness: Supposé.u containsA.r and A.r is g-unrestricted. Considg?’ =
Plr U (Ar «— E), in which E does not occur irP. Observe thatX.u includes
A.r is true, becausé’’ is reachable. AsSP(P’) = m(A,r E), it must be that
m(X,u, E) € Tsgppr 1% for somei. To complete the proof, we use induction bto
show that for eaclY.u, if m(Y,u, E) € Tsppy 1, then BCP = fe(Y,u, A,r). Ba-
sis is trivial. In the step, one dfnl) and (m2) is used to deduce that(Y,u, E) €
Tsppy 1", Case(ml): Yu «— E € P’, it must be thatY.u = A.r, asE does
not occur inP. From (c), BCP E fc(Y,u,A,r). Case(m2): You «—— Yi.u; € P/,
andm(Y1,u1, E) € Tspepry 1°. By definition of P/, Y.u «— Yi.u; € Plg. From
(1), fe(Y,u,?Z,%w) : — fe(Y1,u1,?Z,7w) € BCP. By induction hypothesisBCP =
fe(Y1,uy, A,r), clearly BCP = fe(Y,u, A,r). O

Before proving Proposition 4.2, we first prove two auxilitggnmas. Readers may wish
to read the main proof first and refer to the two lemmas wheyp ieeded. The following
lemma is used to prove the soundnessdf).

LEMMA A.1. Assume we are giveR in RT[], R, two rolesX.u and A.r, and a
principal D such thatSP(P|z) ¥ m(X,u,D). LetP’ = P|lg U {Ar «— D}. If
SP(P’) E m(X,u, D), thenBCP = fe(X,u, A,).

PROOF We use induction on to prove that for anyZ.w such thatSP(P|r)
m(Z,w, D), if m(Z,w, D) € Tsppr1',thenBCP |= fe(Z,w, A,r).

The basis is trivial. In the step, one @h1) and(m?2) is used to deriven(Z, w, D) €
Tsppy 1", Case(ml): Zw «— D € P'. It must be thatZ.w = A.r, as it cannot
be thatZw «— D € P|g. By (¢), BCP E fe(Z,w,A,r). Case(m2). Zw «—
Z1.w1 € P’ andm(Zl,whD) S TSP('}D/) Ti. It follows that Z.w «— Z;.wy € P|R,
by definition of P’. And it follows thatSP(P|r) = m(Z1, w1, D), because otherwise
SP(P|r) = m(Z,w, D), which is contradictory. Now, by induction hypothesi'P =
fe(Z1, w1, A, r), so the desired result holds byl). O

The following lemma says th&h2) is sound.

34

LEMMA A.2. Assume we are given &RiT[] stateP, R, and three rolesX.u, A.r,
B.ry, such thatA.r «— B.ry € P, BCP(P,R) ¥ fe(X,u, A,r), and X.u does not
containB.r,. ThenX.u does not contaimi.r.

PrROOFR As X.u does not contaiBB.r1, there exists a reachable st&teand a principal
E such thatSP(P’) = m(B,r1, E) andSP(P’) i m(X,u, E). We now construct &”
such thatSP(P") &= m(A,r, E) andSP(P") £ m(X,u, E). P" is obtained fronP’ by
first removing anyZ.w «— Z,.w; € P’ — P|g such thatSP(P’) - m(Z,,w:, E), and
then addingA.r — B.r;. Clearly, P” is reachable. By induction on how (A, r, E) is
proven inSP(P’), itis easy to show thaiP(P") = m(A,r, E).

To prove thatSP(P”) = m(X,u, FE), we use induction ori to prove that for any
Z.w such thatSP(P’) = m(Z,w,E), if m(Z,w,E) € Tsppr) 1, then BCP =
fe(Z,w, A,r). The basis is trivial. In the step, one pf1) and (m2) is used to derive
m(Z,w, E) € Tspepn1't!. Case(ml): Zw «—— E € P”. This is impossible, as this
means thaZ.w «— E € P’, which is contradictory withSP(P’) - m(Z,w, E). Case
(m2): Zw— Zy.wy € P” andm(Zy, w1, E) € TSP('p//)Ti. By definition of P”, either
Zw = A.randZ,.w; = B.ry, or Zw+«— Z1.wy € P'. Inthe former casege(Z, w, A, 1)
follows from (c). In the latter case, it follows thatP(P’) [~ m(Zy, w1, E), from
SP(P’) = m(Z,w, E), and, by induction hypothesis, thBCP |= fc(Z1, w1, A, 7). Now
the desired result holds ky1), provided we haveZ.w «— Z;.w; € P|g. This follows
from the construction 0P’ and the case assumption thatZ, , w,, E) € Tsp(p//)Ti. O

Proposition 4.2: Given anRT[] state?, R, and two rolesX.u and A.r in Roles(P),
BCP(P,R) = nc(X,u, A,r) if and only if X.« does not contaim.r.

PrROOF The “only if” part (Soundness): We use induction ernto show that if
BCP E' ne(X,u, A,r), then X.u does not contaim.r. Basis is trivial. In the step,
one of (n0), (n1), and (n2) is used to derive thaBCP ' nc(X,u,A,r). Case
(n0): A.r must be g-unrestricted, anllCP = ~ fe(X,u, A,r); therefore, BCP [~
fe(X,u, A, r). From Lemma 4.1X .« does not contaitd.r. Case(nl): A.r«—D € P,
BCP = ~Ib(X,u, D), andBCP = ~ fe(X,u, A, 7). ThenSP(P|r) ¥ m(X,u, D) by
Fact 3.1. LetP’ = P|g U {A.r +—— D}. From Lemma A.1 it follows thabP(P’)
m(X,u, D); thereforeX.w does not contaiM.r. Case(n2): Ar «— B.ry € P,
BCP E™ ne(X,u, B,r1), andBCP = ~ fe(X,u, A,r). By induction hypothesisX.u
does not contaiB.r;; from Lemma A.2,X .« does not containli.r.

The “if” part (Completeness): K.« does not contaird.r, then we show thaBCP =
ne(X,u, A,r). WhenA.r is g-unrestricted. ¢From Lemma 4BCP (~ fe(X,u, A,r),
and soBCP E ~fe(X,u,A,r). From (n0), BCP &= ne(X,u,A,r). In the rest
of the proof, we only need to consider the case that is g-restricted. IfX.u does
not contain A.r, then there exists a reachable st@é and a principalE such that
SP(P’") E m(A,r, E) and SP(P’) & m(X,u,E). We use induction on to show
that if m(A,r, E) € Tsp(p/)Ti, then BCP = nc(X,u, A, r). First observe that, from
Lemma 4.1, it follows thaBCP (= fe(X, u, A,r), and SOBCP = ~ fe(X,u, A,r). The
basis is trivial. In the step, one ¢fn1) and (m2) is used to deduce that(A,r, E) €
Tsppry 1", Case(ml): Ar «— E € P', Ar — E must be inP asA.r is g-
restricted. From Proposition 3.2 a(P(P’) = m(X,u, E), BCP £ b(X,u, E),
and soBCP | ~Ib(X,u,E). ¢From(nl), BCP(P,R) E nc(X,u,A,r). Case
(m2): Ar «— By € P andm(B,r,E) € Tspipry 1'. As A.r is g-restricted,

35

A.r «— B.ry € P. By induction hypothesisBCP(P,R) = nc(X,u, B,r1). There-
fore, BCP(P,R) = ne(X, u, Z, w) by an instance ofn2). 0O

A.3 Proofs of Theorems 4.3 and 4.10

We first prove a lemma that will be used in establishing lowaurizls on the complexity
of containment analysis. The lemma says that if a containmieas not hold, then there
exists a counter-example state that only adds simple mestdtements t@ and only uses

role names imP.

LEMMA A.3. GivenP andR, two rolesX.u andA.r in Roles(P), if X.u does not con-
tain A.r, then there exists & such thatSP(P’) = m(A,r, E), SP(P’) £ m(X,u, E),
P’ — P only has simple member statements, &anly uses role names iR.

PROOF. If X.u does not containi.r, then there exists &’ thatSP(P’) = m(A,r, F)
and SP(P’') = m(X,u,E). Given such &’, we first deriveP” by replacing every
statementd.r —— e € P’ — P, wheree is a role, a linked role, or an intersection, with a set
of statement§ A.r —Y | SP(P’) = m(A,r,Y)}. Using induction, it is straightforward
to show that the resulting state computes the exact sameneitgberships.

Now P” — P consists of only simple member statements. Ffh we deriveP’”’
by removing all simple member statements that use role nénw¢soles) not appearing
in P. For example, a statemedtv «—— D in P”, wherev does not appear i, will
not be inP”’. Using induction, it is straightforward to show that, fote® in Roles(P),
P computes exactly the same membership®asintuitively, A.v «— D cannot affect
members of roles ifRoles(P”) unless the body of some statement refers to the role name
v, which is impossible, as every statemenfif{ that could have role names in its body is
also inP, and so does not use [J

Theorem 4.3: Containment analysis iRT[N] is coNP-complete.

PrROOF To showcolNP-hardness, we reduce the monotone 3SAT problem to the com-
plement of the universal containment problenRm[N]. Monotone 3SAT is 3SAT with
each clause containing either only positive literals oyar@gative literals; it is known to
be NP-complete [Garey and Johnson 1979].

Given an instance of monotone 3SAT:= ¢; A -+- Acg ACii1 A -+ A Cp, in Which
c1,...,Cce are positive clauses ar@d, ..., ¢, are negative clauses. Lgt,...,ps be
all the propositional variables i. For each negative clausg = (—pg, V —Pk, V “Dks),
defined,, = (pr, APk, ADks), thenc, < —dy. Theng < ci A+ -Aep A=(deg1 V- Vdy).
The formulag is satisfiable if and only ifp = (¢1 A -+ A ce) — (deg1 V -+ -V dy,) iS NOt
valid. We now construcP, R, with the goal thatd.d 3 A.cis necessary if and only if is
valid. In the construction, we use the rolep; to denote the propositional varialig A.c;
to denote the clausg, andA.dy, to denote the clausé,. DefineP = P; U Py UP3 U Py,
in which

Pr={Ac—AcNAd, Adi—AcaNAcy, -, Acp_y—Ace1 N
A.Cz}.

PQ = {A.Cj — A.pjl, A.Cj — A-pj27 A.Cj — A.pj3 | 1< j < f, Cj =
Py V Pjiz V pj3}

Ps={Ad—Ad, | +1<k<n}

Py = {Adk <—A.pk1 n Ad;e, Ad;C <7A.pk-2 N A.pk3 | (+1<Ek<n,d,=
Dhy A Dio A Diy }

36

Define R to be the restriction rule such that all thep;'s are g-unrestricted and s-
restricted, and all other roles are g/s-restricted.

We now show thatd.d O A.c is not necessary if and only i is not valid. First, the
“only if” part: If A.d 3 A.cis not necessary, then there exists a reachable Btaaamd
a principal E such thatSP(P’) = m(A,c, E) andSP(P’) = m(A,d, E). Consider the
truth assignment defined as follows, for everysuch thatl < i < s, I(p;) = true if
SP(P’) Em(A,p;, E), andI(p;) = false otherwise. Then undér(c; A--- Acp) is true
anddyy1 V -+ V d, is false; therefore) is not valid. The “if” part: Ify is not valid, then
there exists a truth assignmensuch that(c; A --- A ¢p) istrue and(de41 V - -+ V dy,) is
false. ConsideP’ = PU{A.p, «— Z |1 <i < sAI(p;) =true}. P’ is reachable, and
SP(P") Em(A,c,Z)andSP(P’) = m(A,d, Z).

We now show that containment analysisRm|[N] is in coNP. GivenP andR, if X.u
does not contaim.r, then there exists a reachable st®eand a principalE’ such that,
SP(P") E m(A,r,E) andSP(P’") = m(X,u, E). From Lemma A.3, we can assume,
without loss of generality, thaP’ — P consists of only simple member statements and
P’ uses the same role names. Fréth we constructP” as follows, letP” = P’ N
(PU{Zw+«—FE € P'| Zw € Roles(P)}). Clearly,P” C P’ andP” is reachable.
By induction on howm (A, r, E) is proven inSP(P’), it is easy to see thaiP(P") =
m(A,r, E). The size ofP” is polynomial inP. This means that if a containment does not
hold, then there exists a short (polynomial in the size oftipet prograni?) counterproof
such that one can check in polynomial time. This shows tleapthblem is icoNP. The
method we use to construct the counter exanilealso yields an exponential algorithm
for determining containment.C]

Theorem 4.10:Containment analysis iRT[«] where all roles irRoles(P) are g-restricted
is coNP-complete.

PROOF As one can nondeterministically guess a suli®ebf P and verify that the
containment does not hold, the problem is clearlydid™NP. To provecoNP-hardness,
we reduce the monotone 3SAT problem to the complement oetsaV role containment
in RT[«]; the reduction is similar to that in the proof of Theorem 4Gven an instance
¢ of monotone 3SAT, we construgt= (c; A--- Acg) — (de+1 V -+ -V dy,) such that is
satisfiable if and only i) is not valid.

We now construcf?, R, such thatd.d 3 A.c is necessary if and only i{ is valid.
DefineP to be731 U PeUP3UPLUPs, in which

P = {Ac «— Ad.a, Acdy — Achecr, -, Ad,_, —
Acy_j.com1, Acy_|— Ay}

PQ = {A.Cj — A.pjl, A.Cj — A.ij, A.Cj — APB | 1 < j < 6, Cj =
P VPj, V Djs }

Py={Ad—Ad, | L+1<Ek<n}

Py = {Adk — A'd;q'pku Ad;C — A.pk2 Pks | l4+1 <k <n, di =
Phy A Piy A Diy }

Ps={Ap +— A|1<i<s}

Let R be the restriction rule such that all thep,’s are g-restricted and s-unrestricted,
and all other roles mentioned 7 are g/s-restricted.

In every reachable state, the definitions of safng;’s are removed, which correspond
to assigning false to some of tpgs. In every reachable statd,c and A.d either includes

37

only A oris empty.A.cincludesA if and only if the corresponding truth assignment makes
c1/\---Aey, true, andA.d includesA if and only the corresponding truth assignment makes
(dm+1 V- -+ Vdy,) true. ThereforeA.c containsA.d if and only if ¢ is valid. O

A.4 Proof of Proposition 4.6
Proposition 4.6: Given a sefP of RT[«] statementsSP(P) = m(A, r, D) if and only if
RS[P] = Ar > D,

PROOFR We prove the only if part by using induction émo show that ifm(A,r, D) €
Tsp(p)ﬁ, thenRS(P)> Ar - D. The basis is trivially satisfied becauﬁgp(p)TO: 0.
In the stepm(A,r, D) € Tspp) 1", one of(m1), (m2), (m3) is used to derive this.

Case(ml): A.r — D € SP(P), this means thatl r — D € P. Clearly,RS[P] >
Ar s D.

Case(m2): Ar «— B.ory € SP(P), andm(B,r1,D) € Tsppy1'. In this case,

Ar— Bry € P, and by induction hypothesiRS[P] > B ry = D. Using rewriting rules

in RS[P], one can rewrited r first to B ry, and then taD; soRS[P] > A r = D.
Case(m3): A.r«— Ari.ry € SP(P)andm(A,r1, E), m(E,rz, D) € Tspipy1*. By

induction hypothesisRS[P] &> B s E, Ery = D. Using rewriting rules irRS[P],
one can rewrited r first to A 1 o, then intoFE r, and finally intoD.

We prove the if part by using induction @rio show that if usindRS[P] one can rewrite
Arinto D in i steps, therP(P) = m(A,r, D). Base case,= 1 andA.r«—D € P,
clearly SP(P) = m(A,r, D). Consider the step, consider the first rewriting step. One of
the following two cases apply.

Case onecredA.rB.ry € Pis used in the first step. By induction hypothesiB(P) =
m(B,r1, D). Furthermoren(A,r,7X) :— m(B,r;,?7X) € SP(P); thus SP(P) [
m(A,r, D).

Case two: credA.rAriry € P is used in the first step. There
must exist a principal E such that RS[P] > A r1 o . E.ry = D.
By induction hypothesis,SPP = m(A,r,E), m(E,rs, D). Furthermore,
m(A,r,7X) :— m(A,7,?7Y),m(?Y,ry,7X) € SP(P); thusSP(P) = m(A,r, D).

O

A.5 Proof of Theorem 4.11
Theorem 4.11: Containment analysis iRT[«, N] is in coNEXP.

PrROOF GivenP andR, if a query X.w 3 A.r is not necessary, i.eX.u does not
containA.r, then there exists a reachable stBteand a principal’ such thatSP(P’) =
m(A,r, E) andSP(P’) = m(X,u, E). From Lemma A.3, we can assume, without lose
of generality, thaf?’ — P consists of only simple member statements Bhdses the same
role names a®.

Given such @P’ and E, we show that one can construct another siitethat has size
exponential inP and SP(P”) = m(A,r, E) andSP(P’') £ m(X,u, E). The way we
constructP” is through collapsing equivalent principalsf into one, to be made precise
as follows. LetSigRoles(P,P’, Q) be{X.u} U {Ary | Ar— Aryrg € PNP'} U
{By.r1,Ba.ry | Ar — By.r; N Ba.ry € P NP’} Define a binary relatioe over the

38

principals inP’ as follows: Y7 = Y5 if one of the following two conditions is satisfied:
1Y) =Y (2) Y1,Y, € Principals(P) and for every roleZ.w € SigRoles(P,P’, Q),
SP(P') = m(Z,w,Y7) if and only if SP(P’) = m(Z,w,Y>). The relation= is easily
seen to be an equivalence relation. For each equivalense, el@ pick one principal in it
as a unique representative; for a given principalve us€Y'] to denote the representative
of the equivalence class &f. We assume thdtF] = E. P” is constructed fronP’
as follows: for each statement, replace all the principath tineir representatives; then
remove duplicate statements.

GivenP that has sizeV, clearlySigRoles(P, P’, Q) hasO(N) roles. Therefore, there
are in totalM = O(2°™) principals inP”, these principals will result i) (M?2N)
new simple member statements. Therefore, if a containmee dot hold, there exists a
counter-example state that has size exponenti@l.i©nce the state is guessed correctly,
it can be verified in time polynomial in the size of the stat@isTshows that the problem
is in coNEXP. An obvious algorithm that has double exponential time cewxity is
as follows: first collecSigRoles(P, P, Q) from X.u and all simple inclusion and linking
inclusion statements frorR, and add one principal for each subseb@Roles(P, P, Q);
then enumerate all reachable sub-states using the regsétrof principals to see whether
a containment holds.

It remains to prove that our construction®f works, i.e., thatSP(P") = m(A,r, E)
andSP(P") = m(X,u, E).

To prove SP(P") E m(A,r, E), we use induction to prove the following claim: For
any role Z.w in Roles(P’) andY in Principals(P’), if m(Z,w,Y) € Tsppr 1%, then
SP(P") = m([Z],w,[Y]). The basis is trivial, ad’sp(p/) 1°= 0. Now consider the
step. One ofm1), (m2), (m3), and(m4) is used to deriven(Z,w,Y) € Tgpp 1" .
Case(ml): Zw +— Y € P’. By construction ofP”, [Z].w +— [Y] € P”; therefore,
SP(P") = m([Z],w,[Y]). Inthe next three cases, a statemént—— e that is not a sim-
ple member statement exists/. It must also exist irP, asP’ — P only has simple mem-
ber statements; therefore, principalsdn- «—— e are each in their own equivalence class.
The statement must also exist®{’, as the equivalence substitution fdrr «—— e will
not change the statement. Cds®2): Z.w «— Z;.w; € P/, P, P" andm(Zy,w1,Y) €
Tspepy 1% From induction hypothesis§P(P”) = m([Z1], w1, [Y]). It must be that
[Z1] = Z1. The claim then follows frontm2). Casgm3): Z.w «— Z.wy.wy € P', P, P”
and m(Z, w1, F),m(F,ws,Y) € Tsppry 1°. It must be tha{Zz] = Z. By induc-
tion hypothesis,SP(P") = m([Z], w1, [F]), and SP(P") = m([F],ws,[Y]). The
claim follows from (m3). Case(md): Zw «— Zj.w; N Zywy € P, P,P" and
m(Zy1,w1,Y), m(Zs,w2,Y) € Tsppry1*. This case is similar tgm2).

We now prove thabP(P”) (= m(X, u, E), by proving the following claim: for any role
Z.w € Roles(P”) and any principal” in Principals(P”), if m(Z,w,Y) € Tsppr)1*
then there exist&’, Y’ such tha{Z’] = Z and[Y’'] = Y andSP(P’) E m(Z',w,Y").
Given this claim, ifSP(P”) = m(X, u, E), then there existX’” andE’ in Principals(P’)
such thafX'] = X, [E'] = E, andSP(P’) = m(X',u, E’). AsX € Principals(P), it
must be thaf’ = X. And by definition of=, [E’] = E means thaF is also a member of
X.u, giving us a contradiction with our assumptionBh

We now use induction to prove the claim. The basis is tri\AaTSP(p//)TO: (. Now
consider the step. One 6fn1), (m2), (m3), and(m4) is used to deriven(Z,w,Y) €
Tsppny 1", Case(ml): Zw«—Y € P”. By definition of P”, there existsZ’.w «—

39

Y’ € P’ suchtha{Z’] = Z and[Y’] = [Y]. From this we have&P(P’) E m(Z’,w,Y")
by (m1). In the following three cases, a non-simple-member statéme «—— e of P” is
used; such a statement must be mapped from a non-simple-enstatkement ifP’. As all
such statements iR’ are also irP and do not change in the mappinggy «—e € PNP’.
Case(m2): Zw «— Zywy € P",P,P’ andm(Zy,w,Y) € Tspipry 1*. From
induction hypothesis, there exigt; and Y/ such thatSP(P’) E m(Z;,w;,Y’) and
[Z1] = Zy and[Y'] = Y. BecauseZ; € Principals(P), it must be thatZ; = Z;.
The conclusion follows from{m?2). Case(m3): Z.w «— Zwi.wy € P, P,P" and
m(Z, w1, F),m(F,wy,Y) € Tspipr 1" for some principalF’. By induction hypoth
esis, SP(P') & m(Z, w1, F'),m(F",wy,Y') and [F'] = [F"] = F. As Zw; €
SigRoles(P, P’, Q), by definition of= applied toF’ = F”, SP(P') & m(Z, w1, F").
The claim follows from(m3). Case(md): Z.w «— Zy.wy N Zs.wy € P, P, P and
m(Z1,w1,Y),m(Zy,ws,Y) € Tsp(p//)Ti. By induction hypothesis and the fagt, Z, €
Principals(P), SP(P') = m(Z1,w1,Y"),m(Za,we, Y") and[Y'] = [Y”] = Y. By defi-
nition of =, SP(P’) = m(Za,ws,Y”’). Therefore SP(P’) = m(Z,w,Y’). O

Observe that in the proof, only roles in the body of linkinglirsion and intersection

inclusion statements need to be collected. This may be wsexiiain why containment
in RT[] is efficiently decidable.

