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Abstract

We present a new automatic cryptographic protocol veri-
fier based on a simple representation of the protocol by Pro-
log rules, and on a new efficient algorithm that determines
whether a fact can be proved from these rules or not. This
verifier proves secrecy properties of the protocols. Thanks
to its use of unification, it avoids the problem of the state
space explosion. Another advantage is that we do not need
to limit the number of runs of the protocol to analyze it. We
have proved the correctness of our algorithm, and have im-
plemented it. The experimental results show that many ex-
amples of protocols of the literature, including Skeme [24],
can be analyzed by our tool with very small resources: the
analysis takes from less than 0.1 s for simple protocols to
23 s for the main mode of Skeme. It uses less than 2 Mb of
memory in our tests.

1. Introduction

The design of cryptographic protocols is difficult and
error-prone. This can be illustrated by flaws found in ex-
isting protocols [1, 6, 11, 25]. It is therefore important to
have tools to verify the properties of cryptographic proto-
cols. Several techniques can be used to build such tools:
logics, such as the BAN logic [11] used in [23], theo-
rem proving, used in Isabelle [33], rank functions [21],
typing [2, 12, 22], abstract interpretation [7, 8, 20, 29],
model checking, rewriting, and related techniques, used in
Elan [13], Brutus [14], Maude [16], FDR [25], NRL [26],
the Interrogator [27], Mur� [28], Athena [35]. Most exist-
ing protocol verifiers based on model checking suffer from
the problem of the state space explosion, and they need very
large resources to verify even relatively simple protocols.
Moreover, in general, they limit the number of runs of the
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protocol to guarantee the termination of the verification pro-
cess. If there exists an attack that only appears with more
runs of the protocol, it will not be discovered. Our solution
to these problems relies on two ideas:

� a simple intermediate representation of the protocols;

� a new efficient solving algorithm.

We use Prolog rules to represent the protocol and the at-
tacker. Messages and channels are represented by terms; the
fact attacker�M� means that the attacker has the message
M ; rules give implications between such facts. This can be
considered as an abstraction of the multiset rewriting [16]
or of the linear logic representation [19]. We perform two
interesting abstractions:

� Fresh values considered as functions other messages
in the protocol. To give an intuition, when the attacker
does not modify messages, different values are used
for each pair of participants of the protocol, instead of
per session.

� We forget the number of times a message appears to re-
member only that it has appeared. A step of the proto-
col can be executed several times instead of only once
in each session.

These are keys to avoid limiting the number of runs of pro-
tocols: the number of repetitions is simply forgotten. Our
approximations are safe, in the sense that if the verifier does
not find a flaw in the protocol, then there is no flaw. The ver-
ifier therefore provides real security guarantees. In contrast,
it may give a false attack against the protocol. However,
false attacks are rare, and we have been able to prove the
secrecy properties of all the protocols that we have consid-
ered. Therefore, we believe that our abstractions could also
be useful in other protocol tools. Various protocol repre-
sentations can be translated into our simple representation.
We have built an automatic translator from a restricted ver-
sion of the applied pi calculus [5], that only handles certain



equational theories, including the theories used to repre-
sent shared- and public-key cryptography (encryption and
signatures), hash functions, the Diffie-Hellman key agree-
ment. It is also possible for the user to enter directly the
rules representing the protocol, since the representation is
simple enough.

Using this representation, we have built a tool to prove
secrecy properties of protocols. Indeed, the attacker may
have a given message m only if the fact attacker�m� can
be proved from the rules representing the protocol and the
abilities of the attacker. However, the usual Prolog solving
algorithm loops, due to rules that appear in the description
of the attacker. Therefore, we have designed a solving al-
gorithm. This algorithm is novel as far as we know, and it
appears to be very efficient in practice. We have applied it
to prove secrecy properties of several protocols of the liter-
ature, including Skeme [24], or to find attacks against them.

Related work Prolog rules and similar formalisms have
already been used in a number of works on cryptographic
protocols, for example [16, 26, 27]. We propose a more ab-
stract representation of the protocols, that enables us to de-
sign a simpler and faster analysis, and to avoid limiting the
number of runs of the protocol, thus improving over most
model checkers. Of course, the additional approximations
imply that our analysis may not be able to prove that cer-
tain protocols are secure (it may give false attacks), but in
our experiments our analysis was precise enough to prove
secrecy properties of the protocols we have considered. A
key problem of previous tools using Prolog rules is termina-
tion. Our solving algorithm is a big step towards a solution
of this problem.

Two works have already tackled the problems met by
classical model checkers. Broadfoot, Lowe and Roscoe [10,
34] do not limit the number of runs of protocols. They re-
cycle nonces, to use only a finite number of them in an infi-
nite number of runs. We achieve the same result by directly
reusing the same values for nonces. However, they limit the
number of parallel runs of protocols. We avoid this limita-
tion. They also allow the attacker to simulate honest agents,
but use this technique only for servers. We generalize it to
all agents involved in the protocols. In their work as well
as in ours, the deduction rules for the attacker must have
only equalities in their hypotheses, no inequalities (that is,
they are positive deduction systems). Song [35] avoids the
state space explosion problem by using the strand space
model to verify protocols. This model captures the causal
information of messages, in a way similar to our deduction
rules. However, our model is more abstract than Song’s.
She sometimes limits the number of runs of the protocol to
guarantee termination, whereas we avoid this limitation.

Automatic protocol verifiers have already been built by
using abstract interpretation [7, 8, 20, 29]. The analysis of

M�N ��� terms
x variable
a�M�� � � � �Mn� name
f�M�� � � � �Mn� function application

F ��� fact
p�M�� � � � �Mn� predicate application

R ��� rule
F� � � � � � Fn � F implication

Figure 1. Syntax of our protocol representa-
tion

Bodei et al. [7, 8] is not relational: when a variable ap-
pears several times in a message, each occurrence can take
different values (in the set of values of the variable). All
nonces generated by the same restriction are also considered
as equal. These are causes of imprecision that our analy-
sis solves. Moreover, Bodei’s analysis only handles shared-
key cryptography. The main difference between Monniaux’
analysis [29] and ours is that Monniaux represents sets of
messages by tree automata, whereas we represent rules that
generate these sets. This enables us to gain in efficiency.
Goubault [20] extends and improves the efficiency of [29],
also using ideas of Bolignano [9]. However, [20] does not
allow any term to be used in place of a key. We do not have
this limitation. In our experimental results, we obtain an
even faster analysis with a simpler framework.

Theorem provers are not fully automatic tools: the user
has to intervene to provide information on the proof. Previ-
ous works using typing are also better suited for human use
than for automatic verifiers: type inference is sometimes
difficult [4] and types are in general human-readable. Types
provide constraints that can help the designers of new pro-
tocols ensure the desired security properties, but existing
protocols may not satisfy these constraints even if they are
correct. In contrast, our analysis yields a fully automatic
protocol verifier.

Overview Section 2 details our protocol representation.
Section 3 describes our solving algorithm, and sketches its
proof of correctness. Several extensions and optimizations
to this algorithm are detailed in Section 5. Section 6 gives
experimental results and Section 7 concludes.

2. Protocol representation

A protocol is represented by a set of Prolog rules
(clauses), whose syntax is given in Figure 1. The terms rep-
resent messages that are exchanged between participants of



the protocol. A variable can represent any term. Names are
used to represent atomic values, such as keys and nonces.
Each principal has the ability of creating new names. Here,
the created names are considered as functions of the mes-
sages previously received by the principal that creates the
name. Thus, a different name is created when the preced-
ing messages are different. This is slightly weaker than the
fact that a new name is created at each run of the proto-
col. As noticed by M. Abadi (personal communication),
this approximation is in fact similar to the approximation
done in some type systems (such as [4]): the type of the
new name depends on the types in the environment. It is
enough to handle many protocols, and can be enriched by
adding other parameters to the name. The function appli-
cation is used to build terms: examples of functions are the
encryption, or hash functions. Predicates are used to repre-
sent facts about these messages. Several predicates can be
used, but for a first example, we are going to use only one
predicate attacker�M�, meaning “the attacker may have the
message M”. A rule F� � � � � � Fn � F means that if all
facts F�� � � � � Fn are true, then F is also true. A rule with
no hypothesis� F is written simply F .

We can illustrate the coding of a protocol on the follow-
ing simple example (this is a simplification of the Denning-
Sacco key distribution protocol [17], omitting certificates
and timestamps):

Message 1. A� B � ffkgskAgpkB
Message 2. B � A � fsgk

There are two principals A and B. skA is the secret key of
A, pkA its public key. Similarly, skB and pkB for B. The
key k is a new key created by A. A sends this key signed
with its private key skA and encrypted under its public key
pkB . When B receives this messages, it decrypts the mes-
sage, and assumes, seeing the signature, that the key k has
been generated by A. Then it sends a secret s encrypted
under k (this is a shared-key encryption). Only A should
be able to decrypt the message and get the secret s. (The
second message is not really part of the protocol, we use it
to check if the key k can really be used to exchange secrets
between A and B. In fact, there is an attack against this
protocol [11], so s will not remain secret.)

2.1. Representation of primitives

Cryptographic primitives are represented by functions.
For instance, we represent the public-key encryption by a
function pencrypt�m� pk � which takes two arguments: the
message m to encrypt and the public key pk . There is a
function pk that builds the public key from the secret key.
(We could also have two functions pk and sk to build respec-
tively the public and secret keys from a secret.) The secret
key is represented by a name which has no arguments (that

is, there exists only one copy of this name) skA�� for A and
skB �� forB. Then pkA � pk�skA��� and pkB � pk�skB ���.

More generally, we consider two kinds of functions:
constructors and destructors. The constructors are the
functions that explicitly appear in the terms that repre-
sent messages. For instance, pencrypt and pk are con-
structors. Destructors manipulate terms. A destructor g
can be defined by one or several equations of the form
g�M�� � � � �Mn� � M where M�� � � � �Mn�M are terms
that contain only variables and constructors. For in-
stance, the decryption pdecrypt is a destructor, defined by
pdecrypt�pencrypt�m� pk�sk��� sk� � m. Other functions
are defined similarly:

� For signatures, there is a constructor sign�m� sk�
that is used to represent the message m signed un-
der the secret key sk . A destructor getmess de-
fined by getmess�sign�m� sk�� � m returns the mes-
sage without its signature, and checksign�sign�m� sk��
pk�sk �� � m only returns the message if the signature
is valid.

� For shared-key encryption, we have a construc-
tor sencrypt and a destructor sdecrypt, defined by
sdecrypt�sencrypt�m� k�� k� � m.

� A hash function is represented by a constructor h (and
no destructor).

� Tuples of arity n are represented by a construc-
tor � � � � � � � and n destructors ith defined by
ith��x�� � � � � xn�� � xi, i � f�� � � � � ng.

2.2. Representation of the abilities of the attacker

We assume that the protocol is executed in the presence
of an attacker that can intercept all messages, compute new
messages from the messages it has received, and send any
message it can build. We first present the encoding of the
computation abilities of the attacker. The encoding of the
protocol will be detailed below.

During its computations, the attacker can apply all con-
structors and destructors. If f is a constructor of arity n,
this leads to the rule:

attacker�x�� � � � � � attacker�xn�

� attacker�f�x�� � � � � xn���

If g is a destructor defined by g�M�� � � � �Mn� � M , this
leads to the rule:

attacker�M�� � � � � � attacker�Mn�� attacker�M��

If g is defined by several equations, there are several rules,
one for each equation. The destructors never appear in the



rules, they are coded by pattern-matching on their param-
eters (here M�� � � � �Mn) in the hypothesis of the rule and
generating their result in the conclusion. In the particular
case of the public-key encryption, this yields:

attacker�m� � attacker�pk �

� attacker�pencrypt�m� pk ���

attacker�sk �� attacker�pk�sk ���

attacker�pencrypt�m� pk�sk�� � attacker�sk �

� attacker�m��
(1)

where the first two rules correspond to the constructors
pencrypt and pk, the last rule corresponds to the destruc-
tor pdecrypt. When the attacker has an encrypted message
pencrypt�m� pk � and the decryption key sk , then it also has
the plaintext m. (We assume that the cryptography is per-
fect, hence the attacker can only obtain the plaintext from
the encrypted message if it has the key.)

For signatures, we obtain the rules:

attacker�m� � attacker�sk�� attacker�sign�m� sk���

attacker�sign�m� sk��� attacker�m��

where the first rule corresponds to the constructor sign and
the second one to the destructor getmess. (The rule for
checksign is removed, since it is implied by the rule for
getmess.)

The rules above describe the abilities of the attacker.
Moreover, the attacker has the public keys. Therefore, we
add the rules attacker�pk�skA���� and attacker�pk�skB ����.
We also give a name a to the attacker, that will represent all
the names it can generate: attacker�a���.

2.3. Representation of the protocol itself

Now, we describe how the protocol itself is represented.
We consider that A and B are willing to talk to any princi-
pal, A, B but also malicious principals that are represented
by the attacker. Therefore, the first message sent by A can
be pencrypt�sign�k� skA���� pk�x�� for any x. We leave to
the attacker the task to start the protocol with the principal
it wants, that is the attacker will send a first message to A,
mentioning the public key of principal with whichA should
talk. This principal can be B, or another principal repre-
sented by the attacker. (The attacker can create public keys,
by the rule for constructor pk.) Moreover, the attacker can
intercept the message sent by A. This yields a rule of the
form

attacker�pk�x��

� attacker�pencrypt�sign�k� skA���� pk�x����

Moreover, a new key k is created each time the protocol is
run. Hence, if two different keys pk�x� are received by A,

the generated keys k are certainly different: k depends on
pk�x�. The rule becomes:

attacker�pk�x��

� attacker�pencrypt�sign�k�pk�x��� skA���� pk�x����

(2)

Remark. It would also be possible for A to initiate the
protocol itself, by choosing randomly the other principal to
which it talks, instead of letting the attacker initiate the pro-
tocol. In this case, the rule above would be

attacker�pencrypt�sign�k�pk�x��� skA���� pk�x����

where x is a variable that represents the secret key of the
principal talking with A. However, if we want to represent
the protocol by a closed process in the applied pi calculus,
the variable x must come from an input. That is, A cannot
choose randomly the principal to which it talks. If the pro-
cess is modeled in the applied pi calculus, the attacker sends
a message that indicates with which principalA should talk.
This yields the rule (2) given above.

B expects a message of the form pencrypt�sign�k�� sk��
pk�skB ����. When such a message is received, it tests
whether A has signed the message (that is, B evaluates
checksign�sign�k�� sk�� pkA�, and this only succeeds when
sk � skA��). If so, it assumes that the key k� is only known
by A, and sends a secret s encrypted under k �. We assume
that the attacker relays the message coming from A, and
intercepts the message sent by B. Hence the rule:

attacker�pencrypt�sign�k�� skA���� pk�skB �����

� attacker�sencrypt�s��� k����

With these rules,A cannot play the role ofB and vice-versa.
If we want that, we can simply add the corresponding rules,
that are obtained by swapping A and B in the above rules:

attacker�pk�x��

� attacker�pencrypt�sign�kB �pk�x��� skB ���� pk�x����

attacker�pencrypt�sign�k�� skB ���� pk�skA�����

� attacker�sencrypt�sA��� k
����

More generally, a protocol that contains n messages is
encoded by n sets of rules. If a principal X sends the ith
message, the ith set of rules contains rules that have as hy-
potheses the patterns of the messages previously received
by X in the protocol, and as conclusion the pattern of the
ith message. There may be several possible patterns for the
previous messages as well as for the sent message, in partic-
ular when the principalX uses a destructor which is defined
by several equalities. In this case, a rule must be generated
for each combination of possible patterns. Moreover, notice



that the hypotheses of the rules describe all the messages
previously received, not only the last one. This is impor-
tant since in some protocols the fifth message for instance
can contain elements received in the first message. The hy-
potheses summarize the history of the exchanged messages.

Remark. When the protocol makes some communications
on private channels, on which the attacker cannot a priori
listen or send messages, a second predicate can be used:
mess�C�M� meaning “the messageM can appear on chan-
nel C”. In this case, if the attacker manages to get the name
of the channelC, it will be able to listen and send messages
on this channel. Thus, two new rules have to be added to de-
scribe the behavior of the attacker. The attacker can listen
on all the channels it has:

mess�x� y� � attacker�x�� attacker�y��

It can send all the messages it has on all the channels it has:

attacker�x� � attacker�y�� mess�x� y��

2.4. Summary

To sum up, a protocol can be represented by three sets of
Prolog rules:

� Rules representing the computation abilities of the
attacker. There is one rule attacker�x�� � � � � �
attacker�xn� � attacker�f�x�� � � � � xn�� for each
constructor f , and one rule attacker�M�� � � � � �
attacker�Mn� � attacker�M� for each equation
g�M�� � � � �Mn� �M defining a destructor g.

� Facts corresponding to the initial knowledge of the at-
tacker. There is a fact attacker�a��� giving a name to
the attacker. In general, there are also facts giving the
public keys of the participants and/or their names to
the attacker.

� Rules representing the protocol itself. There is one
set of rule for each message in the protocol. In the
set corresponding to the ith message, sent by prin-
cipal X , the rules are of the form attacker�Mj�� �
� � ��attacker�Mjn�� attacker�Mi� whereMj� , � � � ,
Mjn are the patterns of the messages received by X

before sending the ith message, and Mi is the pattern
of the ith message.

The rules representing the Denning-Sacco protocol are sum-
marized in Figure 2.

2.5. Approximations

The reader can notice that our representation of protocols
is approximate:

� Freshness is modeled by letting new names be func-
tions of messages previously received by the creator of
the name in the run of the protocol. When the attacker
does not alter messages, this means that different val-
ues are used per pair of principals running the proto-
col instead of per session. When the attacker does al-
ter messages, different values are used when different
messages are received.

� A step of the protocol can be completed several times,
as long as the previous steps have been completed at
least once between the same principals. For instance,
in a session between the attacker and a principal A,
the attacker sends the first message M�, A replies with
M�, the attacker can then send two messages in place
of the third message, as long as they correspond to the
pattern expected by A. That is, the attacker sends M�

and gets M� from A, then the attacker sends M �

� and
gets M �

� from A. The attacker can also perform again
the ith step, even if further steps have already been per-
formed. Therefore, the actions of the principals are not
organized into runs.

But the important point is that the approximations are al-
ways performed in the safe direction: if an attack exists in a
more precise model, such as multiset rewriting [16], or the
applied pi calculus [5], then it also exists in our represen-
tation. (We are currently proving that our translation from
the applied pi calculus to this representation has this cor-
rectness property.) Performing approximations enables us
to build a much more efficient verifier, which will be able to
handle larger and more complex protocols. Another advan-
tage is that the verifier does not have to limit the number of
runs of the protocol. The price to pay for this is that false
attacks may be found by the verifier: sequences of rule ap-
plications that do not correspond to a protocol run. When
a false attack is found, we cannot know whether the proto-
col is secure or not: a real attack may also exist. A more
precise analysis is required in this case. But our representa-
tion is precise enough so that false attacks are rare. (This is
demonstrated by our experiments, see Section 6.)

2.6. Secrecy

Our goal is to determine secrecy properties: for instance,
can the attacker get the secret s ? That is, can the fact
attacker�s��� be inferred from the rules ? If attacker�s���
can be inferred, the sequence of rules applied to derive
attacker�s��� will lead to the description of an attack.

Our notion of secrecy is similar to that of [4, 7, 12]: a
term M is secret if the attacker cannot get it by listening
and sending messages, and performing computations. This
notion of secrecy is weaker than non-interference, but it is



Computation abilities of the attacker:
pencrypt attacker�m� � attacker�pk �� attacker�pencrypt�m� pk ��
pk attacker�sk�� attacker�pk�sk��
pdecrypt attacker�pencrypt�m� pk�sk �� � attacker�sk�� attacker�m�
sign attacker�m� � attacker�sk�� attacker�sign�m� sk ��
getmess attacker�sign�m� sk��� attacker�m�
checksign removed since implied by getmess

sencrypt attacker�m� � attacker�k�� attacker�sencrypt�m� k��
sdecrypt attacker�sencrypt�m� k�� � attacker�k�� attacker�m�
Initial knowledge of the attacker:

attacker�pk�skA����� attacker�pk�skB ����� attacker�a���
Protocol:
First message: attacker�pk�x��� attacker�pencrypt�sign�k�pk�x��� skA���� pk�x���
Second message: attacker�pencrypt�sign�k�� skA���� pk�skB ������ attacker�sencrypt�s��� k���

Figure 2. Summary of our representation of the Denning-Sacco protocol

adequate to deal with the secrecy of fresh names. Non-
interference is better at excluding implicit information flows
or flows of parts of compound values. (See [3, Section 6]
for further discussion and references.)

Technically, the hypotheses F�� � � � � Fn of a rule are
considered as a multiset. This means that the order of the
hypotheses is irrelevant, but the number of times an hypoth-
esis is repeated is important. (This is not related to the ideas
of multiset rewriting: the semantics of a rule does not de-
pend on the number of repetitions of its hypotheses, but
considering multisets is useful to make explicit the elimi-
nation of duplicate hypotheses in our verifier. It will also
be useful in the proof of the algorithm.) Formally, a mul-
tiset of facts S is a function from facts to integers, such
that S�F � is the number of repetitions of F in S. The in-
clusion on multisets is the point-wise order on functions:
S � S� � �F� S�F � � S��F �. If f is a function from
facts to facts, we can extend it to multisets of facts by
�f�S���F � �

P
F � such that f�F ���F S�F

��. This applies in
particular when f is a substitution.

We determine whether a given formula can be implied
by a given set of rules. This is more precisely defined as
follows.

Definition 1 We define rule implication by:

�H� � C��� �H� � C�� if and only if

	�� �C� � C�� �H� � H�

where H� andH� are multisets of hypotheses, � is a substi-
tution.

We write R� � R� when R� can be obtained by adding
hypotheses to a particular instance of R�. In this case, all
facts that can be derived by R� can also be derived by R�.

Definition 2 (Derivability) Let F be a closed fact, that is,
a fact without variable. Let B be a set of rules. F is deriv-
able from B if and only if there exists a finite tree defined as
follows:

1. Its nodes (except the root) are labelled by rulesR � B;

2. Its edges are labelled by closed facts;

3. If the tree contains a node labelled by R with one in-
coming edge labelled by F� and n outgoing edges la-
belled by F�� � � � � Fn, thenR� fF�� � � � � Fng � F�.

4. The root has one outgoing edge, labelled by F .

Such a tree is a derivation of F from B.

In a derivation, if there is a node labelled by R with one
incoming edge labelled by F� andn outgoing edges labelled
by F�� � � � � Fn, then the ruleR can be used to infer F� from
F�� � � � � Fn. Therefore, there exists a derivation of F from
B if and only if F can be inferred from rules in B.

3. Solving algorithm

Our representation is a set of Prolog rules, and our goal
is simply to determine whether a given fact can be inferred
from these rules or not. This is exactly the problem that is
solved by usual Prolog systems. However, we cannot use
these systems here, because they would not terminate. For
instance, the rule:

attacker�pencrypt�m� pk�sk�� � attacker�sk �

� attacker�m�

leads to considering more and more complex terms, with
an unbounded number of encryptions. We could of course
limit arbitrarily the depth of terms to solve the problem, but



we can do much better than that. Indeed, even when limiting
the depth of terms, the complexity of the depth-first search
will be very large. There are many rules with conclusion
attacker�x� that can always be applied, when we search a
fact of the form attacker�M�. We can get better results with
a more guided search.

The main idea to guide the search is to combine pairs
of rules by unification, when the unified facts are not of
the form attacker�x�. When the consequence of a rule R
unifies with one hypothesis of another (or the same) rule
R�, we can infer a new rule, that corresponds to applying
R and R� one after the other. Formally, this is defined as
follows:

Definition 3 Let R and R� be two rules, R � H � C,
R� � H � � C �. Assume that there exists F� � H � such
that: C and F� are unifiable, and � is the most general
unifier of C and F�.

In this case, we define

R 
F� R
� � ��H � �H � � F���� �C ��

For example, if R is the rule (2), and R� is the rule (1), the
fact F� is F� � attacker�pencrypt�m� pk�sk���, R 
F� R

�

is

attacker�pk�x�� � attacker�x�

� attacker�sign�k�pk�x��� skA����

with the substitution � � fsk � x�m � sign�k�pk�x���
skA���g. In terms of logic programming, R 
F� R

� is the
result of resolvingR� withR upon F�. Of course, if this op-
eration is applied without limitations, it does not terminate
(consider the same rule as above). We specify conditions to
limit it. As far as we know, these conditions are new.

Let S be a finite set of facts. We define F �r S by:
there exists a substitution � mapping variables to variables
such that �F � S. By default, S � fattacker�x�g, but the
algorithm is also correct with other values of S. The idea is
to only unify facts F such that F ��r S. The precise formal
condition is slightly more complex (see below).

The solving algorithm works in two phases, which are
described in Figures 3 and 4 respectively. The first phase
transforms the rule base into a new one, that implies the
same facts. The second one uses a depth-first search to de-
termine whether a fact can be inferred or not from the rules.

The first phase (Figure 3) contains 3 steps. The first step
inserts in B the initial rules representing the protocol and
the attacker (rules that are in B�). These rules are simpli-
fied by eliminating duplicate hypotheses, and if a rule R
implies a rule R�, R� is removed (definition of add). The
second step is a fixed point iteration, that adds rules created
by resolution. The composition of rules R and R� is only
added if

Let B be the rule base, B� be the set of rules representing
the attacker and the protocol.
We define

add�R�B� ��
B if 	R� � B�R� � R,

fRg � fR� � BjR �� R�g otherwise.

We also define elimdup�H � C� � �H � �� � C,
where � is the multiset which contains one copy of each
fact: �F���F � � �. The function elimdup eliminates the
duplicate hypotheses from a rule.

1. For each R � B�, B � add�elimdup�R�� B�.

2. Let R � B, R � H � C and R� � B, R� � H � �
C �. Assume that there exists F� � H � such that:

(a) R 
F� R
� is defined;

(b) �F � H�F �r S;

(c) F� ��r S.

In this case, we execute

B � add�elimdup�R 
F� R
��� B��

This procedure is executed until a fixed point is
reached.

3. Let B� � f�H � C� � Bj�F � H�F �r Sg.

Figure 3. First phase: completion of the rule
base

� the hypotheses of R contain only facts F which sat-
isfy F �r S (i.e. by default they are of the form
attacker�x�),

� and the hypothesis F� of R� that we unify does not
satisfy F� �r S (i.e. by default F� is not of the form
attacker�x�).

When a rule is created by this composition, it is added to the
rule base B, after simplification (duplicate hypotheses are
removed and if a rule R implies a rule R�, R� is removed).
At last, the third step is to extract from B the new rule base
B�, by taking only the rules whose all hypotheses F sat-
isfy F �r S (by default, this means that F is of the form
attacker�x�). The following remarks can help understand
the algorithm:

� This algorithm corresponds to a kind of forward
search. In a forward search, a fact is unified with an



hypothesis of a rule, and a new rule is created that con-
tains one hypothesis less. This is performed until no
new fact can be inferred.

Here, assume S � �. Hypothesis (b) means that R
has no hypothesis, that is, R is a fact. Hypothesis (c)
is always true. Then a fact R � C is unified with an
hypothesis of the ruleR�. In this case, we have exactly
a forward search.

When S �� �, the algorithm resembles a forward
search for a modified notion of facts. Let S-facts be the
rules H � C, where �F � H�F �r S. Let S-rules be
the rules H � � FS where �F � H �� F ��r S and FS is
an S-fact. Notice that all rules are S-rules, simply by
writing first the hypotheses that satisfy F ��r S. Hy-
pothesis (b) means that R is an S-fact. Hypothesis (c)
means that F� is an hypothesis of an S-rule R�. The
S-fact and S-rule are combined, to give a new S-rule
(that can be an S-fact). When all combinations have
been performed, only S-facts are kept in B �.

� This algorithm is similar to an unfolding of the logic
program [37], but there is one important difference: In
the unfolding, a ruleR� and an hypothesis F� ofR� are
chosen, and the resolution is performed with all rules
R whose consequence is unifiable with F�. Here, the
resolution is only applied with rulesR whose hypothe-
ses F satisfy F �r S.

� The speed of the algorithm comes essentially from the
fact that there are not many rules H � C such that
�F � H � fCg� F �r S. (In our uses of this al-
gorithm, S is always a very small set.) For the other
rules, (b) implies C ��r S, therefore, using the default
definition of S, C is not of the form attacker�x�: C
cannot be unified with any hypothesis of any rule, only
few hypotheses of rules will correspond. Similarly, F�
is not of the form attacker�x�, so only few conclusions
of rules can be unified with F�. Therefore, in general,
few unifications are performed, and the algorithm is
very fast.

We prove that the rules in B� imply exactly the same facts
as the rules in B�.

Lemma 1 (Correctness of phase 1) Let F be a closed
fact. F is derivable from the rules in B� if and only if F
is derivable from the rules in B�.

Proof sketch We only give a proof sketch here, a detailed
proof can be found in Appendix A.

Assume that F is derivable from B� and consider a
derivation of F from B�. The key idea of the proof is the
following. Assume that the rules R and R� are applied one
after the other in the derivation of F . Also assume that these

We define derivablerec�R�B��� by

1. derivablerec�R�B��� � � if 	R� � B��� R� � R;

2. derivablerec�� � C�B��� � fCg otherwise;

3. derivablerec�R�B��� �
�fderivablerec�elimdup�R� 
F� R�� fRg � B

���jR� �
B�� F� such that R� 
F� R is defined g otherwise.

derivable�F � � derivablerec�fFg � F� ��.

Figure 4. Second phase: backward depth-first
search

rules have been combined byR
F� R
�, yielding ruleR��. In

this case, we replaceR andR� byR�� in the derivation of F .
When no more replacement can be done, we show that all
the hypotheses F� of the remaining rules satisfy F� �r S.
Then all these rules are inB�, and we have built a derivation
of F from B�. The converse is easy to prove. �

The second phase (Figure 4) searches the facts that
can be inferred from B �. This is simply a backward
depth-first search. The search is performed by calling
derivablerec�R�B��� with two parameters: a rule R and a
set of rules B��. The hypotheses of R are the facts that we
currently want to prove. Its conclusion is an instance of the
fact F that we initially wanted to prove. Moreover, the rule
R is always a consequence of the rules inB�: the conclusion
of R can be proved by rules of B � from the hypotheses of
R. The set B�� is the set of rules that we have already seen
during the search. derivablerec�fFg � F�B ��� returns the
set of instances of F that can be proved.

If R is implied by a rule in B��, the current branch of the
search fails: this is a cycle, we are looking for instances of
facts that we have already looked for (first point in the defi-
nition of derivablerec). We backtrack to try finding another
derivation of the goal. If R has no hypothesis, the search
succeeds: the conclusion of R is proved (second point of
the definition of derivablerec). Otherwise, we have to go
on searching. We try to use rule R� � B� to prove one of
the hypotheses of R, F�. That is, we call derivablerec with
the rule R� 
F� R (in which F� has been replaced by the
hypotheses of R�, R� and R being instantiated so that the
conclusion of R� and F� are unified).

The following theorem gives the correctness of the whole
algorithm. It shows that we can use our algorithm to de-
termine whether a fact is derivable or not from the initial
rules. The first part of the theorem shows that when calling
derivable with a not necessarily closed fact F �, the instances
of F � that can be derived from the rules are the instances of
the facts returned by derivable�F ��. The second part deals
with the particular case of closed facts.



Theorem 2 (Correctness) Let F be a closed fact. Let F �

such that there exists a substitution � such that �F � � F .
F is derivable from the rules in B� if and only if 	F �� �
derivable�F ��� 	�� F � �F ��.

In particular, F is derivable from B� if and only if F �
derivable�F �.

Proof sketch Using Lemma 1, we only have to prove
that F is derivable from B� if and only if 	F �� �
derivable�F ��� 	�� F � �F ��.

Essentially, derivablerec performs a classical depth-first
search of the rule base B� to find the desired fact. This
search is stopped in case of cycle. F is derivable if and only
if it is found by the depth-first search. The detailed proof
can be found in Appendix A. �

4. Termination

4.1. Termination of the basic algorithm

The fixed point iteration of the first phase does not al-
ways terminate, even if it terminates in most examples of
protocols. We will see below several ways to force its ter-
mination.

The following proposition shows that the depth-first
search of the second phase terminates on the rule base B �

built by the first phase.

Proposition 3 If F is closed and S � fattacker�x�g, then
derivable�F � terminates. (Otherwise, the termination of
derivable�F � is not guaranteed.)

Proof sketch The hypotheses of the rules in B � are
smaller than the conclusion. Hence the depth-first search
considers smaller and smaller terms, and thus terminates.
The proof can be found in Appendix B. �

4.2. Detecting (and solving) some non-termination
cases

Assume that a rule R � fF�g � C is inferred, with
C � �F�, where � is such that 	x� �x � fv��x��x �� �x�,
where fv�M� is the set of variables in the term M . Assume
that F� ��r S, and there exists a derivation of an instance of
F� (more precisely, the verifier generates a ruleH � � ��F�,
whose hypotheses F � H � satisfy F �r S).

Then, in general, the completion process (phase 1) does
not terminate. Indeed, the rule R can be combined with the
rule H � � ��F�, yielding H � � ��C � H � � ���F�,
then this rule can combined again with R, yielding H � �
���C � H � � ����F�. We can go on this way, and obtain
for all integers n: H � � ���nF�, and in general none of
these rules implies another, therefore all these rules will be
generated by the solving algorithm.

An example of such an exploding rule is:

attacker�f�x�� � attacker�f�g�x����

A solution to this non-termination case is of course to add
F� to the set S, thus forbidding the above combinations
of the rule R. Another solution is to add a new rule, that
implies all the previous rules, for n large enough. For ex-
ample, let � be a renaming of variables that has an image
disjoint from the variables appearing in H �. Then the rule
H � � ��n�C implies all the previous rules for n � n�.
When such a rule is present, the previous rules are automat-
ically removed, and the non-termination is avoided. From
the point of view of abstract interpretation, adding a new
rule in this way can be considered as a widening [15], that
we use to force the convergence of the fixed point iteration.

This non-termination case can be detected automatically
by the verifier.

4.3. Enforcing termination

Termination can be enforced by limiting the depth of
terms. Each term that starts at a depth greater than a limit
fixed by the user is replaced by a new variable.

This way, if a fact can be generated by the system with-
out depth limitation, it can also be generated by the sys-
tem with depth limitation. The converse is of course wrong.
The system remains correct (if it says that a protocol does
not leak certain secrets, then the protocol definitely does not
leak these secrets), but some precision is lost.

In practice, the algorithm terminates for many protocols
without limiting the depth of terms. That is why, by default,
the depth of terms is not limited in our tool. Moreover, lim-
iting the depth of terms that appear in the rules does not
limit the depth of terms that can be built by the attacker,
since even with rules of bounded depth, the attacker can cre-
ate terms of unbounded depth. Therefore, even if limiting
the depth of terms in the rules leads to approximations, it is
more precise than limiting the depth of terms in the usual
depth-first search algorithm of Prolog.

5. Optimizations and extensions

5.1. Tuples

The tuples are denoted by �M�� � � � �Mn�. Tuples of dif-
ferent arity are considered as different functions. But the
user does not have to define each of these functions: they
are all built-in.

The attacker rules:

attacker�M�� � � � � � attacker�Mn�

� attacker��M�� � � � �Mn��

attacker��M�� � � � �Mn��� attacker�Mi�



are also built-in, and treated in a specially optimized way.
Indeed, these rules mean that attacker��M�� � � � �Mn��
is derivable if and only if �i � f�� � � � � ng,
attacker�Mi� is derivable. When a fact of the
form attacker��M�� � � � �Mn�� is met, it is replaced
by attacker�M�� � � � � � attacker�Mn�. If this
replacement is done in the conclusion of a rule
H � attacker��M�� � � � �Mn��, n rules are created:
H � attacker�Mi� for each i � f�� � � � � ng. This
replacement is of course done recursively: if Mi itself is a
tuple, it is replaced again.

Notice that �x� y� z�, �x� �y� z�� and ��x� y�� z� are differ-
ent terms. Tuples are different from the concatenation. This
can have important consequences. For instance, the Otway-
Rees protocol [32] is flawed when using concatenation, not
when using tuples. Similarly, the simplified version of the
Yahalom protocol of [11] is correct from the point of view
of secrecy when using tuples, whereas it is flawed when us-
ing concatenation [36, Attack 1]. (The second attack of [36]
exposes an authentication flaw, not a secrecy problem.) Of
course, the implementation of the protocol must correspond
to the model of the verifier.

5.2. Removing useless rules and useless hypotheses

If a rule has a conclusion which is already in the hy-
potheses, this rule does not generate new facts. Such rules
are therefore removed as soon as they are encountered by
our verifier.

If a rule H � C contains in its hypotheses attacker�x�,
where x is a variable that does not appear elsewhere in
the rule, the hypothesis attacker�x� can be removed. In-
deed, the attacker always has at least a message. Therefore
attacker�x� is always satisfied.

5.3. Secrecy assumptions

When the user knows that a fact will not be derivable,
he can tell it to the verifier. (When this fact is of the form
attacker�M�, the user tells thatM remains secret.) The tool
then removes all rules which have this fact in their hypothe-
ses. At the end of the computation, the program checks that
the fact is indeed underivable from the obtained rules. If
the user has given erroneous information, an error message
is displayed. Even in this case, the verifier never wrongly
claims that a protocol is secure.

Mentioning such underivable facts prunes the search
space, by removing useless rules. This speeds up the search
process. In most cases, the secret keys of the principals can-
not be known by the attacker. So, examples of underivable
facts are attacker�skA���, attacker�skB ���, � � �

5.4. Diffie-Hellman key agreement

The Diffie-Hellman key agreement [18] enables two
principals to build a shared secret. It is used as an elemen-
tary step in more complex protocols, such as Skeme [24].

Formally, the Diffie-Hellman key agreement can be mod-
eled by using two functions f and g that satisfy the equation

f�y� g�x�� � f�x� g�y��� (3)

In practice, the functions are f�x� y� � yx mod p and
g�x� � �x where p is prime and � is a generator of
Z
�

p. The equation f�y� g�x�� � ��x�y mod p � ��y�x

mod p � f�x� g�y�� is satisfied. In our verifier, follow-
ing the ideas used in the applied pi calculus [5], we do not
consider the underlying number theory; we work abstractly
with the equation (3). The Diffie-Hellman key agreement
involves two principals A and B. A chooses a random
name x�, and sends g�x�� to B. Similarly, B chooses a
random name x�, and sends g�x�� to A. Then A com-
putes f�x�� g�x��� and B computes f�x�� g�x���. Both
values are equal by (3), and they are secret: assuming that
the attacker cannot have x� or x�, it can compute neither
f�x�� g�x��� nor f�x�� g�x���.

The equation (3) cannot be written directly in our frame-
work that uses only constructors and destructors. Neverthe-
less, it can be encoded as follows: the constructors are g,
h�, and h�, and f is a destructor defined by

f�y� g�x�� � h��x� y��

f�x� g�y�� � h��x� y��

f�x� y� � h��x� y��

Notice that this definition of f is non-deterministic: a term
such as f�a� g�b�� can be reduced to h��a� b�, h��b� a�, and
h��a� g�b��. When two terms M� and M� are equal accord-
ing to the equation (3) then there exists a common term M

such that bothM� andM� reduce toM . (Both sides reduce
to h��x� y� when there is at least one g in the second param-
eter of f , and to h��x� y� otherwise.) The equation is then
modeled correctly.

5.5. Key compromise

The weakness of some protocols is that when an attacker
manages to get some session keys, then it can also get the
secrets of other sessions. Such a problem appears for exam-
ple in the Needham-Schroeder shared-key protocol. It can
be detected by our protocol verifier.

The strategy to model the compromise of some session
keys is as follows. We say that a name is a session name if
it is created at each session of the protocol. (In general, all
names except long-term secret keys are session names.) We
add a parameter (session identifier) to each session name a.



The session identifier of a is a given constant s� when a has
been created during a session compromised by the attacker.
The session identifier is s� when a has been created in a ses-
sion that has not been compromised. We define a predicate
comp such that comp�M� is true when all session names
in M have session identifier s�. This can be defined by the
following rules:

For each constructor f ,

comp�x�� � � � � � comp�xk�� comp�f�x�� � � � � xk��

For each session name a,

comp�x�� � � � � � comp�xk�� comp�a�s�� x�� � � � � xk��

For each non-session name a,

comp�x�� � � � � � comp�xk�� comp�a�x�� � � � � xk��

We define a predicate attacker� by the rules normally used
to encode the protocol, with session identifier s�, and a
predicate attacker� by the same rules with session identi-
fier s�. Then we add rules

comp�x�� � � � � � comp�xk�

� attacker��a�s�� x�� � � � � xk��

for each session name a. These rules express that the at-
tacker attacker� has the names of session identifier s�.
Moreover, we add the rule

attacker��x�� attacker��x��

The intuitive meaning of the predicates is the following:
attacker��M� is true if and only if M can be obtained by
the attacker by compromising the sessions of identifier s�;
attacker��M� is true ifM can be obtained by the attacker in
a non-compromised session, using the knowledge obtained
in the compromised sessions. We can then use our tool to
query the fact attacker��s�s���, where s is a session secret.
If this fact is underivable, then the protocol does not have
the weakness mentioned above: the attacker cannot have the
secret s of a session that it has not compromised. In con-
trast, it is normal that attacker��s�s���, since the attacker
has compromised the sessions of identifier s�.

Our translation from the applied pi calculus can auto-
matically add the rules described above to model the com-
promise of session keys. Also notice that our solving algo-
rithm uses S � fcomp�x�� attacker��x�� attacker��x�g in
this case.

Remark. We could also use a single predicate attacker in-
stead of attacker� and attacker�. However, this would yield
a less precise model, leading to more false attacks. For ex-
ample, we could not prove that the corrected version of the
Needham-Schroeder shared key protocol [31] is secure with
this model.

6. Experimental results

We have implemented our verifier in Ocaml, and have
performed tests on a Pentium MMX 233 MHz, under Linux
2.0.32 (RedHat 5.0). The results are summarized in Fig-
ure 5, with references to the papers that describe the proto-
cols and the attacks. In these tests, the protocols are fully
modeled, including interaction with the server for all ver-
sions of the Needham-Schroeder, Denning-Sacco, Otway-
Rees, and Yahalom protocols. We use secrecy assumptions
to speed up the search. These assumptions say that the se-
cret keys of the principals, and the random values of the
Diffie-Hellman key agreement and the session keys in the
Skeme protocol, remain secret. Thanks to these secrecy as-
sumptions, the analysis time of Skeme is 23 s instead of
70 s. The column “#Rules” indicates the number of Prolog
rules in our representation of each protocol. The large num-
ber of rules for the Needham-Schroeder shared-key proto-
col comes from the encoding of the compromise of session
keys. In the Needham-Schroeder shared key protocol, the
last messages are

Message �� B � A � fNBgK

Message �� A� B � fNB � �gK

where NB is a nonce. Representing this with a function
minusone�x� � x��, this yields a loop in our verifier, since
it believes that 1 can be subtracted any number of times
from NB . Moreover, the techniques mentioned previously
to force termination lead to a false attack. The purpose of
the subtraction is to distinguish the reply of A from B’s
message. As mentioned in [6], it would be clearer to have:

Message �� B � A � fMessage � � NBgK

Message �� A� B � fMessage � � NBgK

We use this encoding. Our tool then terminates, and the
analysis is precise. There was no other termination problem
in the tests of Figure 5.

These results show that our analysis can be used to verify
secrecy properties of standard cryptographic protocols, in a
small amount of time. It takes only a very small amount of
memory (less than 2 Mb in all these tests).

7. Conclusion

We believe that our protocol verifier can provide new
possibilities to verify cryptographic protocols: it is very
efficient, and thus can handle complex protocols; it also
avoids limiting the number of runs of the protocol. This is
achieved by using a simple representation of the protocol,
and a new solving algorithm.

Directions for further work include generalizing the tool
to be able to handle general equational theories. A more



Protocol Result #Rules Time (ms)
Needham-Schroeder public key [30] Attack [25] 14 70
Needham-Schroeder public key corrected [25] Secure 14 60
Needham-Schroeder shared key [30, 11] Attack [17] 47 760
Needham-Schroeder shared key corrected [31] Secure 51 1190
Denning-Sacco [17] Attack [11] 15 40
Denning-Sacco corrected [11] Secure 15 40
Otway-Rees [32] Secure 9 270
Otway-Rees, variant of [33] Attack [33] 9 260
Yahalom [11] Secure 10 110
Simpler Yahalom [11] Secure 10 310
Main mode of Skeme [24] Secure 23 23070

Figure 5. Experimental results

general study of the termination of the algorithm would also
be interesting, to find conditions that guarantee the termina-
tion of the basic algorithm, and new ways of forcing termi-
nation when these conditions are not satisfied.
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A. Proof of correctness of our algorithm

Lemma 4 At the end of the first phase, B satisfies the fol-
lowing properties:

1. �R � B�� 	R� � B�R� � R;

2. Let R � B, R � H � C and R� � B, R� � H � �
C �. Assume that there exists F� � H � such that:

(a) R 
F� R
� is defined;

(b) �F � H�F �r S;

(c) F� ��r S.

In this case, there exists R�� � B, R�� � R 
F� R
�.

Proof To prove the first property, let R � B�. We show
that during the whole execution of phase 1, 	R� � B�R� �
R.

At the beginning, we execute the instruction B �
add�elimdup�R�� B�. If there exists no R� � B such that
R� � elimdup�R�, elimdup�R� is added to B. We have
elimdup�R�� R (with � the identity). Therefore, after the
execution of this instruction 	R� � B�R� � R.

Assume that we execute B � add�R��� B�, and before
this execution 	R� � B�R� � R. Either R� is kept in B,
then this property is true after the execution of add. Or R�

is removed, and R�� � R�. Then R�� � R (� is transitive)
and the property is still satisfied.

The second property simply means that the fixed point is
reached at the end of phase 1 (using elimdup�R 
F� R

�� �
R 
F� R

�). �



Lemma 5 If R 
F� R
� is defined, R� � R and R�

� � R�

then either there exists F� such that R� 
F� R
�

� is defined
and R� 
F� R

�

� � R 
F� R
�, or R�

� � R 
F� R
�.

Proof Let R � H � C, R� � H � � C �, R� � H� �
C�, R�

� � H �

� � C �

�. By renaming the variables, we
can arrange such that the variables of R� and R�

� are dis-
tinct. Then there exists a substitution � such that �C� � C,
�H� � H , �C �

� � C �, �H �

� � H �.
We have R 
F� R

� � ���H � �H � � F��� � ��C �. We
have two cases.

First case: 	F� � H �

�� �F� � F�. Since R 
F� R
� is

defined, F� and C are unifiable, let �� be the most general
unifier. ���F� � ���C�, then F� and C� are unifiable,
therefore R� 
F� R

�

� is defined. Let �� be the most general
unifier. There exists ��� such that ��� � �����. We have
R� 
F� R

�

� � ���H� � �H �

� � F��� � ��C
�

�, ������H� �
�H �

��F��� � ����H�� �H �

��F��� � ���H � �H ��F���,
�����C

�

� � ���C �

� � ��C �. Then R� 
F� R
�

� � R 
F� R
�.

Second case: �H �

� � H ��F�. Then �H �

� � �H��H ��
F��� and �C �

� � C �. ThereforeR�

� � R 
F� R
�. �

Lemma 1 (Correctness of phase 1) Let F be a closed
fact. F is derivable from B� if and only if F is derivable
from B�.

Proof Assume that F is derivable from B� and consider
a derivation of F from B�. For each rule R in B�, there
exists a ruleR� inB such that R� � R (Lemma 4, Property
1).

Assume that R is the label of a node with an incoming
edge labelled F and n outgoing edges labelled F�� � � � � Fn.
We have R � fF�� � � � � Fng � F . Then R� �
fF�� � � � � Fng � F (� transitive).

Therefore, we can replace the node labelled R by a node
labelled R�. This way, we obtain a derivation of F from B.

Assume that there are two nodes n and n� in this deriva-
tion of F , linked by an edge from n� to n labelled C�. As-
sume that n is labelled R and n� is labelled R�. Let H
be the set of labels of outgoing edges of n, H � the same
for n�, C � the label of the incoming edge of n�. Then
�H � C�� 
C�

�H � � C �� is defined (with a substitu-
tion � being the identity). By Lemma 5, there exists F
such that R 
F R� is defined, and two cases may arise:
either R 
F R� � �H � C�� 
C�

�H � � C ��, or
R� � �H � C�� 
C�

�H � � C ��.

� In the first case, assume that the hypotheses (b) and
(c) of Lemma 4, Property 2 are satisfied. Then there
exists R�� � B such that R�� � R 
F R�. Then R�� �
�H � C�� 
C�

�H � � C �� � H � �H � � C�� �
C � (� transitive). Then the two nodes n and n� can
be replaced by a node n�� labelled R��. Indeed, the
outgoing edges of n and n� (excluding the edge from

n� to n) are labelled by elements of H and H � � C�.
And the incoming edge of n� is labelled by C �.

� In the second case, we remove n, and link directly its
incoming and outgoing edges to n�. We have R� �
�H � C�� 
C�

�H � � C �� � H � �H � � C�� � C �,
and outgoing edges of n� are now labelled by elements
of H � �H � � C��, its incoming edge by C �.

We perform this replacement process as long as there exist
nodes on which it can be applied. Once the replacement
process is done, we show that the remaining rules are all in
B�.

� The rules labelling leaves of the tree are all in B� since
they have no hypotheses.

� Let n� be a node such that all sons of n� are labelled by
a rule in B�. Therefore, the hypothesis (b) is satisfied
for all sons n of n� (the hypotheses F of the rule R la-
belling n satisfy F �r S). Since n and n� cannot have
been merged with another node by the above replace-
ment process, hypothesis (c) is not satisfied for all sons
n of n�. Then all hypotheses F� of the rule labelling n�

satisfy F� �r S. That is, n� is also labelled by a rule of
B�.

By induction, this proof shows that all nodes are labelled by
a rule of B�, which is the expected result.

For the converse implication, notice that if a fact is deriv-
able from B� then it is derivable from B, and that all rules
added to B do not create new derivable terms: when com-
posing two rulesR andR�, the created rule can derive terms
that could also by derived by R and R�. �

Theorem 2 Let F be a closed fact. Let F � such that
there exists a substitution � such that �F � � F . F

is derivable from the rules in B� if and only if 	F �� �
derivable�F ��� 	�� F � �F ��.

In particular, F is derivable from B� if and only if F �
derivable�F �.

Proof Using Lemma 1, we only have to prove
that F is derivable from B� if and only if 	F �� �
derivable�F ��� 	�� F � �F ��.

Let us prove the direct implication. We consider a deriva-
tion of F from B �. We cut this derivation on certain edges,
and remove the branches that start from these edges. We call
the remaining part a partial derivation of F . Let F�� � � � � Fn
be the labels of the cut edges. We prove that 	R�� R� �
fF�� � � � � Fng � F� derivablerec�R�� B��� � derivable�F ��
and �R�� � B��� R�� �� R�. The proof is by induction on the
number of nodes in the partial derivation.

If there are no nodes in the partial derivation, that is
we have cut the edge starting from the root, let R� �



fF �g � F �, B�� � �. We have derivablerec�R�� B��� �
derivable�F �� hence the result.

For the induction step, consider a partial derivation with
k 	 � nodes. Let n be a node of this derivation whose
all outgoing edges have been cut (a leaf of the partial
derivation). Assume that n is labelled by R, that its in-
coming edge is labelled by F�, its outgoing edges by
F �

�� � � � � F
�

n� . The other edges that have been cut to build
the partial derivation are labelled by F�� � � � Fn. By in-
duction hypothesis on the partial derivation without node
n, there exists R� such that R� � fF�� � � � � Fng �
F , derivablerec�R�� B��� � derivable�F �� and �R�� �
B��� R�� �� R�. We show that there exists Rf

such that Rf � fF �

�� � � � � F
�

n� � F�� � � � � Fng � F ,
derivablerec�Rf � B

��� � derivable�F �� and �R�� �
B��� R�� �� Rf . By definition of a derivation, R �
fF �

�� � � � � F
�

n�g � F�. Notice that the composition
�fF �

�� � � � � F
�

n�g � F�� 
F� �fF�� � � � � Fng � F � �
fF �

�� � � � F
�

n� � F�� � � � � Fng � F is defined (the unifier �
being the identity). Then by Lemma 5, two cases may
arise. First case: R� � fF �

�� � � � F
�

n� � F�� � � � � Fng �
F , and the expected result is obvious with Rf �
R�. Second case: there exists F �� such that R 
F ��

R� � fF �

�� � � � F
�

n� � F�� � � � � Fng � F . Let R� �
elimdup�R 
F �� R��. Then, by transitivity of �, R� �
fF �

�� � � � F
�

n� � F�� � � � � Fng � F . By the step (c) of the
definition of derivablerec, derivablerec�R�� fR

�g � B��� �
derivable�F ��. If �R� � fR�g � B��� R� �� R�, we
have the expected result with Rf � R�. Otherwise,
	R� � fR�g � B��� R� � R�. By transitivity of �,
R� � fF �

�� � � � F
�

n� � F�� � � � � Fng � F . There is an older
call to derivablerec, of the form derivablerec�R�� B��, such
that derivablerec�R�� B�� � derivable�F ��. If B� satisfies
�R� � B�� R� �� R�, we have the result with Rf � R�.
Otherwise, we go on taking a previous call to derivablerec

as above. The process terminates, since B�� is finite.
We can apply the result we have just proved to the par-

ticular case when the partial derivation is in fact the whole
derivation of F . We obtain 	R�� R� � � � F and
derivablerec�R�� B��� � derivable�F ��, �R�� � B��� R�� ��
R�. Therefore R� � � � F ��, with �F �� � F .
derivablerec�R�� B��� � fF ��g. (The case (a) of the defi-
nition of derivablerec cannot be applied because of the con-
dition �R�� � B��� R�� �� R�.) Then F �� � derivable�F ��.
We have the expected result.

The proof of the converse inclusion is left to the reader.
(essentially, the rule R 
F R� does not generate facts that
cannot be generated by applyingR and R �). �

B. Termination

Lemma 3 If F is closed and S � fattacker�x�g, then
derivable�F � terminates.

Proof derivablerec�R�B��� is only called with R �
fFg � F orR � attacker�M���� � ��attacker�Mn�� F

where M�� � � � �Mn are closed terms, or a variable that ap-
pears only once. This is proved by induction in the fol-
lowing. Moreover, we prove that the pair p � �total
size of the M�� � � � �Mn that are closed terms, number of
M�� � � � �Mn that are variables� ordered lexicographically
strictly decreases. This decrease proves the termination.

At the beginning, the rule is indeed R � fFg � F . For
recursive calls to derivablerec, the rule is R� 
F� R, where
R� � attacker�x�� � � � � � attacker�xk�� F �.

1. First case: F� is a closed fact.
After unification of F � and F�, xi is substituted by a

closed term Ni if xi appears in F �. Otherwise, xi remains
unchanged, and we define Ni � xi.

� If R � fFg � F , the resulting rule R� 
F� R is
attacker�N�� � � � � � attacker�Nk�� F .

� Otherwise,R � attacker�M���� � ��attacker�Mn��
F , F� � attacker�Mi�. Assume that Mi is a closed
term. The resulting rule is attacker�N�� � � � � �
attacker�Nk��attacker�M���� � ��attacker�Mi����
attacker�Mi��� � � � � � attacker�Mn� � F . More-
over, the N�� � � � � Nk that are closed terms are dis-
joint subterms of Mi, therefore the total size of the
N�� � � � � Nk that are closed terms is strictly smaller
than the size ofMi (except whenR� � attacker�x� �
attacker�x�, but in this case, R� 
F� R � R, and the
call derivablerec�R� 
F� R� fRg � B

��� stops immedi-
ately because R� 
F� R � R � fRg � B��, by the first
point of the definition of derivablerec). Therefore the
total size of the closed terms in the hypotheses strictly
decreases. Hence the pair p ordered lexicographically
strictly decreases.

2. Second case: R � attacker�M�� � � � � �
attacker�Mn�� F , F� � attacker�Mi�, Mi � xi.

If R� has some hypotheses, the resulting rule is
R� 
F� R � attacker�x�� � � � � � attacker�xk� �
attacker�M��� � � �� attacker�Mi���� attacker�Mi����
� � � � attacker�Mn�� F . We clearly have R� 
F� R� R.
Therefore the call derivablerec�R� 
F� R� fRg � B

��� stops
immediately because R� 
F� R� R and R � fRg � B��.

If R� has no hypothesis, the resulting rule is R� 
F� R �
attacker�M��� � � �� attacker�Mi���� attacker�Mi����
� � �� attacker�Mn�� F , and the total size of closed terms
in the hypotheses is constant, whereas the number of vari-
ables strictly decreases. Hence the pair p ordered lexico-
graphically strictly decreases. �

Remark. The cases R� � attacker�x�� attacker�x� and
F� � attacker�xi� are removed by the optimizations of
Section 5.2.


