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Abstract. We describe a new algorithm for analysing security protocols that use
XOR, such as key-management APIs. As a case study, we consider the IBM 4758
CCA API, which is widely used in the ATM (cash machine) network. Earlier ver-
sions of the CCA API were shown to have serious flaws, and the fixes introduced
by IBM in version 2.41 had not previously been formally analysed. We first in-
vestigate IBM’s proposals using a model checker for security protocol analysis,
uncovering some important issues about their implementation. Having identified
configurations we believed to be safe, we describe the formal verification of their
security. We first define a new class of protocols, containing in particular all the
versions of the CCA API. We then show that secrecy after an unbounded num-
ber of sessions is decidable for this class. Implementing the decision procedure
requires some improvements, since the procedure is exponential. We describe a
change of representation that leads to an implementation able to verify a configu-
ration of the API in a few seconds. As a consequence, we obtain the first security
proof of the fixed IBM 4758 CCA API with unbounded sessions.

1 Introduction

Security protocols are small programs that aim to secure communications over a pub-
lic network like the Internet. The design of such protocols is notoriously difficult and
error-prone. Formal methods have proved their usefulness in the rigorous analysis of
security protocols. Methods developed for security protocol analysis can also be useful
for analysing other security-critical designs: for example, the security APIs of hardware
security modules (HSMs). HSMs are essentially cryptographic co-processors encased
in tamper-proof enclosures, and are widely used in security critical systems such as
electronic payment and automated teller machine (ATM) networks. Use of the HSM is
governed by the API, which can be thought of as a set of two-party security protocols,
each describing an exchange between the HSM and the user, which may be used in any
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order. The IBM 4758 CCA1 is an important example of such an API. In 2001, Bond
discovered flaws in the CCA key management scheme that allowed an intruder to ob-
tain access to PINs [2, §5.1]. The attack requires the intruder to exploit the algebraic
properties of the XOR operation, which is used extensively in the CCA. Bond pro-
posed changes to the API, which have been shown to be secure, [8], but these changes
would not have been backward-compatible. IBM made changes of their own in ver-
sion 2.41 of the API, and provided several procedural recommendations to prevent the
attack. Though previous formal work has been able to rediscover the flaws in the old
version [12, 15], the new version of the API had not been formally analysed before.

In this paper, we propose a thorough analysis of the security of the revised IBM
protocol, combining a case study with the development of a new tool for analysing
protocols with XOR. Our first main contribution is the analysis of the IBM recommen-
dations using the CL-AtSe protocol analysis tool [13], during which we discovered a
possible attack, that we reported to IBM (see §2.3). For all the other versions, CL-AtSe
concludes that the IBM protocol is safe. However, CL-AtSe only checks security for a
finite number of sessions, or runs of the protocol. Furthermore, because the complexity
of the API is greater than a standard key-exchange protocol, the number of sessions
checked is often very small, usually only three. This means that there is no guarantee
of security if the protocol is executed more than three times. In addition, the IBM CCA
API lies outside both the existing classes of protocols using XOR which have been
previously shown to be decidable [5, 14] for an unbounded number of sessions. Other
decidable classes of protocols with XOR have been proposed [6, 4] but they only model
a finite number of sessions.

To address this problem, our second main contribution is the development of a new
class of protocols, called WFX-class, that includes the IBM CCA API. We show this
class to be decidable. Our proof is considerably simpler than the corresponding proofs
for the two previously treated classes, but the resulting decision procedure still has an
exponential complexity. For example, in our application, our decision procedure may
require us to compute about 226 terms. We describe a change of representation that leads
to an implementation able to verify a configuration of the API in a few seconds. As a
consequence, we obtain the first security proof of the fixed IBM 4758 CCA API with
unbounded sessions. To the best of our knowledge, this implementation is the first tool
for automatically verifying protocols with XOR, for an unbounded number of sessions,
albeit for a particular class of protocols.

The paper is organised as follows: in §2, we analyse each of IBM’s recommen-
dations for patching the CCA key management protocol, using CL-AtSe (thus for a
bounded number of sessions). In §3, we define our class of well-formed protocols, and
prove the decidability of security of protocols in the class for an unbounded number of
sessions. We explain how to implement our procedure in §4, and provide our results for
the CCA key management scheme. Concluding remarks can be found in §5. A longer
version of the paper, containing full proofs and more details of the CCA command
modelling, has been issued as a technical report [7].

1 CCA stands for ‘Common Cryptographic Architecture’, while 4758 is the model number of
the HSM. See http://www-3.ibm.com/security/cryptocards/pcicc.shtml
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2 Analysing the IBM Recommendations using CL-AtSe

HSMs typically consist of a cryptoprocessor and a small amount of memory inside a
tamper-proof enclosure. They are designed so that should an intruder open the casing
or insert probes to try to read the memory, it will auto-erase in a matter of nanoseconds.
In a typical ATM network application, HSMs are used, for example, to decrypt, encrypt
and verify PINs. Many different keys are used for these operations. IBM’s Common
Cryptographic Architecture (CCA) API [3] supports various key types, such as data
keys, key encryption keys, import keys and export keys. Each type is represented by a
public ‘control vector’ which is XOR-ed with the security module’s master key (which
is stored inside the HSM), before being used to encrypt the particular key. For example,
a data key would be encrypted under KM⊕DATA.2 Keys encrypted in this manner are
known as working keys and are stored outside of the security module. They can then
only be used by sending them back into the HSM under the desired API command.
Only particular types of keys will be accepted by the HSM for particular operations.
For example, data keys can be used to encrypt arbitrary messages, but so-called ‘PIN
Derivation Keys’ (PDKs, with control vector PIN) cannot, which is critical for security:
a customer’s PIN is just his account number encrypted under a PIN derivation key. In
Bond’s attack, the intruder uses API commands to change the type of a key, exploiting
the algebraic properties of XOR. This allows a PIN derivation key to be converted into
a data key, which can then be used to encrypt data. Hence the attack allows a criminal
to generate a PIN for any account number. For more details of Bond’s ‘Chosen Key
Difference’ attack, see [2, §5.1].

2.1 CCA Key Management Commands

Following previous work [15, 12], our experiments consider a number of key manage-
ment commands from the CCA API. We ignore commands which do not generate key
material and commands that are subsumed by more general ones. A full list of com-
mands, including the ones not modelled and our justification for leaving them out, can
be found in [7]. The modelled rules of the IBM 4758 CCA API are represented in Fig-
ure 1. For each command, the terms on the left of the arrow represent the user’s input
to the HSM, and the term on the right represents the HSM’s output. For example, we
have seen that data keys should be encrypted under KM⊕DATA. Thus the Encipher rule
corresponds to a data encryption command which allows data keys to be used to encrypt
any given plaintext. Decipher allows data keys to be used for decryption. Key Import
allows a key from another 4758 module, encrypted for transport under a ‘key encrypt-
ing key’ (KEK), to be made into a working key for this HSM. Key Export is used to
encrypt a working key under a key encrypting key for transport to another HSM. Note
the division of types of KEK: IMP for import and EXP for export. In order to transport
encrypted keys to a new HSM, an importer KEK must first be established as a working
key at the destination HSM. In order to do this without giving away the value of the
KEK, which would be a considerable security risk, the KEK is decomposed into three

2 ⊕ represents bitwise XOR.
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x , {|xkey|}KM⊕DATA→ {|x|}xkey Encipher

{|x|}xkey , {|xkey|}KM⊕DATA→ x Decipher

{|xkey|}xkek⊕xtype , xtype , {|xkek|}KM⊕IMP→ {|xkey|}KM⊕xtype Key Import

{|xkey|}KM⊕xtype , xtype , {|xkek|}KM⊕EXP→ {|xkey|}xkek⊕xtype Key Export

xkpNew , xtype → {|xkpNew|}KM⊕xtype⊕KPART Key Part Import 1

xkpNew , xtype , {|xkpOld|}KM⊕xtype⊕KPART→ {|xkpNew⊕xkpOld|}KM⊕xtype⊕KPART

Key Part Import 2

xkpNew , xtype , {|xkpOld|}KM⊕xtype⊕KPART→ {|xkpNew⊕xkpOld|}KM⊕xtype

Key Part Import 3

{|xkey|}xkek1⊕xtype , xtype , {|xkek1|}KM⊕IMP , {|xkek2|}KM⊕EXP→ {|xkey|}xkek2⊕xtype

Key Translate

Variables are prefixed by x. The term {|m|}k represents the message m encrypted with the key k
(using symmetric encryption).

Fig. 1. Modelled rules of the IBM 4758 CCA API.

parts, which XOR together to give the final KEK. The three Key Part Import com-
mands can then be used one after the other, by three different security officers, each in
possession of one key part, to create the working import key. It is this process that is
subverted in Bond’s attack to change the type of a key. Key Translate is used to trans-
late a key from encryption under one KEK (of import type) to encryption under another
(of export type). For a full description of all these rules, see [10].

2.2 Modelling the API

We chose to use CL-AtSe [13] to check the API since unlike most protocol analysis
tools, it has built-in support for the XOR operator. CL-AtSe is a ‘Dolev-Yao’3 style
protocol analyser, part of the AVISPA tool set [16]. It accepts models written in a
special-purpose protocol specification language called HLPSL [17], and implements a
variant of the Baader-Schulz unification algorithm [1], optimised for XOR. The HLPSL
is initially converted into a transition relation, which CL-AtSe uses to generate a set of
constraints describing the protocol. Each protocol step is modelled by constraints on
the intruder’s knowledge, with the execution of such steps simulated by adding new
constraints to the system and by reducing or eliminating existing constraints. Security

3 This refers to the nature of the intruder being modelled, who may decompose and re-assemble
message parts, but not perform any cryptanalytic attacks.
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properties are checked against the system state at each step. See [17, §3.2.1] for more
details of the operation of CL-AtSe.

Each of the commands were modelled as a separate ‘role’ containing exactly one
transition. The intruder’s initial knowledge includes an unknown working key of each
type, to reflect that fact that even if he does not already have such keys, he can always
‘conjure’ one by repeatedly trying random values against a command, [2, §3.4]. In ad-
dition, he is given all the initial knowledge assumed by Bond in his attacks, [2], which
includes a key part K3, a partially completed importer key {|KEK⊕K3|}

KM⊕KP⊕IMP , a PIN
derivation key PDK encrypted under transport key KEK, and a customer’s account num-
ber PAN. For standard security protocols, we would be interested in model checking
properties such as the secrecy of a newly agreed session key, i.e. that a term represent-
ing the session key is unknown to the intruder. In the case of security APIs, we are
interested in the secrecy of the cleartext value of the sensitive keys managed by the
HSM. Additionally, we assume that the intruder knows a customer’s account number,
since these are not kept secret in the system. We can now also check the secrecy of the
customer’s PIN, i.e. the account number encrypted under the PIN derivation key, that is
a message of the form {|PAN|}

PDK
. This accounts for attacks where the intruder is able

to encrypt arbitrary data under the PDK, without learning the key’s cleartext value, as
is the case in several of Bond’s attacks.

Full details of the CL-AtSe modelling can be found in [10]. Having established that
CL-AtSe can very quickly re-discover Bond’s attack on the original API, we proceeded
to investigate IBM’s recommendations for preventing it.

2.3 Analysing IBM’s Recommendations

In response to Bond’s attacks [2, §5.1], IBM released a set of three recommendations
designed to prevent it [9], covering command usage, the access control system, and gen-
eral procedural safeguards. However, it was unclear which of the recommendations are
necessary, or sufficient, to prevent the attack. We investigated all the recommendations
using our CL-AtSe model.

Recommendation 1 – Use Public Key Techniques. Instead of transferring the initial
key encryption key (KEK) using key parts in clear, IBM recommend that it is transferred
encrypted under the destination HSM’s public key. This ensures that the KEK is never
present in clear, and thus cannot be modified. Using this method, the KEK is wrapped
in a key block which is subsequently encrypted and provided as input to the PKA
Symmetric Key Import command, defined as follows:

{|xkey.xtype|}
PK
→ {|xkey|}

KM⊕xtype PKA Symmetric Key Import

However, the format and encryption procedure for the key block is given in the
manual, and it is therefore possible for a block containing an arbitrary key to be created,
thus allowing a known key to be introduced into the security module. CL-AtSe quickly
discovered that an attacker could introduce a known exporter key k,4 and obtain the

4 Our experiments found that, even if the PKA Symmetric Key Import command does not
accept export-type KEKs, it is still possible to obtain such a key (see [10] for details)
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{|kek.IMP|}PK→ {|kek|}KM⊕IMP PKA Symmetric Key Import

{|k.EXP|}PK→ {|k|}KM⊕EXP PKA Symmetric Key Import

{|pdk|}kek⊕PIN , PIN , {|kek|}KM⊕IMP→ {|pdk|}KM⊕PIN Key Import

{|pdk|}KM⊕PIN , PIN , {|k|}KM⊕EXP→ {|pdk|}k⊕PIN Key Export

Fig. 2. A known-exporter attack. The attacker first imports the import-type KEK as intended, then
imports an export-type key k which he knows. Then, he imports the PDK as intended, but then
can export it under k⊕PIN, and since PIN is a public value, he can decrypt this packet and obtain
the PDK.

transported PIN derivation key encrypted under this key (see Figure 2). We reported this
vulnerability to IBM. They conceded that the attack was possible, and intend to change
the documentation to reflect this. They argue the attack would have to be carried out
by an insider, and that the vulnerability is intrinsic to public key schemes. We suggest
that access control should be used to restrict any single insider from having access to
both the PKA Symmetric Key Import and Key Import commands. We created two
models, each one allowing access to only one of these functions, and checked them
with CL-AtSe, which discovered no further attacks, up to the bounds shown in the table
below:

Available Analysed Reachable
Command Bound* States States Run-Time (s)

Key Import 10# 76 10 0.08

PKA Symmetric
Key Import 3 8751 1749 514.27

# This bound could be set much higher, but informal analysis showed that the intruder was
never able to obtain any useful new terms.

* Bound on the number of sessions.

Recommendation 2 – Use the Access Control System. Users of IBM’s 4758 HSM are
assigned to roles that determine which commands they are allowed to execute. The goal
is to prevent one single individual from having access to all the commands required to
mount Bond’s attack. This is enforced using access controls. IBM provide an example
of the KEK transfer process involving five roles (A – E) such that no single role is able
to mount the attack (see Figure 3).

In the original attack, the intruder played the roles C and E together. Note that roles
A and D do not have any access privileges at the destination security module. IBM
state in their recommendation that roles A and B could actually be played by the same
individual. This does not hold since that person has access to all the key parts, and thus
the completed KEK, so she could decrypt the key in transit, and obtain its clear value.
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Person Responsibilities Commands

A
Generates and distributes the clear key parts, as well
as the key verification pattern (KVP) for the complete
KEK.

N/A

B Enters the first key part into the destination security
module.

Key Part Import 1

C
Enters the second key part, and verifies that the com-
pleted KEK is correct by checking the KVP.

Key Part Import 3
Key Test

D Distributes the PIN derivation key (PDK) encrypted un-
der KEK.

N/A

E Verifies that the KEK is correct, then imports the PDK. Key Test
Key Import

Fig. 3. Roles described by IBM in their 2nd recommendation.

In our experimental model, the intruder was actually given a greater range of API
commands than as suggested by IBM, with still the restriction that at least one of the
three requirements for the attack were missing. That is, none of them gave the intruder
access to a Key Part Import command, the Key Import command, and the key being
transferred. The reason for this was that we were trying to discover the minimum re-
strictions that are sufficient to prevent the attack. CL-AtSe reported no attacks up to the
bounds shown below:

Person Bound Analysed States Reachable States Run-Time (s)

B 6 34 6 333.02

C 3 413 68 58.22

E 10* 54 10 0.03

* This bound could be set much higher, but informal analysis showed that the intruder was
never able to obtain any useful new terms.

Recommendation 3 – Use Procedural Controls. IBM’s third recommendation is to
ensure that no single individual involved in the key transfer process has the opportunity
to modify the KEK used. If the KEK is not modified, then the type of the key being
transferred cannot be altered when it is imported. With respect to the API commands,
this translates to restricting the Key Import command to only accept the unmodified
KEK. CL-AtSe found no attack on this version of the API:

Bound Analysed States Reachable States Run-Time (s)

3 13133 2625 2827.35

The large number of reachable states reflects the fact that the intruder is still able to
generate a large number of modified KEKs, even though they cannot be used to import
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the PDK. IBM now seem to intend that Recommendation 3 is always followed, in ad-
dition to any of the other recommendations, in order to ensure a high level of security.
The points outlined by the recommendation have since been expanded and included in
the current version of the CCA Manual [3, Appendix H] as general principles for secure
operation.

All the model files used in our experiments are available from http://homepages.inf.ed.ac.uk/gsteel/CCA-
experiments/. The CL-AtSe tool may be downloaded from http://www.avispa-project.org/.

3 Theoretical results for XOR-based Key-management APIs

Having investigated IBM’s recommendations with a model checker, and adjusting them
where necessary to produce what seemed to be secure configurations, we proceed to-
wards verifying them secure. As we have seen, both protocols and intruder behaviours
can be modelled symbolically using rules over terms with variables. We observe that
the IBM 4758 CCA API can actually be modelled using what we call well-formed rules.
We then show that reachability of a term is decidable for any set of well-formed rules.

3.1 Definitions

Cryptographic primitives are represented by functional symbols. More specifically, we
consider the signature Σ containing an infinite number of constants including some
special constant 0 and two non constant symbols {| |} and ⊕ of arity 2. We also assume
an infinite set of variables V . The set of terms or messages is defined inductively by

T ::= terms
| x variable x
| f(T1, . . . , Tk) application of symbol f ∈ Σ of arity k ≥ 1
| c constant c ∈ Σ

A term is ground if it has no variable.
As in §2, the term {|m |}k is intended to represent the message m encrypted with

the key k (using symmetric encryption). The term m1 ⊕ m2 represents the message
m1 XORed with the message m2. The constants may represent agent identities, nonces
or keys for example. Substitutions are written σ = {x1 = t1, . . . , xn = tn} with
dom(σ) = {x1, . . . , xn}. σ is ground iff all of the ti are ground. The application of a
substitution σ to a term t is written σ(t) = tσ. The size of a term t, denoted by |t|, is
defined as usual by the total number of symbols used in t. More formally, |a| = 1 if a
is a constant or a variable and |f(t1, . . . , tn)| = 1 +

∑n
i=1 |t| if f is of arity k ≥ 1. The

size of a set of terms S is the sum of the size of the terms in S.
We equip the signature with an equational theory E that models the algebraic prop-

erties of the XOR operator:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ y = y ⊕ x
x⊕ x = 0 x⊕ 0 = x

It defines an equivalence relation that is closed under substitutions of terms for variables
and under application of contexts. In particular, we say that two terms t1 and t2 are
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equal, denoted by t1 = t2 if they are equal modulo the equational theory E. If two
terms are equal using only the equations of the first line, we say that they are equal
modulo Associativity and Commutativity (AC).

Intruder capabilities and the protocol behaviour are described using rules of the
form t1, . . . , tn → tn+1 where the ti are terms.

Example 1. The intruder capabilities are represented by the following set of three rules:

x, y → {|x|}y encryption
{|x|}y, y → x decryption

x, y → x⊕ y xoring

The set of deducible terms is the reflexive and transitive closure of the rewrite rules.

Definition 1. Let R be a set of rules. Let S be a set of ground terms. The term u is
one-step deducible from S if there exists a rule t1, . . . , tn → t ∈ R and a ground
substitution θ such that tiθ ∈ S and u = tθ.

A term u is deducible from S, denoted by S `R u, if u ∈ S or there exist ground
terms u1, . . . , un such that un = u and ui is one-step deducible from S∪{u1, . . . , ui−1}
for every 1 ≤ i ≤ n. The sequence u1, . . . , un is a proof that S `R u.

We write ` instead of `R when R is clear from the context.

Example 2. Let R be the set of rules described in Example 1. Let S =
{{| n |}a, a ⊕ b, b}. Then n is deducible from S and {| n |}a, a ⊕ b, b, a is a proof of
S ` n. Indeed a is one-step deducible from {a⊕ b, b} using the rule x, y → x⊕ y and
the fact that (a⊕ b)⊕ b = a and n is one-step deducible from {{|n|}a, a} using the rule
{|x|}y, y → x.

3.2 Well-formed Protocols

Rather than restricting the use of variables in protocol rules, we take advantage of the
form of API-like protocols, noticing that they only perform simple operations.

Definition 2. A term t is an XOR term if t =
⊕n

i=1 ui, n ≥ 1 where each ui is a
variable or a constant.

A term t is an encryption term if t = {|u|}v where u and v are XOR terms.
A term t is a well-formed term if it is either an encryption term or an XOR term. In

particular, a well formed term contains no nested encryption.
A rule t1, . . . , tn → tn+1 is well formed if

– each ti is a well-formed term.
– V ar(tn+1) ⊆

⋃n
i=1 V ar(ti) (no variable is introduced in the right-hand-side of a

rule).

A proof is well-formed if it only uses well-formed terms.

Definition 3. The WFX-class protocol consists of a pair (R, S), whereR is a finite set
of well-formed rules, and S is a finite set of ground, well-formed terms.
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Intuitively, the rules in R represent the commands of the API and the intruder ca-
pabilities, and the ground terms S the initial knowledge of the intruder. We call our
class WFX since these are well-formed protocols using the XOR operator. In particu-
lar, the rules representing the intruder capabilities (defined in Example 1) and the rules
representing the 4758 CCA API protocol (introduced in §2 are all well-formed.

The remaining of the section is devoted to the decidability of deducibility of a term,
which can be used to encode secrecy preservation of a protocol. To the best of our
knowledge, there exist only two decidable classes [5, 14] for secrecy preservation for
protocols with XOR, for an unbounded number of sessions. In both cases, the main
difference with our class is that we make restrictions on the combination of functional
symbols rather than on the occurrences of variables. As a consequence, our class is
incomparable to the two existing ones. A more detailed discussion may be found in [7].

3.3 Proof of Decidability

The key idea of our decidability result is to show that only well-formed terms need to
be considered when checking for the deducibility of a (well-formed) term. In particular,
there is no need to consider nested encryption. This allows us to consider only a finite
number of terms: we have a finite number of atoms in the initial set of rules which can
only be combined by encryption and XORing, and XORing identical atoms results in
cancellation. At the end of the proof, we comment on the complexity of the resulting
decision procedure.

We first prove that whenever an encryption occurs in a deducible term, the encryp-
tion is itself deducible.

Proposition 1. Let R be a set of well-formed rules. Let S be a set of ground well-
formed terms (intuitively the initial knowledge). Let u be a term such that S ` u and let
{|u1|}u2 be a subterm of u. Then S ` {|u1|}u2 .

The proof is by induction on the number of steps needed to obtain u. The full proof
is in [7].

Our main result states that only well-formed terms need to be considered when
checking for deducibility.

Proposition 2. Let R be a set of well-formed rules and S be a set of ground well-
formed terms such that

– R contains the rule x, y → x⊕ y;
– S contains 0 (the null element for XOR should always be known to an intruder).

Let u be a ground well formed term deducible from S. Then there exists a well-formed
proof of S ` u.

We briefly sketch the proof of this key proposition (the full proof appears in [7]). Taking
advantage of the form of the rules, the main idea is to show that, considering a proof of a
well-formed term u and removing all inside encrypted terms, we obtain a (well-formed)
proof of u. We define a function t 7→ t that removes inside encryption. For example, we
have {|a⊕ {|a|}b|}c ⊕ {|c|}b = {|a|}c⊕{|c|}b. Roughly, we show by induction on the length
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of the proof that whenever u1, . . . , un is a proof then u1, . . . , un is a proof. Assume
u1, . . . , un, un+1 is a proof and t1, . . . , tk → t is the last rule been applied. There is a
substitution θ such that tθ = un+1 and tiθ = uji . Since t is a well-formed term, any
inside encryption e of un+1 must appear under a variable x in t thus e also appears
in some uji . Intuitively, there is a case analysis depending on whether x also appears
under an encryption in ti. If x does not appear under an encryption, that is t = x ⊕ t′,
we use the fact that (Proposition 1) e is deducible thus uji ⊕ e is also deducible and we
could have chosen xθ′ = xθ ⊕ e, removing the encryption from un+1.

Using Proposition 2, we can now easily conclude the decidability of deducibility.

Theorem 1. The following problem

– Given a finite set of well-formed rules R containing the rule x, y → x⊕ y, a finite
set S of ground well-formed terms containing 0 and a ground well-formed term u,

– Does S `R u ?

is decidable in exponential time in the size of R, S and u.

Let a1, . . . , an be the constants that occur in R, S or u. Let k be the maximal
number of terms in the left-hand side of a rule in R. For any t1, . . . , tl → t ∈ R, we
have l ≤ k. We show that S `R u can be decided in O(2(k+1)(2n+1)).

The decision procedure is as follows: we saturate S by adding any well-formed
deducible terms. We obtain a set S∗. By Proposition 2, S `R u if and only if u ∈ S∗.
In S∗ there are at most

– 2n XOR terms
– and 2n × 2n = 22n encryption terms

thus |S∗| ≤ 22n+1. Note that we consider here terms modulo AC which means that
we only consider one concrete representation for each class of terms equal modulo AC.
This can be done for example by fixing an arbitrary order on the constants and using it
to normalise terms.

Now, at each iteration, For each rule t1, . . . , tl → t ∈ R we consider any tuple of
terms (u1, . . . , ul) with ui in the set that is being saturated and compute the set M of
most general unifiers of (u1, . . . , ul) = (t1, . . . , tl) (which can be done in polynomial
time for well-formed terms, see [7]). Then we add any well-formed instance of tσ for
any σ ∈M. We consider at most |S∗|k ≤ 2k(2n+1) tuples at each iteration. All together,
we need at most O(2(k+1)(2n+1)) operations to compute S∗.

4 Implementation and Results

Our efforts to implement the decision procedure using existing tools such as theorem
provers (Vampire and E) and model finders (Paradox and Darwin) were unsuccessful.
The combinatorial complexity caused by the XOR operation prevents any of the tools
from finding a saturation. Since our models have a finite Herbrand universe, and hence
are effectively propositional, we considered a manual encoding as a Boolean satisfiabil-
ity problem, for use with a SAT solver. Unfortunately, for n atoms (our models typically
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have n = 13), we will need 2n (possible XOR terms) + 2n × 2n (possible encryption
terms) propositional variables to represent the intruder’s knowledge. Additionally, writ-
ing out ground versions of the 8 well formed rules in the API will result is an enormous
problem, far too large for any SAT solver. In the end, we solved the problem by making
a change of representation, and writing an ad-hoc decision procedure for that represen-
tation.

4.1 Representation of XOR terms

The representation consists of encoding an XOR term as a binary string, accomplished
by assigning an (arbitrary) order to the finite set of atoms (or base terms). For example,
if we have the ordered set of base terms KM, KP, KEK, IMP, EXP, DATA, PIN, we would
represent KEK⊕PIN⊕DATA as

KM KP KEK IMP EXP DATA PIN

KEK⊕PIN⊕DATA→ 0 0 1 0 0 1 1
↓

19

Hence KEK⊕PIN⊕DATA is represented by the decimal integer 19. Notice the order of the
atoms in the term does not matter - we still get the same integer - so our representation
effectively normalises the term with respect to the properties of XOR. Notice further
that if we have two terms x1 and x2, that are represented by integers l and m, then the
integer representing x1⊕ x2 is just l⊕m. So, we represent XOR using XOR, which is
an attractive feature of the representation. For example, we can write the intruder rule

x1, x2 → x1⊕ x2

as
l, m → l ⊕m

For encryption terms, which consist of one XOR term encrypted by another, we simply
shift the bits of the integer representing the message term n places to the left (where
n is the number of base terms), and add the integer representing the key. We obtain a
unique number in the range 0 . . . 22n for each encryption term. For example, the term {
|KEK⊕PIN⊕DATA|}KM⊕DATA is represented by

KM KP KEK IMP EXP DATA PIN KM KP KEK IMP EXP DATA PIN

0 0 1 0 0 1 1 1 0 0 0 0 1 0
↓

2498

4.2 The Implemented Procedure

Our decision procedure starts by allocating enough space in memory for 22n + 2n

integers, and setting all these memory locations to 0. Then, all locations corresponding
to the intruder’s initial knowledge S are set to 1, indicating that the intruder can obtain
these terms. For each rule ri in R, with k terms on the left hand side, encode the
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operation as a partial function fi : Nk → N. As a simple example, for the ‘Encipher’
rule:

x , {|xkey|}
KM⊕DATA→ {|x|}xkey Encipher

Assuming KM⊕DATA is represented by the integer value p, we write

f : x, [xkey |p],→ [x|xkey ]

where the braces [|] denote composition of the two n-long bitstrings into a single 2n-
long bitstring. A more complicated example is the Key Import command:

{|xkey|}xkek⊕xtype , xtype , {|xkek|}
KM⊕IMP→ {|xkey|}

KM⊕xtype Key Import

Assuming KM⊕IMP is represented by the integer q, and KM is represented by r, we write

f : [xkey |x], xtype, [xkek |q] → [xkey |q ⊕ xtype] IF x = xkek ⊕ xtype

It will always be possible to write WFX class API rules as integer functions in this
way provided the rules are executable, that is provided the HSM itself can work out
the values of the bitstrings it needs to carry out the XORing or encryption/decryption
required by the command. This leads directly to the integer formula required.

To obtain the fixpoint of the intruder’s knowledge, we apply each rule exhaustively,
looking for combinations of k suitable integers that the intruder already knows, and
setting to 1 any location that we can now reach using these rules. We do this for all the
rules in an iterative manner until no more rules apply. We check to see if any of the
secret terms are now set to 1. If so, we have found an attack. If not, we have verified
the API secure. Note that in the case where we find an attack, we cannot immediately
return the trace of steps required to obtain the secret term, as CL-AtSe can. It would be
possible to extend our procedure to keep track of the operations required to obtain each
term, for example by outputting a list of terms obtained and post-processing the list to
obtain the trace for the attack.

At each iteration of our decision procedure, it is possible to obtain terms we have al-
ready deduced, by repeating the original command application which returned the term
in the first place. To avoid rediscovering existing terms, we mark the freshly obtained
terms at each iteration, and require that a rule is applied only if it makes use of at least
one fresh term. One final feature of our procedure is that is allows us to treat the value
of the DATA control vector as zero, since this is its actual value, a fact which is exploited
in an attack on the unrevised API presented by IBM themselves [9].

The full source code for our decision procedure, together with documentation and
the files used for the experiments below, can be downloaded from http://homepages.inf.ed.ac.uk/gsteel/CCA-
experiments/.

4.3 Results

Our WFX class does not account for public key encryption, nor the concatenation of
key and type required by the PKA Symmetric Key Import command. So we modelled
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recommendation 1 by effectively pre-processing this command. We observe that the
encrypted key blocks which it imports can either be legitimate (i.e. the intended KEK),
or generated by the intruder from known unencrypted terms. Since the only operation
the intruder can perform on the legitimate block is to execute PKA Symmetric Key
Import on it, we provide him with the result of this, {| xKey |}KM⊕xType , in his initial
knowledge. This means that the PKA Symmetric Key Import command can be mod-
elled such that it will only consider ways in which the intruder could use it to import
self-generated encrypted blocks. Such blocks consist of a known unencrypted term and
a key type control vector, so the command just becomes a way to turn a known unen-
crypted term into a working key of any type, i.e. the rule:

xkey, xtype → {|xkey|}
KM⊕xtype Pre-Processed PKA Symmetric Key Import

Apart from this change, all our models have the same initial knowledge and security
goals as the CL-AtSe models. Table 1 summarises our results. We conclude that after
our modifications described in §2.3 have been made, any one of the three recommenda-
tions is sufficient to secure the scheme against Dolev-Yao intruder attacks.

Model Base Terms Iterations Terms Derived Run-Time
Recommendation1 KeyImp 13 3 17015 0.23
Recommendation1 SymKeyImp 11 3 13045 3.04
Recommendation2 PersonB 14 2 4473 8.09
Recommendation2 PersonC 14 3 4413 12.10
Recommendation2 PersonE 13 2 1089 2.02
Recommendation3 14 3 83317 1.16

Table 1. Results using our decision procedure to verify the recommendations.

5 Conclusion

We have obtained a new decidable class of security protocols with XOR, for an un-
bounded number of sessions. The decision procedure has been implemented, yielding
the first tool for automatically analysing a protocol with XOR and an unbounded num-
ber of sessions. As a case study, we have formally analysed the revised IBM 4758 CCA
API protocol. We first discovered possible attacks using CL-AtSe, and refined IBM’s
recommendations to produce safe configurations. Our decision procedure then verified
these configurations.

Related work includes that of Courant, who verified Bond’s own suggestions for
fixing the API in the interactive theorem prover Coq, [8]. His proof used normalisation
functions to deal with XOR, and most of the proof effort was in showing these functions
to be sound. Other work has looked at rediscovering Bond’s attacks on the old API, [12,
15], the latter work using (without proof) a heuristic that splits intruder knowledge into
an encrypted and unencrypted part. We believe that our theoretical results show that
their heuristic preserves attack-completeness.
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In future we intend to try to extend our theoretical results to deal with asymmetric
cryptography and pairing, so that we can analyse public-key management schemes, and
to establish a formal theory that deals with so-called ‘key-conjuring’, [2, §3.4].
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