
Intended for submission to the CCS

Logical Protocol Analysis for Authenticated
Diffie-Hellman∗

Daniel J. Dougherty and Joshua D. Guttman

ABSTRACT

Diffie-Hellman protocols for authenticated key agreement construct
a shared secret with a peer using a minimum of communication and
using limited cryptographic operations. However, their analysis has
been challenging in computational models and especially in sym-
bolic models.

In this paper, we develop a logical framework for protocol anal-
ysis based on strand space ideas. We show that it identifies exact
assumptions on the behavior of a certifying authority. These as-
sumptions prevent attacks on two authenticated DH protocols, the
Unified Model and Menezes-Qu-Vanstone (MQV).

Verification within our framework implies that the adversary has
no strategy that works uniformly, independent of the choice of
the cyclic group in which the protocol operates. Computational
soundness would assert that an adversary strategy successful in
groups satisfying the Decisional Diffie-Hellman assumption would
also furnish a uniform, group-independent strategy. Computational
soundness awaits further investigation.

1 INTRODUCTION

The Diffie-Hellman key exchange [2] is a widely used crypto-
graphic idea. Each principal A,B chooses a random value, x, y
resp., raising a base g to this power modulo a suitable prime p:

A, x •
gx // •

gyoo B, y (1)

They can then both compute the value (gy)x = gxy = (gx)y . Since
there is reason to believe that gxy is indistinguishable from gz for
∗Supported by the National Science Foundation under grant

CNS-0952287.

c©-Notice

randomly chosen z, we can treat gxy as a new shared secret for
A,B. The protocol is thus secure against a passive adversary, who
observes what the compliant principals do, but can neither create
messages nor alter (or misdirect) messages of compliant principals.

It is however certainly not secure against an active adversary,
which can choose its own x′, y′, sending gy

′
to A instead of gy ,

and sending gx
′

to B instead of gx. In this case, each of A,B
actually shares a different key with the adversary, who can act as a
man in the middle in any conversation between them. So as not to
prejudice ourselves in evaluating the possible attacks, we will write
RB for the public value that A receives, purportedly from B, and
RA for the public value thatB receives, purportedly fromA. In the
intended case, RA = gx and RB = gy .

One approach to authenticating a Diffie-Hellman exchange, orig-
inating in the Station-to-Station protocol STS [3], is digitally to sign
parts of the exchange. For instance, in a simplified STS, the ex-
change in Eqn. 1 is followed by the signed messages:

A •
[[gxˆRB]]A// •

[[gy ˆRA]]Boo B (2)

where the signatures exclude a man in the middle.1 STS requires an
additional message transmission and reception for each participant,
in each session. Each participant must also prepare and verify a
digital signature on each exchange. STS requires some public key
infrastructure to certify the signature verification keys of A and B.

An alternative to digital signatures is implicit verification [1].
Here the goal is to ensure that any principal that can compute the
same value as A can only be B. To implement this idea, we have
each principal maintain a long-term secret, which we will write a
for principal A, b for B; they publish the long-term public values
ga, gb, which we will refer to as YA, YB , etc. The trick is to build
the use of the private values a, b into the computation of the shared
secret, so that only A,B can do it. For instance, in the “Unified
Model” UM of Ankney, Johnson, and Matyas, the principals com-
bine long term values with short term values by concatenating and
hashing. They follow the exchange of Eqn. 1 with these computa-
tions, where H(x) is a hash of x:

A : k = H(YB
aˆRB

x) B : k = H(YA
bˆRA

y), (3)

obtaining a shared value when RA = gx and RB = gy .

1We use tˆt′ for the result of concatenating twith t′. A digitally
signed message [[t]]A means the message t concatenated with the
result of a digital signature algorithm applied to a hash of t. It
should be keyed with a signing key associated with the principal A.

1

Draft of May 3, 2011 2

Here again some public key infrastructure is required so that each
principal knows to associate the intended peer P with the right pub-
lic value to YP . However, no digital signature needs to be generated
or checked specific to this run. IfA frequently has sessions withB,
A can amortize the cost of verifying B’s certificate once, by keep-
ing YB in secure storage.

One might prefer a protocol in which the operations are only al-
gebraic, as distinguished from UM’s combination of algebraic op-
erations such as exponentiation with the rather different operations
of concatenation and hashing. Indeed MQV [11] does exactly this,
computing the key via the rules:

A : k = (RB · YBRB)sA B : k = (RA · YARA)sB (4)

where sA = x + aRA and sB = y + bRB . The “bar” operator
coerces numbers mod p to a convenient form in which they can
be used as exponents; we will discuss it more below. Now, in a
successful run, A obtains the value

(gy · (gb)gy)sA = (g(y+bgy))(x+agx) = g(sB ·sA) (5)

and B obtains gsA·sB , which is the same value. This protocol is
challenging, from an algebraic point of view, to model and to ana-
lyze. There is indeed some controversy about MQV [7, 9, 12], and
it is hard to analyze these protocols in computational models. Until
now, they have been out of reach in symbolic models [4,8,10]. The
problem is that these symbolic approaches to protocol analysis have
relied on unification as a central part of their reasoning. Unifiability,
in the presence of the ring structure used in Eqn. 5, is undecidable,
essentially by the unsolvability of Hilbert’s tenth problem.

Nevertheless, interesting and relevant problems could be clar-
ified by a more suitable symbolic approach. Exactly what con-
straints do the protocols assume about the authority that certifies
public values YP ? When are the protocols sound without key
confirmation, or without including the principals’ identities in key
derivation? How can we define “implicit authentication”?

Goals of this paper. We develop a method for reasoning about
implicit authentication for DH-style protocols within a symbolic
model, namely a logical version of the strand space model. We infer
exact conditions on behavior of the certification authorities for the
long-term public values in protocols such as UM and MQV.

We start (Section 2) by analyzing the UM. We focus on clarifying
the message structure, the limitations on what message values the
adversary can generate, and the assumptions about the certificate
authority CA. The protocol ensures authentication if the CA never
re-certifies the same long-term public value, associating it with dif-
ferent identifies. There are various ways that the CA could achieve
this, and the choice among them is essentially irrelevant from the
current point of view.

In Section 3, we formalize the basic strand notions in a way that
is uniform with regard to the choice of message algebra. Section 4
then fills in the specifics of the Diffie-Hellman message algebra
needed for MQV. This preserves the simpler algebraic structure on
which UM depends. In Section 5, we prove the lemma used infor-
mally in Section 2, that states that the adversary can cause a new
value x to enter an exponentiation only if he possesses x. Finally,
in Section 6 we prove that MQV achieves its authentication goal
assuming that the CA satisfies two properties:

• The CA never certifies any one long-term value Y with two
different identities;

◦ +3

A,a,cA

• +3

gx

��

• +3 • +3 ◦
d(A,B)

RA��

RB

OO
cB

OO

cA
��

◦ +3
B,b,cB

• +3 • +3
gy

OO

• +3 ◦
d(B,A)

kA = H(YB
aˆRB

x) kB = H(YA
bˆRA

y)

cP = [[cert YP ˆP]]CA d(P, P ′) = keyrec P ˆP ′ˆkP

Figure 1: The UM Protocol

• A certified long term value Y is never used in any session
which began before Y was certified.

The latter property can be achieved in several ways. For instance,
the CA may wait for a period tCA before responding to a certifica-
tion request, while a client session always times out before tCA has
elapsed. Alternatively, clients could “age” certificates before use,
with a similar timeout.

2 THE UNIFIED MODEL

We first illustrate our style of protocol specification with the Unified
Model UM. We regard UM as involving several events that were
left implicit in the introduction. We summarize this in Fig. 1. We
write bullets • for transmission and reception events and circles ◦
for “neutral” events, which consult or update local state. The top
and bottom rows shows the initiator’s actions and the responder’s
actions, respectively. In the initiator we have successively:

1. A neutral node consulting its principal’s local state to obtain
its own name, long term secret DH value, and certificate;

2. A transmission node sending RA, where RA is gx for a
freshly chosen value x;

3. A reception node receiving the ephemeral value RB ;

4. A reception node for the peer’s certificate cB associating YB
with B′s identity; and

5. A neutral node that deposits the principals’ names and the re-
sulting session key as a new key record into the principal’s
local state database.

The responder’s actions are identical except that in place of nodes 2
and 3, we have their duals; i.e. a reception node receiving some
ephemeral value RA, followed by a node transmitting RB , where
RB is gy for a freshly chosen value y.

Some assumptions about UM runs are not explicit in Fig. 1:

Origination. Compliant participants attempt to choose their long-
term values a, b and ephemeral values x, y at random from a
large set. The probability of finding a collision among their
choices is negligible.

Since long term and ephemeral values a, x are never transmit-
ted as ingredients of any message, they are non-originating.

Moreover, the values ga, gx originate uniquely. Although a
value gx may be retransmitted by the adversary, and the long-
term value ga will be retransmitted to make it available to new

Draft of May 3, 2011 3

communication partners, all occurrences trace back ultimately
to a single original point at which the exponent was chosen,
and the exponentiated value first transmitted. Whenever any
party later transmits this same value, he has first received it in
some incoming message.

The adversary. An adversary who has observed gx, gy but not
x, y is negligibly likely to be able to produce gxy , or in-
deed to do better than chance in distinguishing it from a ran-
domly chosen gz . These are called the Computational and
(resp.) Decisional Diffie-Hellman Assumptions.

We identify a protocol role for certificate authorities also. It receives
a request containing the principal name P and the public value YP ,
and may then emit a public key certificate cP .

cert req P ˆY

��
• +3 •

[[cert Y ˆP]]CA

OO

It does so after some procedure we will not represent, which is
intended to ensure that the principal P possesses an a such that
ga = Y . The same Y should never be certified with two different
principals P, P ′, lest a participant A not know whether a particular
session key was shared with P or P ′. For instance, if a priest had
the same public value Y as a district attorney, a confession meant
for one might be received by the other. However, if each principal
chooses his long term secret at random from a set far larger than the
set of principals, then this event is unlikely.

To request certification, a compliant principal transmits:

•
cert req P ˆga // ,

having made sure to choose a freshly generated long term secret
a. Thus, whenever we have a certification request from a compli-
ant principal, we will assume that a is non-originating, and that ga

originates uniquely at this transmission. The CA’s (unrepresented)
procedure is intended to ensure P has met these conditions, before
the CA emits the certificate.

Even if a CA cannot check for all collisions, we can still avoid
the bad consequences of colliding certificates by altering the pro-
tocol. We could include an additional step of key confirmation,
using a different hash function H ′ to generate a confirmation key
k′ = H ′(YA

bˆRA
y). By exchanging messages containing a MAC

of the ephemeral values and principal identities, each principal can
ensure that no confusion has occurred.

A : •
mack′ (3ˆAˆBˆgxˆRB)// • : B

mack′ (2ˆBˆAˆRaˆgy)oo (6)

Instead of the key confirmation messages of Eqn. 6, one can also
diversify the session key using the intended principal identities:

k = H(AˆBˆYB
aˆRB

x) = H(AˆBˆYA
bˆRA

y).

This key computation prevents the district attorney (if complying
with the protocol) from receiving a message intended for the priest.

The CA can also ascertain whether Y is a genuine group element,
i.e. whether there exists an a such that Y = ga, and in particular
that Y 6= g1.

Certificate Authority. A certificate is useful only if certificates
cannot be constructed by the adversary, i.e. the Certificate
Authority’s signature key is uncompromised. We model this
as meaning that the key is non-originating.

Moreover, a certificate cP = [[cert Y ˆP]]CA tells the recip-
ient something. We interpret it as providing the information
that a principal can use in deciding whether to believe that P ’s
long-term secret is uncompromised, i.e. that it will be used
only in accordance with the protocol. A principal may decide
to infer that, for all a, if Y = ga, then a is non-originating.

We also assume that the CA ensures (1) ∃a . Y = ga and
a 6= 1, and (2) if both cP = [[cert Y ˆP]]CA and cP ′ =
[[cert Y ˆP ′]]CA have been generated for the same Y , then
P = P ′.

Principal Certification. When a principal P (successfully) re-
quests a certificate with long term public value Y , we will
assume that its request is the event at which Y uniquely orig-
inates. We will also assume that Y is of the form ga, i.e. that
P has chosen a secret value a independent of other values
chosen elsewhere, and used it to form the public value Y .

In this section, we will consider the protocol without key con-
firmation or diversification, and we intend to sketch a proof that—
assuming no CA ever re-certifies the same Y with two principals—
the protocol works as advertised.

In particular, an adversary cannot obtain a key shared with a
compliant A or B, who has engaged in a session apparently with
a B or A, if the latter’s long term secret is used only in accordance
with the protocol. Moreover, if two compliant principals A,B ob-
tain the same key k, then each believes it to be shared with the other.
We regard the first of these statements as a confidentiality property,
and the second as an authentication property.

2.1 Confidentiality for UM
The confidentiality property states that the adversary cannot obtain
a session key in a session satisfying reasonable assumptions.

Suppose that B has engaged in a full run of UM as responder.
Moreover, suppose that the other parameters of the run are:

A,RA, y, YA, b, CA

Assume b, y, sk(CA) are non-originating and gy is uniquely orig-
inating, and every a such that YA = ga is non-originating. Then
there is no node on which kB = H(YA

bˆRA
y) is transmitted.

Proof sketch. If there were such a node n, it would be either a regu-
lar node or an adversary node. No regular node, however, transmits
a value of this form. Thus, nwould be an adversary node. However,
in that case, the adversary must have constructed H(YA

bˆRA
y)

from an earlier transmission of YAbˆRAy , which in turn must have
been constructed from earlier transmissions of YAb and RAy .

1. No regular node can transmit YAb.
In particular, YA having been certified, we have from CA as-

sumption (1) that YA 6= g1, hence YAb 6= YB . Moreover, since
YB = gb was certified, b 6= 1, whence YAb 6= YA. Thus YAb was
not transmitted on the certification nodes for A, YA or B, YB .

Moreover, YAb was not transmitted on any other certification
request by a compliant principal. A compliant principal selects a
value gc, but we know that YA is of the form ga, so that YAb = gab,
hence distinct from any gc at all.2 Nor, for the same reason, does
YA

b originate as the ephemeral value of any compliant strand.

2We formalize this below, Section 4. However, a, b being
choices made independently of each other and of c, betting on
ab = c is a strategy that loses for the adversary with overwhelming
probability.

Draft of May 3, 2011 4

2. No adversary action can produce YAb. Although the adversary
has the values YA = ga and YB = gb, in order to incorporate b into
the exponent of ga, or in order to incorporate a into the exponent of
gb, the adversary would have to have access to a (non-originating)
value a or b. ut

Step 2 of the argument uses a central principle, which we will
formalize in a stronger form in Section 5. For now, we will codify
it as:

Principle 1 If the adversary originates ge, then e = e1e2 where
both ge1 and e2 have been previously transmitted.

Principle 1 also leads to a result when A has engaged in a full run
of UM as initiator similar to this result about B as responder.

2.2 Authentication for UM
The authentication goal for UM states that, on reasonable assump-
tions, if two compliant principals agree on a key, then they agree on
their identities.

Suppose that A has engaged in a full run of UM as initiator.
Moreover, suppose that the other parameters of the run are:

B, x,RB , a, YB , CA

Assume a, x, sk(CA) are non-originating and gx is uniquely orig-
inating, and every b such that YB = gb is non-originating. If there
is another neutral node n in which a key record keyrec P ˆP ′ˆk is
deposited, for k = H(YB

aˆRB
x), then P = B and P ′ = A.

In this case, nmay be either a responder event or else an initiator
event. The protocol permits two principals, each of whom starts a
session as initiator, to successfully complete a run with each other.
However, if one executes a local session as responder, the other
must have acted as initiator.

Why does our authentication property hold? Suppose that the
parameters of a responder session terminating in node n are:

P, P ′, R, b, Y, z, CA

(The case of an initiator session is similar.) Observe that YBa =
Y b, and RxB = Rz . !!!

3 FORMALIZING STRANDS AND PROTO-
COLS

In this section, we formalize the strand space theory (Section 3.1),
and provide a pattern for defining particular protocols within it
(Section 3.2). In the next sections, we use this mechanism to rep-
resent Diffie-Hellman style protocols, and the algebra of messages
that they manipulate.

3.1 A Theory of Strands and Bundles
The strand space theory [13] identifies local sessions of the regu-
lar (uncompromised) principals as strands, i.e. bounded linear se-
quences of events belonging to a single local session of the protocol.
Each event is either a message transmission, a message reception,
or a “neutral,” purely local event. We regard a neutral event as an
operation against a local database of facts, and we use neutral events
to allow a strand to manipulate long term secrets, recently agreed
session keys, and public key certificates [6]. The basic actions of
the adversary are also represented as strands, including generating

new values, and applying an operation such as encryption, decryp-
tion, or exponentiation to available values.

We write n1 ⇒ n2 when n1 immediately precedes n2 on the
same strand, using ⇒+ and ⇒∗ for the transitive and reflexive-
transitive closures of ⇒. In this formalization, we do not make
strands first-class objects, but axiomatize the nodes and the relation
⇒.

An execution is a bundle, i.e. a partially ordered collection of
strands (or initial segments of strands), where the partial ordering
� reflects causality. If one node n1 lies another node n2 on the
same strand n1 ⇒∗ n2, then certainly n1 � n2. The key bundle
property is that, for every reception node n2, the message received
on n2 was transmitted on some transmission node n1 with n1 ≺ n2.
Moreover, in a bundle, the precedence ordering � is well-founded.

Where the formulas contain the free variables ~x, we write

ϕ1, . . . , ϕi ` ψ1, . . . , ψj ,

called a sequent, to mean

∀~x . (ϕ1 ∧ . . . ∧ ϕi) ⊃ (ψ1 ∨ . . . ∨ ψj).

As in Gentzen’s sequent calculus [5], the comma means conjunc-
tion on the left but disjunction on the right. Free variables are
implicitly universally quantified with the whole sequent as scope.
When the right-hand side is empty, i.e. j = 0, it represents the un-
satisfiable empty disjunction ⊥. Thus, ϕ1, . . . , ϕi ` ⊥ means the
universal closure ∀~x . ¬(ϕ1 ∧ . . . ∧ ϕi).

Str 1. n0 ⇒ n2, n1 ⇒ n2 ` n0 = n1

Str 2. n0 ⇒ n1, n0 ⇒ n2 ` n1 = n2

Str 3. n0 ⇒ n0 ` ⊥

Str 4. n0 ⇒ n1 ` node(n0) ∧ node(n1)

Str 5. xmit(n0) ` node(n0)

Str 6. recv(n0) ` node(n0)

Str 7. node(n0) ` xmit(n0), recv(n0), neutral(n0)

Str 8. reg(n0), adv(n0) ` ⊥

Str 9. reg(n0) ` node(n0)

Str 10. adv(n0) ` node(n0)

Str 11. node(n0) ` reg(n0), adv(n0)

Str 12. n0 ⇒ n1, adv(n0) ` adv(n1)

Str 13. n0 ⇒ n1, reg(n0) ` reg(n1)

Str 14. n0 ⇒∗ n1 ` n0 � n1

Str 15. n0 � n1, n1 � n2 ` n0 � n2

Str 16. n0 � n1, n1 � n0 ` n0 = n1

The crucial property of a bundle, or possible execution, is that ev-
erything received was previously sent. We use msg(n) to refer to
the message sent or received on node n. We list this as its own
axiom group.

Draft of May 3, 2011 5

Bnd recv(n1) ` ∃n0 . n0 � n1 ∧ xmit(n0) ∧ msg(n1) =
msg(n0)

We also express the well-foundedness principle as its own axiom
group. In this case, we have an axiom schema, i.e. a set of ax-
ioms containing one for each formula ϕ, called the “predicate of
induction” for that instance. Unlike the other axioms we use, the
left-hand side of well-foundedness is not positive-existential, even
for simple ϕ.

WFϕ ∀n1 . (∀n0 . n0 � n1 ⊃ ϕ(n0)) ⊃ ϕ(n1) `
∀n1 . ϕ(n1)

3.2 A Pattern for Defining Protocols
A protocol determines a finite number of (parametric) strands,
which we call the roles of the protocol. Each of these roles may
be instantiated by substituting values from the algebra of messages
in place of the parameters, in a type-respecting way. The regular be-
haviors compliant with the protocol are precisely these substitution-
instances.

Thus, we regard the regular nodes as determined by two kinds of
predicates. Each predicate of the first kind is called a role-position
predicate. If Rρ,i(n) is a role-position predicate, it states that n is a
node lying at the ith position on an instance of the role ρ. Each role-
position predicate concerns a fixed position along a fixed role. For
a protocol Π, with each role ρ of length |ρ|, there will be

∑
ρ∈Π |ρ|

role-position predicates.
The predicates of the second kind are called parameter predi-

cates. Each parameter predicate P (n, v) relates a node n to the pa-
rameter value chosen for some parameter that has already appeared
in or prior to n. For instance, self(n, a) may say that a is the name
of the principal executing the strand containing node n, assuming
that a’s name helps to determine some message transmitted or re-
ceived on this strand up to node n. Likewise, mynonce(n, v) may
say that v is the value chosen along this strand to serve as a nonce.
A parameter predicate P (n, v) acts like a partial function: There is
at most one v such that P (n, v) holds, for any n. There may be no
v such that P (n, v), if this parameter is irrelevant to the strand n
lies on, or if this parameter is chosen only later on a some node n′

such that n⇒+ n′. However, once determined it remains the same
for later nodes.

When giving the predicates R1(n), . . . , Rj(n) as the role posi-
tion predicates for a role ρ, we are stipulating that the following
axioms hold for 1 ≤ i < j and 1 ≤ k ≤ j:

RolePos 1. R1(n1), n0 ⇒ n1 ` ⊥

RolePos 2. Ri+1(n1) ` ∃n0 . Ri(n0) ∧ n0 ⇒ n1

RolePos 3. Rk(n1) ` node(n1)

If a predicate P (n, v) is declared to be a parameter predicate, then
we stipulate:

Param 1. P (n, v) ` node(n)

Param 2. P (n, v) ` isMsg(v)

Param 3. P (n, v), P (n, v′) ` v = v′

Param 4. P (n, v), n⇒ n1 ` P (n1, v)

We use this format to characterize both the regular nodes of a pro-
tocol and also the adversary strands. To say that a parameter is of a
particular type, expressed by the type τ , means:

ParamTypeτ 1. P (n, v) ` ∃y : τ . v = y

We illustrate these ideas with the one role that we include as a
regular role in every protocol. We call this role the listener role. It
contains a single reception node, which receives a message x of any
form. We use instances of the listener role to witness for the fact that
the message x has become available to the adversary. We use the
role position predicate lsn1(n) to say that n is the first node on an
instance of the listener role, and the parameter predicate hear(n, x)
to say that the value received on n is x. The role position axioms
then assert:

LsnPos 1. lsn1(n1) ` node(n1)

LsnPos 2. lsn1(n1), n0 ⇒ n1 ` ⊥

The role parameter axioms for hear become:

Hear 1. hear(n, v) ` node(n)

Hear 2. hear(n, v) ` isMsg(v)

Hear 3. hear(n, v), hear(n, v′) ` v = v′

Hear 4. hear(n, v), n⇒ n1 ` hear(n1, v)

Since the listener node is a regular reception node, and its parameter
is the message received, we have:

Lsn 1. lsn1(n) ` recv(n) ∧ reg(n)

Lsn 2. lsn1(n), hear(n, x) ` msg(n) = x

Lsn 3. lsn1(n), msg(n) = x ` hear(n, x)

3.2.1 An Example: Regular Nodes of the Variant Uni-
fied Model

From this example it is clear that we can determine all of the ax-
ioms governing a role by giving a table containing the role position
predicates, the parameter predicates, the directions of the successive
nodes, and the message involved. We illustrate this style of protocol
specification with the variant Unified Model VUM. We regard the
VUM protocol as involving several events that were left implicit in
the introduction. In particular, each role begins with a neutral node
that consults the local state of its principal to obtain the principal’s
name and long term secret DH value. Then the ephemeral values
RA is constructed and transmitted; the ephemeral value RB is re-
ceived; and a certificate for the partner’s long term public DH value
is received. Finally, in a neutral node, the principals’ names and the
resulting key are deposited as a new record into the principal’s local
state database.

We summarize this as a strand space figure in Fig. 2. We write
bullets • for transmission and reception nodes, with the direction of
the arrow indicating which, and circles ◦ for neutral nodes. The top
row shows the initiator’s actions, and the bottom row the respon-
der’s actions.

3.2.2 An Example: Regular Nodes of Needham-
Schroeder

As an example, for the familiar Needham-Schroeder protocol, we
could use the role-position predicates

nsInit1(n), nsInit2(n), nsInit3(n)

Draft of May 3, 2011 6

◦ +3

A,a

• +3

gx

��

• +3 • +3 ◦
dA,B

RA

��

RB

OO
cB

OO

cA

��
◦ +3

B,b

• +3 • +3

gy

OO

• +3 ◦

dB,A

cP = [[cert YP ˆP]]CA dP1,P2 = keyrec P1ˆP2ˆKP1

Figure 2: The VUM Protocol, with KA = YB
a · RBx and KB =

YA
b ·RAy

Role pos. Dir. Params. Msg.
nsInit1 xmit self(n, a), peer(n, b), mynonce(n, v1) {|aˆv1|}pk(b)
nsInit2 recv yrnonce(n, v2) {|v1ˆv2|}pk(a)

nsInit3 xmit {|v2|}pk(b)

Figure 3: Role Position and Parameter Predicates for NS Initiator

for the initiator role, and for the responder role

nsResp1(n), nsResp2(n), nsResp3(n).

The parameter predicates self(n, a), peer(n, a),mynonce(n, v), yrnonce(n, v)
can be used to express the parameters. They respectively express
the identity of the principal executing a strand; the identity of its
intended partner; the nonce that principal chooses; and the nonce
apparently chosen by its partner.

We can then express the regular behaviors permitted by the pro-
tocol in a table such as Figure 3. It presents, on its lines, the role
position predicates, direction, parameter predicates, and message
form for the successive nodes. The logical content of this table is
expressed in a number of axioms. Instances of Axioms RolePos 1
and RolePos 2 are generated from the order of the lines. Axioms
like NS Init 1 are generated from the direction indicator. The role
parameters are determined by collecting all those up to a given line;
each line shows only the newly applicable parameter predicates.
These parameter predicates and the message entry determine the
remaining axioms such as NS Init 2 and NS Init 3. The same pro-
cess yields similar axioms for the remaining lines.

NS Init 1. nsInit1(n) ` xmit(n) ∧ reg(n)

NS Init 2. nsInit1(n), self(n, a), peer(n, b), mynonce(n, v1) `

msg(n) = {|aˆv1|}pk(b)

NS Init 3. nsInit1(n), msg(n) = {|aˆv1|}pk(b) `
self(n, a), peer(n, b), mynonce(n, v1)

NS Init 4. nsInit2(n) ` recv(n) ∧ reg(n)

NS Init 5. nsInit2(n), self(n, a), mynonce(n, v1), yrnonce(n, v2) `

msg(n) = {|v1ˆv2|}pk(a)

NS Init 6. nsInit2(n), msg(n) = {|v1ˆv2|}pk(a) `
self(n, a), mynonce(n, v1), yrnonce(n, v2)

NS Init 7. nsInit3(n) ` xmit(n) ∧ reg(n)

Role pos. Dir. Params. Msg.

nsResp1 recv

self(n, a), peer(n, b),

yrnonce(n, v1) {|aˆv1|}pk(b)
nsResp2 xmit mynonce(n, v2) {|v1ˆv2|}pk(a)

nsResp3 recv {|v2|}pk(b)

Figure 4: Role Position and Parameter Predicates for NS Responder

NS Init 8. nsInit3(n), peer(n, b), yrnonce(n, v2) `
msg(n) = {|v2|}pk(b)

NS Init 9. nsInit3(n), msg(n) = {|v2|}pk(b) `
peer(n, b), yrnonce(n, v2)

The axioms for the responder role are symmetric; we interchange
xmit with recv, self with peer, and mynonce with yrnonce. These
axioms are generated in accordance with Fig. 4.

NS Resp 1. nsResp1(n) ` recv(n) ∧ reg(n)

NS Resp 2. nsResp1(n), peer(n, a), self(n, b), yrnonce(n, v1) `

msg(n) = {|aˆv1|}pk(b)

NS Resp 3. nsResp1(n), msg(n) = {|aˆv1|}pk(b) `
peer(n, a), self(n, b), yrnonce(n, v1)

NS Resp 4. nsResp2(n) ` xmit(n) ∧ reg(n)

NS Resp 5. nsResp2(n), peer(n, a), yrnonce(n, v1), mynonce(n, v2) `

msg(n) = {|v1ˆv2|}pk(a)

NS Resp 6. nsResp2(n), msg(n) = {|v1ˆv2|}pk(a) `
peer(n, a), yrnonce(n, v1), mynonce(n, v2)

NS Resp 7. nsResp3(n) ` recv(n) ∧ reg(n)

NS Resp 8. nsResp3(n), self(n, b), mynonce(n, v2) `
msg(n) = {|v2|}pk(b)

NS Resp 9. nsResp3(n), msg(n) = {|v2|}pk(b) `
self(n, b), mynonce(n, v2)

We also state that these regular transmission and reception nodes
are all those of NS.

NS All 1. recv(n), reg(n) `
nsInit2(n), nsResp1(n), nsResp3(n)

NS All 2. xmit(n), reg(n) `
nsInit1(n), nsInit3(n), nsResp2(n)

3.2.3 Adversary Nodes

4 A THEORY OF EXPONENTS

[@@ Here’s a strange notational subtlety. Our base group G, since
finite cyclic, is determined once we choose our q. So it is isomor-
phic to Zq . But then the space of exponents is Z∗q (viewed as a
field). But the latter is NOT taken as subset of G. So it would
be confusing to refer to G as Zq . Since we want to talk about the
various G uniformly I’ll write Gq below... not clear that’s the best
notation...]

Draft of May 3, 2011 7

[@@ need a decent typographic convention for G terms vs E
terms. Right now using uppercase for G and lowercase for E]

A little discussion about the formalization. The operations of the
signature embody the computational power that we model for the
adversary. So we don’t have a log function, for example. Capturing
adversary ability by writing terms is what the symbolic model is
all about, the twist here is that terms are considered modulo some
equations, complicating syntactic analysis.

A crucial point is that we want to model what the adversary can
do uniformly over all values of q. For example, each particular
choice of q leads to the set of exponents comprising a field (typ-
ically Z∗q , but this will not matter to our analysis) so we include
equations defining fields in our axioms. It is also true that each
choice q determines a field with characteristic q, so that the equa-
tion 1 + . . . + 1 = 0 holds. But for an attack to be uniform it cannot
rely on any one of these equations holding, so of course we exclude
them from our axioms.

We work over a signature comprising two sorts, G and E, and
operations

� : G×G→ G

id : G

+, ∗ : E × E → E

−, (·)−1 : E → E

0, 1 : E

exp : G× E → G

We use two sorts of variables, which we refer to asG-variables and
E-variables respectively; in the natural way we then build G-terms
and E-terms. As usual we write xy for x ∗ y and we write bx for
exp(b, x).

Definition 1 An equation A = B between G-terms is uniformly
valid for finite fields [ugly phrase; do better?] if it holds in every
Gq

That’s what we care about.

The conditional equational theoryDH below expresses the facts
that (G,�, id) is an abelian group (E,+,−, ∗, /, 0, 1) is a field,
and that exponentiation of G by E behaves as expected.

[Which equations to present, exactly? Mostly just a matter of

taste. Discuss.]

(G,�, i, id) is an abelian group

(a� b)� c = a� (b� c) (7)

a� b = b� a (8)

b� id = b (9)

b� i(b) = id (10)

(E,+,−, ∗, (·)−1, 0, 1) is a field

(x+ y) + z = x+ (y + z) (11)

x+ y = y + x (12)

x+ 0 = x (13)

x+ (−x) = 0 (14)

(x · y) · z = x · (y · z) (15)

x · y = y · x (16)

x ∗ (y + z) = (x ∗ y) + (x ∗ z) (17)

x ∗ 1 = x (18)

x 6= 0→ x ∗ x−1 = 1 (19)

exponentiation behaves properly

ax � ay = a(x+y) (20)

(ax)y = ax∗y (21)

a0 = id (22)

idx = id (23)

these follow from above but

will need them for reduction

−(0) = 0 (24)

−(x+ y) = −x+−y (25)

−− x = x (26)

x ∗ 0 = 0 (27)

x ∗ −(y) = −(x ∗ y) (28)

(29)

It is clear that each equation above is uniformly true for finite
fields.

Let R be the set of rewrite rules obtained by orienting the equa-
tions above from left to right. Let AC be the set of equations ex-
pressing the associativity and commutativity of �, +, and *. The
rewrite relation→R/AC is rewriting with R modulo AC.

Say that a term t is R-irreducible if there does not exist a term
t′ with t → t′. (Note: let’s not speak of “normal forms” since that
connotes uniqueness)

Lemma 1 The rewrite system R is terminating; that is, every se-
quence of R-reductions is finite.

Proof. (easy, todo) ut

Lemma 2 The G-terms irreducible with respect to R are of the
form

be11 � · · · � b
en
n

where each bi is a G-variable, the bi are distinct, and each ei is an
irreducible E-term. (We consider id to be the empty product.)

The E-terms irreducible with respect to R are of the form f1 +
· · ·+fk (taking 0 to be the empty sum) where each fi is of the form

xd11 ∗ · · · ∗ x
dn
n

Draft of May 3, 2011 8

with the xi distinct and each di = ±1

Proof. Here we slog through the rules... ut
The following observation will be useful in what follows. For

the notion of ultraproduct of structures see, for example, [?].

Lemma 3 Let s and t be terms built from E-variables using
+, ∗,−, (·)−1, 0, 1. If the equation s = t holds in each Z∗q then
it holds in the field Q of rational numbers.

Proof. Let D be a nonprincipal ultraproduct over the natural num-
bers, and define F∗ =

∏
D{Z

∗
q | q prime. } Then F∗ is a field. If

s = t holds in each Z∗q then it holds in F∗. But it is easy to see that
F∗ has characteristic 0 and so the prime field of F∗ is Q. Since Q
is a subfield of F∗, s = t holds there. ut

In fact it follows from results of of Ax [?] that the set of first-
order sentences true in all Z∗q coincides with the first-order theory
of F∗. For this paper we require only the simple observation above.

Definition 2 Let v be an E-variable. If e is an irreducible E-term,
the multiplicity mult(e, v) of v in e is the number of occurrences of
v in e.

If t = be11 · · · benn is an irreducible G-term, the bi-multiplicity of
v in t is the multiplicity of v in ei.

Note that this is well-defined modulo the associativity and commu-
tativity of + and ∗.

We want to show that these multiplicities are an invariant of
terms considered modulo uniform validity.

Note that we can’t expect the converse, that the multiplicities
characterize a term, at least not without a much more subtle notion
of multiplicity. For example, we would have to distinguish between
“positive” and “negative” multiplicities, in order to be able to dis-
tinguish x

y
from y

x
. (and even then consider, eg x

y
+ x

z
vs xx

y
+ 1

z
)

Lemma 4 IfA = a
e′1
1 · · · a

e′n
n andB = be11 · · · bemm are irreducible

G-terms equal in each Gq then m = n and the bi and cj are in
one-to-one correspondence via permutation π on [1..n] such that
the each equation ei = e′π(i) is true on every Z∗q .

Proof. sketch: By negating exponents, reduce to showing that an
equation

ce11 · · · c
en
n = 1

holds in each Gq if and only if each ei is identically 0 on each Z∗q .
By selectively setting ci’s to 1, that reduces to showing that if any
e is not identically 0 then we can find a q and an instantiation such
that e 6= 0 in Z∗q ... Use Lemma 3 ut

Lemma 5 If the E-equation s = t holds in Z∗q for each prime q
then for each v, s and t have the same v-multiplicity.

Proof. By Lemma 3 it suffices to show that if s and t have different
multiplicity for some variable v then there is an assignment of val-
ues in Q to the variables of s and t yielding different results. Let
v be such a variable. Instantiate every other variable to the value 1.
We are left with an equation s′ = t′ in which each of s′ and t′ is a
sum of positive and negative powers of v. Since the multiplicity of
v differs in s′ and t′ it certainly true that s′ and t′ are not identical
as rational functions; so it is clear that some value for v will distin-
guish them. ut

[Note to Joshua: I observed above that “same multiplicities” is
not sufficient to characterize equality of terms. But the above ar-
gument was so crude, left so much room for discrimination, that it
suggests that there much more we can say about equal terms than
just same multiplicities. Later...]

Theorem 6 [this is clumsily stated, but I’m going to bed now:] Let
t be an arbitrary G-term. Every R-irreducible form t0 of t has
the same multiplicity function. If we then define the multiplicity
function for an arbitrary term to be the multiplicity function for any
of its irreducible forms, then this function is invariant for terms that
are equal in all Gq .

Proof. corollary of all the previous, together with the fact that the
equations supporting the rewriting are all true in each Gq ut

Now for the defn of influences. [Or maybe “depends on”? Which
do you like better?]

Definition 3 Let v be a (G- or E-) variable and let t be a term.
Then t depends on v if the multiplicity of v in t is non-zero.

The following, essentially a corollary of Theorem 6, is justifica-
tion for our use of the “influences” relation to constrain adversary
behaviors.

Theorem 7 Let T be a G-term. For any G and G-instantiation η
of the variables of T in G, the value of T under η depends only on
the variables that influence T .

Now we can articulate principles like

(x non-orig) ∧ (gx unique-orig at n) ∧ (x influences msg(m))

` (n � m)

5 A LIMITATION OF THE ADVERSARY

6 COMPLETING THE MQV ANALYSIS

REFERENCES

[1] Simon Blake-Wilson and Alfred Menezes. Authenticated
Diffe-Hellman key agreement protocols. In Selected Areas
in Cryptography, pages 630–630. Springer, 1999.

[2] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654,
November 1976.

[3] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener.
Authentication and authenticated key exchanges. Designs,
Codes and Cryptography, 2(2):107–125, 1992.

[4] S. Escobar, C. Meadows, and J. Meseguer. Maude-npa:
Cryptographic protocol analysis modulo equational proper-
ties. Foundations of Security Analysis and Design V, pages
1–50, 2009.

[5] G. Gentzen. Investigations into logical deduction (1935).
In The Collected Works of Gerhard Gentzen. North Holland,
1969.

Draft of May 3, 2011 9

[6] Joshua D. Guttman. Fair exchange in strand spaces. In M. Bo-
reale and S. Kremer, editors, SecCo: 7th International Work-
shop on Security Issues in Concurrency, EPTCS. Electronic
Proceedings in Theoretical Computer Science, Sep 2009.

[7] Burton S. Kaliski. An unknown key-share attack on the MQV
key agreement protocol. ACM Transactions on Information
and System Security, 4(3):275–288, 2001.

[8] Deepak Kapur, Paliath Narendran, and Lida Wang. An E-
unification algorithm for analyzing protocols that use modular
exponentiation. RewritingTechniques and Applications, pages
150–150, 2003.

[9] H. Krawczyk. HMQV: A high-performance secure Diffie-
Hellman protocol. In Advances in Cryptology–CRYPTO
2005, pages 546–566. Springer, 2005.

[10] Ralf Küsters and Tomasz Truderung. Using ProVerif to ana-
lyze protocols with Diffie-Hellman exponentiation. In IEEE
Computer Security Foundations Symposium, pages 157–171.
IEEE, 2009.

[11] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An
efficient protocol for authenticated key agreement. Designs,
Codes and Cryptography, 28(2):119–134, 2003.

[12] A. Menezes, University of Waterloo. Dept. of Combinatorics,
Optimization, and University of Waterloo. Faculty of Mathe-
matics. Another look at HMQV. Citeseer, 2005.

[13] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman.
Strand spaces: Proving security protocols correct. Journal of
Computer Security, 7(2/3):191–230, 1999.

	Introduction
	Goals of this paper.

	The Unified Model
	Confidentiality for UM
	Authentication for UM

	Formalizing Strands and Protocols
	A Theory of Strands and Bundles
	A Pattern for Defining Protocols
	An Example: Regular Nodes of the Variant Unified Model
	An Example: Regular Nodes of Needham-Schroeder
	Adversary Nodes

	A Theory of Exponents
	A Limitation of the Adversary
	Completing the MQV Analysis

