May 1981 Report. No. STAN-CS-8 1-854

On the Security of Public Key Protocols

by

D. Dolev
A.C. Yao

escedarcil spounsored i parc vy
National Science Foundation

and
Defense Advanced Research Projects Agency

Department of Computer Science

Stanford University
Stanford, CA 94305

On the Security of Public Key Protocols*

D. Dolev and A. C. Yao
Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

Recently, the use of public key encryption to provide secure network communication has received
considerable attention. Such public key systems are usually effective against passive eavesdroppers, who
merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly
designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter
the message being transmitted. In this paper we formulate several models in which the security of protocols
can be discussed precisely. Algorithms and characterizations that can be used to determine protocol security
in these models will be given.

* This research was supported in part by ARPA under grant MDA-903-80-C-102 and by National Science
Foundation under grant MCS-77-05313-A01.

1. Introduction.

The use of public key encryption (Diffie and Hellman[1], Rivest, Shamir, and Adleman [11]) to provide
secure network communication has received considerable attention (Diffie and Helliman 2], Merkle [7],
Needham and Schroeder [8], Popek and Kline [10]). Such public key systems are usually very effective
against a “passive” eavesdropper, namely, one who merely taps the communication line and tries to decipher
the intercepted message. However, as pointed out in Needham and Schroeder [8], an improperly designed
protocol could be vulnerable to an “active” saboteur, one who may impersonate another user and may alter
or replay the message. As a protocol might be compromised in a complex way, informal arguments that
assert the security for a protocol are prone to errors. It is thus desirable to have a formal model, in which the
security issues can be discussed in a precise manner. The models we introduce later will enable us to study
the security problem for familics of protocols, with very few assumptions on the behavior of the saboteur.

We briefly recall the essence of public key encryption (see [1][11] for more information). In a public
key system, every user X has an encryption function FE', and a decryption function D, , both are mappings
from {0,1}" into {0,1}*. There is a public directory containing all the (X, E,) pairs, while the decryption
function Dy is known only to user X. The main requirements on E,,6 D, are

(1) ExDyx=DyE,= 1, and
(2) Knowing E,(M) does not reveal anything about the value M.

Thus, every one can send X a message E, (M), X will be able to decode it by forming D, (E,(M))= M,
but nobody other than X will be able to find M even if E,(M) is available to them.

We will be interested mainly in protocols for transmitting a secret plaintext M between two users. To
give an idea of the way a saboteur may break the system, we consider a few examples. A message sent
between parties in the network consists of three fields: the sender’s name, the receiver’'s name, and the text.
The text is the encrypted part of the message. We will write a message in the format:

(sender’s name, text, receiver’s name).

Example 1.1. Consider the following protocol for sending a plaintext M between A and B:
step a: A sends B the message (A, E,,(M), B);
step b B answers A with the message (B, E,(M), A).

This protocol is easy to break by a saboteur Z in the following way:

(1) Z intercepts the message sent from A to B in step a.

(2) Z sends to B the message (Z, E,(M), B).

(38) B answers Z according to the protocol (step b) by (B, E,(M), Z).
(4) Z decodes E,(M) to find the plaintext M.

One way to overcome the weakness in the above ;.rotocol is to encode the name of the sender together
with the plaintext in the encrypted text. Consider the following variation of a protocol suggested in Needham
and Schroeder (8].

Example 1.2. Consider the following protocol:
step a: A sends B the message (A, E,(MA), B);
step b: B answers A by sending (B, E.(M B), A).

We will prove later in this paper that this protocol is secure against arbitrary behavior of the saboteur.
What will happen if one tries to improve the above protocol by adding another layer of encryption?

Example 1.3. Consider the following protocol,
step a: A sends B the message (A, E,(E,(M)A), 11).
step b: B answers by sending (B, E.(E.(M)B), A).

Surprisingly, this protocol is breakable in the following way:
(1) Z takes the message sent back from Bto A in step b, ie., (B, E.(E.(M)B), A).

Denote E,(M)B by M, then Z can extract £,(M) from the above message.
(2) Z initiates a conversation with A, sending

(Z,E.(E.(M)Z),A),

according to the protocol (step a).
(3) A, as a receiver, answers Z by

(A4 & (& (@A), 2).

(4) Z decodes M from the last message he received in step (3). As M:E,,(M)B,Z NOW poOssesses
E.(M).
(5) Z establishes a new connection and sends to A the message

(Zz, E(E.(M)Z), A).

(6) Now A should answer by (A, E, (E, (M)A), Z).
(7) At this step Z is able to find the plaintext M.

The precise mathematical models will be defined in the ensuing sections. Below we list the basic
assumptions on the system that we wish to model.

(1) A perfect public key system:
() The one-way functions used are unbreakable;
(b) The public directory is secure, and cannot be tampered with;
(c) Everyone has access to all Ey;
(d) Only X knows D,.

(2) Two-party protocol: Only the two users who wish to communicate are involved in the transmission
process; the assistance of a third party in decryption or encryption is not needed.

(3) Uniform protocol: The same format is used by every pair of users that wish to communicate. In the
three examples given previously, the users’ names A, B are symbolic parameters and can be any two
names.

(4) Behavior of the saboteur: We will focus attention on saboteurs who are “active” eavesdroppers. That
means, someone who first taps the communication line to obtain messages, and then tries everything he
can in order to discover the plaintext. More precisely, we will assume the following about a saboteur:
(a) He can obtain any message passing through the network;

(b) He is a legitimate user of the network, and thus in particular can initiate a conversation with any
other user;

(c) He will have the opportunity to be a receiver to any user A. (More generally, we allow the possibility
that any user B may become a receiver to any other user A.)

We give a summary of the results obtained in this paper. Two models will be dcveloped.

3

(1) The cascade protocols: These are protocols in which the users can apply the public key encryption-
decryption operations to form messages; several layers of such operators may be applied, however. A
simple example of cascade protocol is given in Example 1.1.

(2) The name-stamp protocols: These are protocols in which the users are allowed to append, delete, and
check names encrypted together with the plaintext. A name-stamp protocol can also contain layers of
encryptions (as in Examples 1.2 and 1.3).

In Section 2 we prove that a cascade protocol is secure if and only if both the following conditions are
satisfied:

(1) The messages transmitted between X and Y always contain some layers of encryption functions £y
or E,.

(2) In generating a reply message, each participant A (A = X, Y) never applies D, without also applying
Ea

This gives a simple characterization of security, and also an eflicient algorithm for deciding whether a given
cascade protocol is secure.

In Section 3 we give a polynomial-time algorithm for deciding if a given name-stamp protocol is secure.

In Section 4 we consider the question whether a saboteur can break the protocol without waiting for
others to initiate a conversation. This corresponds to the use of items (a) and (b) only in the previous
discussion of the behavior of the saboteur. We given extensions of the results in Sections 2 and 3 to this
case.

To end this introduction, we remark that there are other types of sabotage activities that may defeat
the purpose of a public-key protocol (or any protocol). We refer the readers to Needham and Schroeder [8]
for further discussions. The problem of sabotage in network communications also arises in other context (see
Dolev [3], Pease, et.al. [9]).

2. Cascade Protocols.

In this section we consider a simple class of protocols, in which the only operations the users employ
to generate messages are the encryption-decryption operators. Our goal is to analyze the security of such
protocols against saboteurs. To achieve that we have to develop a formal model. We have to specify:

(1) the syntax of the protocol, i.e., what operations the users apply at each step to generate a message;
(2) the inference rules that the traitor can use to discover the plaintext.

2.1. Notations.

Let 2 be a finite set of distinct symbols. We usc £* to denote the set of all finite sequences composed
of the symbols in %; the set’” £* also contains the empty string X. We define Lh=%*— (X}, ie., the set
of all non-empty words over ¥. The concatenation of the words « and § is denoted by af. Let 7 = af be
a word, then « is called a prefix of 7, and § is a suflix of 7.

The basic properties of the public-key operators are ExD, = D, E,= 1, the identity function.
As a result, any string of operators of the form o F, D, ¢’ will be equivalent to a ¢/, in the scnsc that
(a EvDyo')P==(a ¢')P for all P€{0,1}*. We will say that cE Do’ (or D, E,c') can be reduced to
o o’. For any string 7 of operators, let 'ﬂx denote the complete reduced string obtained from 7 by deleting
all £, D, and D E, pairs iteratively, until no further reduction is possible. Derive by 4 the string obtained
from 7 by complete reduction with respect to all users X in the system, 7 is the reduced form of 7. Notice
that |, and 7 are all unique.

For convenience we sometimes write Dy as £, the complement of Ex . Similarly £y is also written
as DS . Let 7 =a, . .a, be a word of n symbols, each of which is an ¥ or a D, define

PR -aj.
The word ~¢ is called the complement of 7, and it satisfies yy“== 4y = 1, when 7 and 7” are considered
as operators.

For any string 7, let £t(7y) be the set of symbols in 7.

2.2. The Model.

Definition 2.1. A two-party cascade protocol T is specified by a series of finite strings

&; € {z1,22, z3}" 1<e<t,
B, €{z, 2,24} 1<i<¥,

where t' =t or t — 1. For each pair of distinct user - X and Y, let o(X,Y), 3:(X, Y) denote the strings
&l,ﬁi with the symbols 2y, 29, 23,24 respectively replaced by F., E,, Dy, D,.

Clearly, e.(X,Y)€E{Ex,E,,D}* and Bi(X,Y) € {E,, E,,D,}*. When user X wants to transmit a
sccret plaintext M to user Y, they exchange message according to 7’ in the following way:
X sends Y the message o (X, Y)M;
Y applies £1 (X, Y) to the received message and sends it to X;
X applies ay(X,Y) to the received message and sends it to Y;
Y applies B2(X, Y) to the received message and sends it to X;

Note that the protocol is uniform in that «;(A, B) and B;(A, B), for any users A, B, can be obtained from
o (X,Y), B:(X,Y) by substituting X by A and Y by B.

5

For convenience, we assume that &; and BZ are such that al(X, Y), ﬂi(X, Y) are in reduced form.

Definition 2.2. Let T be a two-party cascade protocol specified by {&i,ﬁjl 1<i<t,1<j<¢'}, and et
X, Y be two distinct users. Define

N[(X,Y) = a[(X,Y),
Noj(X,Y) = Bi(X,Y)Noj (X, Y), 1 <j<¥,
N2i+1(X,Y) = ai(X,Y)Ngi(X,Y), 1S‘L£t~1

When X wishes to send a plaintext A4 to Y, the message exchanged are then N,(X,Y)}M, where
1=1,2,..)t4t.

Example. Consider the protocol T given by {&; = 2023 , B, = z124212124}. One has o;(X,Y) = E, Dy
and 8:(X,Y)= E,D,E E\D,. For a plaintext M, the messages transmitted are N(X,Y)YM=E,D,M
and No(X,Y)M = E,D,E.M.

So far we have discussed the syntax of the cascade protocol. We will now define the notion of security for
a cascade protocol, i.e.,, when will a saboteur be able to deduce the plaintext M being transmitted between
two users. Let us first give a formal definition. Let X, Y, Z denote distinct user names.

Definition 2.3. Let T be a two-party cascade protocol specified by {&i,Bj}. Define

2.(2)={E,D,},
Ly = {ai(A,B) | for all A5 B and ¢ > 2},
Y3={B:(A,B)| for all A # B and i>1}.

We will say that T is insecure if there exists some 7 €(X,(Z)UX,UZX;3)* such that
7 Ni(X,Y) =X

for some N;(X,Y);T is secure otherwise.
Remark. It is clear that the above definition of security for T is independent of the choice of X, Y, Z.

We now give the motivation behind the definition. Suppose X is trying to send a plaintext M to Y
(using protocol T). The actual messages transmitted between them are then N, (X, Y)M (i =1,2,...),
and may fall into the hands of the saboteur Z. Taking any N,(X, Y)M , the saboteur Z has the chance to
transform it by repeatedly applying any of the following three types of operators:

(a) Any o € Z:(2);

(b) Any o € X3: Z can initiate a plaintext transmission with a user B, claiming himself .o be A, and
-send any string P to B in the (2 — 1)-st message; Z then gets back f;(A,B)P, effectively putting
the operator B;(A, B) on any chosen P;

(©) Any o€3y: let 0 = o;(A, B); there is a chance that A may wish to transmit a plaintext to B some
time in the future; Z may intercept the (¢ —1)st reply from B to A, prevent it from reaching A, and
replace it with any chosen string P and receive from A the string o;(A, B)P.

As a result, Z has the opportunity to obtain the string 7 N;(X, Y)M for any 7 €(Z:(Z)UZ5UX3)*. This
means Z may deduce M, if 7 N;(X,Y) =X for some 7 €(X(Z)UZ2UX;3)".

We wish to point out that, in order to obtain «,(A, B)P from P, Z has to wait for A to initiate a
conversation with B. It may or may not happen. Thus, our definition of security is a conservative one, in
the sense that we are concerned with the worst case possibility.

6

2.3. A Characterization of Secure Protocols.

Definition 2.4. Let 7€ {E, D}* be a string and A be a user name. We say that m has the balancing property
with respect to A if
D,ett(r) implies E, € £i(n).

As will beseen, the balancing property is inherent in secure cascade protocols.

Definition 2.5. Let X, Y be two distinct user names. A two-party cascade protocol T={&i,B]~} is a
balanced cascade protocol if

(i) for every ¢>2, a,(X,Y) has the balancing property w.r.t. X, and

(iiy for every 1> 1, B;(X,Y) has the balancing property w.r.t. Y.

Remark. We emphasize that o;(X, Y), §,(X, Y) are in reduced form for ¢,j> 1.

The following result is proved in Appendix A.

Lemma 2.1. Let Z be a user name and T be a balanced cascade protocol. Then for every string # in
(Z1(Z) u 2 u £3)*,7 has the balancing property w.r. t. every A £ Z.

Proof. See Appendix A. i
We are ready now to state and prove the main result of this section. Let X, Y be two distinct user
names.

Theorem 2.1. A two-party cascade protocol T:{&i,ﬁj} is secure if and only if
(i) et(e(X,Y)) N {Ex, By} 5 ¢, and
(i) T is balanced.

Proof. Let Z bc a user name distinct from X and Y.

(A). Necessity. Assume that either property (i) or (ii) is not true. We will show that T is insecure, i.e., there
exists 7 €(2,(Z) UL, U B3)* such that yN,(X,Y) =X for some t.

If (i) is not true, then YN, (X, Y) =X\ where 7 = a{€%,(Z)*, and we are done. We can thus assume
that (ii) is false, i.e., T is not balanced. By definition, either some ,Bk(X, Y) contains D, but not E, or some
a,(X,Y) (> 2) contains Dy but not E,. We first restrict ourselves to the former case (8 contaius DD, but
not E,); the latter case will be treated later. We will establish under this restriction the following stronger
result: For any 6 € {E,, E,,D}", there exists 7 €(Z(Z)U{B(Z,X),Bk(Z,X)})" such that v6=X\.The
proof will be carried out by induction on 7, the number of E, and E, in the string 6.

If r=0then 7 = 6°€ (C,(Z))* satisfies the requirement. Now let » > 0 and assume that the

result has been established for all smaller values of r. Let é§ be a string containing exactly r £x’s and
E;,’s. Without loss of generality, we can assume that the leftmost E is an E, \write 6 = o E,04, where
(o)N {E,, E,} == ¢;c early o€ (5,(Z))*. By assumption, Bx(Z, Y) contains D, but not E,; hence we
can write Bx(Z,Y) = 1,D, 12, where 7€ {E,, D,}* and 72 € {I7,}*. Clearly, 70 ¢ (X((Z))* for ¢ = 1, 2.
Now o, contains r--I E’s, and by the inductive hypothesis, there exists 7’ € (Z,(Z)U{B«(Z, X), Bx(Z, Y)})*
such that Y7oy = \. Define 7 = ¥'7$8x(Z,Y)r50{. Then 7 €(L:1(Z) U {B:(Z,X), Bc(Z,Y)})* from the
above discussions. Furthermore

76 = 4'1$Bk(Z2,Y 50501 Eyos
= 7o
= \.

This completes the inductive step.

It remains to show that 7T is insecure when some «,(X,Y)(:> 2) contains Dy but not £x . One can
prove the following stronger result: For any 6 € {E, , Ey , D} *, there exists 7 €(£(Z2)U{e. (X, Z2), (Y, Z2)})*
satisfying 76 = X. The proof is almost identical to the previous proof, and will not be repeated.

(B). Sufficieney. Assume that both properties (i) and (ii)are satisfied, wc will prove that T is secure.
Suppose to the contrary, there exists a 7 €(X,(Z2)UZ2UX3)* such that YN,(X,Y) =X for some
i. We will derive a contradiction. Write YN,(X,Y) = Pa,(X,Y) such tht P€(Z,(Z) U2 U Z3)*. By
definition of 7, we have
Poai(X,Y) = \. (2.1)

By the definition of a protocol, £ty (X, Y)) C{Ex,Dx, Ey}. We distinguish two cases.

Case B.1. E, € &(a(X,Y)).

As the string «; does not contain D, , the only possibility for (2.1) to hold is that P contains some D,
but no E,. But this means that P does not have the balancing property w.r.t. Y. As Y s£7Z, this is a
contradiction to Lemma 2.1.

Case B2. E, & &(a, (X, Y)).

In this case Dy ¢ ft(ar{X,Y)), because a;(X, Y) is in reduced form and the protocol satisfies property
(i) in the lemma. This implies that o (X, Y):Ej.Similarly to Case 8.1, the only possibility for (2.1) to
hold is that P contains D, and does not contain E, which again contradicts Lemma 2.1.]

A cascade protocol 7T is called doubly- verified if for some ¢, £t(N,(X,Y)) C{E,,D,,Dyx} and for some

7> 2, t(N,(X,Y)) C {Ey, Dy, Dy }.
Theorem 2.2. Every doubly-verified protocol is insecure.
Proof. Let T be a doubly-verified protocol, such that,
e(Ny) C{E,, Dx, Dy}, (2.2)

and
e(N))C{E«,Dy,D,} . (2.3)

(We have used the abbreviations N, for N,(X, Y).) Write Ny =a, (X, Y), Ny= 1 (X,Y) and N,=
Yea((X,Y), where r,€(S,UX3)" . Suppose 7’ is secure. We will derive a contradiction.
By Theorem 2.1, 7" has to be balanced.

Case 1. Ey € 8i(o (X, Y)).
Clearly (2.3) demands that 7, should contain D, but no E,. This contradicts Lemma 2.1.

Case 2. E € Lt(a; (X, Y)) and E, & et(a (X, Y)).
In this case, (2.2) requires that 5, contains D, but no E, , contradicting Lemma2.1. 4

Theorem 2.2 implies that in a secure cascade protocol 7', if the receiver Y is able to decode the encrypted
message M, then the sender X cannot oblain M by simply decrypting some of the messages sent back to X.
That means, X should not be able to reconstruct M if X has thrown away M after the first transmission.

This theorem implies that the protocol in Example 1.1 is not secure (a fact we already demonstrated before).
It also implies that the protocol suggest in Diflic and Hellman[2] (the message cxchaﬁges being £, (D, (M)) ,
E.(D,(M))) for obtaining public key authentication is not secure.

8

We wish to emphasize that our security concept is based on the assumption that the plaintext M is
arbitrary. If the structure of M is known and a consistency check can be made, then the protocol is no
longer considered to be a cascade protocol. In the next section, we consider a case in which the internal
structure of the message can be used to achieve security.

3. Name-Stamp Protocols.
In Section 1 we discussed several protocols that append names to the message before the encryption.
We will now introduce a model that includes such protocols.

3.1. Informal Description.

Assume that the names of all users are of the same length, say, m bits. For any string 7 €{0,1}*, we
will write 7 = head(v)tail(v), where tail(y) is a suffix of m bits. A user Y can apply any of the following
operations to a string 7:

(a) encryption Ey;

(b) decryption D,;

() appending ix; with ixy = 7X;

(d) name-matching d,; with d,y= head(7) if tail(y) = X and undefined otherwise;
(e) deletion d, with dy= head(y).

The name X can be any user’s name, but the only decryption Y can apply is D,. The following equations
are clearly true: For any name X,

E.D, =Dy E, =1,
and (3-1)

dyty = di, =1.

We remark that 7,d, £ 1.

Under a name-stamp protocol, any text transmitted by a user is obtained by applying a sequence of
operations (a)-(e) to the most recently received text. In particular, when a d, is applied to a string 7, the
transmission will not proceed unless tail(y) = X. To insure the completion of the communication, we will
require that any text transmitted between two normal users X, Y will be of a form

7€ {E,, D.,i4,d., d} all users A}*M

-such that no d, remains after (3.1) is repeatedly applied.

As before, a saboteur is allowed to intercept all the texts between X and Y, modify them with operations
(a)-(e), and use them freely in any conversation, initiated either by him or by others. In this fashion he can
obtain numerous strings 7 €{E,, D,, 1,,d,, djall A M. If any of the obtained 7 can be reduced to M
by the repe: 2d use of (3.1), then the saboteur will have succeeded in the quest for M.

3.2. Some Notations.
Consider the following set of rules:

E.Dy -\ DyE, — X\,

3.2
deiy =%, dix —\. (3-2)

For any string 7 & {E,, D,, d, 7.,d]| all user A}*, let 5 denote a string obtained when the rules in (3.2) have
been used to reduce 7 until no further replacement can be made. It is clear that 4 is unique, independent
of the order of the reduction. Call 5 the reduced form of 7. A string 7 is irreducible if ¥ =7.

10

3.3. Formal Model.

Definition 3.1. A two-party name-stamp protocol T is specified by a set of strings

€ (F —{2})", 8,€ (F — {z})"

where F = {z1,22,...,29},1 <i<¢t, and 1 <)<t (¢ =t ort— 1). Let (X, Y) and B;(X, Y)
denote the strings a; and ,BJ when 2y, 2,..., 29 are each replaced by Dy, Dy, Eyx, E,, tx,ty, d,,
dy,d. Let N(X,Y) = oq(X,Y),NQ(X,Y):ﬁl(X,Y)N,(X,Y),N3(X,Y):a2(X,Y)N2(X,Y), C
Noi(X,Y) = B(X,Y)Nai1(X, Y), Noig1(X, Y) = aia (X, Y)N2u(X, Y), We require that N:i(X,Y)

do not contain any da4.

Remark. {N,(X, Y)M} is the sequence of texts transmitted between X and Y, when X wishes to send
plaintext M to Y. That N,(X, Y) contains no d, means the i-th transmission is well defined.

Definition 3.2. Let X, Y, Z be three given distinct users. A two-party name-stamp protocol T is insecure

if there exists a string 7 €V}, ,{ N;(X,Y)} such that ¥ =X; the set V, , is defined by

Ver={c;(A B)|all A #£Ballj>2) U
. {8;(A,B) | all A B, all j}U (3.3)
{E.,i.,d,d]|all AYU{D,}.
Otherwise T is secure.

Remarks. The security of T in the above definition is clearly independent of the choice of X, Y, Z. The
motivation for the definition is similar to the cascade case (sec Section 2.2), and will not be elaborated.

3.4. Examples.

(1) Consider the protocol given in Example 1.2. In the present notation, o;(X,Y)=E,i.,B:1(X,Y) =
E i, d,D,. We also have N,(X,Y)=E,i, and No(X,Y) = Exi,. ,

(2) The protocol in Example 1.3 corresponds to the case a; (X, Y)=E,ix E,, B(X,Y) = Ex¢, ExDyd, Dy .
We then have N(X,Y) = E, i, E, and No(X,Y) = E, 1, E,. This protocol is insecure, as the string

7 =D,dD,p(Z,X)Exi,dD, dD,(Z,X)Eci,No(X,Y) eV, { Ni(X,Y)}
satisfies y==X. (This particular 7 actually corresponds to the sequence of operations used by the
saboteur in Example 1.3.)

3.5. A Secure Protocol.

We now prove that the protocol in Example 1.2 is secure in our model. Suppose to the contrary, there
exists a 7 € V* {N,(X,Y) } with 5 =X. We will acrive a contradiction.

Take such a 7 = vy vy ... v N,(X,Y) with a minimum number of v,€V? . Assume 7 =1 (the
other case + = 2 can be treated similarly). From the previous subsection, we haveW)zEyix and
Nyo(X, Y) = E i, . since 7=\, there must be a D, in 7 that cancels the E, in N; (X, Y). Letv; be the
word that containsthis D,, then v, = 8y (W, Y) = E, ¢, d\ D, for some W (as D, occurs only in 8. This
implies j = £, otherwise 7" = vyva... v, Ni(X, Y)—WOU|d be an instance shorter than 7. There are now two

cases:

(1) HW#£X, then v,Ni(X,Y) = Eyiyduiy, and § = vva. .. Vo1 Eptydptx X
(2 W =X then v,N{(X,Y) = Eyi, = No(X,Y), and hence the string 7° = ViV2. . Vey Nyo(X,Y)
satisfies 7:'7:)\, contradicting the minimality of 7.

This completes the proof.

11

3.6. An Algorithm for Checking Protocol Security.
Wc will give an algorithm that can decide if a given name-stamp protocol is secure. In particular, one
can run this algorithm to give an alternative proof of security for the protocol (1) in the subsection 3.4.
Given a two-party name-stamp protocol 7', specified by {al,ﬁ]}, we will use n to denote the input
lengthy” |ai] + E] |8, 1. The rest of this subsection is devoted to a proof of the following theorem.

Theorem 3.1. There is an algorithm that can decide in time O(n®) whether a given two-party name-stamp
protocol T is secure.

We will prove as an intermediate step Theorem 3.2, which is of interest by itself.

In principle, the saboteur Z may start a conversation with any user in the network. The next lemma
shows that we can assume that Z only speaks to X and Y. This reduction is very useful for constructing
an algorilhm. Let us define

S ={a(A,B)|A,B€{X,Y,Z}, A% B,i> 2}U
{6:(A,B)| A,B€ {X,Y,Z}, A# B}U (3.4)
(Eavin,did| A= X,Y,Z}U{D,}.

Lemma 3.1. The protocol T is insecure if and only if there exists a string 7 € S*{ N,(X, Y) } such that
=X\

Proof. It suffices to show that, if T is insecure, then there exists such a 7. In this situation, let 7' €
Vi {N,(X,Y)} be a string such that 4/ =X. Replace in 7" all the E,, , 1,,d, when A ¢ {X, Y, Z} by
E,, i,,d,, and let 7 denote the resulting string. Clearly, 4 = X. Observe also that 7 € S{ N,(X,Y) }, as
.a;(A, B) and B;(A, B) become a,(Z,Z) and B,(Z,Z2)e Sif A, Bg{X, Y, Z}, and o, (A, B") and B;(4', B’
with A, B’ € {X, Y, Z}, A’ # B, otherwise. 1

Definition 3.3. Let n€{E,,D,,i.,d| A = X,Y}* bc an irreducible string. Denote by C(n) the set of all
irreducible strings 6€ {E,, D,,7,,d, d]all A}* satisfying 7 =X.

-Lemma 3.2. If contains any d, then C(n)=¢. Otherwise, let n =b;b, ... b, then C(n) consists of all
the strings 6565, .. . b, where (E,)” = Da,(D.)* = E,, (1.)°=d, or d.

Proof. It follows from the fact that d has no left inverse, and the fact that b are the only irreducible
strings satisfying b, = X. N

Write pr= Ni(X, Y) and let p;,,pi,, .. . pi, be those pi that do not contain d.

Lemma 3.3. The protocol T isinsecure if and only if there exists a string v € S* suchthat 5 € C(p,,) for
some 1 <j<s.

Proof.

Sufficiency.If 7 €5* and 7€C(p;;), then 7" = vp;,€ S*{ Ni(X,Y) } and 4/ =\. Thus T is insecure by
Lemma 3.1.

Necessity. If 7" is insecure, then by Lemma 3.1 there exists a string 7/ =7 N(X,Y) with 7 €§* and
7 =X\. This implies Jpr =X, and thus by Lemma 3.2 3€ C(p;,) for some j. 1

We will show the following:

12

Proposition 3.1. Given a set of strings S = {hy,ho, ..., hp} and a string p, where
h, € {E.,Da,isd, d|A=X,Y,Z}* and pC{Ea, Da,ia|A=X, Y},

one can decide in time O(¢") if there exists a string 7 € §*suchthat§€ C(p).(q is defined to be

Dy Bl + 10l)

Proposition 3.1 implies Theorem 3.1 by the following argument. Given a protocol T specified by {o’?’i,ﬁi},
we first compute N;(X,Y) and then p, = N;(X, Y) for all ¢ in time O(n?). (Observe that each N;(X,Y)
is of length at most O(n).) Consider those p, that contain no d. For each such p;, use Proposition 3.1 to
decide if there exists a 7 € S* such that ¥& C(p;), where S is given by (3.3). By Lemma 3.3, the protocol
is then insecure if and only if there exists such a 7 for some p,. The total time is

ZZI%HZWHP:) = 0(32 ") ~Ofn)

It remains to prove Proposition 3.1. We will consider a more general setting.

3.7. The Extended Word Problem.

Let Z={ay,as,...,a} be an alphabet, i.e., a set of distinct symbols. We call u —v a transformation
rule, where u €2 and v€Z*. Let I' = {u; > vy, us vy, ..., u; > v,} be a set of transformation
rules. For two strings 7, §€%*, we will write 7 =26 if 7 can be transformed into § by repeatedly using
. rules in T, ie., replacing substrings u; by v;. For a string of subsets G, of Z,7=G G, ... G, let
Lmy={717 =g9g192...9,, where ¢;€G.}. We will usc the notation 7 Hp_L(vy) if 7 k=2r p for some
p € L(n). The extended word problem for (X,T") can be stated as follows:

Given a set of input strings 61,52,. .., 6,(6,€X*) and a string of subsets n=GG,...G, (G, C%;
G,5 ¢), determine if there exists a concantenation A =4, 6, ...¢;, such that A B L(n).

Remark. The input length n is defined to be 3_.[6:| + 3 ,|G;|.

In general, the extended word problem is known to be undecidable, because it includes as a special case
the membership problem for a type-0 language, wecll known to be undecidable (see e.g. Hopcroft and Ullman
[5]). However, we will show that the problem is solvable in polynomial time for a special class of the inputs.

Definition 3.4. A transformation rule of the form a;a, —X is called a cancellation rule.

Theorem 3.2. Let & be an alphabet and T" a set of cancellation rules. Then the extended word problem for
(,T) can be solved in time O(n"), where n is the input length.

Theorem 3.2 implies Proposition 3.1 by the following argument. Let

Y = {DyE,iadyd|A=X,Y,Z},
T ={D,E, > NED, X\ dui, >\ di, >N A=X,Y,Z}.

The problem stated in Proposition 3.1 with inputs hy,hs, ..., hp,p can be solved as an extended word
problem for (£,T). The inputs are 6;,6,,...,6, and a subset string 7=G Gy . .. G, where §, = h; and 7
is such that L(n)= C(p). The input lengths are linearly related. Thus, proving Theorem 3.2 will complete
the proof of Theorem 3.1.

To prepare for the proof of Theorem 3.2, we define a few terms. Let é,,682,...,6, be the input words
in Z*, and let n =G G2... G, be the input sequence of subsets (G, C C). Without loss of generality, we

13

can assume that 6, 3£\ for all 7. Denote by I, I’ the set of all proper prefixes and suffixes of 8y, 82,...,0,
(including X\, but not &;). Let J be the sct of all substrings of n, and J¢ the set of all substrings of % of
length £. For each wé& J, let

R, ={(g b)|gel',b€I, there exists e €{&;,82,...,8,}" such that gebf>r L(w)} .
We emphasize that each w € J is of the form G;G; ;... G, , where G, C%:
Lemma 3.4. R, can be’ computed in time O(n).

Proof. See Appendix B.1

Proof of Theorem 3.2.

We compute R,, for w € J; inductively on £ by “dynamic programming”. Initially we compute £y.
Now let £ > 0 and suppose R, have been computed for all w € JoUJ,U . -UJe-~1. For each w € Jy,
we will compute R,,. Let w =G,u. For each g € I''’b € I, let us decide if {g, b) € R,, . Suppose
g6;, 6:,...6;, b =1 L(G;u). Since cancellation rules do not create new symbols, ¢d; &;,...6;, b must be of
the form pagp’ for some a; € G, with p=p X and p’ =;- L(u). To cover all the possible breaking points
for p and p', we employ the following procedure:

(i) If g = axg1 with a,. € G, , determine if (g;, b) ER, .

(ii) For each §, and each occurrence of a symbol e, €G, in §;, write 6, = sa;s’. Determine if both
(g,)€ Rxand (s',b)ER, .

(iii) If b = by by with b, ¢ L(w), determine if (g, b;) € Rx.

Set (g, b) € R,, if any of the above tests yields a “yes” answer; otherwise (g, b) ¢ R.,.
It is easy to check that the above procedure correctly determines if (g,)€ R,. To find the running
time, note that each triplet (w, g, b) takes time at most

O(1R.| + n(I”] + [Ru]) + |B] -+ |Ru| -+ n) = O(n|I| - |T']) = O(n?).
Thus the time needed to compute R,,, for all w € J¢ is
0(|Jel - |T]-11'))-n® = O(n®) .

The total computing time for £=1,2,...|n|is thus O(n"). This completes the proof of Theorem 3.2.

14

4. The Impatient Saboteur.

To break a protocol that is insecure as defined in the previous sections, a saboteur may need to be the
receiver of a conversation. In this section, we are interested in the characterizations (or decision procedures)
for protocols that can be compromised by an impatient saboteur, i.e., one who only initiates conversations
(and does not rely on being spoken to).

For the name-stamp protocols, this corresponds to a modification of the definition of security (Definition
3.2). That is, one should omit the term {«,{A,B)} from the definition of V;, , (see (3.3)).

Theorem 4.1. There is an algorithm that can decide in time O(n®) whether a given two-party name-stamp
protocol T is sccure against an impatient saboteur.

Proof. The proof is identical to the proof of Theorem 3.1, except that the {a;(A, B)} term should be
omitted from eq. (3.4). 1

For the cascade protocols, the definition of security (Definition 2.3) should be modified as follows: T is
insecure (against an impatient saboteur) if there exists some 7 € (C,(Z) UX3)* such that 7 N;{X,Y) =X
for some N,(X,Y); T is secure otherwise. We can obtain a characterization similar to that in Theorem 2.1.

Theorem 4.2. Let X, Y be distinct user names. A two-party cascade protocol T :{&i,fi’J} is secure against
an impatient saboteur if and only if, for every k >1,

(i) 4N (X, V) 0 {Ex, By} # 6,

(ii) Bx(X,Y) has the balancing property w.r.t.Y.

Although the statement of this result is simple, the proof is quite involved. The rest of this section is devoted
to a proof of Theorem 4.2.
In the following, a string always refers to a string of E’'s and D’s. Let A bc any user name.

Definition 4.1. Let n be a string. A substring 7 of n is called an A-substring if one of the following is true
for some X,Y £ A

(i) n = m Dy mDyno;

(i) n=m Dy m;

(iiiyn=7rD,ny .
Definition 4.2. A string 7 is strongly A-balanced if every A-substring 7 has the balancing property w.r.t.

A.

Lemma 4.1. Let 7 be a strongly A-balanced string.
(i) If n=mn, D,ny with B 5 A, then n, and 7, are both strongly A-balanced.
. (i) If n =rpm2 and E.¢£€t(n2), then 7, is strongly A-balanced.

Proof. It is easy to see that 7 is strongly A-balanced iff every A-substring, that does not contain any
D,, for B 3£ A, has the balancing property w.r.t. A. This implies (i).

The balancing property w.r.t. A is concerned with the appearance of £, in case that D, appears.
Therefore, by removing a suffix or prefix which does not contain E,, we cannot change the balancing
property or the strongly balanced property. This proves (ii). 1

The key idea in the proof of Theorem 4.2 is the property presented in the following lemma.
Lemma 4.2. Let 7, 6 be any strongly A-balanced strings given in a reduced form. If

(et() U ed)) N{E., Da} # ¢
15

then 6 # \.

Proof. We prove the lemma by induction on n, the number of D,’s in the word 76.

The lemma is trivially true for n = 0. Assume now that one D, appears in y6. We will assume that
it is in 7 and that 6 contains no D,. (The case that D, is in é can be similarly treated.) By assumption
the strings 7, § are in reduced form. Therefore, 76 = X implies that 7 does not contain any E,, which
contradicts the balancing property of 7. The lemma is thus true for n = 1.

For the inductive step, let n > 1. Assume that the lemma holds for every ', 6’ such that 7'6’ contains
at most n — 1 D,’s. Let 7, § be such that v6 contains n D.’s, and that 7, § satisfy the induction
hypothesis. We wish to prove 7 §X\.

We prove by contradiction. Suppose 7 6§ =X\. By assumption 7 and § are in reduced form; thus 6 ==~¢.
It follows that 7 and 6 contain the same number of operators from the set {F,, D,}. Let us assume that
7 = vo Dty where €(y)N {E,, D.} = ¢. (The case 7 =7, E v, is similar.) In this case § = §; E} 6,
where é; = 7§ and 63 = v35.

The string 7 is strongly A-balanced. Therefore v, should be of the form v;E, for some X £ A.
(Otherwise 7 = 73 D, D} v, for X % A and where I ¢ £t(,), which contradicts the fact that Df v,
has the balancing property w.r.t. A.) This implies that d2 =D, 63 and 3=~%.

By Lemma 4.1 and the fact that £i{~,)N {E,, D.} = ¢, we conclude that 73 and é; are strongly
A-balanced. Moreover, the fact that 7 == 73 Ex D} vy and E, ¢¢€t(v,) implies that E, € €t(+y3), which
implies that D,, € £t(83).

The inductive assumption implies thatT3637é)\, which is a contradiction to our assumption that
~¥6 = \. 1

Lemma 4.3. Let &, = {B:(2(, Y)| for all 7 and all users X } . If every member-of £, has the balancing
property W.r.t. Y, then for every string

n€ (S, U{EIU{D. | X #Y}),
nis strongly Y-balanced.

Proof. The proof is very similar to the proof of Lemma 2.1 given in Appendix A. The property of being
strongly-balanced is a special case of having the linkage-property (Appendix A). The proof can be carried
along the same line, with attention paid to only one party Y in the present case. 1

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. The necessity part is exactly as that of Theorem 2.1.

Sufficiency. Assume to the contrary that there exists P€(X,(Z)UZX3)* such that for some k

PN =X\.

(We will use the abbreviation Ny, for Ni(X, Y).)

Case A. If E, g ¢¢(Ny).

Property (ii) and Lemma 4.3 imply that the string N, is strongly Y-balanced. Therefore, N; cannot
contain any D, . We thus have N, = E} , otherwise (i) would not hold. This means P =D} . Now,
condition (ii) states that ﬁj(A, X) have the balancing property w.r.t. X, for every A. Therefore, by Lemma
4.3, P is strongly X-balanced, which contradicts the fact that P = Dj}.

Case B. E, € €t(Ny).

In this case, by Lemma 4.3, Ny and P are strongly Y-balanced. But Lemma 4.2 implies that

BPNs £)

which provides the desired contradiction. |

17

Appendix A. Proof of Lemma 2.1.

Let Z be a distinguished user name. We will explore the structure of strings in (Z;UXZ2UZX3)*, from
which we will derive Lemma 2.1. (We use X for £,(Z) throughout this appendix.)

Definition. Let 7 be a string and A be a user name. We say that 7 is A-balanced if the following condition
holds: w = D6 D, where X, Y % A and ¢(6|,)N {D} C{D.,} implies that 6 |, has the balancing property
w.rt. A.

A string 7 is said to have the linkage property, if every substringm of D,n D, is A-balanced for all
A# Z.

Lemma A.l. Let T be a balanced cascade protocol. Let u be any string having the linkage property. For
every string n from either Ef” or ¥y or X3, un and nu satisfy the linkage property.

Proof. It suffices to prove that un has the linkage property; the other case follows by symmetry.

Let A £ Z be any user of the network. We have to show that every substring of D,un D, is A-balanced.

Consider first the case that n does not contain D,. In this case the number of D,’s in (un)|. can
not increase and, therefore, every substring of D, un D, is A-balanced since every substring of D, u D, is
A- balanced.

Next, assume 7 contains D,. In this case n should be some ax(A, B) or 8;(A, B) for some users A and
B. Thus, n has the balancing property w.r.t. A. Moreover, n does not contain any D, with u # A. Let
m=D,6 D, where X, Y 5# A, be a substring of D,un D,. If D, € £t(u) then 7 is A-balanced because u
satisfies the linkage property. Otherwise, D, should be the rightmost D,,n cannot contain D, (as, Y 5% A).

In this case 7 = D,6'n D,, where § = §'n, because D, also cannot be in n. We have to prove that
if §|, contains D, then it must contain E,. Assume to the contrary that 8|4 contains D, but no £,. It
is easy to see that either » or §’{, should contain D, with no E,, because at most one block of D;j’ or
E,‘f can be cancelled ins},. This leads to a contradiction of either the assumption that # has the balancing
property or the assurnption that p has the linkage property. [|

Lemma A.2. Let T be a balanced cascade protocol. Then every string 7€ (2;UX2UZX3)* has the linkage
property.

Proof. For each n€(Z,ULUE3)*, write n=w;..... w,,, where each w; is either in E]F or L, or
f);;. One can finish the proof by a simple induction on n, the number of words in 7, using Lemma A.l]

Lemma A.3. For any string n and any Z, if has the linkage property, then 7 also has the same property.

Proof. 1t suffices to prove that, if a string has the property, then so does the new string obtained by
a reduction of any pair Dy E, or E. D,, for any X. Let n be any string which has the linkage property.
Assume

n=-mExDcn .
Let A be any user other than Z. We have to show that every substring of D,n,ns D, is A-balanced.

If A = X, then every substring of D,n,7n9 D, is A-balanced, because the corresponding substring of
D,n D, is A-balanced. In the following, we assume A % X.

Let D, be the first D, from the right of D,%; other than D,, and let D, be the first such D, (V 7 A)
from the left of n»,D,. Then we can write

D,nD, = 77’1 D, 6 Ey Dydy Dy 77,2,-
18

The fact that n has the linkage property implies that Dy é; Ex Dy and D, 6, D,, are A-balanced. It is then
easy to see that D, 8,62 D,, is also A-balanced. This completes the proof. |

Note that the lemma does not hold in the reverse direction, that is, if % has the linkage property, it
does not imply that n has it.

Example. Let n = E, Dy I, E, D,,D.FE,,, then 7 has the linkage property but 7 does not have it.

Proof of Lemma 2.1. We have to prove that for every string n€(2;UZX2UX3)*, the reduced string 7
has the balancing property w.r.t. every A £ Z.

Assume to the contrary that, for some A, 77 does not have the balancing property w.r.t. A. It follows that
n contains a D, but does not contain any E, . But this implies that # does not have the linkage property,

However, 7 must have the linkage property by Lemmas A.2 and A.3. This leads to a contradiction. |

19

Appendix B. Proof of Lemma 3.4.

The purpose of this appendix is to show that Ry can be computed in O(n7) time. (See Section 3 for
notations.)

For2=01,2,..., let

Q{(g,b)|g€, bEI Tit,4a,...,%; with 0 <j<€ such that g 6;,0i,. .. 66PN},

Clearly,
Ry = |J .. (B—1)

Define Vy = @¢. We will give a procedure K which generates a set V,C I' X | once V,__; is given. Consider
the sequence Vy, V|, Vs, ... generated by this procedure iteratively. We will show that the sequence {V,}
satisfies the following properties:

P1L. For all £>2 0, V,C Voyiyand V, C Ry.
P2. For all £> 0, @, C V,.
P3. For all £>|I]-|I'], Veg1 = Ve

It follows from (R-l) and P1-P3 that
Ry =Vywith ¢ =|I|.|l']. (B—2)

Thus, if we first compute V4 = Qyg, followed by |I|.|I'| applications of procedure K, we will have obtained
the desired R,. The time needed to compute V; is easily seen to be O(n|I|-]I’]). Let cost(K) denote the
maximum running time of procedure K, then the total time to compute R is O((n -} cost(K))|I|-|I'[) =
O(n® 4+ n? cost(K)). We will show that cost(K) = O(n®), thus giving a O(n”) total running time.

We now give a description of procedure K. Assume that V,__, is given, we will describe how V; is

generated.

Procedure K :

We process the pairs (g, 6) in I’ X1 one at a time in the increasing order of the length s =|g|--|b|. For
each (g, b), we include (g,b) in Vif itis in Ve, and otherwise we execute the following steps according to
the cases:

Case 1. lgl = 0,18 = 0:
step a. For each 1 <k,j< p, test if both (a;a, —=X)ETl and (6%, 6%)EVe_iwhere
bk = a;8%,68,=6' a; let (g, b)€ V, if the answer is “yes”.
step b. For each 1 <j< p and every partition §, = st (s, t may be X), test if both
(9,8)EVe_yand (t, 6) € Vo_y; let (g, 6) € Vo if the answer is “yes”.
Case 2. lg] = 0, 6 = bya,:
step a. For each 1 <k < p, test if both (a;a, = X)€ I’ and (6,b:1)€ Ve—1, where 8 =
a;6}; let (g, 6) € Vp if the answer is “yes”.
step b. For each 1 < k < p and every partition 6, = st (s, t may be X\), test if both
(g,8)€ Vo and (t, 6) € Vo_y; let (g, 6) € V, if the answer is “yes”.
Case 3. g = axg1, bl = O:
step a. For each 1 <j< p, test if both (axa; »X)€T and (g1,8,) € Vo1, where §; =
6" a;; let (g, 6) € V, if the answer is (‘yes”. ‘
step b. For each 1 < k < p and every partition 6, = st, test if both (g, s)€ V,—; and
(t, 6) € Vi—y; let (g, 6) € Vp if the answer is “yes”.

20

Case 4. g = axgi, b = b1a;:
step a. Test if both (axa; —X)ET and (g,,b:1) € Vg; let (g, 6) € Vo if the answer is “yes”.
step b. For each 1 < k < p and every partition & = st, test if both (g, s)€ Vp—; and
(t, 6) € Vo__y; let (g, 6) € V, if the answer is ‘yes”. .
[comment. If (g, 6) is not included in V; after these steps, then (g, 6) & V.|
End Procedure K.

It is easy to check that, for each pair (g, b), the needed time in its processing is at most O(n|I|.|I'|) =
O(n®). Thus, cost(K) = O(n3|I].|I’]) = O(n®).

We can now complete the proof of the lemma, by showing that the sequence {V.} satisfies PI-P3.

We observe that, whenever a (g, 6) is added to V, in procedure K, the conditions give a ‘natural
construction of a string 7 €g{6,}* 6 that can be reduced to \. We omit a straightforward proof. This
establishes P 1.

To prove P3, observe that the construction of V, from V,_; does not explicitly depend on £. Thus,
once we find Ve =V, then V¢ = Vp; = Voyp="--.. But this condition must be reached for some
¢<|I|.|I'|, as there are at most |I|.|I’| elements in any V;. This proves P3.

We prove P2 by induction on £. The case £ = 0 is trivial, as Vy3==@,. Now assume that we have
proved P2 for all values less than ¢, and we will prove P2 for £(¢ > 0).

We need to show that, for any (g, 6) € Q¢, one must have (g, 6) € V. We prove this by induction on the
value s =|g|-+1]b]. For any s> 0, let us assume that the statement is true for all (g, 6) with |g| + || <s;
we will prove the statement when |g| +|b]== s. There are four cases to be considered, depending on whether
lg| = 0 and whether [b] = 0. We will consider the case |g| > 0 and |b| > 0, and leave the other three cases
as an exercise.

If (g,6) € @o—y, then by induction hypothesis, (g, 6) € Vi—; C Ve. We can thus assume that (g, 6) &
Qe¢—Qe—1. Write g = arg,, 6 =b,a;, and suppose

ar gy 51’1 61‘2...(5”1)1 ay HF .

In the above reduction process to A, either the last step is aya, — X or the cancellation of the leftmostay is
with a symbol a, in some §;,. In the former case (g,b:)€Q, and, since |g,|+|b;|<s, we have (g,,b;)€ V;
by induction hypothesis; this means (g, b) will be included in V, during the execution of procedure K (Case
4, step a). In the latter case there is a partition §; = st such that (g, s) €Q,—; and (¢, 6) €Q¢_; ; this
means (g, 6) is added to V, in the process (Case 4, step b). This completes the induction.

We have proved P2, and hence Lemma 3.4. [|

21

References

[1] W. Diffie and M. Hellman, “New direction in cryptography,” IEEE Trans. on Inform. 1T-22, 6 (1976),
644-654.

[2] w . Diffie and M. Hellman, “Multiuser cryptographic techniques,” Proc. AF'IPS 1976 NCC, AFIPS
Press, Montvale, N.J., 109-112.

[3] D. Dolev, “Byzantine Generals strike again,” Journal of Algorithms, to appear.

[4] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating systems,” Comm. ACM 19
(1976), 461-471.

[5] J.E.Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata, Addison-Wesley,
Reading, Mass., 1969.

[6] R. Lipton and L. Snyder, “A linear time algorithm for deciding subject security,” Journal ACM 24
(1977), 455-464.

[7] R. C. Merkle, “Protocols for public key cryptography,” BNR technical report, Palo Alto, CA, 1980.

[8] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in large networks of
computers,” Comm. ACM 2 (1978), 993-999.

[9] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,” Journal ACM
27 (1980), 228-234.

[10] G. J. Popek and C. S. Kline, “Encryption protocols, public key algorithms, and digital signatures in
computer networks,” in Foundations of Secure Computation, edited by R. A. Demillo et. al., Academic
Press, 1978.

[11] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key
cryptosystems,” Comm. ACM 21 (1978), 120-126.

22

