
Shapes: Surveying
Crypto Protocol Runs1

Joshua D. GUTTMAN
Worcester Polytechnic Institute

Abstract. Given a cryptographic protocol, and some assumptions, can we present
everything that can happen, subject to these assumptions? The assumptions may
include: (i) some behavior assumed to have occurred, (ii) some keys assumed to
be uncompromised, and (iii) some values assumed to have been freshly chosen. An
object representing these types of information is called a skeleton.

The shapes for a skeleton A are the minimal, essentially different executions that
are compatible with the assumptions in A. The set of shapes for an A is frequently
but not always finite. Given a finite set of shapes for A, it is evident whether a
security goal such as authentication or confidentiality holds for A.

In this paper, we describe a search that finds the shapes, starting from a protocol
and a skeleton A. The search is driven by the challenge-response patterns formal-
ized in the strand space authentication tests.

1. Initial Examples

We develop here a search technique for finding the minimal, essentially different exe-
cutions possible in a protocol, starting from some initial behavioral assumptions. This
search gives counterexamples to false authentication and confidentiality assertions. Al-
ternatively, the search proves these properties, when they hold and the search terminates,
as it commonly though not universally does.

We start with intuitive analyses, using Blanchet’s Simple Example Protocol [2] (see
Fig. 1), and then proceed to formalize and justify them. Blanchet’s protocol SEP requires
an initiator A to generate a fresh symmetric key k, sign and encrypt it for a chosen
responder B, and await reception of a message {∣s∣}k.2 Any responder B will await a
message containing a signed and encrypted k, at which point it will select a secret s to
transmit encrypted with k. A strand is a finite sequence of transmissions and receptions,
so the actions of the initiator or responder in a single local session form a strand. Strands

1Partly supported by the National Science Foundation, grant CNS-0952287. Preliminary versions of some
of this material appeared in [7,6], written jointly with Shaddin Doghmi and Javier Thayer. That work
was funded partly by MITRE-Sponsored Research, and partly by the National Security Agency. Address:
guttman@{wpi.edu, mitre.org}.

2Since we frequently refer to sets, we reserve {vs} for set formation. We write {∣p∣}K for the encryption
of plaintext p using key K. If K and its inverse decryption key are equal, i.e. K = K−1, then {∣p∣}K is a
symmetric encryption, and otherwise the encryption is asymmetric.

We model digital signature by asymmetric encryption. A private encryption key K prepares the “signed”
message {∣p∣}K ; to verify the latter, one uses the public inverse K−1, recovering p. A hash is an encryption
with a public key, for which no one has the matching decryption key.

1

{∣{∣k∣}sk(A)∣}pk(B) {∣s∣}k
��

{∣{∣k∣}sk(A)∣}pk(B)

��

{∣s∣}k

∙
OO

+3 ∙ ∙ +3 ∙
OO

Figure 1. SEP: Blanchet’s Simple Example Protocol

are written either vertically or horizontally as sequences of nodes connected by double
arrows ∙ ⇒ ∙. When n1 follows n0 on a strand, although possibly not immediately, then
n0 ⇒+ n1.

Informally, a strand is the activity of some principal. It is the activity of a principal
A if it requires using a secret known only by A, such as A’s (uncompromised) signing
key, or the (uncompromised) decryption key that matches A’s public encryption key.
However, in the formal model this principal is largely irrelevant, apart from its name,
which appears as a parameter in the template defining the role. The principal parameter
of the initiator role in Fig. 1 is A and the principal parameter of the responder role is B.

Our model also omits some information that is required in practice, such as the
intended recipient of a message, and an indication of which key to use to decrypt it. This
information is at the mercy of an adversary controlling the network. Thus, the remaining
ingredients of the protocol must still be able to prevent security failures, even if these
indications are misleading, so we can simplify the model by omitting them.

1.1. A’s Point of View

We start by exploring A’s point of view. We assume that A has engaged in one or more
steps of a local session of SEP, and we ask what other behavior must occur in any possible
execution containing this behavior.

This is the point-of-view principle: A knows that he engaged in these steps of his
local session. He would like to infer as much as possible about what other behavior must
have occurred, or could not have occurred.

The point of view principle is central to protocol analysis, which is largely the ac-
tivity of exploring what behaviors are possible, given some initially assumed behavior.
This initial assumed behavior is usually a run (or part of a run) of one principal. In that
case, the analysis tells us what behavior must have occurred in the distributed system,
from the point of view of that principal.

Secrecy of the session key k. Suppose that an initiatorA has executed at least the first
node of a session, transmitting a session key k within a message {∣{∣k∣}sk(A)∣}pk(B). Is
A guaranteed that an adversary can never obtain the value k in a form protected by no
encryption? The answer is no, in at least two cases.

1. When the key generator chosing k lacks randomness: An adversary may then
generate the candidate keys and (possibly) test which was sent.
Alternatively, the way k was chosen may ensure that it is fresh and unguessable;
we use the term uniquely originating for such a k.
A originates k for this transmission, and any other place it is sent or received
must then derive in an understandable way from this transmission or its later

2

{∣{∣k∣}sk(A)∣}pk(B) ∙oo ∙ koo

non = {pk(B)
−1} unique = {k}

Figure 2. Skeleton A0: Disclosure of k?

transformed forms. An adversary’s generate-and-test would be a separate point
of origination for the same value. Likewise, if a protocol participant were, by bad
luck, to generate the same k for another run, that would be an additional point
of origination for k. A reasonable cryptographic implementation of SEP should
ensure that these events are of negligible likelihood.

2. When B’s private decryption key pk(B)
−1 is compromised: An adversary can

then extract the signed unit from {∣{∣k∣}sk(A)∣}pk(B), check the signature, and ex-
tract k.
It is irrelevant whether B does this (“B is dishonest”) or whether B’s secret
pk(B)

−1 has fallen into the hands of a malicious party. In either case,B’s private
decryption key has been used in a way that is not stipulated in the protocol defi-
nition. Thus, we say that a key is uncompromised if it is used only in accordance
with the protocol under analysis.
In our formalism, a key used contrary to the stipulations of the protocol must al-
ways originate. Thus, we call an uncompromised long-term key non-originating.

A strand of the protocol is called a regular strand. Thus, all local behaviors divide into
regular strands and adversary behaviors. We sometimes say that a principal A is regular
if its private keys are used only in regular strands.

Is there any third way that an adversary could obtain the key k?
To answer this question, we carry out an experiment. We start with a diagram

(Fig. 2), representing a transmission of {∣{∣k∣}sk(A)∣}pk(B) and the reception of k, some-
how shorn of all cryptographic protection. We call a node like the right hand node of
Fig. 2 a listener node, since it listens, and hears the value k, thereby witnessing that k
has been disclosed. The diagram also incorporates the assumption that neither case 1
nor case 2 above applies, i.e. k is uniquely originating and pk(B)

−1 is non-originating,
which we express as unique = {k} and non = {pk(B)

−1}. Can we embed Fig. 2 into a
more informative diagram representing a possible execution?

To answer this question, we appeal to a minimality principle. It states that in any
execution, if a set E of transmission and reception nodes is non-empty, then E has some
earliest member. Moreover, if E is defined by the contents of the messages, then any
earliest node in E is a transmission node. The message must have been sent before it
could have been received.

Since in A0, there is a node in which k appears without any sort of encryption, by
the minimality principle, there is a transmission node which is the earliest point at which
k appears outside of the cryptographic protection of {∣{∣k∣}sk(A)∣}pk(B). If the adversary
could use pk(B)

−1, this could occur via an adversary decryption, but the assumption
pk(B)

−1 ∈ non excludes this. If the adversary could be lucky enough to re-originate
the same k, then this re-origination would be an earliest transmission unprotected by

3

{∣{∣k∣}sk(A)∣}pk(B). The assumption unique = {k} excludes this. Thus, any earliest trans-
mission of k outside the form {∣{∣k∣}sk(A)∣}pk(B) lies on a regular strand of the protocol.

However, when we examine Fig. 1, we see that a symmetric key is received by a
participant only on the first node of a responder strand. This key however is not retrans-
mitted; instead, k is used to encrypt the payload s, and the ciphertext {∣s∣}k can never
lead to the disclosure of k. A principal that already knows k can use it to obtain s, but
a principal that does not yet have information about k cannot obtain k from {∣s∣}k. If an
adversary can recognize s and has a hypothesis about the value of k, then it can use the
message {∣s∣}k to check the hypothesis. However, we will be concerned only with full
disclosure, not with a subtler notion of secrecy that resists hypothesis checking.

We have now exhausted all the possibilities. A0 is a dead end. No enrichment of A0

can be an execution that can possibly occur. We call it a dead skeleton.
This conclusion relies on a principle central to the search for shapes:

Principle 1.1 (The Nonce Test) Suppose that c ∈ unique, and c is found in some mes-
sage received in a skeleton A at a node n1. Moreover, suppose that, in the message of
n1, c is found outside all of a number of encrypted forms {∣t1∣}K1 , . . . , {∣tj ∣}Kj . Then in
any enrichment B of A such that B is a possible execution, either:

1. One of the matching decryption keys Ki
−1 is disclosed before n1 occurs, so that

c could be extracted by the adversary; or else
2. Some regular strand contains a node m1 in which c is transmitted outside
{∣t1∣}K1 , . . . , {∣tj ∣}Kj , but in all previous nodes m0 ⇒+ m1, c was found (if at
all) only within these encryptions. Moreover, m1 occurs before n1.

This says that if c is extracted from the encrypted forms, then, in any possible execution,
either the adversary can do so (Case 1), which we witness by adding a listener node for
a decryption key Ki

−1; or else some regular strand has done so (Case 2). We have just
applied Principle 1.1 in the case where c = k, j = 1, K1 = pk(B), and t1 = {∣k∣}sk(A).
In this application, Case 1 was excluded by the assumption pk(B)

−1 ∈ non. The protocol
in Fig. 1 does not furnish any instance of the behavior described in Case 2. Hence the
dead end.

We use the list {∣t1∣}K1 , . . . , {∣tj ∣}Kj because a protocol may re-use a nonce sev-
eral times. After a nonce has been transmitted inside the encryption {∣t1∣}K1 and re-
ceived back inside the encryption {∣t2∣}K2 , it may be retransmitted inside the encryption
{∣t3∣}K3 . If it is ever received back in some new form {∣t4∣}K4 , then that transformation
needs an explanation of one of the two forms mentioned in Principle 1.1. If it is ever
received back with no further encryption, then it can no longer be reused in this way.

A’s Authentication Guarantee. Suppose that an initiator has executed a local session
of its role in SEP. What forms are possible for the execution as a whole global behavior?
In exploring this question, we will make the same assumptions about non and unique.
Thus, we represent this graphically in the form shown in Fig. 3, where for brevity we
write t0 = {∣{∣k∣}sk(A)∣}pk(B). We again ask what explanations could exist for the various
nodes, i.e. what enrichment could elaborate B into a skeleton that represents a possible
execution. The first node requires no explanation, since A transmits {∣{∣k∣}sk(A)∣}pk(B)

just as the protocol indicates.
By contrast, the second node, A’s reception of {∣s∣}k, does require an explanation:

Where did {∣s∣}k come from?

4

∙ //

��

t0

∙ {∣s∣}koo

non = {pk(B)
−1} unique = {k}

Figure 3. Skeleton B; t0 is {∣{∣k∣}sk(A)∣}pk(B)

∙
t0
//

��

≺ ∙ k←
≻

∙
{∣s∣}k

oo B1

or ∙
t0
//

��

≺
{∣{∣k∣}sk(C)∣}pk(D)

// ∙
��

B2 ∙ ≻
{∣s∣}k

oo ∙
{∣s∣}k

oo

non = {pk(B)
−1} unique = {k}

Figure 4. Analysis of B, Step 1; t0 is {∣{∣k∣}sk(A)∣}pk(B)

1. Possibly k is disclosed to the adversary, who then prepared the message {∣s∣}k.
We may test this candidate explanation by adding a listener node to witness dis-
closure of the encryption key k.

2. Alternatively, we may add a strand of the protocol, including a node that transmits
{∣s∣}k. As is evident from Fig. 1, this must be the second node of a responder
strand. However, what values are possible for the other parameters of the strand,
i.e. the names of the initiator and responder in this session? We will postpone the
question by choosing new, unconstrained values C,D.

This leads us to the two descendants of B, shown as B1,B2 in Fig. 4. We may now
immediately exclude B1. It must be a dead end, because it is an enrichment of A0 in
Fig. 2. If any enrichment of B1 were a possible execution, then it would be the enrichment
of an enrichment of A0, and—since the composition of enrichments is an enrichment—
some enrichment of A0 would be a possible execution.

Turning to B2, it has an unexplained node, the upper right node nD receiving
{∣{∣k∣}sk(C)∣}pk(D). If it happens that C = A and D = B, then nothing further need be
done.

Otherwise, we may apply Principle 1.1. The value k, having been previously
observed only in the form t0, is now received on nD in a different form, namely
{∣{∣k∣}sk(C)∣}pk(D). Since pk(B)

−1 ∈ non, case 1 does not apply. We must thus have a
regular strand that receives k only within the encrypted form t0 and retransmits it outside
of t0. However, in analyzing A0, we have already seen that the protocol contains no such
strand.

Thus, we are left with the single case of B2 in which C = A and D = B, which
is the desired execution B21 shown in Fig. 5. The index 21 is meant to indicate the path
along which it was encountered, as the sole child of B2, which is itself the rightmost

5

∙
t0
//

��
≺

t0
// ∙
��

∙ ≻
{∣s∣}k

oo ∙
{∣s∣}k

oo

non = {pk(B)
−1} unique = {k}

Figure 5. Analysis of B, Step 2: Its shape B21

child of B. B21 is the sole shape for B: Any execution compatible with B must contain
at least the behavior shown in B21.

We have made use of two additional principles in this analysis. One asserts that death
persists; the other concerns the origin of encrypted messages.

Principle 1.2 If a skeleton A is dead, then so is any enrichment B of A.

We applied Principle 1.2 to discard B1.

Principle 1.3 (The Encryption Test, 1) Suppose that {∣t∣}K is found in some message
received in a skeleton A at a node n1. Then in any enrichment B of A such that B is a
possible execution, either:

1. The encryption key K is disclosed before n1 occurs, so that the adversary could
construct {∣t∣}K from t; or else

2. A regular strand contains a nodem1 in which {∣t∣}K is transmitted, but no earlier
node m0 ⇒+ m1 contains {∣t∣}K . Moreover, m1 occurs before n1.

We applied Principle 1.3 to construct skeletons B1,B2, using the instance t = s and
K = k. Case 1 furnished B1 and Case 2 yielded B2. The node n1 is the later (reception)
node of B, and m1 is the lower right transmission node in B2.

We will strengthen Principle 1.3 and combine it in a single form with Principle 1.1,
resulting in the Authentication Test Principle, Theorem 5.5 of Section 5.

Secrecy of s. CanA be sure that the value s remains a secret betweenA andB? To test
this, we start with an expansion of skeleton B in which there is also a listener node that
observes s shorn of all cryptographic protection, as shown in the left portion of Fig. 6.
The question is only relevant if s is assumed fresh and unguessable. ℂ is an enrichment of
B. Every execution enriching B must contain at least the structure we found in B21, and it
must also contain the listener node for s. Thus, it must be an enrichment of ℂ21. Now, at
this point we can apply Principle 1.1, instantiating c = s and node n1 being the listener
at the lower right. The index j = 1, and the encrypted form containing s is {∣s∣}k. Since
k is a symmetric session key, k−1 = k. Since no regular strand of SEP receives a value
encrypted by a symmetric key and retransmits that value in any other form, Case 2 of the
principle is vacuous. Thus, we add a listener node for k, witnessing for its disclosure,
obtaining ℂ211 in Fig. 7. ℂ211 is dead as a consequence of Principle 1.2, since ℂ211

certainly enriches the dead skeleton A0 in Fig. 2.
Thus, SEP fulfills its goals, from the point of view of an initiator A.
In the step from ℂ to ℂ21, we used an additional principle:

6

t0 {∣s∣}k
��

s

��
∙

OO

+3 ∙ ∙

⋅→ ∙
t0
//

��
≺

t0
// ∙
��

s

��
∙ ≻

{∣s∣}k

oo ∙
{∣s∣}k

oo ∙

non = {pk(B)
−1} unique = {k, s}

Figure 6. Skeletons ℂ and ℂ21

∙
t0
//

��
≺

t0
// ∙
�� s�� k��

∙ ≻
{∣s∣}k

oo ∙
{∣s∣}k

oo ∙ ∙≻

non = {pk(B)
−1} unique = {k, s}

Figure 7. Dead skeleton ℂ211

t0
// ∙ ⋅→ ∙

{∣{∣k∣}sk(A)∣}pk(C)

// ≺
t0

// ∙

sk(A), pk(B)−1 ∈ non

Figure 8. Skeleton D: B’s Point of View, and its shape D1

Principle 1.4 Suppose that B has the shapes S1, . . . ,Si. If ℂ enriches B, then every
execution enriching ℂ is an enrichment of some Sj , where 1 ≤ j ≤ i.

Since B had the single shape ℂ21, we applied Principle 1.4 with i = 1 and S1 = B21,
allowing us to jump right from ℂ to ℂ21. We could also have reconstructed its contents
using several applications of the other principles.

1.2. B’s Point of View

The story is quite different when we turn to the point of view of a responder B.

B’s Authentication Guarantee. Suppose that a responder B has received a mes-
sage of the form t0 = {∣{∣k∣}sk(A)∣}pk(B). Assuming now, in skeleton D of Fig. 8, that
both A’s private signature key sk(A) and B’s private decryption key pk(B)

−1 are non-
originating, what else must have happened in any enrichment of D that is a possible
execution? We may try to apply Principle 1.3 again, where the encrypted unit {∣t∣}K is
t0 = {∣{∣k∣}sk(A)∣}pk(B). However, Case 1 then requires only that the public encryption
key pk(B) of B is available to the adversary, from which we learn nothing.

7

{∣{∣kˆB∣}sk(A)∣}pk(B) {∣s∣}k
��

{∣{∣kˆB∣}sk(A)∣}pk(B)

��

{∣s∣}k

∙
OO

+3 ∙ ∙ +3 ∙
OO

Figure 9. SEPC: the Simple Example Protocol Corrected

{∣{∣kˆB∣}sk(A)∣}pk(B)

// ∙ ⋅→ ∙
{∣{∣kˆB∣}sk(A)∣}pk(B)

// ≺
{∣{∣kˆB∣}sk(A)∣}pk(B)

// ∙

sk(A), pk(B)−1 ∈ non

Figure 10. Skeleton E: B’s Point of View, and its shape E1

We may more profitably apply Principle 1.3 by taking the encrypted unit {∣t∣}K to
be {∣k∣}sk(A). Since the key sk(A) is non-originating, Case 1 is vacuous. Thus, every
possible execution must include an enrichment with a regular node producing {∣k∣}sk(A).
By Fig. 1, this must be the first node of an initiator strand. We know that the parameter
representing the initiator’s name is A, and the parameter representing the session key
has the value k. However, we know nothing about the remaining parameter appearing
in an initiator’s first node, i.e. the name of the intended responder. Since this value is
unconstrained, we fill it in with some new C, thus obtaining the skeleton D1.

Unfortunately, we cannot collect any more information about the parameter C, un-
like our situation in skeleton B2 (Fig. 4). D1 contains all of the regular behavior needed
for an execution. It is the sole shape for D.

Nothing says that C’s decryption key is uncompromised, so the adversary can de-
crypt the outer layer, using the public key pk(B) to re-encrypt {∣k∣}sk(A) in the desired
form. Evidently, the session key k may also be disclosed in this process. Thus, in SEP, a
responder B does get a guarantee that A initiated a session with key k. However, since
A may have chosen a compromised party C as partner for that conversation, B cannot
count on much, certainly not that k, or any s encrypted with k, will remain confidential.

1.3. Correcting SEP

Principles 1.1 and 1.3 are central to protocol design [9] as well as to protocol analy-
sis [7]. In SEP, our analysis of B’s guarantee applied Principle 1.3 to the critical term
{∣k∣}sk(A). Since this term involves only the two parameters k,A, evidently this cannot
force agreement on a particular responder B.

To force A to agree with B on the responder, it suffices to add B’s name to this crit-
ical term. The resulting protocol SEPC takes the form given in Fig. 9. B’s authentication
result is shown in Fig. 10.

If we add to E1 a listener node for k, and assume k uniquely originating, the resulting
skeleton is an enrichment of the SEPC analogue to A0. It again follows that k cannot be
disclosed. When we extend B’s strand to include its second node, transmitting {∣s∣}k, it
will also lead to the conclusion that s is undisclosed.

8

Our correction of SEP is tighter or more minimal than Blanchet’s [2], where the
signed unit {∣kˆAˆB∣}sk(A) is used. The occurrence of A is unnecessary here. Prin-
ciple 1.3 helped identify exactly the parameters need to appear in the critical term to
achieve the protocol refinement.

1.4. Goals of this Chapter

Blanchet’s Simple Example Protocol has illustrated the idea that, from a particular start-
ing point, one can find all of the minimal, essentially different things that can happen,
compatible with that starting point. We call the minimal, essentially different executions
compatible with a starting point A its shapes.

This chapter describes a search procedure that finds shapes systematically. Each
search step from the starting point A adds information to A, until the search has found be-
havior of the regular (uncompromised) participants, which—when combined with some
activity of the adversary—yields a full execution. Each search step increases information;
i.e. it is an enrichment in the sense we will formalize in the notion of homomorphism
(Def. 3.6).

There are three important ways to add information. We can add information by
adding listener nodes to witness for the assumption that a value is disclosed (Case 1 of
Principles 1.1 and 1.3). We can add information by adding new protocol message trans-
missions that help to explain the messages that have been received (Case 2 of Princi-
ples 1.1 and 1.3). And we can add information by identifying different parameters, as
we identified C and D with A and B respectively, to produce skeleton B21. When there
are different possible ways to explain some one aspect of existing behavior, the search
branches. We implemented this search in a tool called CPSA, a Cryptographic Protocol
Shape Analyzer [17].

The purpose of this chapter is to present a theory underlying CPSA. The now very
informative software that implement this theory—specified, from a different point of
view, in [18]—will be the subject on another occasion. We prove three main results about
the search steps as a process of refinement leading to shapes:

1. The search steps are sound (Thm. 6.7), so that—when we take a step—every pos-
sible execution compatible with the assumptions before the step is still compati-
ble on at least one branch after the step.

2. The search steps are finitely branching (Thm. 6.8), so that each step produces
only finitely many new skeletons to explore.

3. The search steps are complete (Thm. 6.5), so that every shape is reached by some
finite sequence of search steps.

These results do not imply decidability for security goals, since the search may enumer-
ate an infinite set of shapes. If one of these is a counterexample to a goal, then we cer-
tainly learn the goal is false. However, if a goal is in fact true, but A has infinitely many
shapes, then we cannot be sure it is true at any finite stage.

The shape search is related to Athena [19], which also searched for executions that
extend a given partial description. Athena’s representation included adversary behav-
ior as well as regular strands. Athena used a more straightforward backward search,
in which the tool seeks all possible transmission points—whether adversary actions or
regular strands—for each component of a reception node that cannot yet be explained.

9

Athena later incorporated an early version of the authentication test method (Princi-
ples 1.1 and 1.3) to prune its search [15]. Cremers’s Scyther [5,4] refined Athena’s ideas,
combining them with the notion of characterization [8], which we describe below in
Section 3.3. Unlike our search, Scyther can provide a bounded-session analysis when
the unbounded-session analysis proves too costly, and this is an advantage. Our work
differs in its emphasis on the authentication test method, and in its systematic treatment
of enrichment via the skeletons-and-homomorphisms theory of Section 3.

1.5. Structure of this Chapter

Principles 1.1 and 1.3 have a different character from Principles 1.2 and 1.4. The former
determine the potential explanations for unexplained behavior, and they drive the form
of the search steps. By contrast, the latter are general observations about skeletons, about
enrichments or homomorphisms—as we will call them—between them, and about exe-
cutions. We will examine the latter in Section 3, after introducing the basic strand space
terminology in Section 2.

Section 4 introduces a second example, a modified form of the Trusted Computing
Group’s protocol for constructing certificates for Attestation Identity Keys [1]. This sug-
gests a strengthened version of Principle 1.3, which is parallel with Principle 1.1 in form.
Section 5 states a combined version of Principles 1.1 and 1.3, showing that they charac-
terize when a skeleton is an execution (Thm. 5.5). Section 6 defines the search algorithm,
and concludes with the three main results.

2. Messages, Strands, Protocols

In our examples in Section 1, the strands send and receive messages that are built up using
tupling, written t0ˆt1, and encryption, written {∣t∣}K . The basic values that contribute
to messages are keys such as k or sk(A), names A,B, etc., and payloads such as s. We
provide more information about the messages in Sections 2.1–2.3. Sections 2.4 and 2.5
define strands and protocols respectively.

2.1. Algebras of Messages

We regard the messages as forming an algebra M. M is closed under the two operations
of tupling and encryption. We allow tupling to take a tag, selected from some set TAG,
and any number k ≥ 0 messages, to produce a message. The tags serve as a kind of
constant to conveniently distinguish among different forms of message, and they may
be implemented using distinctive bit-patterns inside messages. Encryption applies to two
messages, one representing the plaintext and the other representing the key.

Definition 2.1 Let X be an infinite set of objects called indeterminates, and let B be an
algebra of objects called basic values, disjoint from the indeterminates. Let TAG be a
disjoint set of objects called tags.

An algebra MX[B] of messages is freely generated from X,B by two operations:

Tagged Tupling If tag ∈ TAG and t1, . . . , tk ∈ MX[B], for k ≥ 0, then the tagged
k-tuple tag t1ˆ . . . ˆtk is in MX[B].

10

Encryption If t1, t2 ∈ MX[B], then their encryption {∣t1∣}t2 ∈ MX[B].

We stipulate that there is a distinguished tag null ∈ TAG, and we write null t1ˆ . . . ˆtk
in the form t1ˆ . . . ˆtk. That is, the tag null is invisible; the examples in Section 1 and
most of those later in this chapter use null .

We refer to MX[B] as an algebra, because we are interested in its homomorphisms.
We focus on its homomorphisms MX[B]→ MX[B] to itself (“endomorphisms”). We will
not fully specify B, but will give a sample algebra in Section 2.2, and in Section 2.3 we
will identify the crucial properties we will depend on for the later development. Each B
will be equipped with its own homomorphisms B→ B.

We often omit X or both X and B, and write M or M[B].

Definition 2.2 A homomorphism M → M is a pair � = (�, �), where � : B → B is a
homomorphism on B and � is a function � : X → M. It is defined for all t ∈ M by the
conditions:

�(a) = �(a), if a ∈ B �({∣t0∣}t1) = {∣�(t0)∣}�(t1)
�(x) = �(x), if x ∈ X �(tag t1ˆ . . . ˆtn) = tag �(t1)ˆ . . . ˆ�(tn)

Indeterminates x are untyped “blank slots,” replaceable by any message. Tags remain
constant under homomorphisms. Messages are abstract syntax trees:

Definition 2.3 1. Let ℓ and r be the partial functions where:

t = {∣t1∣}t2 implies ℓ(t) = t1 and r(t) = t2;
t = tag t1ˆt2ˆ . . . ˆtj implies ℓ(t) = t1 and r(t) = t2ˆ . . . ˆtj;

t ∈ B implies ℓ(t) and r(t) are undefined.
2. A path p is a sequence in {ℓ, r}∗. We write cons(f, p) for the sequence whose first

member is f and whose successive elements are those of p. We write p1 ⌢ p2 for
the result of appending p2 to the end of p1.
We regard p as a partial function, where ⟨⟩ = Id and cons(f, p) = p ∘ f . When
the rhs is defined, we have:

(a) ⟨⟩(t) = t;
(b) cons(ℓ, p)(t) = p(ℓ(t)); and
(c) cons(r, p)(t) = p(r(t)).

3. p traverses a key edge in t if p = p1
⌢ ⟨r⟩ ⌢ p2 and p1(t) is an encryption.

4. t0 is an ingredient of t, written t0 ⊑ t, if t0 = p(t) for some p that does not
traverse a key edge in t.

5. t0 appears in t, written t0 ≪ t, if t0 = p(t) for some p.
6. p traverses a member of S in t if p = p1

⌢ p2, where p1(t) ∈ S and p2 ∕= ⟨⟩.

As an example, consider the message t = {∣{∣k∣}sk(A)∣}pk(B); for

p0 = ⟨ℓ, ℓ⟩, we have k = p0(t). Since p0 does not traverse a key edge, k ⊑
{∣{∣k∣}sk(A)∣}pk(B).

p1 = ⟨r⟩, we have pk(B) = p1(t). However, since p1 traverses a key edge, we have
established only the weaker pk(B)≪ {∣{∣k∣}sk(A)∣}pk(B).

p2 = ⟨ℓ, r⟩, we have sk(A) = p2(t). Since p1 again traverses a key edge, we have only
sk(A)≪ {∣{∣k∣}sk(A)∣}pk(B).

11

In {∣s∣}k, only the path ⟨r⟩ leads to k. Hence, k ≪ {∣s∣}k but k ∕⊑ {∣s∣}k. Since ⟨ℓ⟩ leads
to s, s ⊑ {∣s∣}k.

2.2. A Sample Algebra of Basic Values

The algebra of basic values may take many forms, and its details affect the remainder of
our development only in a limited way. In this section, we give a sample B, for the sake
of concreteness, which suffices for the example of Section 1. The example of Section 4
requires some additional machinery in B, but no new ideas. Lemma 2.7 characterizes the
essential requirements: if any B yields an M[B] satisfying Lemma 2.7, then the remainder
of the chapter will hold for that M[B].

Let ℕ be the natural numbers. We use the following constructors, i.e. injective func-
tions with disjoint range:

nm, txt, skey with domain ℕ. Their ranges are called names, texts, and symmetric keys,
respectively.

sk, pk with domain names, yielding values called signature keys and public keys respec-
tively.

invk with domain signature keys ∪ public keys, yielding values called verification keys
and private decryption keys resp.

We define the inverse function a−1 so that

sk(nm(j))−1=invk(sk(nm(j))) invk(sk(nm(j)))−1=sk(nm(j))
pk(nm(j))−1=invk(pk(nm(j))) invk(pk(nm(j)))−1=pk(nm(j)),

while for all other values a−1 = a.
Each homomorphism � : B → B is determined by a function f mapping names to

names, texts to texts, and symmetric keys to symmetric keys. Moreover, each such f
extends to a unique homomorphism.

Indeterminates, as we mentioned, are akin to untyped variables, since homomor-
phisms can send them to any value in MX[B]. By contrast, basic values are akin to sorted
variables. Homomorphisms map them to values of the same sort.

PARAMS is the union of the indeterminates X and the set of all basic values in B
of the forms nm(i), txt(i), and skey(i). The parameters of a message t ∈ M—written
params(t)—are all of its subexpressions s ∈ PARAMS.

Lemma 2.4 1. Each message t has finitely many parameters params(t); and
2. Letting �, � : MX[B] → MX[B], if (i) params(t) ⊆ X ∪ B, and (ii) for all v ∈

params(t), �(v) = �(v), then �(t) = �(t).

2.3. Properties of Homomorphisms

Definition 2.5 Consider homomorphisms �, �, � between subalgebras of MX[B].

1. A parameter v ∈ PARAMS is a source parameter of � iff �(v) ∕= v.
2. � is finitely generated iff it has finitely many source parameters.
3. Messages v, w ∈ M have a common instance iff �(v) = �(w) for some �, in

which case � unifies v, w.

12

4. A homomorphism � is an isomorphism, or a renaming, iff there exists a � such
that � ∘ � and � ∘ � are the identity Id.
By the symmetry of the definition, in this case � is a renaming also.

5. �, � differ by a renaming iff for some renaming �, � ∘ � = �.
6. If there exists a � such that = � ∘�, then we say that is at least as specific as
�, and write � ≤s .

In clause 4, �may be defined only on a subalgebra such as the range of �, and likewise � in
clause 5 may be defined only on the range of �. A preorder means a reflexive, transitive
relation.

Lemma 2.6 1. If � ∘ � = Id, then � is a renaming.
2. Differing by a renaming is an equivalence relation.

Proof: 1. Suppose � is defined on MXi [Bi]. First, � is injective: if �(t) = �(t′), then
since t = �(�(t)) = �(�(t′)) = t′, t = t′. Moreover, letting Xj = �(Xi) and Bj

be generated from �(PARAMS(Bi)), we have � surjective onto MXj [Bj]. Thus, � is an
isomorphism � : MXi

[Bi]→ MXj
[Bj], and has an inverse � : MXj

[Bj]→ MXi
[Bi].

2. Differing by a renaming is reflexive because Id is a renaming, and it is transitive
because the composition of two renamings is a renaming.

To see that it is symmetric, suppose that � ∘ � = �. Since � is a renaming, there
is a � such that � ∘ � = � ∘ � = Id. Applying � to each side of the assumed equation,
� ∘ (� ∘�) = � ∘ �. However, � ∘ (� ∘�) = (� ∘ �) ∘� = Id ∘� = �. So � is a renaming
such that � = � ∘ �. ⊓⊔

We sometimes call �, � isomorphic when they differ by a renaming.

Lemma 2.7 1. ≤s is a preorder on homomorphisms.
2. � ≤s ≤s � implies that � and differ by a renaming. Hence, ≤s is a partial

order on the equivalence classes.
3. When = � ∘ � = �′ ∘ �, then �(a) = �′(a) for all a ∈ rng(�). Thus, the

choice of � in Def. 2.5, Clause 6 is unique, on rng(�).
4. For any finitely generated , the set {� : � ≤s } contains only finitely many

non-isomorphic members.

Proof: 1. Using Id and composition.
2. If � ≤s ≤s �, then there exist �, � such that � ∘ � = and � ∘ = �. Hence,

letting �′ be the restriction of � to ran(�), we may apply Lemma 2.6, clause 1.
3. If a = �(a0), then �(a) = �(�(a0)) = (a0) = �′(�(a0)) = �′(a).
4. Define ascore(�, a), for a ∈ PARAMS, to be ∣{b ∈ PARAMS : �(b) = a}∣ − 1.

Define xscore(�, x), for x ∈ X, to be number of encryptions and concatenations in �(x)
plus the number of multiple occurrences of basic values and indeterminates in �(x).
Define xyscore(�, x, y) to be 0 if x = y, and otherwise the number of occurrences of
basic values and indeterminates shared between �(x) and �(y). The score of � is the
sum: ∑

a∈PARAMS

ascore(�, a) +
∑
x∈X

xscore(�, x) +
∑

x,y∈X

xyscore(�, x, y).

13

Then score is non-negative, and well defined when � is finitely generated. Moreover,
when � ≤s , and is finitely generated, score(�) ≤ score(). If score(�) = score(),
then �, differ by a renaming. Hence, . . . ≤s �i ≤s . . . ≤s �1 ≤s �0 can have only
finitely many non-isomorphic members. Indeed, when score() = k + 1, there are only
finitely many non-isomorphic � ≤s such that score(�) = k. ⊓⊔

A homomorphism unifies messages v, w if (v) = (w), and is a most general
unifier for v, w if in addition, whenever ′ unifies v, w, then ≤s

′.

Lemma 2.8 1. Assume v, w ∈ M have a common instance. There exists a finitely
generated which is a most general unifier of v and w.

2. Let v = �(u) and w = �(u). Then �, � have a most specific common general-
ization for u. That is, there is a finitely generated such that:

(a) For some �1, v = (�1 ∘)(u),
(b) For some �1, w = (�1 ∘)(u), and
(c) if ′ satisfies Clauses 2a–2b, then ′ ≤s .

Lemmas 2.4, 2.6–2.8 summarize our central assumptions on the algebra. We believe
that for any algebra of basic values B, where every basic value can be assigned a finite
set of parameters, such that the resulting MX[B] satisfies these lemmas, will satisfy the
remaining results in this chapter.

Adjusted versions of our method appear still usable when the m.g.u. property fails,
but instead a finite set of unifiers cover the common instances of any two messages, and
where a finite set of homomorphisms replace the most specific common generalization
of Clause 2. Sometimes the adversary has useful additional operations on basic values,
and some additional authentication test patterns must be defined on the basic values. By
contrast, in algebras with exclusive-or (e.g.), which may be applied to tuples or encryp-
tions rather than just basic values, and is subject to equational laws, other entirely new
ideas are required.

2.4. Strands and Origination

A single local session of a protocol at a single principal is a strand, containing a linearly
ordered sequence of transmissions and receptions that we call nodes. A transmission of
message t is a directed term +t, and a reception of message t is a directed term −t.

The itℎ node on strand s is s ↓ i, using 1-based indexing. If n,m are successive
nodes on the same strand, n⇒ m holds, meaning that n = s ↓ i andm = s ↓ i+ 1. The
transitive closure of ⇒ is ⇒+, and its reflexive transitive closure is ⇒∗. The message
sent or received on the node n is msg(n).

Origination. A message t0 originates at a node n1 if (1) n1 is a transmission node; (2)
t0 ⊑ msg(n1); and (3) whenever n0 ⇒+ n1, t0 ∕⊑ msg(n0). Thus, t0 originates when
it was transmitted without having been either received or transmitted (as an ingredient)
previously on the same strand. Cf. Def. 2.3 for ⊑.

Values assumed to originate only on one node in an execution—uniquely originating
values—formalize the idea of freshly chosen, unguessable values. Values assumed to
originate nowhere may be used to encrypt or decrypt, but are never sent as message
ingredients. They are called non-originating values. For a non-originating valueK,K ∕⊑

14

t for any transmitted message t. However, K ≪ {∣t0∣}K ⊑ t possibly, which is why we
distinguish ⊑ from≪ in Def. 2.3.

As an example, when applying Principle 1.3 to Fig. 2, we stated that k is not retrans-
mitted by any strand that has received it. This was meant in the sense of ⊑. We never
have k ⊑ msg(n) if for some reception node m, m ⇒+ n and k ⊑ msg(m), and n is
a transmission node. However, we may have k ≪ msg(n), which is harmless because it
does not contribute to disclosure of k.

We say that n is the origin of t0 in a set of nodes S if (1) n ∈ S, (2) t0 originates at
n, and (3) t0 originates at no other node in S. It is uniquely originating in S if for some
n, n is the origin of t0 in S.

We say that t0 is non-originating in S if there is no n ∈ S such that t0 ⊑ msg(n).
Evidently, if there is any n ∈ S such that t0 ⊑ msg(n), then any full execution extending
S will have to provide an origin for t0.

Principals and Other Parameters. We extend the notion of parameters from mes-
sages to nodes and strands cumulatively. Suppose that s is a strand of length ℓ, and i ≤ ℓ;
then params(s) = params(s ↓ ℓ) where

params(s ↓ i) =
∪

0<j≤i

params(msg(s ↓ j)).

The parameters to a node are the potentially varying arguments which can affect the
messages sent or received up to and including that node. By Lemma 2.4, a strand s has
only finitely many parameters, and any two homomorphisms agreeing on params(s) have
the same action on messages sent and received along s.

In the model we use in this paper, there is no relevant entity acting as a principal.
There are only names, and these names serve as parameters to some strands. Names are
also associated with keys via the functions pk(⋅), sk(⋅). Thus, although informally we
view several strands as being ongoing activities of a single principal at a particular time,
in the model, there are only strands that share a particular name parameter and use the
keys associated with that parameter. When a protocol may manipulate some long-term
state belonging to the principals executing it, then we work in a richer model [11].

2.5. Protocols

A protocol Π is a finite set of strands, called the roles of Π, together with some constraints
on unique and non-origination. We assume that every protocol Π contains the listener
role Lsn[x], which consists of a single reception node x→ ∙. Instances of this listener role
have already appeared in Figs. 2, 4, 6–7.

The constraints on origination for roles, which we will illustrate in an example in
Section 4, may be used to ensure that a particular role always contributes a uniquely
originating value to an execution, as for instance a session key server may be trusted
always to choose a fresh and unguessable session key. They may also be used to ensure
that a particular role always involves a non-originating key. For instance, a protocol may
ensure that the certificate authority role always uses a non-originating signing key. In
modeling SEP, role origination constraints were not needed; we assumed only that par-
ticular values in a skeleton were non-originating or uniquely originating. There was no

15

need to assume that every time we added a strand, some parameters to it would satisfy
origination constraints.

The Indeterminate Acquisition Principle. Since indeterminates represent syntacti-
cally unconstrained messages received from protocol peers, or passed down as parame-
ters a higher-level protocol, we require an indeterminate to be received as an ingredient
before appearing in any other way:

If n1 is a node on � ∈ Π, with an indeterminate x≪ msg(n1),
then ∃n0, n0 ⇒∗ n1, where n0 is a reception node and x ⊑ msg(n0).

This Indeterminate Acquisition Principle is related to the requirement in constraint-
solving approaches—originating with [13]—that variables in constraint sequences al-
ways appear first on the right-hand side of a constraint. The right hand sides represent
message receptions, where the adversary must generate some instance of the constraint,
and may select a value for the variable that makes this possible.

As an example protocol, the two strands shown in Fig. 1 are the roles of SEP. Our
analysis of SEP did not rely on any origination constraints. Finally, if s were an inde-
terminate, then the responder role violates the Indeterminate Acquisition Principle. We
instead interpret s as a basic value.

3. Skeletons and Homomorphisms

A skeleton A consists of (possibly partially executed) regular strands, i.e. a finite set of
nodes, nodes(A), with two additional kinds of information:

1. A partial ordering ⪯A on nodes(A);
2. Finite sets uniqueA, nonA of basic values assumed uniquely originating and re-

spectively non-originating in A.

More formally:

Definition 3.1 A four-tuple A = (nodes,⪯, non, unique) is a preskeleton if:

1. nodes is a finite set of regular nodes; moreover, for all n1 ∈ nodes, if n0 ⇒+ n1
then n0 ∈ nodes;

2. ⪯ is a partial ordering on nodes such that n0 ⇒+ n1 implies n0 ⪯ n1;
3. non and unique are finite sets of basic values, and

(a) ∀K ∈ non . ∀n ∈ nodes . K ∕⊑ msg(n);
(b) ∀K ∈ non . ∃n ∈ nodes . either K ≪ msg(n) or K−1 ≪ msg(n); and
(c) ∀a ∈ unique . ∃n ∈ nodes s.t. a ⊑ msg(n).

A preskeleton A is a skeleton if in addition:

4. for all a ∈ unique, if a originates at n0 ∈ nodes, then

(a) a originates at no other node n1 ∈ nodes; and
(b) if a ⊑ msg(n1) where n1 ∈ nodes, then n0 ⪯ n1.

The parameters of A form the union: params(A) =
∪

n∈nodes(A) params(n).

16

All of the “skeletons” in Figs. 2–10 are skeletons, except when we cheated on Clause 4b.
Namely: In Fig. 2, the left hand node should precede the right hand node. In Fig. 6, the
second skeleton ℂ21 should have the node transmitting {∣s∣}k precede the listener node
for s. In Fig. 7, the node transmitting t0 should also precede the listener for k.

If A violates Clause 3a, no enrichment of A can satisfy it. By contrast, some
preskeletons may violate Clause 4a or Clause 4b but enrich to a skeleton. Two nodes,
at both of which some a ∈ unique originates, may map to a single node originating it,
thereby satisfying Clause 4a. A strengthening of the ordering ⪯ may satisfy Clause 4b,
while remaining acyclic. This works for the non-skeletons in Figs. 2, 6, and 7. We for-
malize these operations in Section 3.4.

3.1. Realized Skeletons

A skeleton is realized if its strands can really happen, without any other regular behav-
ior. The regular behavior present in a realized skeleton is combined with some adversary
behavior to explain how each message received by a regular node could have been gen-
erated by that time. The adversary behavior must not violate the skeleton’s assumptions
about non-origination and unique origination.

Penetrator Webs. We represent the actions of the adversary by means of strands of
certain special forms. These originate basic values or indeterminates; compose and trans-
mit a tuple, having received its components; separate and transmit the components of a
tuple, having received the tuple; encrypt and transmit a ciphertext, having received an
encryption key and a plaintext; and decrypt and transmit a plaintext, having received the
matching decryption key and a ciphertext:

Definition 3.2 An adversary strand has any of the following forms:

Ma: ⟨+a⟩ where a is a basic value Mg: ⟨+g⟩ where g is an indeterminate
C: ⟨−g ⇒ ⋅ ⋅ ⋅ ⇒ −ℎ ⇒ +tag gˆ . . . ˆℎ⟩

S: ⟨−tag gˆ . . . ˆℎ ⇒ +g ⇒ ⋅ ⋅ ⋅ ⇒ +ℎ⟩
E: ⟨−K ⇒ −ℎ ⇒ +{∣ℎ∣}K⟩ D: ⟨−K−1 ⇒ −{∣ℎ∣}K ⇒ +ℎ⟩

Because an adversary uses a key only by means of E and D strands, it can use a key only
if it receives that key value. Since every value that is received must have been originated,
it follows that an adversary can never use a non-originating value. This justifies our use
of “non-originating” to model “uncompromised.”

The adversary can link together a number of strands, forming an “adversary web”
that accomplishes some compound task.

Definition 3.3 (Adversary web, derivable) Let G = ⟨NG, (→G ∪ ⇒G)⟩ be a finite
acyclic graph, where (i) n0 ⇒ n1 only if n0, n1 are successive nodes on an adversary
strand; and (ii) n → m only if n is a transmission node, m is a reception node, and
msg(n) = msg(m). G is an adversary web with support Sspt and result R if Sspt and R
are sets of messages and moreover:

1. If n2 ∈ NG is a reception node, then either msg(n2) ∈ Sspt or there is a unique
n1 such that n1 →G n2.

2. If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.
3. For each t ∈ R, either t ∈ Sspt or for some positive n ∈ NG, msg(n) = t.

17

If V is a set of basic values, then term t1 is derivable from Sspt avoiding V if there is a
web G with support SG ⊆ Sspt and t1 ∈ RG, where no basic value in V originates on a
penetrator strand in G.

This suggests that A is a possible execution if, for each reception node n, there exists an
adversary web deriving msg(n) using messages transmitted earlier in A, and avoiding
basic values constrained by nonA and uniqueA. However, if a ∈ uniqueA, but it does not
originate on any node in A, then it is in fact unconstrained: It can originate just once, but
on an adversaryMa node, after which the adversary can use it as much as necessary. The
constrained values in uniqueA are those that originate on a regular node of A.

Definition 3.4 (Realized) The avoidance set avoid(A) for A is the set

nonA ∪ (uniqueA ∩ {a : a originates at some n ∈ nodesA}).

The support support(n,A) of n ∈ nodesA in A is {msg(m) : m ≺A n and m is a trans-
mission node}.

A reception node n ∈ nodesA is realized in A if msg(n) is derivable from
support(n,A) avoiding avoid(A). A is realized if it is a skeleton and every reception
node m ∈ nodesA is realized in A.

We have been saying informally that A represents a possible execution, and we now
stipulate that this means that A is realized. The adversary webs explain how the adversary
can generate values that will satisfy each reception node in A.

Realized skeletons from Section 1 include B21 and D1. In the case of B21, the adver-
sary web needed to “explain” its two reception nodes are each the empty web, since each
reception node has a message that has already been transmitted on an earlier node. How-
ever, D1 requires an adversary web that decrypts {∣{∣k∣}sk(A)∣}pk(C) using the decryption
key pk(C)−1, and then re-encrypts with the public key pk(B), neither of which is to be
avoided in D11. Skeleton E1 is again realized, using the empty adversary web. By an old
result [20, Lemma 2.9]:

Lemma 3.5 If every node m ∈ nodesA is realized in the preskeleton A, then Defn. 3.1,
Clause 4b is satisfied in A.

It is easy to check whether there is an adversary web G that realizes m from P =

{n : n ≺A m and n is a transmission node}. When all of the keys are basic values, we
can bring the web to a normal form in the Prawitz-like sense [16] that constructive adver-
sary strands never precede destructive ones [14,3,12]. When the keys may include com-
pound messages, there is a weaker normal form: Every path within the web either tra-
verses a key being used for encryption or decryption on an adversary strand, or else tra-
verses destructive strands before any constructive strands. In such a web, every message
is a member of the finite set:

{t : t≪ msg(m) ∨ ∃n ∈ P . t≪ msg(n)}.

18

3.2. Homomorphisms

Our intuitive notion of enrichment will be formalized by homomorphisms among skele-
tons or preskeletons. A preskeleton homomorphism has two components. One is a ho-
momorphism � on the underlying algebra M. It says how to transform the messages
sent and received on nodes of the source preskeleton to messages sent and received
on the target preskeleton. The other component is a map � from nodes of the source
preskeleton to nodes of the target preskeleton. The most important condition is that
msg(�(n)) = �(msg(n)); i.e. the message sent or received on the target node should be
� applied to the message sent or received on the source node. The target may contain
additional nodes not of the form �(n).

Definition 3.6 Suppose A,B are preskeletons, � is a homomorphism on M, and
� : nodesA → nodesB. H = [�, �] is a homomorphism if

1. � preserves strand structure:

(a) If s ↓ i ∈ A then there is an s′ s.t. for all j ≤ i, �(s ↓ j) = s′ ↓ j;
(b) n and �(n) agree in direction, either transmission + or reception −;

2. For all n ∈ A, msg(�(n)) = �(msg(n));
3. Skeleton information preserved:

(a) n ⪯A m implies �(n) ⪯B �(m);
(b) �(nonA) ⊆ nonB;
(c) �(uniqueA) ⊆ uniqueB;

4. Origination preserved for uniquely originating values: If a ∈ uniqueA and a
originates at n ∈ nodesA, then �(a) originates at �(n).

We write H : A ⋅→ B when H is a homomorphism from A to B. When �, �′ agree on
params(A), then [�, �] = [�, �′]; i.e., [�, �] is the equivalence class of pairs under this
relation. The source of H is A, and the target of H is B.

We sometimes write �H and �H to refer to a � and � such that H = [�, �].
H is an inclusion map if �H is the identity function. In this case, �H is also the

identity, i.e. H = [�H , Id]. A is a subskeleton of B if there is an inclusion H : A ⋅→ B.

We regard the finitely generated homomorphism �0 which is the identity for all v ∕∈
params(A) as the canonical representative of [�, �]. Thus, henceforth, we will assume
that the message homomorphism � in [�, �] is finitely generated.

The condition on origination in Clause 4 avoids the degeneracy in which a point
of origination is destroyed for some basic value a ∈ uniqueA. We stipulate that such
degenerate maps are not homomorphisms.

Lemma 3.7 If A is a preskeleton, then the identity IdA : A ⋅→ A. If H : A ⋅→ B and
J : B ⋅→ ℂ, then J ∘H : A ⋅→ ℂ. Skeletons form a category under homomorphisms.

Section 1 incorporates many examples of homomorphisms, starting with an absence
of homomorphisms. The deadness of Fig. 2 asserts that there are no homomorphisms
from A0 whose target skeleton is realized. Figs. 3–4 illustrate a pair of homomorphisms
B ⋅→ B1 and B ⋅→ B2. In each of these homomorphisms, B is included into a larger

19

∙
{∣{∣k∣}sk(A)∣}pk(C)

// ∙
{∣{∣k∣}sk(D)∣}pk(C)

// ⋅→ ∙
{∣{∣k∣}sk(A)∣}pk(B)

//

Figure 11. A non-injective homomorphism A1 ⋅→ A2

skeleton: the message homomorphism � is the identity and the node map � is the identity
in each case. The homomorphism B2 ⋅→ B21 is a bit more interesting, since its message
homomorphism maps the names A,C to A and B,D to B. Its node map is a bijection.
By composition, we also have a homomorphism B ⋅→ B21.

The homomorphism ℂ ⋅→ ℂ21 is an embedding, with a second embedding ℂ21 ⋅→
ℂ211, and similar maps D ⋅→ D1 and E ⋅→ E1. We have not yet illustrated any case in
which � is non-injective. Fig. 11 is an artificial but simple example. A message homo-
morphism mapping A,D to the same value permits the two transmission nodes of A1 to
be identified in the target A2. In this case, A,D are mapped to A, and C to B, but in fact
the choice of target values is arbitrary. A renaming could change them to any other pair
of distinct values, producing an isomorphic result.

In Fig. 11, there are also two homomorphisms H1,H2 in the opposite, right-to-left
direction. One of them, say H1, renames B to C and maps the single node of A2 to the
left-hand node of A1. The other homomorphismH2 renamesB to C and also renamesA
toD; it maps the single node of A2 to the right-hand node of A1. These homomorphisms
are, however, not essentially different. A1 has a non-trivial automorphism J , i.e. an iso-
morphism to itself. This is the map that interchanges the two nodes, while mapping A to
D and D to A. In fact, H2 = J ∘H1, i.e. H1 and H2 differ by an isomorphism.

3.3. Characterizing Executions

An execution means a realized skeleton. We regard each skeleton A as describing a set
of executions. This is the set of realized homomorphic images of A.

A dead skeleton describes the empty set of executions. A realized skeleton describes
a set of executions that includes itself. A skeleton that is neither dead nor realized de-
scribes a non-empty set that does not include itself.

Definition 3.8 A is a dead skeleton if for every homomorphism H : A ⋅→ B, B is not
realized.

Lemma 3.9 If A is dead and H : A ⋅→ B, then B is dead.

Proof: If J : B ⋅→ ℂ, then J ∘H : A ⋅→ ℂ, so ℂ is not realized. ⊓⊔

This lemma formalizes Principle 1.2.
Any non-dead skeleton A describes an infinite set of executions. Since A is non-

dead, it has at least one homomorphism H : A ⋅→ B with B realized. Moreover, we can
always take the disjoint union 2B = B ∪ B′ of the realized skeleton B with a renaming
B′ of itself. If the renaming is chosen to use new values that do not to overlap with the
original ones, the disjoint union 2B = B ∪ B′ will again be a realized skeleton. Clearly,

20

we can again rename 2B to (2B)′, taking a union to obtain 4B = 2B ∪ (2B)′. We can
repeat this process ad infinitum.

Since the set of realized skeletons contains so many members, we would like to focus
on compact but informative ways to characterize this set. Given a skeleton A, consider a
set of homomorphisms C such that:

1. If H ∈ C, then H : A ⋅→ B where B is realized; and
2. If J : A ⋅→ ℂ where ℂ is realized, then J = K ∘ H for some H ∈ C and some

homomorphism K.

CPSA’s goal is, given a “starting point” A, to compute a such a set C for A.
However, a key choice was to decide which set of this kind to select. For instance,

one would prefer an algorithm that produces finite sets C rather than infinite ones when
possible. However, there is another consideration. Fig. 11 illustrates that we may have a
situation where A1 ⋅→ A2 ⋅→ A1; so should we then prefer the larger skeleton A1 or the
smaller skeleton A2?

We have opted for the smaller skeleton A2. Why? Non-injective homomorphisms
that map different nodes to the same result, such as the one in Fig. 11, are always in-
formative. They tell us that two distinct strands in the source could have been the same,
since they are the same in the target. However, injective homomorphisms may not be
interesting. For instance, recall the realized skeletons A, 2A, 4A, . . . we mentioned im-
mediately after Lemma 3.9. The homomorphisms from each member in this sequence
to later members do not tell us anything new. We opt to pack more information into the
choice of C, and less into the “onward” homomorphisms K that extend members of C to
yield all other realized results. Hence, we use injective homomorphisms to relate shapes
to their instances:

Definition 3.10 1. H = [�, �] : A⋅→B is node-injective iff � is an injective function
� : nodes(A)→ nodes(B).

2. H ≤n J iff for some node-injective K, J = K ∘H .
3. A set C of homomorphisms is a (node-injective) characterization for A iff

(a) If H ∈ C, then H : A ⋅→ B where B is realized; and
(b) If J : A ⋅→ ℂ where ℂ is realized, then H ≤n J for some H ∈ C.

4. C ≤n C′ iff for every H ∈ C, there exists a J ∈ C′ such that H ≤n J .
5. min(C) = {H ∈ C : ∀J ∈ C . J ≤n H implies H ≤n J}.

CPSA’s goal is, given an A, to compute a minimum characterization for A. We will write
C ∼ C′ iff every H ∈ C is isomorphic to some H ′ ∈ C′ and vice versa. Then:

Lemma 3.11 1. If H : A ⋅→ A is node-injective, then H is an isomorphism from A
to itself.

2. If H ≤n J ≤n H , then there is an isomorphism I such that I ∘H = J . Hence,
≤n is a partial order (to within isomorphism).

3. The relation ≤n is well founded (to within isomorphism).
4. A set SH of homomorphisms is finite if (i) K ∈ SH implies K ≤n H , and (ii) no

two K1,K2 ∈ SH differ by an isomorphism.
5. {H : H : A ⋅→ B ∧ B is realized} is a characterization for A.
6. min(C) is a non-empty characterization for A if C is.

21

7. If C, C′ are characterizations for A, min(C) ∼ min(C′).

Proof: 1. If H = [�, �] : A ⋅→ A is injective, then by the finiteness of nodes(A), � is a
bijection. Since nodes(A)× nodes(A) is finite, H does not introduce new pairs into the
ordering. That is, �(n) ⪯ �(m) implies n ⪯ m.

So we must show next that the message algebra homomorphism � is invertible.
However, by Lagrange’s theorem, there is a k such that the kth iterate �k of � is the
identity. If k = 1, then � is the identity. If k = j + 1, then the jth iterate �j of � inverts
�.

2. If H ≤n J ≤n H , then we have J = G1 ∘H and H = G2 ∘ J , where G1, G2 are
node-injective. Hence G2 ∘ G1 is a node-injective homomorphism from the target of H
to itself. By Clause 1, G2 ∘G1 has an inverse F , i.e. F ∘ (G2 ∘G1) is the identity. Thus,
by associativity of composition, F ∘G2 is the desired inverse to G1.

3. Let . . .Kj+1≤nKj≤n . . .K0 be an infinite descending chain of homomorphisms
in the ≤n ordering, as in the following diagram, where each Hi is node-injective:

A

⋅⋅⋅

:
Kj+1

}}zz
zz
zz
zz _

Kj

�� ⋅⋅⋅

�

K1 ((PP
PPP

PPP
PPP

PPP
PPP�

K0

**UUU
UUUU

UUUU
UUUU

UUUU
UUUU

UUU

. . . �

Hj+1

// Bj+1
�

Hj

// Bj
� // . . . �

H1

// B1
�

H0

// B0

We want to ensure that all but finitely many of the Hi are isomorphisms. By
Lemma 2.7, Clause 4, all but finitely many of the �Ki differ from each other by renam-
ings. Hence all but finitely many of the �Hi

are isomorphisms. For convenience, assume
for some N0, that all �Hi with i > N0 are the identity. Thus, all of the Hi for i > N0

are inclusion maps. But a skeleton has only finitely many subskeletons.
4. Suppose that SH satisfies (i). Let K1,K2 ≤n H , where H : A ⋅→ ℂ and Ki =

[�i, �i] : A ⋅→ Bi.
Write R(K1,K2) to mean: (a) ran(�1) ⊆ ran(�2); (b) �1(⪯1) ⊆ �2(⪯2); (c)

�1(nonB1) ⊆ �2(nonB2); and (d) �1(uniqueB1
) ⊆ �2(uniqueB2

).
R is a preorder, and when R(K1,K2), there is an injective map from nodes(B1)

to nodes(B2) defined by (n) = �−1
2 (�1(n)). If also R(K2,K1), is bijective.

Let S(K1) = {K2 : R(K1,K2) ∧ R(K2,K1)}. Since there are only finitely many
R-equivalence classes S(K), it suffices to show that if any of them is infinite, then it
contains isomorphic members.

Let’s say that a skeleton D is clean if each strand in D results from a role by a
renaming, and all of these renamings have disjoint ranges.

For each member B of S(K1), there is a clean skeleton D and a message homomor-
phism � such that such that B = �(D). Moreover, by a cardinality argument, all of S(K1)
consists of images of a finite number of clean D. Thus, if S(K1) is infinite, there is a
single D with infinitely many B ∈ S(K1) such that there exists a � such that B = �(D).
However, since for some J : D ⋅→ ℂ, each such � ≤s �J , by Lemma 2.7, Clause 4, so
that this set of message homomorphisms has isomorphic members � ∘ �1 = �2. Hence
[, �] is an isomorphism between skeletons Bi.

(Clause 3 also follows directly from Clause 4.)
5. Clause 3a of Def. 3.10 is immediate. Clause 3b holds because J ≤n J .

22

6. Non-emptiness of min(C) follows from well-foundedness. Observe that if H ∈
C ∖ min(C), then there is some J ∈ min(C) such that J ≤n H . Since C is a character-
ization, for any K : A ⋅→ ℂ with ℂ realized, there is a H ∈ C such that H ≤n K. If
H ∕∈ min(C), then there is some J ∈ min(C) with J ≤n H ≤n K, so J ≤n K. Thus,
min(C) is a characterization.

7. If either C or C′ is empty, then so is the other (i.e. A is dead); in this case the
result is immediate. So assume both non-empty. Since min(C) is a characterization, for
every J ∈ min(C′) there is a H ∈ min(C) such that H ≤n J . Since min(C′) is a
characterization, there is also a K ∈ min(C′) such that K ≤n H ≤n J . By the definition
of min, J ≤n K. Hence H,J differ by an isomorphism. Symmetry of min(C),min(C′)
completes the proof.

⊓⊔

This establishes that the CPSA goal, to compute the minimum characterization, is well-
defined to within isomorphism.

Definition 3.12 The shapes for a skeleton A, written shapes(A), are the members of the
nodewise minimum characterization for A.

The shapes(A) form a well-defined set of homomorphisms (to within isomorphism),
since we may apply Lemma 3.11, Clauses 6–7 to the characterization C containing all
homomorphisms from A to realized skeletons. A is dead iff shapes(A) = ∅. We may
now justify Principle 1.4 directly from the definitions.

Lemma 3.13 SupposeH : A⋅→B, and J : B⋅→D where D is realized. Then J∘H = L∘K
for some K : A ⋅→ S with K ∈ shapes(A), and some node-injective L : S ⋅→ D.

3.4. The Hull of a Preskeleton

If A is a preskeleton but not a skeleton, then for some a ∈ uniqueA, either

1. a originates at two or more nodes (Def. 3.1, Cl. 4a); or else
2. a originates at n0 and a ⊑ msg(n1), although n0 ∕⪯A n1 (Def. 3.1, Cl. 4b).

In this subsection, we say how to “fix” those situations. When they can be fixed at all,
there is a single, canonical, most general way to do so.

A map f is universal in some set of maps F if f ∈ F and, for every f ′ ∈ F , there
is exactly one g such that f ′ is of the form f ′ = g ∘ f .

Lemma 3.14 Suppose A,B are preskeletons, with H : A ⋅→ B.

1. If ≤s �H , then there is a B0 and a G : A ⋅→B0 such that G is universal among
all homomorphisms K with source A where ≤s �K .

2. Suppose that ⪯A⊆⪯1 and �H(⪯1) ⊆⪯B. Then there is a B0 and a G : A ⋅→ B0

such that G is universal among all homomorphisms K : A ⋅→ B1 where �K(⪯1

) ⊆⪯B1
.

3. If �H(n0) = �H(n1) for n0, n1 ∈ nodes(A), then there is a B0 and aG : A⋅→B0

such thatG is universal among all homomorphisms from A which identify n0 and
n1.

23

Proof: 1. Define nodes(B0) by applying to each strand s that contributes to A, and let
 be the bijection that maps each node s ↓ i ∈ nodes(A) to (s) ↓ i. Let ⪯B0= (⪯A),
nonB0 = (nonA), and uniqueB0

= (uniqueA).
Then B0 is a preskeleton unless Def. 3.1, Clause 3a fails. However, if a ⊑ msg(n) ∈

nodes(B0) but a ∈ (nonA), then this property is preserved under composition. Thus,
since ≤s �H , and B satisfies Clause 3a, so does B0.

Moreover, [,] is a homomorphism unless Def. 3.6, Clause 4 fails. However, if a
originates on s ↓ i, but (a) ⊑ msg((s ↓ j)) for j < i, then �(a)H ⊑ msg(�H(s ↓ j)),
contradicting the assumption that H is a homomorphism.

2. Define B0 to be the same as A, except that the ordering is ⪯1. This ordering is
acyclic because its image under �H is acyclic.

3. n0 = s0 ↓ i and n1 = s1 ↓ i, since if the two nodes lay at different indices,
no homomorphism could identify them. The messages msg(s0 ↓ 1), . . . ,msg(s0 ↓ i)
are simultaneously unifiable with msg(s1 ↓ 1), . . . ,msg(s1 ↓ i) resp., since �H equates
them. Let be their simultaneous m.g.u. Apply Clause 1 to this , obtaining G0 =
[0,] : A ⋅→ B0.

By Clause 2, we may extend the ordering ⪯B0 so that s0 ↓ j precedes (succeeds)
every node that s1 ↓ j precedes (succeeds), and vice versa.

We now construct B1 by selecting the strand (s0). Let 1 extend 0 by mapping
the nodes s1 ↓ j to s0 ↓ j, discarding the unnecessary nodes. G1 = [1,] is the desired
homomorphism. ⊓⊔

Lemma 3.14 is used in the next proof, and also repeatedly in Section 6.

Lemma 3.15 (Hull) If H : A ⋅→B and B is a skeleton, then there is a GA : A ⋅→B0, such
that GA is universal among homomorphisms from A to skeletons.

Proof: If A is a preskeleton but not a skeleton, then there is a counterexample either to
Def. 3.1, Clause 4a or else to Def. 3.1, Clause 4b. In the first case, there are two nodes
n0, n1 at both of which the same a ∈ uniqueA originates. By Def. 3.6, Clause 4, �H(a)
originates at �H(n0) and at �H(n1). Since B is a skeleton, �H(n0) = �H(n1). Thus,
we may apply Lemma 3.14, Clause 3.

In the second case, for some a ∈ uniqueA, a ⊑ msg(n1) but with the origin n0 of a,
n0 ∕⪯A n1. In this case, we apply Lemma 3.14, Clause 2.

If the result of a step is not a skeleton, we iterate; however, we must terminate: At
each step of the first kind, we reduce the number of nodes. At each step of the second
kind, we reduce the number of incomparable nodes. ⊓⊔

Definition 3.16 The hull of preskeleton A, written hull(A), is the universal mapGA given
in Lemma. 3.15, when it exists.

We sometimes use hull to refer to the skeleton B0, target of hull(A) : A ⋅→ B0.3

4. Attestation Identity Protocol

In Section 1, we examined SEP to extract a number of search principles, one of which,
Principle 1.3, concerns receiving an encrypted unit. Unfortunately, however, Principle 1.3

3The hull idea is due to Javier Thayer, as was the first proof of Lemma 3.15.

24

xˆekc
// TPM
��
∙
��

IˆKˆxˆekc
//

IˆKˆxˆekc
// PCA
��

∙
��

{∣aic∣}EK

oo ∙
{∣aic∣}EK

oo

∙
aicˆkeyrec

oo STORE

aicˆkeyrec
// ∙

ekc = {∣ekc MFˆEK∣}sk(MF) aic = {∣aic IˆKˆx∣}sk(PCA)
keyrec = {∣aikrec K,K−1∣}SRK

Figure 12. Modified Anonymous Identity Protocol MAIP

is not strong enough as formulated. It does not cover all the transformations that proto-
cols apply to encrypted units, but only the most fundamental transformation, the act of
creating the encrypted unit in the first place.

In this section, we will examine a second example to motivate a strengthening of
our Principle 1.3, namely the Trusted Computing Group’s protocol for generating certifi-
cates for “Attestation Identity Keys” (AIKs) [1]. These signature keys are intended to be
resident within a Trusted Platform Module (TPM), and never to be available outside it.
The certificate for an AIK verification key K ensures that the private signature part K−1

is resident in some TPM, without allowing the recipient to determine which one. They
provide, thus, anonymous assurance that signatures were prepared within some TPM.

AIP Roles. The privacy certificate authority that prepares certificates on AIKs will
prepare a certificate for any key K presented in a well-formatted message. So how does
it ensure that the private part K−1 is TPM-resident? It encrypts the certificate aic using
a public encryption key EK. That key is accompanied by a certificate from the TPM’s
manufacturer saying that the matching decryption key EK−1 is itself a long-term TPM-
resident value. A TPM liberates the AIK certificate from this encryption only if it holds
the signature key K−1 matching the key K in the certificate. The (slightly modified)
protocol is shown in Fig. 12.

Non-Origination Assumptions. We associate two non-origination assumptions with
the PCA’s transmission node in this protocol.

1. When the PCA accepts an endorsement key certificate {∣ekc MFˆEK∣}sk(MF), it
must check that the signing key is known to be the signature key of a recognized
manufacturer. We model this by adding sk(MF) to the keys assumed to be non-
originating.

2. The point of the ekc is to vouch that the private part EK−1 is TPM-resident, and
therefore used only in accordance with the rules. Hence, we also add EK−1 to the
keys assumed to be non-originating.

25

aicˆkeyrec
// ∙

A0

⋅→ IˆKˆxˆekc
// PCA

��
A1 ∙

{∣aic∣}EK

oo

aicˆkeyrec
// ∙

non(A0) = {sk(PCA)} non(A1) = {sk(PCA), sk(MF),EK−1}

Figure 13. PCA Analysis, step 1 (Point of view: Store)

If � is the PCA role, we can express this assumption in the form

role_non(� ↓ 2) = {sk(MF),EK−1}.

A node of a role may also have some associated values that are guaranteed to be uniquely
originating, which we express with role_unique(� ↓ i). For instance, the session key
transmitted by a key server should often be handled in this way.

AIP Transformations. In MAIP, there are two central transformations. The job of
constructing and emitting an aic is one “transformation,” which can be performed only
by the privacy certifying authority. However, it is equally essential to the working of the
protocol, that the PCA emits the aic only encrypted, and in such a way that the aic can
be decrypted and transmitted in usable form only by a genuine TPM.

Of these two transformations, the first is certainly an instance of Principle 1.3. The
value {∣aic IˆKˆx∣}sk(PCA) is emitted, without having been contained as an ingredient of
any previous node. Thus, if we assume that the signature key of PCA is uncompromised,
any execution containing an instance of the STORE role must also contain a matching
instance of the PCA role, as shown in Fig. 13.4

However, the TPM’s transformation to free the aic from its encryption is not an in-
stance of Principle 1.3. The digitally signed unit must be received before being retrans-
mitted. Thus, Principle 1.3, Clause 2 cannot apply. Moreover, Principle 1.1 does not ap-
ply. The AIK K may be a freshly chosen value, but it has already been transmitted out-
side all encryptions at the time that the PCA receives it. So Principle 1.1 implies nothing.

What we need here is an analog to Principle 1.1, but applying to encryptions rather
than to fresh values. It needs one additional case, to cover the possibility that the adver-
sary could independently generate the encryption. Thus, it would take the form:

Principle 4.1 (The Encryption Test) Suppose that e = {∣t∣}K , is an encryption, and
e is found in some message received in a skeleton A at a node n1. Moreover, sup-
pose that, in the message of n1, e is found outside all of a number of encrypted forms
{∣t1∣}K1 , . . . , {∣tj ∣}Kj . Then in any enrichment B of A such that B is a possible execution,
either:

4Observe that in A1 we have added sk(MF),EK−1 to the keys assumed non-originating, in accord with the
origination constraint we associated with the PCA role.

26

IˆKˆxˆekc
// PCA

��
∙

{∣aic∣}EK

oo

aicˆkeyrec
// ∙ A1

⋅→ // TPM

��

A2

∙

��

// ⪯ // PCA

��
∙
��

ર
{∣aic∣}EK

oo ∙
{∣aic∣}EK

oo

∙
aicˆkeyrec
oo

aicˆkeyrec
// ∙

Figure 14. PCA Analysis, step 2 (Point of view: Store)

1. One of the matching decryption keys Ki
−1 is disclosed before n1 occurs, so that

e could be extracted by the adversary; or else
2. The encryption key K is disclosed before n1 occurs, so that the adversary could

construct e = {∣t∣}K from t; or else
3. Some regular strand contains a node m1 in which e is transmitted outside the

forms {∣t1∣}K1
, . . . , {∣tj ∣}Kj

, but in all previous nodes m0 ⇒+ m1, e was found
(if at all) only within the plaintexts t1 . . . tj . Moreover, m1 occurs before n1.

We apply this principle to the encryption e = {∣aic IˆKˆx∣}sk(PCA), with the single en-
crypted form {∣aic∣}EK. If we assume that the signature key sk(PCA) is uncompromised,
as well as the TPM-resident value EK−1, then the first two disjuncts are inapplicable, and
we are left with the regular TPM strand that transforms the aic from the form {∣aic∣}EK to
aic.

Principle 1.3 is, however, a special case of Principle 4.1. If j = 0 in the list of en-
crypted forms {∣t1∣}K1

, . . . , {∣tj ∣}Kj
—so that this is the empty list—then the first disjunct

is unsatisfiable. Moreover, in the last disjunct, no earlier occurrences of e are permitted.
Hence, the old principle is nothing but the j = 0 case.

Indeed, now Principles 1.1 and 4.1 are in essentially the same form. The only dif-
ferences are that (1) the “critical ingredient” is a uniquely originating basic value c in
Principle 1.1 and an encryption e = {∣t∣}K in Principle 4.1, and (2) the possibility that K
becomes compromised is relevant only in Principle 4.1. This suggests that we combine
them, which we shall do after a few definitions, in the form of Def. 5.3 and Thm. 5.5.

5. The Authentication Tests

We regard Principles 1.1 and 4.1 as specifying how certain tests can be solved. In
each one, the critical value c or e is found only inside a number of encryptions S =
{{∣t1∣}K1

, . . . , {∣tj ∣}Kj
}, and is subsequently received at node n1 outside of these forms

S. The test is to explain how it is extracted from S. We call S the escape set, since the
critical value does escape from it; indeed, it has done so before being received at n1.

The solutions are of two kinds: Either a key is compromised, so the adversary can
create an occurrence of c outside S, or else a regular strand has a transmission node m1

27

which transmits c or e outside S, although earlier nodes on the same strand contained the
critical value only within S (if at all). There are only finitely many roles in Π, and the
instances of their nodes yield all the candidates for regular solution nodes m1. Later, in
Section 6, we will also regard message homomorphisms as yielding solutions of a third
kind, since they can make the test disappear. That is, the image of c no longer escapes
from the image of S. We formalize “being contained within S” as follows:

Definition 5.1 Let S be a set of encryptions. A message t0 is found only within S in t1,
written t0 ⊙S t1, iff for every path p such that p(t1) = t0, either (1) p traverses a key
edge or else (2) p traverses a member of S before its end.

Message t0 is found outside S in t1, written t0 †S t1, iff not (t0 ⊙S t1).

Equivalently, t0 †S t1 iff for some path p, (1) p(t1) = t0, (2) p traverses no key edge,
and (3) p traverses no e ∈ S before its end. Thus, t0 ⊑ t1 iff t0 †∅ t1.

For instance, let t0 = {∣{∣k∣}sk(A)∣}pk(B), and let S0 = {t0} and S1 = {{∣k∣}sk(A)}.
The sole path ⟨ℓ, ℓ⟩ to k in t0 traverses first t0 and then {∣k∣}sk(A), so

k ⊙S0 t0 and k ⊙S1 t0.

We used S0 in Section 1.1, taking A’s point of view in SEP. We used S1 in Section 1.2,
taking B’s point of view. Moreover, for every S, k ⊙S {∣s∣}k, because the only path to k
traverses a key edge. However, {∣k∣}sk(A) †∅ t0.

Looking at examples from MAIP next, and letting S2 = {{∣aic∣}EK}, we have

aic †∅ aic and aic †∅ {∣aic∣}EK but aic ⊙S2 {∣aic∣}EK.

5.1. Cuts and Tests

Definition 5.2 Let c be a basic value or an encryption, and S be a set of encryptions.
Cut(c, S,A), the cut for c, S in A, is defined to be:

Cut(c, S,A) = {n ∈ nodes(A) : ∃m. m ⪯A n ∧ c †S msg(m)}.

Thus, in Fig. 2, again letting {{∣{∣k∣}sk(A)∣}pk(B)} = S0,

Cut(k, S0,A0) = { ∙
k←},

i.e. the listener node at the right. In Fig. 3, the cut consists of the lower node:

Cut({∣s∣}k, ∅,B) = { ∙
{∣s∣}k← }.

In Fig. 4, for both skeletons B1 and B2, we were interested in the test Cut(k, S0,Bi).
In Figs. 6–7, it is Cut(s, S3,ℂi), with S3 = {{∣s∣}k}. The cuts driving the MAIP
analysis, shown in Figs. 13–14, are (again with S2 = {{∣aic∣}EK}) Cut(aic, ∅,A0) and
Cut(aic, S2,A0).

Definition 5.3 A node n1 ∈ Q = Cut(c, S,A), is solved in Q, iff

28

1. for some transmission node m1 ∈ Q, m1 ⪯A n1; or else
2. there is a listener node m1 = Lsn[K] with m1 ≺A n1, and either

(a) c = {∣t0∣}K , or else
(b) for some {∣t0∣}t1 ∈ S, K = t−1

1 is the matching decryption key.

We also say that n1, Q is solved in the cut Q if n1 ∕∈ Q. Q is solved iff for all n1 ∈ Q, n1
is solved inQ. n1, Q is a test if n1 is unsolved inQ. A solution for n1 Q is a transmission
or listener node m1 satisfying clause 1 or 2.

In skeleton A0 (Fig. 2) there is no way to add a solution to Cut(k, S0,A0), which showed
that A0 is dead. In any homomorphic image of A0, the image of Cut(k, S0,A0) remains
unsolved. In Fig. 4, the solution to Cut(k, S0,B1) is an instance of Clause 2a, while the
solution to Cut(k, S0,B2) is an instance of Clause 1. The solutions to the MAIP cuts
Cut(aic, ∅,A1) and Cut(aic, S2,A2) are both instances of Clause 1 (Figs. 13–14).

Solved cuts are derivable using adversary webs (Def. 3.3):

Lemma 5.4 ([6, Prop. 4]) Let n1 be a reception node in A, and suppose that for every
cut Q = Cut(c, S,A), n1 ∈ Q implies n1 is solved in Q. Then there exists an adversary
web G deriving msg(n1) from support(n1,A) avoiding avoid(A).

Proof: Let P = support(n1,A). The proof is by structural induction on the pair
P,msg(n1), i.e. induction on the well-founded relation that holds between P1, t1 and
P2, t2 when t1 ⊑ t2 and, for every t ∈ P1, there is a t′ ∈ P2 such that t ⊑ t′.

The induction hypothesis is that for every P1, t1 below P,msg(n1) in this ordering,
t1 is derivable from P1 using a web that avoids avoid(A).

Case msg(n1) = a: If the basic value a ∕∈ avoid(A), then the one-node web that origi-
nates a suffices. If a ∈ P , then the empty web suffices.

Since msg(n1) = a, by the definition of skeleton, a ∕∈ nonA. Thus, assume a ∈
uniqueA and a originates before n1 in A, and the subset P a = {t ∈ P : a ⊑ t} is
non-empty. If some concatenation t0ˆt1 ∈ P a, then apply the induction hypothesis to
(P a ∖ {t0ˆt′0})∪{t0}∪{t′0}. This asserts the existence of a penetrator web Ga deriving
a. Obtain the desired web by prepending a separation S-strand above any occurrences of
t0 and t′0 in Ga.

Otherwise, P a consists entirely of encryptions, and Cut(a, P a,A) is well-defined,
and by the assumption solved. By the definition of P a, no transmission node m1 ⪯ n1
can have a †P

a

msg(m1). Thus, there is a decryption keyK−1 such that Lsn[K−1] ⪯ n1
and some {∣t∣}K ∈ P a. Apply the induction hypothesis to (P a ∖{∣t∣}K)∪{t}. This yields
a webGa deriving a. Obtain the desired web by prepending a decryption D-strand above
any occurrences of t in Ga.

Case msg(n1) = t0ˆt1: Apply the induction hypothesis to P, t0 and P, t1, obtaining
a pair of webs G0, G1 deriving the two pieces. Obtain the desired web by appending a
separation C-strand at the bottom to derive t0ˆt1.

Case msg(n1) = {∣t0∣}K: If {∣t0∣}K ∈ P , then the empty web suffices. If P contains any
concatenations, we reduce them as before.

Thus, assume P consists only of encryptions. Letting P e = {t ∈ P : {∣t0∣}K ⊑
t}, Cut({∣t0∣}K , P,A) is well-defined, and since {∣t0∣}K ∕∈ P e, it has no solution by a

29

transmission node. Hence, either Lsn[K] ⪯ n1 or else Lsn[K−1
1] ⪯ n1 where some

{∣t1∣}K1
∈ P e.

In the first case, apply the induction hypothesis to P e, t0, obtaining a web G. Obtain
the desired web by appending an encryption E-strand using K to obtain {∣t0∣}K . In the
second case, apply the induction hypothesis to P e ∖ {∣t1∣}K1

∪ {t1} and {∣t0∣}K , and
prepend a decryption D-strand above any uses of t1. ⊓⊔

Theorem 5.5 (Authentication Test Principle, [6, Prop. 5]) 1. If every cut in A is
solved, then A is realized.

2. If A is realized, then A has an extension A′, obtained by adding only listener
nodes, in which every cut is solved.

Proof: 1. From Lemma 5.4.
2. Since A is realized, for each reception node n ∈ nodes(A), there is an adversary

web Gn deriving msg(n) from preceding transmission nodes. Build A′ by adding—for
each message t used as a key on an encryption or decryption strand in Gn—a listener
node ℓ for t, where ℓ ≺A′ n and (for all m) m ≺A′ n implies m ≺A′ ℓ. By construction,
all of these listeners are derivable, since the adversary has in fact derived them in Gn.

In A′, let n1 ∈ Cut(c, S,A′) be minimal in the cut, and let ℬ be the bundle
combining the regular nodes of A′ with the adversary nodes of the webs Gn. Since
c †S msg(n1), there are ⪯ℬ-minimal nodes m1 such that c †S msg(m1), and m1 ⪯ℬ n1
is a transmission node. If m1 = n1, n1 is solved in the cut. Otherwise, since n1 is min-
imal in the cut, m1 is an adversary node. Since S is a set of encryptions, m1 lies on an
encryption or decryption strand. By the construction of A′, there is a listener below n1
for the encryption or decryption key used on this adversary strand. ⊓⊔

When Q = Cut(c, S,A) and H = [�H , �H] : A ⋅→ B, we say that H(Q) =
Cut(�H(c), �H(S),B).H solves the test n1, Q if �H(n1) is solved inH(Q).H destroys
the test n1, Q if H(Q) if �H(n1) ∕∈ H(Q). If H destroys a test, then it solves it.

If H : A ⋅→ BH and H solves test n1, Q, then by Def. 5.3, every H solving n1, Q is
of at least one of three kinds, namely a solution:

by destruction if �H(n1) ∕∈ H(Q);
by transmission if there exists m1 ⪯BH

�H(n1) such that m1 is a transmission node
that is minimal in H(Q); or

by listener if there exists m1 = Lsn[K] such that (a) m1 ⪯BH
�H(n1), and (b) either

�H(c) = {∣t∣}K or else {∣t∣}K−1 ∈ �H(S).

6. Cohorts of Solutions

A solution cover is a set covering all essentially different ways to solve or destroy a test
(modulo ≤n). A cohort is a one where distinct members are ≤n -incomparable:

Definition 6.1 Let Q = Cut(c, S,A); let n1 be an unsolved minimal node in Q; and let
ℋ be a set of homomorphismsH : A ⋅→BH , where each BH is a skeleton.ℋ is a solution
cover for n1 and Q = Cut(c, S,A) iff

1. For each H ∈ ℋ, �H(n1) is solved in H(Q); and

30

2. If J : A ⋅→ ℂ, where �J(n1) is solved in J(Q), then for some H ∈ ℋ, H ≤n J .

ℋ is a cohort for n1 and Q = Cut(c, S,A) iff it is a solution cover such that

3. If H1,H2 ∈ ℋ and H1 ≤n H2, then H2 = H1.

If no J solves n1, Q, then ∅ is a cohort for n1, Q (and conversely).
In Clause 2 we require that H ≤n J , rather than merely that J = K ∘ H with

a possibly non-node-injective K. This requires some solution covers to contain more
members. Consider, for instance, B′

21, which differs from B21 in Fig. 5 by omitting the
ordering relations ≺ between the top two nodes and the bottom two nodes. That is, B′

21

contains an initiator strand and a responder strand, but with the minimal partial order.
Thus, for the lower left node n1, the test n1, Q = Cut({∣s∣}k, ∅,B′

21) is unsolved.
A solution cover for n1, Q consists of three homomorphisms: (i) a solution by lis-

tener that adds a listener strand Lsn[k]; (ii) a solution by transmission that adds another
responder strand with transmission node m1 ≺ n1; and (iii) a solution by transmission
that does not add any nodes, but adds a pair to the ordering relation, namely, restoring the
precedence relation between the existing responder strand transmission and the reception
node n1. Although (iii) is not a node-injective extension of (ii), it does factor through (ii).
Thus, without node-injectivity in Clause 2, the two homomorphisms (i,ii) would suffice.

Let [⋅] choose a canonical representative from each isomorphism class of homomor-
phisms; i.e. (i) if J ≤n H ≤n J , then [H] = [J], and (ii) [H] ≤n H ≤n [H]. We write
�(S) to compose [⋅] with min (Def. 3.10); i.e. define �(S) = {[G] : G ∈ min(S)}.

Lemma 6.2 Let Q = Cut(c, S,A); let n1 be an unsolved minimal node in Q.

1. {H : H solves n1, Q} is a solution cover.
2. If G ∈ ℋ andℋ is a solution cover for n1, Q then so isℋ ↓ G, where

ℋ ↓ G = (ℋ ∖ {K : G≤n K}) ∪ {G}.

3. Ifℋ is a solution cover for n1, Q then �(ℋ) is a cohort for n1, Q.

Proof: 1. Immediate from Def. 6.1.
2. Clause 1 holds becauseℋ ↓ G ⊆ ℋ. Clause 2 holds because if J is any solution,

then K ≤n J for some K ∈ ℋ; but if K ∕∈ ℋ ↓ G, then G≤n K ≤n J .
3. �(ℋ) is a solution cover by the preceding clause, since �(ℋ) =

∩
G∈ℋℋ ↓ G. It

is a cohort since it contains only canonical, ≤n -minimal values. ⊓⊔

Definition 6.3 When Q = Cut(c, S,A) and n1 is an unsolved minimal node in Q, then
define cohort(n1, Q) = �{K : K solves n1, Q}.

Lemma 6.4 If H ∈ cohort(n1, Q) and H is a solution:

by destruction, then �H is surjective, ⪯BH
= �(⪯A), nonBH

= �H(nonA), and
uniqueBH

= �H(uniqueA).
Moreover, �H is ≤s-minimal among � such that �(c) ⊙�(S) �(msg(n1)).

by transmission, then there is exactly one transmission node m1 ⪯BH
�H(n1) that is

minimal in H(Q). Moreover:

31

A
H

//

K0 ��

B

A0
J1

//

L0dddddddddddddddddddddd

11dddddddddddddddddddddd

A1
J2

//

L1eeeeeeeeeeeeeeee

22eeeeeeeeeeeeeeee

. . .
Jk−1

// Ak−1
Jk

//

Lk−1pp

88pppp

Ak

Lk

OO

Figure 15. Cohort members Ji and nodewise-injective Li

1. nodes(BH) = ran(�H) ∪ {m0 : m0 ⇒∗ m1};
2. ⪯BH

is the least ordering that extends �H(⪯A), satisfies Def. 3.1, Cl. 4b, and
in which m1 ⪯BH

�H(n1);
3. nonBH

= �H(nonA) and uniqueBH
= �H(uniqueA);

5

4. Letting m1 = (� ↓ j), is ≤s-minimal among � such that, for all k < j,
�(c) ⊙�(S) �(msg(� ↓ k)) and also �H(c) †�H(S) msg(�(� ↓ j)).

by listener, then nodes(BH) = ran(�H) ∪ {Lsn[t]} for some t and t0 such that either
c = {∣t0∣}t or else {∣t0∣}t−1 ∈ S. ⪯BH

is the least ordering that extends �H(⪯A),
satisfies Def. 3.1, Cl. 4b, and in which m1 ⪯BH

�H(n1). Moreover, �H = Id,
nonBH

= nonA, and uniqueBH
= uniqueA.

Proof: In each case, if the stated condition is not true, then we can reduce H in the ≤n

ordering by making it true. ⊓⊔

The comment about B′
21 after Def. 6.1 points out that there are two possibilities covered

in the by transmission clause here: m1 may be a newly added node, or it may be a node
already in A, for which the ordering relation m1 ≺ n1 has been newly added. This may
also apply in the by listener clause.

6.1. Completeness of the Search

Solving tests meets a progress or completeness condition. Namely—modulo omission of
listener strands—by solving tests we can reach all of the shapes. We allow an initial step
in which some strands of A are identified; cf. Fig. 15.

Theorem 6.5 (Search Completeness) SupposeH : A ⋅→B, and every cut in B is solved.
Let K = {K : ∃L . H = L ∘K ∧ �K is surjective ∧ �L is injective}.
K ∕= ∅, and there is a universal K0 : A ⋅→ A0 ∈ K.
Let L0 be the node-injective A0 ⋅→ B with H = L0 ∘K0.
There exists k ≥ 0, and there exist (a) tests ⟨ni, Qi⟩0<i≤k, (b) node-injective solu-

tions ⟨Ji : Ai−1 ⋅→ Ai⟩0<i≤k, and (c) node-injective ⟨Li : Ai ⋅→ B⟩0<i≤k, such that:

1. for each i with 0 < i ≤ k, Ji ∈ cohort(ni, Qi) and Li ∘ Ji = Li−1; and
2. every cut in Ak is solved.

5When m1 = (� ↓ j), and � has origination assumptions (see p. 25), we in fact have
nonBH

= �H(nonA) ∪ (role_non(� ↓ j)) and uniqueBH
= �H(uniqueA) ∪ (role_non(� ↓ j)).

32

Proof: Let K = [�H , �H] : A ⋅→ (B ∣̀ �H(nodes(A))) be H with its target restricted to
the image of A. Then K and the embedding B ∣̀ (�H(nodes(A))) ⋅→ B are respectively
node-surjective and node-injective. Thus, K ∕= ∅.

For each pair n1, n2 of nodes of A such that �H(n1) = �H(n2), apply Lemma 3.14,
Clause 3; so there is a universal K0. L0 is injective, since we have already identified all
the pairs that �H does.

Now suppose that Ai, Li has been defined. If all cuts in Ai are solved, we are done.
Otherwise, let (ni, Qi) with ni ∈ Ai and Qi = Cut(ci, Si,Ai) be unsolved. Since

Li(ni, Qi) is solved, Ji+1 ≤n Li for some Ji+1 ∈ cohort(ni, Qi). Any such Ji+1 must
be injective, since Li is. Define Li+1 to be the node-injective homomorphism such that
Li = Li+1 ∘ Ji+1, which exists by Ji+1 ≤n Li.

This process must terminate with a Ak in which all tests are solved, because, for
each i, (Ji ∘ . . .∘J1 ∘K0)≤nH , and there are only finitely many non-isomorphic values
≤nH by Lemma 3.11, Clause 4. ⊓⊔

6.2. Cohorts and Characterizations

CPSA incrementally computes a (node-injective) characterization C for some starting
point A. A cohort is a single information-increasing step in this process.

Although, as Thm. 5.5 suggests, CPSA adds listener nodes to solve tests, as reception
nodes they do not increase the information available to the adversary. In a shapeH : A ⋅→
B, for each listener node n ∈ nodes(B), there is a listener node m ∈ nodes(A) such that
n = �H(m). Otherwise B would not be minimal; n could be omitted.

CPSA adds listener nodes for keys K to indicate possible solutions in which K is
disclosed. It may later add other regular strands showing howK became disclosed. Thus,
CPSA’s intermediate steps use listener nodes that it will discard when reporting a shape.
We define fringe to trim out these listener nodes that will eventually be discarded.

Definition 6.6 When H : A ⋅→ B, define trim(H) = [�H , �ℎ] : A ⋅→ B′ where

N = {n ∈ nodes(B) : ∃m ∈ nodes(A) . n = �H(m) ∨ n is not a listener node}

B′ = ⟨N , (⪯B ∣̀ N × N), nonB, uniqueB⟩.

Define trim(ℱ) = {trim(H) : H ∈ ℱ}. A set ℱ of homomorphisms is a fringe for C iff
every K ∈ C factors through trim(ℱ).

Define Targets(ℱ) = {B : (F : A ⋅→ B) ∈ ℱ}.

This theorem follows from the definitions via Lemma 3.11:

Theorem 6.7 Let C be a characterization for A. The singleton {IdA} is a fringe for C.
Let ℱ be a fringe for C.

1. If F : A ⋅→ B in ℱ where n1, Q is unsolved, then ℱ ′ is also a fringe for C, where

ℱ ′ = (ℱ ∖ {F}) ∪ {H ∘ F : H ∈ cohort(n1, Q)}.

2. If every B ∈ Targets(ℱ) is realized, then min(C) ∼ min(trim(ℱ)).

In Cl. 1, when cohort(n1, Q) is empty, B is dead, and we discard F : A ⋅→ B.

33

6.3. The CPSA Algorithm

Thm. 6.7 provides motivation for CPSA’s algorithm. CPSA uses breadth-first search start-
ing with an initial skeleton A. CPSA maintains the fringe ℱ as a union of two sets, U ∪S.
U contains the as-yet unexplored part. S contains the current estimate of the set of shapes.
S contains those homomorphisms F : A ⋅→ B such that B is realized, and no G <n F
with realized target has yet been seen. Initially, U = {IdA}, and S = ∅.

CPSA halts if U is empty, returning S.
Otherwise, it selects one F : A ⋅→ B from U . If B is realized, it compares trim(F)

to the current members of S. If for some G ∈ S, G <n trim(F), F is discarded, and
otherwise we add trim(F) to S. If trim(F)<n G for some G ∈ S, we discard them.

If B is not realized, CPSA finds an unsolved test n1, Q = Cut(c, S,B). CPSA com-
putes cohort(n1, Q), and then replaces F by {H ∘ F : H ∈ cohort(n1, Q)}.

How does CPSA compute cohort(n1, Q)? For solutions by destruction and by lis-
tener, it follows the prescriptions given in Lemma 6.4. In finding the solutions by trans-
mission, there are two stages. In the first, CPSA considers every � ∈ Π and each trans-
mission node � ↓ j. For each path p within msg(� ↓ j), if p traverses no key edge, CPSA

attempts to unify c with p(msg(� ↓ j)). If this unification succeeds with some 0, CPSA

attempts to extend 0 to satisfy the condition of Lemma 6.4, Cl. 4. If S is finite, then
since there are at most finitely many encryptions along the path to any occurrence in an
earlier node m0, there can be only finitely many successful outcomes. CPSA collects all
successful results, as �, j, p vary.

This first step could leave out solutions by transmission in which the critical value c
is inserted into msg(� ↓ j) as an ingredient in a larger message t. Suppose, for some path
p, p(msg(� ↓ j)) is an indeterminate x. Choose 0 with 0(x) = t for any t where c ⊑ t.
Consider m1 = 0(� ↓ j). Suppose that in msg(m1), p traverses neither a key edge nor
any e ∈ S, but whenever m0 ⇒+ m1, every path p0 in msg(m0) that reaches c traverses
either a key edge or a member of S. Then m1 provides a solution to S, even though the
choice of 0(x) = t was not motivated syntactically by unification in msg(� ↓ j).

However, by the Indeterminate Acquisition Principle (Section 2.5, p. 16), there is
at least one reception node � ↓ i where i < j and x ⊑ msg(� ↓ i). Thus, there is at
least one path p0 such that p0 does not traverse a key edge, and p0(msg(� ↓ i)) = x, or
equivalently p0(msg(0(� ↓ i))) = t. Along every such path in msg(0(� ↓ i)), we must
unify some encryption with a member of S. Since there are only a finite number of ways
to succeed, only finitely many t can be successful substitutions for x.6

Theorem 6.8 Let S be finite, and let ℋ be a cohort for n1, Q = Cut(c, S,A). There are
only finitely many H ∈ ℋ.

Proof: By the finiteness of S, there are only finitely many solutions by listener. More-
over, consider a solution by destruction H . Since �H(c) ⊙�H(S) �H(msg(n1)), for
each path p to c in msg(n1), there is some encryption e that p traverses, such that
�H unifies e with some member of S. By the finiteness of S and of msg(n1), and the
m.g.u. property, there are only finitely many most general ways to do so.

If H is a solution by transmission, then it meets the conditions in the discussion
above, in each case belonging to a finite set of possibilities. ⊓⊔

6Key ideas in the cohort computation are due to John Ramsdell and Paul Rowe.

34

The CPSA algorithm is thus finitely branching; by Thm. 6.7 it never discards any possi-
bilities, and by Thm. 6.5 it reaches each shape after finitely many steps.

Conclusion. We have presented here a theory explaining CPSA, the Cryptographic
Protocol Shape Analyzer. We will write more specifically about the design and imple-
mentation of CPSA elsewhere.

We believe that the Authentication Test Principle is central to cryptographic proto-
cols. Indeed, already in our first paper about the tests, we pointed out that they provide
very strong heuristics to guide cryptographic protocol design [12]. We have also illus-
trated a systematic protocol design process, which led to a protocol achieving goals akin
to the Secure Electronic Transaction protocol, organized by reference to the tests [9].
Moreover, we have recently used the tests to justify a criterion for when combining a pro-
tocol with new behaviors preserves all security goals met by the original protocol [10].
We hope to develop the theory we have just described to provide a systematic set of pro-
tocol transformations that preserve security goals. This appears likely to provide rigorous
techniques to replace the heuristics that protocol designers currently use.

Acknowledgments. I am enormously grateful to F. Javier Thayer, who through a
decade and more has been an integral collaborator. Shaddin Dughmi (a.k.a. Doghmi) and
John D. Ramsdell contributed so much to the theory and to making it work. Dughmi
wrote the first version of CPSA. Ramsdell is author of the current version.

Jonathan Herzog contributed to the original strand space ideas. Paul Rowe suggested
key ideas and puzzles. Moses Liskov and Leonard Monk helped clarify this chapter.

References

[1] Boris Balacheff, Liqun Chen, Siani Pearson, David Plaquin, and Graeme Proudler. Trusted Computing
Platforms: TCPA Technology in Context. Prentice Hall PTR, Upper Saddle River, NJ, 2003.

[2] Bruno Blanchet. Vérification automatique de protocoles cryptographiques: modèle formel et modèle
calculatoire. Automatic verification of security protocols: formal model and computational model. Mé-
moire d’habilitation à diriger des recherches, Université Paris-Dauphine, November 2008.

[3] Edmund Clarke, Somesh Jha, and Will Marrero. Using state space exploration and a natural deduction
style message derivation engine to verify security protocols. In Proceedings, IFIP Working Conference
on Programming Concepts and Methods (PROCOMET), 1998.

[4] Cas J.F. Cremers. Unbounded verification, falsification, and characterization of security protocols by
pattern refinement. In ACM Conference on Computer and Communications Security (CCS), pages 119–
128, New York, NY, USA, 2008. ACM.

[5] C.J.F. Cremers. Scyther - Semantics and Verification of Security Protocols. Ph.D. dissertation, Eind-
hoven University of Technology, 2006.

[6] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Completeness of the authentication tests.
In J. Biskup and J. Lopez, editors, European Symposium on Research in Computer Security (ESORICS),
number 4734 in LNCS, pages 106–121. Springer-Verlag, September 2007.

[7] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for shapes in cryptographic
protocols. In Tools and Algorithms for Construction and Analysis of Systems (TACAS), number 4424 in
LNCS, pages 523–538, 2007.

[8] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Skeletons, homomorphisms, and shapes:
Characterizing protocol executions. In M. Mislove, editor, Proceedings, Mathematical Foundations of
Program Semantics, April 2007.

[9] Joshua D. Guttman. Authentication tests and disjoint encryption: a design method for security protocols.
Journal of Computer Security, 12(3/4):409–433, 2004.

35

[10] Joshua D. Guttman. Cryptographic protocol composition via the authentication tests. In Luca de Al-
faro, editor, Foundations of Software Science and Computation Structures (FOSSACS), number 5504 in
LNCS, pages 303–317. Springer, 2009.

[11] Joshua D. Guttman. Fair exchange in strand spaces. In M. Boreale and S. Kremer, editors, SecCo: 7th In-
ternational Workshop on Security Issues in Concurrency, EPTCS. Electronic Proceedings in Theoretical
Computer Science, Sep 2009.

[12] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure of bundles. Theoretical
Computer Science, 283(2):333–380, June 2002. Conference version appeared in IEEE Symposium on
Security and Privacy, May 2000.

[13] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In 8th ACM Conference on Computer and Communications Security (CCS ’01), pages
166–175. ACM, 2001.

[14] Lawrence C. Paulson. Proving properties of security protocols by induction. In 10th IEEE Computer
Security Foundations Workshop, pages 70–83. IEEE Computer Society Press, 1997.

[15] Adrian Perrig and Dawn Xiaodong Song. Looking for diamonds in the desert: Extending automatic
protocol generation to three-party authentication and key agreement protocols. In Proceedings of the
13th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press, July 2000.

[16] Dag Prawitz. Natural Deduction: A Proof-Theoretic Study. Almqvist and Wiksel, Stockholm, 1965.
[17] John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic protocol shapes analyzer. In Hack-

age. The MITRE Corporation, 2009. http://hackage.haskell.org/package/cpsa; see
esp. doc subdirectory.

[18] John D. Ramsdell, Joshua D. Guttman, and Paul D. Rowe. The CPSA Specification: A Reduction System
for Searching for Shapes in Cryptographic Protocols. The MITRE Corporation, 2009. In http:
//hackage.haskell.org/package/cpsa source distribution, doc directory.

[19] Dawn Xiaodong Song. Athena: a new efficient automated checker for security protocol analysis. In
Proceedings of the 12th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press,
June 1999.

[20] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 7(2/3):191–230, 1999.

36

http://hackage.haskell.org/package/cpsa
http://hackage.haskell.org/package/cpsa
http://hackage.haskell.org/package/cpsa

