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Abstract. We revise existing type-based analyses of security protocols by devising
a core type system for secrecy, integrity and authentication in the setting of spi-
calculus processes. These fundamental security properties are usually studied inde-
pendently. Our exercise of considering all of them in a uniform framework is inter-
esting under different perspectives: (i) it provides a general overview of how type
theory can be applied to reason on security protocols; (ii) it illustrates and com-
pares the main results and techniques in literature; (iii) perhaps more importantly,
it shows that by combining techniques deployed for different properties, existing
type-systems can be significantly simplified.

1. Introduction

Predicting the behaviour of a protocol or program by just inspecting its code is a very
intriguing challenge which can be approached in different ways. Techniques such as ab-
stract interpretation [18] or control flow analysis [33,12] aim at defining sound abstrac-
tions of the actual semantics which overapproximate the behaviour of the protocol: all
the concrete executions are guaranteed to be captured by the abstract semantics. This
allows for developing efficient analyses which can certify the correctness of a protocol
with respect to some target (security) property P: if the abstraction satisfies P we are
guaranteed that all the concrete runs will also satisfy P.

Type theory takes a somehow complementary perspective. Saying, for example, that
a message has a certain type allows for statically check that such a message will be used
in a controlled way so to avoid violating the target property P. Instead of abstracting
the behaviour of the protocol and check P over the abstraction, we devise a set of rules
that dictate how typed data and protocols should be programmed so to respect P. One
interesting aspect of this approach is that it forces understanding why and how security
is achieved. This is particularly useful for security protocols whose flaws often derive by
some degree of ambiguity in the role that messages play in achieving a certain goal. Type-
based reasoning is therefore particularly valuable, as it forces one to clarify protocol
specifications by making explicit the underlying security mechanisms.

A toy example. We consider Confidentiality, i.e., the property of data being accessible
only by authorized users. In a (idealized) distributed setting we might think of honest
principals sharing secure communication channels. Thus, a simple way to achieve con-
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fidentiality might be to impose that high-confidential (or secret) data are only sent on
secure channels. If c⟨M⟩ denotes the output of M over channel c we might formalize the
above idea as:

M : Secret, c : Secure ⊢ c⟨M⟩

meaning that under the hypothesis M is of type Secret and c is of type Secure we can
type-check the output c⟨M⟩. Of course we do not want to write a different rule for every
different case. For example it is clearly safe to even send a public message over a secure
channel. For this reason it is useful to introduce a notion of derived type: Γ ⊢ M : Secret
meaning that M can be given type Secret starting from the type bindings listed in Γ.
For example, clearly, M : Secret, c : Secure ⊢ M : Secret. But we could also say that
M : Public, c : Secure ⊢ M : Secret, since a public data can be safely regarded as
secret. The typing rule for the output can be now rewritten as:

Γ ⊢ M : Secret Γ ⊢ c : Secure
Γ ⊢ c⟨M⟩

The fact that a type T is less demanding than another one T ′ is usually formalized
through a subtyping relation T ≤ T ′. Thus, in our case it is enough to state that
Public ≤ Secret in order to allow all public data to be regarded also as secrets. As-
suming this, the above typing rule does not actually say much: on a secure channel we
can send whatever kind of data, both public and secret. It is instead more interesting to
regulate what can be done on insecure channels

Γ ⊢ M : Public Γ ⊢ c : Insecure
Γ ⊢ c⟨M⟩

Given that Secret ∕≤ Public we intuitively have that secret data will never be sent on
insecure channels.

To be useful, types must be preserved at run-time, i.e., a typed protocol should re-
main typed when it is executed and, in particular, when variables get bound to names
received from the network. In our small toy example, this amounts to specify what type
we expect when we receive messages from the network: in particular we are required to
give type Secret to all messages coming from secure channels. Noting c(x).P a protocol
reading a message M from channel c and binding x with M in the sequent P , we can
write:

Γ, x : Secret ⊢ P Γ ⊢ c : Secure
Γ ⊢ c(x).P

If the channel is secure, x is given type Secret and the sequent P is typed under this
assumption, meaning that P must treat x as it were a secret.

A fourth rule might state that when reading from insecure channels we can safely
give type public to x. At this point, however, one is tempted to try to find a more suc-
cinct way to express these four cases. One attempt might be to equate Secret with Se-
cure and Public with Insecure, but this would lead to an insecure channel being re-
garded as secure, obviously breaking confidentiality. A more appropriate way to find a
connection between data and channel types is to look at their security level. We can write
ℒ(Secret) = ℒ(Secure) = H and ℒ(Public) = ℒ(Insecure) = L, meaning that
secret data and secure channels have a high security level, while public data and inse-



cure channels have a low one. With this idea in mind the whole toy type system can be
summarized as follows:

ℒ(Td) = ℒ(Tc)
Γ ⊢ M : Td Γ ⊢ c : Tc

Γ ⊢ c⟨M⟩

ℒ(Td) = ℒ(Tc)
Γ, x : Td ⊢ P Γ ⊢ c : Tc

Γ ⊢ c(x).P

where Td ranges over Secret and Public and Tc ranges over Secure and Insecure.
Intuitively, a message M can be sent over c if its security level does not exceed the one
of the channel (a secret message can never be sent on an insecure channel); notice that
a public message can be risen to secret via subtyping, and be sent on a secure channel;
dually, a message x received from c must be assumed to be at least at the security level of
the channel (a message received from a secure channel must be regarded as secret). For
example if Γ is c : Insecure, d : Secure we can type-check protocol c(x).d⟨x⟩, which
forwards messages read from an insecure channel to a secure one. The typing derivation
is as follows:

Public ≤ Secret
Γ, x : Public ⊢ x : Secret Γ, x : Public ⊢ d : Secure

Γ, x : Public ⊢ d⟨x⟩
Γ ⊢ c(x).d⟨x⟩

If we swap the channels, of course, the protocol becomes not typable as messages
read from secure channels should never be forwarded on insecure ones. Formally,
Γ ∕⊢ d(x).c⟨x⟩ since Γ, x : Secret ∕⊢ c⟨x⟩, being c insecure.

Type-based analysis of Security Protocols: an overview. Type-based analysis of secu-
rity protocols dates back to Abadi’s seminal work [1] on secrecy by typing. This work
focuses on security protocols based on symmetric-key cryptography and on the secrecy
of data. The idea is to model cryptographic protocols in the spi-calculus [6] and to verify
confidentiality with a type system. One of the fundamental contributions is the method-
ology used to type-check the opponent: processes manipulating only messages of type
Public are shown to be always well-typed (opponent typability). This technique allows
for type-checking the opponent without posing any constraints on his behavior. The con-
fidentiality property established by the type system is expressed in terms of noninterfer-
ence: an opponent will never be able to distinguish two protocol executions in which the
initial value of sensitive data may differ. Abadi and Blanchet subsequently extended the
type system to reason about security protocols based on asymmetric cryptography [4,5]

Among the foundational contributions of this research line, we point out the tech-
nique used to type-check encrypted messages. Keys are given a type of the form
Keyℓ[T ], which dictates the type T of the messages encrypted with that key. The security
level ℓ specifies whether the key is possibly known to the opponent (ℓ=Public) or not
(ℓ=Secret). The receiver of a ciphertext can thus determine the type of the decrypted
message by the type of the key. If the key has type KeySecret[T ], then the ciphertext comes
from a well-typed process and the decrypted message has type T ; if the key has type
KeyPublic[T ], then the ciphertext might come from a well-typed process as well as from
the opponent and the continuation process has to be type-checked twice, once with the
message being of type T and once with the message being of type Public.



Gordon and Jeffrey proposed a type and effect system for verifying authenticity in
cryptographic protocols based on symmetric [23] and asymmetric cryptography [24].
The fundamental idea is to formulate authenticity properties in terms of correspondence
assertions [38] and to use dependent types in order to characterize the assertions valid
for each message. Correspondence assertions are protocol annotations of the form be-
gin(M ) and end(M ), marking the begin and the end of a protocol session for authen-
ticating message M . Intuitively, a protocol guarantees authenticity if every end is pre-
ceded by a corresponding begin [28]. The type system was subsequently extended to
handle conditional secrecy (a refinement of secrecy, where a message is unknown to the
adversary unless particular messages or principals are compromised) [25] and protocols
based on time-stamps [26].

Bugliesi et al. proposed an alternative technique for the verification of authenticity
in security protocols [13,30,15]. This framework is based on a dynamic type and effect
system, which exploits a set of tags that uniquely identify the type and effect of encrypted
messages. The analysis enjoys strong compositionality guarantees and is well-suited to
reason about multi-protocol systems [29], although it assumes a tagging discipline for
messages. We refer the interested reader to [14] for a formal comparison between this
type and effect system and the above one by Gordon and Jeffrey.

Building upon this research line, Fournet et al. proposed a type system for the ver-
ification of authorization policies in security protocols [20]. The idea is to decorate the
protocol with assumptions and assertions of the form assume C and assert C, respec-
tively, where C is a logical formula. A protocol is safe if every assertion is entailed by
the active assumptions. Authorization policies allow for reasoning about authenticity as
well as other security requirements, for instance access control policies. Authorization
policies, however, do not capture the freshness of authentication requests and the type
system does not handle nonce handshakes. The authors subsequently extended the type
system to reason about distributed systems where some of the principals are compro-
mised [21]. Backes et al. further refined the expressivity of the type system to reason
about protocols based on zero-knowledge proofs [9].

Even if security protocols are properly designed, security flaws may still affect im-
plementations. For this reason, the analysis of executable code is crucial to provide end-
to-end security guarantees. Bengtson et al. [10] recently proposed a framework for the
type-based analysis of authorization policies in F# implementations of security proto-
cols. The type system is based on refinement types, which describe the type of values as
well as logical formulas that characterize such values. The language is a lambda-calculus
with primitives for concurrency, which is used to define the syntax of a large fragment
of F# by encoding. One important contribution of this work is the definition of a library
of symbolic cryptography in the lambda-calculus. In contrast to previous approaches,
cryptographic primitives are not modelled by ad-hoc language primitives and verified
by specific typing rules. They are instead defined by symbolic libraries based on seal-
ing [32,36,35] and verified by the standard typing rules for functions. This makes the
type system easily extensible to a large number of cryptographic primitives.

Outline of this work. We devise a core type system for confidentiality, integrity and
authentication starting from pi-calculus processes, in which security is guaranteed via
ideal (restricted) channels. This simplified setting allows us to introduce important con-
cepts and basic types for secrecy and integrity, disregarding all the subtleties introduced
by cryptographic operations. We then consider a rather rich dialect of spi-calculus with



M,N,K ::= terms
x, y, z variable
a, b, c, d, k,m, n, s name

P,Q,R,O ::= processes
N⟨M̃⟩.P output
N(x̃).P input
0 stop
P ∣ Q parallel
!P replication
(�a : T ) P restriction
if M = N then P else Q conditional

Table 1. Core calculus: terms and processes syntax

symmetric/asymmetric cryptography and digital signature. We show how the types for
cryptographic keys can be defined as an extension of the channel types of the pi-calculus:
the type transported by a secure channel can be seen as the type of the message encrypted
with a secure key. Finally, we add a system of effects to track linearity of nonce usage in
challenge-response protocols. Interestingly, the final type-system is much simpler than
the ones in literature (e.g., [15,23,24]). We feel that this is mainly due to the benefit of
combining in a uniform setting techniques deployed for different properties.

In our study we mix techniques and concepts from the literature, with the main aim
of defining a general setting where different contributions can be illustrated and under-
stood. In doing so, we have also borrowed concepts from the language-based security
literature (see, e.g., [34] for a survey), in particular for what concerns the dual treatment
of confidentiality and integrity. It is worth mentioning that recent language-based secure
literature has extended imperative languages with cryptography allowing for the mod-
elling of cryptographic protocols in a language setting (see, e.g., [7,16,17,22,27,37]). It
is thus natural to try to bridge the language-based and the process-calculi settings and
take advantage from both of them. In summary, our work provides a general overview
of how type theory can be applied to reason on security protocols illustrating the main
results and techniques in literature; interestingly, it shows that existing type-systems can
be significantly simplified by combining techniques originally deployed for verifying
different properties.

Note: Due to space constraints, we include in this chapter only the most interesting
proofs. A full version of this work is available at [19].

2. Secure Communication in the Pi-Calculus

We introduce a core calculus for reasoning about communication protocols without cryp-
tography. It is essentially a polyadic pi-calculus [31] with a typing annotation for re-
stricted names which will be useful to reason about security and has no semantic import.
In fact, to simplify the notation, types will be omitted when unimportant. This calculus
allows us to introduce in the simplest possible setting many important concepts, prop-
erties and proof techniques. In section 3, we will extend it with various cryptographic
primitives and we will show how these primitives can be statically checked so to provide
security.



Structural Equivalence

P ≡ P

P ≡ Q ⇒ Q ≡ P

P ≡ Q , Q ≡ R ⇒ P ≡ R

P ≡ Q ⇒ P ∣ R ≡ Q ∣ R
P ≡ Q ⇒!P ≡!Q

P ≡ Q ⇒ (�a : T ) P ≡ (�a : T ) Q

(�a : T ) 0 ≡ 0
P ∣ 0 ≡ P

P ∣ Q ≡ Q ∣ P
(P ∣ Q) ∣ R ≡ P ∣ (Q ∣ R)

!P ≡ P ∣ !P
(�a : T ) (�b : T ′) P ≡ (�b : T ′) (�a : T ) P if a ∕= b

(�a : T ) (P ∣ Q) ≡ P ∣ (�a : T ) Q if a /∈ fn(P )

Reduction

N⟨M̃⟩.P ∣ N(x̃).Q → P ∣ Q{M̃/x̃} (RED I/0)
if M = M then P else Q → P (RED COND 1)
if M = N then P else Q → Q if M ∕= N (RED COND 2)

(RED STRUCT)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

(RED RES)
P → Q

(�a : T ) P → (�a : T ) Q

(RED PAR)
P → Q

P ∣ R → Q ∣ R

Table 2. Structural Equivalence and Reduction

Syntax. The syntax of the calculus is given in Table 1. For the sake of readabil-
ity, we let M̃ denote a sequence M1, . . . ,Mm of terms and {M̃/x̃} the substitution
{M1/x1} . . . {Mm/xm}. Intuitively, process N⟨M̃⟩.P outputs the tuple of messages M̃
on channel N and then behaves as P ; N(x̃).P receives a tuple of messages M̃ (where
the arity of M̃ and x̃ is the same) from channel N and then behaves as P{M̃/x̃}; 0 is
stuck; the parallel composition P ∣ Q executes P and Q concurrently; the replication !P
behaves as an unbounded number of copies of P in parallel; (�a : T ) P generates a fresh
name a (of type T ) and then behaves as P ; finally, if M = N then P else Q behaves as
P if M is equal to N or as Q otherwise. We will often omit the trailing 0 writing, e.g.,
N⟨M̃⟩ in place of N⟨M̃⟩.0.

We let fnfv(M) and fnfv(P ) denote the free names and variables in term M and
process P , respectively. The notion of free names and variables is defined as expected:
all names and variables occurring in a term are free; the restriction (�ã : T̃ ) P is a binder
for a with scope P and the input N(x̃).P is a binder for x̃ with scope P . We implicitly
identify processes up to renaming of bound names and variables.

Semantics. The semantics of the calculus is formalized in Table 2 in terms of a struc-
tural equivalence relation ≡ and a reduction relation →. Structural equivalence ≡ is de-
fined as the least relation satisfying the rules reported in the first part of Table 2. It is an
equivalence relation closed with respect to parallel composition, replication and restric-
tion, which essentially allows us to rearrange parallel compositions and restrictions in or-
der to bring processes that should interact close to each other, to unfold replications, and
to remove useless restrictions. Reduction → is defined as the least relation on closed pro-
cesses satisfying the rules in the second part of Table 2. Communication is synchronous:
the output N⟨M̃⟩.P synchronizes with an input N(x̃).Q on the same channel and then
reduces to P ∣ Q{M̃/x̃} (rule RED I/0). The equality test if M = N then P else Q
reduces to P if M is equal to N or to Q otherwise (rules RED COND 1 and 2). Moreover,
reduction relation preserves ≡ (RED STRUCT) and is closed with respect to restriction



(RED RES) and parallel composition (RED PAR). In the following, we let P →∗ Q hold
true if P reduces in one or more steps to Q or if P is structurally equivalent to Q.

2.1. Security Levels and Security Properties

In the literature on language-based security, it is common to study confidentiality and
integrity together (see, e.g., [34]). Usually, the security level is a pair ℓCℓI specifying,
separately, the confidentiality and integrity levels. We consider two possible levels: High
(H) and Low (L). For example, HH denotes a high confidentiality and high integrity
value, while LH a public (low confidentiality) and high integrity one. Intuitively, high
confidentiality values should never be read by opponents while high integrity values
should not be modified by opponents, i.e., when we receive high integrity data we expect
they originated at some trusted source.

HL

LL

LH

HH

An important difference between confidentiality and integrity
levels is that they are contra-variant: while it is safe to consider a
public datum as secret, promoting low integrity to high integrity is
unsound, as any data from the opponent could erroneously be con-
sidered as coming from a trusted entity. Considering instead as low
integrity some high integrity data is harmless, as this basically re-
duces the assumptions we can make on them. More formally, the
confidentiality and integrity preorders are such that L ⊑C H and H ⊑I L. We let ℓC
and ℓI range over {L,H}, while we let ℓ range over the pairs ℓCℓI with ℓ1Cℓ

1
I ⊑ ℓ2Cℓ

2
I

iff ℓ1C ⊑C ℓ2C and ℓ1I ⊑I ℓ2I , giving the standard four-point lattice depicted on the right.
Intuitively, moving up in the lattice is safe as both secrecy and integrity preorders are
respected.

As we mentioned above, our calculus is typed. The four points of the security lattice
are our four basic types and they are used for describing generic terms at the specified
security level.

Opponents. Processes representing opponents are characterized by type/level LL
meaning that they can read from LL and LH while they can modify LL and HL, reflect-
ing the intuition that information may only flow up in the lattice. In particular, opponents
can only generate names of type LL, as formalized below:

Definition 1 (Opponent) A process O is an opponent if all (�a : T ) occurring in O are
such that T = LL.

We will always assume that free names of processes are low confidentiality and low
integrity, since they might be known to and originated by the opponent.

Level of types and terms. Later on, we will introduce more sophisticated types giving
additional information about how typed terms should be used. For the moment we do
not need to give more detail on types except that they always have an associated security
level. In particular, we write ℒ(T ) to denote the associated security level. For the four
basic types we trivially have ℒ(ℓ) = ℓ. Given ℒ(T ) = ℓCℓI , we also write ℒC(T ) and
ℒI(T ) to respectively extract from T the confidentiality and integrity levels ℓC and ℓI .
Similarly, given a mapping Γ from terms to types, we denote with ℒΓ(M) the level in Γ
of a certain term M formally defined as:



ℒΓ(M) =

{
ℒ(Γ(M)) whenever M ∈ dom(Γ)
LL otherwise

As above, ℒC,Γ(M) and ℒI,Γ(M) respectively denote the confidentiality and integrity
level associated to M in Γ.

Secrecy. As mentioned above, secrecy refers to the impossibility for an opponent to
access/read some data d. This property can be interpreted in two different ways, the latter
strictly stronger than the former: (i) the opponent should not learn the exact value of d or
(ii) the opponent should not deduce any information about d. We give a small example
to illustrate: process a⟨d⟩.0 clearly violates both notions as d is just sent on the network,
while process if d = d′ then a⟨n⟩.0 clearly violates (ii) as some information about d is
actually leaked, in particular its equality with d′, but (i) might still hold; for example if
d′ is also secret then no intruder will be able to compute d from the output n. Property
(ii) is usually called noninterference. For lack of space we will only focus on notion (i).

Our definition of secrecy is in the style of [2]. A process P preserves the secrecy of
a high confidentiality name d if d cannot be computed by any opponent interacting with
P . Notice that, whenever the opponent computes d, he can also send it on a unrestricted
(public) channel. Of course the opponent should not know the secret in advance, for this
reason we only focus on secrets which are restricted names. For the sake of readability
we write the definition for channels of arity 1 (the extension to arity n is immediate).

Definition 2 (Secrecy) P preserves secrecy if, for all opponents O, whenever P ∣O →∗

(�d : T ) (�ã : T̃ ) (P ′ ∣ b⟨d⟩.P ′′) we have ℒC(T ) ⊑C ℒC,Γ(b), with Γ = d : T, ã : T̃ .

Notice that Γ is always guaranteed to be a function thanks to implicit alpha renaming of
bound names. Intuitively, a process preserves secrecy if its names are always transmitted
on channels with at least the same confidentiality level, even when interacting with an
arbitrary opponent O. In particular, if d is secret also the channel b is required to be
secret, meaning it is one of the names in ã. Recall, in fact, that ℒC,Γ(b) returns L for all
names not mapped by Γ. Thus, if P preserves secrecy then its secret names will never be
transmitted on unrestricted (public) channels.

As an example, process (�d : HL) b⟨d⟩ clearly breaks the secrecy of d by sending
it on the unrestricted channel b. Formally, ℒC(HL) = H ∕⊑C L = ℒC,Γ(b), with
Γ = d : HL. Process (�b : HL) (�d : HL) b⟨d⟩, instead, preserves secrecy.

Integrity. Formalizations of integrity in process calculi literature are, to the best of our
knowledge, not so common. We believe, however, that it is convenient to introduce a
formal definition of integrity at this point, as it will allow us to dually treat secrecy and
integrity guarantees provided by channels and cryptographic keys.

To formalize integrity we need to introduce the type Cℓ[T̃ ] for channels at level ℓ
transporting data of type T̃ . Since in the core calculus communication is symmetric, the
only interesting levels for channels are HH and LL, respectively representing trusted
and untrusted channels. We thus limit ℓ to those two levels and we let ℒ(Cℓ[T̃ ]) = ℓ.

The notion of integrity is essentially dual to the one of secrecy: we require that any
data transmitted on a trusted channel in a position corresponding to high integrity data
will always be a high integrity name, i.e., a name originated from some trusted pro-
cess. Notice, to this purpose, that we have forbidden opponents to generate high integrity
names. The formal definition follows:



EMPTY
∅ ⊢ ⋄

ENV
Γ ⊢ ⋄ M /∈ dom(Γ) T = Cℓ[T̃ ] implies ℓ = HH

Γ,M : T ⊢ ⋄

Table 3. Core calculus: well-formedness of Γ.

Definition 3 (Integrity) P preserves integrity if, for all opponents O, whenever
P ∣ O →∗ (�b : CHH [T ′]) (�ã : T̃ ) (P ′ ∣ b⟨d⟩.P ′′) we have ℒI,Γ(d) ⊑I ℒI(T

′), with
Γ = b : CHH [T ′], ã : T̃ .

We now give an example of a process which breaks the above property.

Example 1 Consider process (�b : CHH [LH]) (c(x).b⟨x⟩ ∣ b(y).P ). Intuitively, this
process reads from the untrusted channel c a value x and forwards it on the trusted chan-
nel b. Since x can be low integrity, this process violates the above property. Take, for
example, the opponent c⟨d⟩ and the reduction:

(�b : CHH [LH]) (c(x).b⟨x⟩ ∣ b(y).P ) ∣ c⟨d⟩
≡ (�b : CHH [LH]) (c(x).b⟨x⟩ ∣ b(y).P ∣ c⟨d⟩)
→ (�b : CHH [LH]) (b⟨d⟩ ∣ b(y).P ∣ 0)
→ (�b : CHH [LH]) (0 ∣ P{d/x} ∣ 0)

In the last step, d is sent on channel b, which should only be used for transmitting high
integrity values, but d is not restricted as it comes from the opponent: integrity does not
hold. Formally, this can be seen in process (�b : CHH [LH]) (b⟨d⟩ ∣ b(y).P ∣ 0) which
transmits over b an unrestricted name d. We have, ℒI,Γ(d) = L ∕⊑I H = ℒI(LH), with
Γ = b : CHH [LH ].

2.2. A Core Type System

In this section we present a type system to statically enforce secrecy and integrity in the
pi-calculus.

Types and Environment. Our types are just levels (of the four point lattice) and channel
types, which we introduced above. Formally, type syntax is as follows:

T ::= ℓ ∣ Cℓ[T̃ ] (1)

where ℓ is the type of data at such a level, and Cℓ[T̃ ] is the type of channels at level
ℓ transporting data of type T̃ . The typing environment Γ is a set of bindings between
names/variables and their respective type T . The well formedness of Γ is defined by the
typing rules in Table 3. We require that Γ does not contain multiple bindings for the same
value. Additionally, we only admit in Γ (trusted) channels at level HH . As expected,
ℒ(ℓ) = ℓ and ℒ(Cℓ[T̃ ]) = ℓ.

Typing Terms. Types for terms are formalized in Table 4: they are the ones in Γ plus the
ones derivable by subtyping. Intuitively, the subtyping relation T ≤ T ′ specifies when a
value of type T can be used in place of a value of type T ′, thus making the type system
more permissive. Formally, ≤ is defined as the least preorder such that:



ATOM
Γ ⊢ ⋄ M : T in Γ

Γ ⊢ M : T

SUBSUMPTION
Γ ⊢ M : T ′ T ′ ≤ T

Γ ⊢ M : T

Table 4. Core calculus: typing of terms.

ℓ1 ≤ ℓ2 whenever ℓ1 ⊑ ℓ2
LL ≤ CLL[LL, . . . , LL]

Cℓ[T̃ ] ≤ ℓ
(2)

The first condition means that rising the data security level is harmless. LL ≤
CLL[LL, . . . , LL] means that any untrusted data can be used as an untrusted channel
to transmit untrusted data. Since we forbid LL channels in Γ, this is the only way an
untrusted channel can be typed. Cℓ[T̃ ] ≤ ℓ means that channels can be considered as
generic data at their security level ℓ. For trusted channels this can never be reversed: once
a trusted channel is considered as a datum, it can never be used again as a channel. In
fact, HH ∕≤ LL. Notice that, as expected, subtyping respects the security level lattice.
Formally:

Remark 1 (Level Subtyping) T ≤ T ′ implies ℒ(T ) ⊑ ℒ(T ′).

Characterizing channel types. We point out some interesting properties for channel
types. First, if a term has a channel type of level HH , then this is precisely the type
specified in the typing environment, i.e., the channel type has not been derived via sub-
sumption. In fact, the only channel types derivable by subtyping are the ones at level
LL.

Proposition 1 (High Channels) Γ ⊢ N : CHH [T̃ ] implies N : CHH [T̃ ] is in Γ.

Untrusted LL channels can only be used to transmit untrusted messages. This is a con-
sequence of the fact LL channels cannot be declared in Γ and are only derived via sub-
sumption.

Proposition 2 (Low Channels) Γ ⊢ N : CLL[T̃ ] implies T̃ = LL, . . . ,LL.

We also prove that LL and HH are the only admissible security levels for channels, i.e.,
channel types at level HL and LH are never derivable. This is a consequence of Γ only
allowing HH channels and of ≤ only deriving LL ones.

Proposition 3 (Channel Levels) Γ ⊢ N : Cℓ[T̃ ] implies ℓ ∈ {LL,HH }.

Finally, a fundamental property of our type system is that the type of a channel of a given
arity is unique. This is a consequence of the three above results.

Corollary 1 (Uniqueness of Channel Types) If Γ ⊢ N : Cℓ[T̃ ] and Γ ⊢ N : Cℓ′ [T̃ ′]
with ∣T̃ ∣ = ∣T̃ ′∣ then Cℓ[T̃ ] = Cℓ′ [T̃ ′].

The proof of these properties is simple and left as an exercise to the reader.



STOP
Γ ⊢ ⋄
Γ ⊢ 0

PAR
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P ∣ Q

REPL
Γ ⊢ P

Γ ⊢!P

RES
Γ, a : T ⊢ P

Γ ⊢ (�a : T ) P

COND
Γ ⊢ M : T Γ ⊢ N : T ′ Γ ⊢ P Γ ⊢ Q

Γ ⊢ if M = N then P else Q

IN
Γ, x̃ : T̃ ⊢ P Γ ⊢ N : Cℓ[T̃ ]

Γ ⊢ N(x̃).P

OUT
Γ ⊢ M̃ : T̃ Γ ⊢ P Γ ⊢ N : Cℓ[T̃ ]

Γ ⊢ N⟨M̃⟩.P

Table 5. Core calculus: typing processes.

Typing Processes. Table 5 dictates how processes should deal with typed channels and
values. We use the concise notation Γ ⊢ M̃ : T̃ for denoting ∀i ∈ [1,m], Γ ⊢ Mi : Ti.
Rules STOP, PAR, REPL, RES and COND simply check that the subprocesses and terms
are well-typed under the same Γ, enriched with a : T in case of RES. Intuitively, these
rules do not directly impose any restriction. The only interesting rules are, in fact, IN

and OUT which respectively state that terms received from and sent to the network are of
type T̃ , as dictated by the channel type Cℓ[T̃ ]. Notice that, since input binds the variables
x̃, we add x̃ : T̃ , i.e., x1 : T1, . . . , xm : Tm, in Γ when typing the sequent process P .

Example 2 Consider again process (�b : CHH [LH]) (c(x).b⟨x⟩ ∣ b(y).P ) of example 1.
We have seen it does not guarantee integrity, as data read from the untrusted channel c
are forwarded on the trusted one b. Intuitively, it does not type-check as x is received as
LL (i.e., from the environment) and should be lowered to LH in order to be transmitted
over b. Recall that we always assume free names such as c to be of type LL, since they
can be thought of as under the control of the opponent. We let Γ be c : LL, b : CHH [LH]
and we show that c(x).b⟨x⟩ cannot be type-checked under Γ. Notice, in fact, that after
type-checking the initial restriction, b : CHH [LH] is added into Γ. Notice also that, via
subsumption, from Γ ⊢ c : LL and LL ≤ CLL[LL] we obtain Γ ⊢ c : CLL[LL].
Formally, typing would proceed as follows (read it bottom-up):

IN

OUT (((((((((
Γ, x : LL ⊢ x : LH Γ ⊢ b : CHH [LH]

Γ, x : LL ⊢ b⟨x⟩ Γ ⊢ c : CLL[LL]

Γ ⊢ c(x).b⟨x⟩

The crucial part is that from x : LL we can never prove x : LH since LL ∕≤ LH .
The above example formally shows the importance of considering integrity levels contra-
variant, as previously discussed: a low-integrity variable can never be considered as high-
integrity. Below we will formally proof that typing ensures integrity, thus processes vio-
lating integrity, as the above one, can never type-check.

Example 3 Let us consider now a simple protocol where A sends to B a fresh mes-
sage of level HH on a channel of type CHH [HH ]. The typing derivation for the process
modelling this protocol is shown below (rule names are omitted for lack of space):



c : CHH [HH ],m : HH ⊢ ⋄
c : CHH [HH ],m : HH ⊢ 0

c : CHH [HH ],m : HH ⊢ c⟨m⟩
c : CHH [HH ] ⊢ (�m : HH ) c⟨m⟩

c : CHH [HH ], x : HH ⊢ ⋄
c : CHH [HH ], x : HH ⊢ 0

c : CHH [HH ] ⊢ c(x)

c : CHH [HH ] ⊢ (�m : HH ) c⟨m⟩ ∣ c(x)
∅ ⊢ (�c : CHH [HH ]) ((�m : HH ) c⟨m⟩ ∣ c(x))

Notice that the variable x has type HH , so our type system guarantees that what is
received by B is both at high confidentiality and high integrity. ⊓⊔

2.3. Properties of the Type System

The next lemmas state some standard properties of our type system. The strengthening
lemma states that removing from Γ bindings relative to names not occurring free in the
judgment preserve typing. In fact, those names do not contribute in any way to derive the
judgment. We let fnfv(⋄) = ∅ and fnfv(M : T ) = fnfv(M) = {M}. We write Γ ⊢ J to
denote the three possible judgments Γ ⊢ ⋄, Γ ⊢ M : T and Γ ⊢ P .

Lemma 1 (Strengthening) If Γ,M : T ⊢ J and M ∕∈ fnfv(J ) then Γ ⊢ J .

The weakening lemma states that extending Γ preserves typing, as long as the extended
environment is well-formed. Intuitively, adding new (well-formed) bindings does not
compromise typing.

Lemma 2 (Weakening) Γ ⊢ J and Γ,M : T ⊢ ⋄ imply Γ,M : T ⊢ J .

Finally, substituting variables with terms of the appropriate type has no effect on typing.

Lemma 3 (Substitution) If Γ, x : T ⊢ J and Γ ⊢ M : T , then Γ ⊢ J {M/x}.

Before proving that the type system enforces both secrecy and integrity, it is important to
show that it does not restrict opponent’s capabilities. Intuitively, an opponent is untyped
as it is not willing to follow any discipline we might want to impose to trusted, typed,
processes. However, our theorems are all based on typed processes. It is thus important
that the type-system is developed so to avoid any restriction on LL data and channels, so
that any opponent can be typed without actually restricting its capabilities. This is what
we prove:

Proposition 4 (Opponent typability) Let O be an opponent and let fn(O) = {ã}. Then
ã : LL ⊢ O.

The proof of these properties is left as an exercise to the interested reader. We now
prove the fundamental result underlying type safety: typing is preserved by structural
congruence and reduction. Thanks to this result and to the previous proposition, we will
be guaranteed that when running a typed process in parallel with a (typed) opponent we
will always obtain a typed process. This will allow us to show that secrecy and integrity
are preserved at run-time.

Proposition 5 (Subject congruence and reduction) Let Γ ⊢ P . Then



1. P ≡ Q implies Γ ⊢ Q;
2. P → Q implies Γ ⊢ Q.

Proof:
1. In order to deal with the symmetry of ≡ we prove a stronger fact: P ≡ Q or Q ≡ P
implies Γ ⊢ Q. We proceed by induction on the derivation of P ≡ Q. We need the
following easy result:

Γ ⊢ J implies Γ ⊢ ⋄. (3)

We just prove the interesting base cases (and their symmetric counterparts). The remain-
ing ones are all trivial and left as an exercise to the reader.

(�a : T ) 0 ≡ 0 We have Γ ⊢ (�a : T ) 0. This judgment can only be proved by RES,
which implies Γ, a : T ⊢ 0. By (3), Γ, a : T ⊢ ⋄. By Lemma 1 (Strengthening),
we obtain Γ ⊢ ⋄. Finally, by STOP, we get Γ ⊢ 0.
The result holds also for symmetric counterpart (i.e., 0 ≡ (�a : T ) 0), since we
can derive Γ, a : T ⊢ ⋄ from Γ ⊢ ⋄ by Lemma 2 (Weakening) and to conclude by
STOP and RES.

(�a : T ) (P ∣ Q) ≡ P ∣ (�a : T ) Q if a /∈ fn(P ) We know Γ ⊢ (�a : T ) (P ∣ Q),
which implies Γ, a : T ⊢ P and Γ, a : T ⊢ Q. By Lemma 1 (Strengthening), since
a /∈ fn(P ), we get Γ ⊢ P . By RES and PAR, we get Γ ⊢ P ∣ (�a : T ) Q.
For the symmetric counterpart P ∣ (�a : T )Q ≡ (�a : T ) (P ∣Q), we have Γ ⊢ P
and Γ, a : T ⊢ Q. By (3), we get Γ, a : T ⊢ ⋄. By Lemma 2 (Weakening), we
obtain Γ, a : T ⊢ P . The thesis follows by PAR and RES.

(�a : T ) (�b : T ′) P ≡ (�b : T ′) (�a : T ) P (a ∕= b) The judgment Γ ⊢ (�a : T ) (�b :
T ′) P can only be proved by RES, which implies Γ, a : T, b : T ′ ⊢ P thus
Γ, b : T ′, a : T ⊢ P since Γ is a set. Notice that the side condition a ∕= b is crucial,
since we would otherwise have (�a : T ) (�b : T ′) P equivalent by �-renaming (if
a /∈ fn(P )) to (�a : T ) (�a : T ′) P{a/b} ≡ (�a : T ′) (�a : T ) P{a/b}, which is
equivalent, again by �-renaming, to (�a : T ′) (�b : T ) P . This process would not
necessarily be well-typed since the type of b has changed.

The remaining (inductive) cases are all trivial. For example, P ≡ Q , Q ≡ R ⇒ P ≡ R
is proved by noticing that Γ ⊢ P and P ≡ Q imply, by induction, that Γ ⊢ Q. From
Q ≡ R, again by induction, we get the thesis Γ ⊢ R. The symmetric counterparts of
these rules are the same as the original ones except that P and Q are exchanged, so no
additional proof is needed.

2. The proof is by induction on the derivation of P → Q. Base cases RED COND 1 and 2
are trivially proved by observing that Γ ⊢ if M = N then P else Q requires Γ ⊢ P and
Γ ⊢ Q. Case RED I/O is proved by observing that Corollary 1 (Uniqueness of Channel
Types), IN, and OUT imply Γ, x̃ : T̃ ⊢ Q and Γ ⊢ N : Cℓ[T̃ ] and Γ ⊢ M̃ : T̃ and
Γ ⊢ P . By applying Lemma 3 (Substitution), we obtain Γ ⊢ Q{M̃/x̃} and, by PAR, we
get Γ ⊢ P ∣ Q{M̃/x̃}.

The inductive cases are all trivial. We just mention that (RED STRUCT) is based on
item 1 of this lemma. ⊓⊔



M,N,K ::= terms
. . . as in Table 1
ek(K) encryption key
vk(K) verification key
{∣M̃ ∣}sK sym encryption
{∣M̃ ∣}aK asym encryption
[M̃ ]K digital signature

P,Q,R,O ::= processes
. . . as in Table 1
case M of {∣x̃∣}sK in P sym decryption
case M of {∣x̃∣}aK in P asym decryption
case M of [x̃]K in P signature check

Table 6. Syntax for cryptographic messages and cryptographic operations

Secrecy and Integrity by typing. We finally prove that well-typed processes preserve
secrecy and integrity.

Theorem 1 (Secrecy and Integrity for ⊢) If ñ : LL ⊢ Γ, then P preserves both secrecy
and integrity.

Proof:
Let O be an opponent. By Proposition 4 (Opponent typability) we have that fn(O) = {ã}
implies ã : L̃L ⊢ O. Let fn(O) ∖ dom(Γ) = {b̃} be the free names of O not occurring
in Γ. Now let Γ′ = Γ, b̃ : LL. From Γ ⊢ ⋄, we clearly have that Γ′ ⊢ ⋄. By Lemma 2
(Weakening), we have that Γ′ ⊢ P and Γ′ ⊢ O. By PAR, we obtain Γ′ ⊢ P ∣ O. We now
have two separate proofs for secrecy and integrity:

Secrecy Let P ∣ O →∗ (�d : T ) (�ã : T̃ ) (P ′ ∣ b⟨d⟩.P ′′). By Proposition 5 (Subject
congruence and reduction) we get Γ′ ⊢ (�d : T ) (�ã : T̃ ) (P ′ ∣ b⟨d⟩.P ′′) which implies
Γ′, d : T, ã : T̃ ⊢ b⟨d⟩.P ′′, by repeatedly applying RES and finally by PAR.

Let Γ′′ = Γ′, d : T, ã : T̃ . By rule OUT we necessarily have that Γ′′ ⊢ b : Cℓ[T ′] and
Γ′′ ⊢ d : T ′ with T ≤ T ′ and thus ℒC(T ) ⊑C ℒC(T

′) by Remark 1 (Level Subtyping).
If ℒC(T ) = L we have nothing to prove as we certainly have ℒC(T ) ⊑C

ℒC,d:T,ã:T̃ (b). Assume then ℒC(T ) = H . This implies ℒC(T
′) = H . By Proposition 3

(Channel Levels), ℓ ∈ {LL,HH }, and by Proposition 2 (Low Channels) we are also
guaranteed that ℓ = HH since, otherwise, T ′ would necessarily be LL. Then, Proposi-
tion 1 (High Channels) proves that b : Cℓ[T ′] is in Γ′′, thus also ℒC,d:T,ã:T̃ (b) = H ,
giving the thesis.

Integrity Let now P ∣ O →∗ (�b : CHH [T ]) (�ã : T̃ ) (P ′ ∣ b⟨c⟩.P ′′). By Proposition 5
(Subject congruence and reduction) we get Γ′ ⊢ (�b : CHH [T ]) (�ã : T̃ ) (P ′ ∣ b⟨c⟩.P ′′),
which implies Γ′, b : CHH [T ], ã : T̃ ⊢ b⟨c⟩.P ′′, by repeatedly applying RES and finally
by PAR.

Let Γ′′ = Γ′, b : CHH [T ], ã : T̃ . Rule OUT requires Γ′′ ⊢ b : Cℓ[T ′] and Γ′′ ⊢ c : T ′.
By Corollary 1 (Uniqueness of Channel Types), we obtain that Cℓ[T ′] = CHH [T ], thus
T = T ′. From Γ′′ ⊢ c : T we necessarily have that c : T ′′ is in Γ′′ with T ′′ ≤ T

and, by Remark 1 (Level Subtyping), ℒ(T ′′) ⊑ ℒ(T ). Notice that ℒI(T ) = H implies
ℒI(T

′′) = H , as H is the lowest possible level. Since ℒI,b:CHH [T′],ã:T̃(c) = ℒI(T
′′) we

get the thesis. ⊓⊔



K+ K−

Symmetric encryption K K

Asymmetric encryption ek(K) K

Digital signature K vk(K)

case ⟨M̃⟩K+ of ⟨x̃⟩K− in P → P{M̃/x̃} (DEC/CHECK)

Table 7. Semantics of cryptographic operations (extends Table 2)

3. Spi Calculus

Our study on types for cryptographic protocols is developed on a polyadic variant of
the spi-calculus [6]. This calculus extends the pi-calculus in order to explicitly reason
about protocols based on symmetric encryptions, asymmetric encryptions, and digital
signatures.

Syntax and semantics. We extend the syntax of the calculus by introducing (i) terms
that represent keys and ciphertexts and (ii) processes that describe cryptographic oper-
ations, as shown in Table 6. Term ek(K) denotes the public encryption key correspond-
ing to the private key K, and term vk(K) is the public verification key corresponding
to the signing key K (hence K has to be kept secret, while ek(K) and vk(K) can be
published); {∣M̃ ∣}sK , {∣M̃ ∣}aK , and [M̃ ]K denote, respectively, the symmetric and asym-
metric encryption and the digital signature of the tuple of terms M̃ . Notice that we model
cryptographic schemes where encryption and verification keys can be recovered from the
corresponding decryption and signing keys, respectively. In other words, decryption and
signing keys can be seen as key-pairs themselves. We believe this approach provides a
more succinct theory but we could model as easily cryptographic schemes where neither
key can be retrieved from the other, as done for instance in the original presentation of
the spi-calculus [6].

In the following, we write u to denote a name or a variable. It will also be con-
venient to write ⟨M̃⟩K to denote a generic encryption/signature term when its exact
nature is unimportant. We will also use the notation K+ and K− to respectively de-
note encryption/signature keys and their decryption/verification counterparts, as speci-
fied in Table 7 together with the semantics of cryptographic operations. Intuitively, pro-
cess case M of ⟨x̃⟩K− in P tries to decrypt or check the signature of M with key K−

and behaves as P{M̃/x̃} if it succeeds, i.e., when M is ⟨M̃⟩K+ , or gets stuck otherwise.

Example 4 Let us consider the Blanchet authentication protocol [11]. This protocol is
modelled in the spi-calculus as follows:

Protocol ≜ (�kA : TA) (�kB : TB) (Initiator ∣ Responder)

For the moment, let us ignore the typing annotations. We first generate two fresh key
pairs for A and B, respectively, and then run the processes modelling the initiator B and
the responder A in parallel.

Initiator ≜ (�k : Tk) c⟨{∣[A,B, k]kB
∣}aek(kA)⟩.c(xe).

case xe of {∣xm∣}sk in 0



The initiator B generates a fresh session key k, signs A and B’s identifiers along with
k, encrypts this signature with A’s encryption key, and outputs the resulting ciphertext
on the free channel c, which represents the network. Hence B waits for the response,
decrypts it using the session key k, and concludes the protocol session. The process
modelling the responder is reported below:

Responder ≜ c(xe).case xe of {∣xs∣}akA
in case xs of [xA, xB , xk]vk(kB) in

if A = xA then (�m : HH ) c⟨{∣m∣}sxk
⟩

The responder A receives the challenge, decrypts the ciphertext and verifies the enclosed
signature, checks that the first signed message is her own identifier, generates a fresh
HH message m and sends it to the initiator encrypted under the received session key xk.

⊓⊔

4. Types and Integrity (Revised)

Types. We statically characterize the usage of cryptographic keys by extending the syn-
tax of types as follows:

T ::= . . . as in Equation 1 ∣ �Kℓ[T̃ ]
� ::= Sym ∣ Enc ∣ Dec ∣ Sig ∣ Ver (4)

These types are close in spirit to the ones for channels. The type �Kℓ[T̃ ] describes keys
at security level ℓ that are used to perform cryptographic operations on terms of type
T̃ . Depending on the label �, this type may describe symmetric, encryption, decryption,
signing, or verification keys.

Example 5 Let us consider the process illustrated in Example 4. Type Tk of the session
key is SymKHH [HH ] as it is trusted (ℓ = HH ), symmetric (� = Sym) and transports
HH terms. The type TB of B’s signing key kB is SigKHH [LL,LL, Tk] and the type of
the corresponding (public) verification key vk(kB) is VerKLH [LL,LL, Tk], since this
trusted, i.e., high integrity, key-pair is used to sign two LL identifiers and a symmetric
session key of type Tk. The type TA of A’s decryption key kA is DecKHH [HH ] and
the type of the corresponding encryption key ek(kA) is EncKLH [HH ]. This key-pair is
indeed used to encrypt a signature which is at high confidentiality, since it contains a
secret key, and high integrity, since B has generated it respecting all the types dictated
by the signing key. ⊓⊔

Secrecy and Integrity. The definition of secrecy for cryptographic protocols is the same
as the one given in Section 2.1, i.e., the opponent should not be able to send high-
confidentiality data on public channels. The integrity property, however, has to be revised
to take into account the cryptographic setting.

Intuitively, we say that M is a high integrity term if it is either (i) a restricted name
bound to a high integrity type, as before, or (ii) a ciphertext or a signature obtained from
a secure HH key, in which the integrity of the enclosed messages respects the integrity
level dictated by the key type. We achieve this by adapting the definition of ℒI,Γ(M) as



follows (as before, we focus on ciphertexts of arity 1, since the extension to an arbitrary
arity is immediate):

ℒI,Γ(u) =

{
ℒI(Γ(u)) whenever u ∈ dom(Γ)
L otherwise

ℒI,Γ(ek(K)) = ℒI,Γ(vk(K)) = ℒI,Γ(K)

ℒI,Γ(⟨M⟩K+) =

⎧⎨⎩
H if Γ(K) = �KHH [T ] and

ℒI,Γ(M) ⊑I ℒI(T )

L otherwise

Intuitively, we want to ensure that high-integrity variables get replaced only by high-
integrity terms. This is formalized by the following definition, which extends Definition 3
(Integrity) so to deal with cryptographic operations.

Definition 4 (Integrity with Cryptography) P preserves integrity if, for all oppo-
nents O, whenever

P ∣ O →∗ (�b : CHH [T ]) (�ã : T̃ ) (P ′ ∣ b⟨M⟩.P ′′) or
P ∣ O →∗ (�k+ : �KHH [T ]) (�ã : T̃ ) (P ′ ∣ case ⟨M⟩k+ of ⟨x⟩k− in P ′′)

then ℒI,Γ(M) ⊑I ℒI(T ) with Γ = b : CHH [T ], k+ : �KHH [T ], ã : T̃ .

As already noticed, Γ is always guaranteed to be a function thanks to the implicit alpha
renaming of bound names. The definition above considers only symmetric ciphertexts
and signatures, since K+ is required to be a name by restriction. Asymmetric ciphertexts
in general do not provide integrity guarantees, since they might have been generated by
the attacker. In the following, we will see that our type system can in some cases statically
determine whether or not a certain ciphertext comes from the attacker (for instance, if the
ciphertext was signed with a high-integrity key used to sign self-generated ciphertexts).
For the sake of simplicity, however, we preferred to exclude asymmetric ciphertexts from
the semantic definition of integrity, since we would otherwise need to explicitly annotate
decryptions that are supposed to be applied to high-integrity ciphertexts.

5. A Type System for Cryptographic Protocols

This section extends the type system studied in Section 2.2 to cryptographic protocols.
We take the fundamental ingredients of the type system for secrecy proposed by Abadi
and Blanchet in [3], showing how these ideas can be smoothly refined to also reason
about integrity properties.

Subtyping and Environment. Subtyping for keys is similar to the one for channels. For-
mally, the subtyping relation is defined as the least preorder such that:

. . . as in Equation 2

LL ≤ �KLL[LL, . . . ,LL]

�Kℓ[T̃ ] ≤ ℓ

(5)



EMPTY
∅ ⊢C ⋄

ENV
Γ ⊢C ⋄ u /∈ dom(Γ) T = �Kℓ[. . .],Cℓ[. . .] ⇒ ℓ = HH,� ∈ {Sym,Dec, Sig}

Γ, u : T ⊢C ⋄

Table 8. Cryptographic calculus: well-formedness of Γ

ENCKEY
Γ ⊢C K : DecKℓCℓI [T̃ ]

Γ ⊢C ek(K) : EncKLℓI [T̃ ]

VERKEY
Γ ⊢C K : SigKℓCℓI [T̃ ]

Γ ⊢C vk(K) : VerKLℓI [T̃ ]

SYMENC
Γ ⊢C K : SymKℓCℓI [T̃ ] Γ ⊢C M̃ : T̃

Γ ⊢C {∣M̃ ∣}sK : LℓI

ASYMENC
Γ ⊢C K : EncKℓCℓI [T̃ ] Γ ⊢C M̃ : T̃

Γ ⊢C {∣M̃ ∣}aK : LℓI

DIGSIG
Γ ⊢C K : SigKℓCℓI [T̃ ] Γ ⊢C M̃ : T̃ ℓ′C = ⊔T∈T̃ℒC(T )

Γ ⊢C [M̃ ]K : ℓ′CℓI

Table 9. Cryptographic calculus: extending Table 4 to keys and cryptography.

Keys of level ℓ can be used in place of terms of type ℓ and terms of type LL can be
used in place of keys of type �KLL[LL, . . . ,LL]. We denote this extended subtyping
≤C to distinguish it from the core one. As expected, the level of a key type is ℓ, i.e.,
ℒ(�Kℓ[T̃ ]) = ℓ. As for the core type system, we have:

Remark 2 (Level subtyping for ≤C) T ≤C T ′ implies ℒ(T ) ⊑ ℒ(T ′).

The well-formedness of typing environments is defined in Table 8. Recall that we write
u to denote a name or variable and we write ⊢C to denote the new type system. Since
encryption and verification keys are derived by their private counterparts, it is natural that
their types are also derived. We thus allow in Γ only the types of symmetric, signing, and
decryption keys. As for channels, only trusted HH keys are kept in Γ. Interestingly, as
we have already shown in the example, derived keys will assume more articulate levels
than just HH and LL, reflecting their asymmetric nature.

Typing Terms. In Table 9 we give the typing rules for the new terms, namely derived
keys, encryptions and signatures. ENCKEY says that if a decryption key K is of type
DecKℓCℓI [T̃ ], then the corresponding encryption key ek(K) is of type EncKLℓI [T̃ ]. No-
tice that the confidentiality level is L, since public keys are allowed to be known to the
attacker, while the integrity level is inherited from the decryption key; VERKEY does the
same for verification and signing keys.

Ciphertexts are typed by SYMENC and ASYMENC. Ciphertexts can be output on
public channels and consequently their confidentiality level is L. Their integrity level,
instead, is the one of the key. The type of encrypted messages M̃ is required to be the
one specified in the type of key. Digital signatures are typed by DIGSIG. The only differ-
ence with respect to the encryption rules is that the obtained confidentiality level is the
maximum of the confidentiality levels of the signed messages M̃ : these messages can be
reconstructed from a signature using the public verification key, thus it is important to
keep track of the confidentiality level of what is signed.



SYM DEC
Γ ⊢C M : T Γ ⊢C K : SymKℓ[T̃ ] Γ, x̃ : T̃ ⊢C P

Γ ⊢C case M of {∣x̃∣}sK in P

ASYM DEC
Γ ⊢C M : T Γ ⊢C K : DecKℓ[T̃ ] Γ, x̃ : T̃ ⊢C P ℒI(T ) = L ⇒ Γ, x̃ : LL ⊢C P

Γ ⊢C case M of {∣x̃∣}aK in P

SIGN CHECK
Γ ⊢C M : T Γ ⊢C K : VerKℓCℓI [T̃ ] Γ, x̃ : T̃ ⊢C P ℒC(T ) = H ⇒ ℓI = H

Γ ⊢C case M of [x̃]K in P

NONCE CHECK
Γ ⊢C M : T n : T ′ in Γ ℒ(T ′) ∕≤ ℒ(T ) Γ ⊢C P2

Γ ⊢C if M = n then P1 else P2

Table 10. Typing Rules for Processes

Characterizing Keys and Ciphertexts. We now review some important properties of
keys and ciphertexts. As we will see, these properties are very close, in spirit, to the
ones for channels (cf. section 2.2). As for high channels (Proposition 1), we show that
the type of trusted HH keys is always in Γ, i.e., it can never be derived by a different
type. In fact, only LL and LH keys can be respectively derived via SUBSUMPTION or
ENCKEY/VERKEY.

Proposition 6 (High Keys for ⊢C) Γ ⊢C N : �KHH [T̃ ] implies N : �KHH [T̃ ] in Γ.

As for low channels (Proposition 2), keys of security level LL may only encrypt (or sign)
messages of type LL.

Proposition 7 (Low Keys for ⊢C) Γ ⊢C N : �KLL[T̃ ] implies T̃ = LL, . . . ,LL.

Concerning the security level of keys, we have to make a distinction between private and
public keys. Similarly to channels (Proposition 3), private keys can only be derived by
ATOM or SUBSUMPTION, thus they can only assume levels LL and HH .

Proposition 8 (Private Keys for ⊢C) If Γ ⊢C N : �Kℓ[T̃ ] and � ∈ {Sym,Sig,Dec}
then ℓ ∈ {LL,HH }.

Public encryption/verification keys can only be derived via SUBSUMPTION, ENCKEY or
VERKEY, but never from ATOM, from which the following result:

Proposition 9 (Public Keys for ⊢C) If Γ ⊢C N : �Kℓ[T̃ ] and � ∈ {Enc,Ver} then
ℓ ∈ {LL,LH }.

Similarly to channels, the type of HH symmetric, decryption and signature keys is
unique. For LL such keys, instead, we are not guaranteed of the uniqueness of � as un-
trusted keys can be indifferently used as symmetric, decryption and signature keys. The
transported type is instead guaranteed to be LL, . . . , LL. We could also prove that the
type of encryption and verification keys is unique if we fix the level to be LH . In fact,
being them public, they can also be typed at level LL, reflecting their asymmetric nature.
Since the latter property is not used in the proofs, we just state the former.



Proposition 10 (Uniqueness of Key Types for ⊢C) If Γ ⊢C K : �Kℓ[T̃ ] and Γ ⊢C K :
�′Kℓ′ [T̃ ′] with �, �′ ∈ {Sym,Sig,Dec} and ∣T̃ ∣ = ∣T̃ ′∣ then ℓ = ℓ′ and T̃ = T̃ ′. If
ℓ = ℓ′ = HH , we also have � = �′.

Finally, we characterize the type of encrypted (or signed) messages. Their type is dic-
tated by the type of the private key, except for messages encrypted with asymmetric
keys, which may also be of type LL if the ciphertext is low-integrity, e.g., received on an
untrusted channel. In fact, the opponent can himself generate messages encrypted with
honest principals public keys. For signatures we are also guaranteed that their confiden-
tiality level is greater than or equal to the maximum confidentiality level of the signed
messages. This is important to preserve the secrecy of signed terms.

Proposition 11 (Payload Type for ⊢C) The following implications hold:

1. Γ ⊢C {∣M̃ ∣}sK : T and Γ ⊢C K : SymKℓ[T̃ ] imply Γ ⊢C M̃ : T̃ .
2. Γ ⊢C {∣M̃ ∣}aek(K) : T and Γ ⊢C K : DecKℓ[T̃ ] imply Γ ⊢C M̃ : T̃ or ℒI(T ) = L

and Γ ⊢C M̃ : LL.
3. Γ ⊢C [M̃ ]K : T and Γ ⊢C K : SigKℓ[T̃ ] imply Γ ⊢C M̃ : T̃ and

⊔Ti∈T̃ℒC(Ti) ⊑C ℒC(T ).

Typing Processes. We finally extend the type system with the rules for processes per-
forming cryptographic operations, as shown in Table 10. SYM DEC says that processes
of the form case M of {∣x̃∣}sK in P , where K is a symmetric key of type SymKℓ[T̃ ],
are well-typed if M can be typed and P is well-typed in an environment where variables
x̃ are given type T̃ . This is sound since our type system guarantees that at run-time vari-
ables x̃ will only be replaced by values of type T̃ . In fact, if the decryption succeeds, then
M is a ciphertext of the form {∣M̃ ∣}sK ; since this term can only be typed by SYMENC

and K has type SymKℓ[T̃ ], we know that M̃ have types T̃ .
ASYM DEC is close in spirit, but in the case of asymmetric cryptography we need

to take into account that the encryption key is known to the attacker and therefore the
ciphertext {∣M̃ ∣}aek(K) might come from the adversary meaning that M̃ could be of type

LL. This might seem to be strange, since {∣M̃ ∣}aK can only be typed by ASYMENC and
M̃ must have the type specified in the type of the encryption key ek(K). However, ek(K)
can be given type EncKLℓI [T̃ ] by ENCKEY as well as EncKLL[LL, . . . ,LL] via the
subtyping relation EncKLℓI [T̃ ] ≤ LℓI ≤ LL ≤ EncKLL[LL, . . . ,LL], which allows
the attacker to type public encryption (and verification) keys. Since we cannot always
statically predict if x̃ will be instantiated, at run-time, to values of type T̃ or values
of type LL, we may have to type-check the continuation process twice, the first time
under the assumption that the ciphertext comes from a honest participant, the second
time under the assumption that the ciphertext comes from the attacker. In contrast to the
type system proposed by Abadi and Blanchet in [3], where the continuation process is
type-checked twice in any case, in our type system this happens only if the ciphertext
is at low integrity, i.e., ℒI(T ) = L. As stated in Proposition 11 (Payload Type for ⊢C),
if the ciphertext is at high integrity, we know that the type of encrypted messages is
precisely the one specified in the key type and therefore we can simply type-check the
continuation process under this typing assumption. This shows how combining integrity
and confidentiality properties increases the precision of the analysis allowing us, e.g.,
to type-check processes based on the encrypt-then-sign paradigm, where the integrity of



the ciphertext is guaranteed by digital signature. An application of this rule is shown in
Example 7.

SIGN CHECK is similar to SYM DEC but applies to processes performing the verifi-
cation of a signature. The condition ℒC(T ) = H ⇒ ℓI = H is crucial for the soundness
of our type system that combines confidentiality and integrity, since it avoids that pro-
cesses use LL keys to verify a signature that transports high confidentiality data. In fact,
that would downgrade the level to LL compromising secrecy.

Finally, NONCE CHECK is an additional rule, borrowed from [3] and adapted to fit
our subtyping relation, that is typically used to type equality checks involving a nonce.
Intuitively, since a name n can never be equal to a term M which is typed at a level
which is not greater than or equal to the one of n, in such a case we can ignore the then
branch of the equality test and we do not need to type-check it. This rule allows us to
prune one of the typing branches introduced by ASYM DEC in the case the type of some
of the messages in the ciphertext suffices to determine that the ciphertext does not come
from the attacker. An application of this rule is illustrated in Example 8.

Example 6 We show that the Blanchet protocol of Example 4 and Example 5 is well
typed, i.e., A : LL, B : LL, c : LL ⊢C Protocol. We will prove that this guarantees
secrecy and integrity of both the session key sent by B to A and the message sent by A

to B. In the following, we focus on the typing rules applied for proving this judgment
and illustrate how they modify the typing environment.

Rules Applied Γ ⊢C Protocol

RES A : LL, B : LL, c : LL (�kA : DecKHH [HH ])
RES . . . , kA : DecKHH [HH ] (�kB : SigKHH [LL,LL, Tk])
PAR . . . , kB : SigKHH [LL,LL, Tk] (Initiator ∣ Responder)

where Tk is SymKHH [HH ]. The two restrictions just introduce the bindings kA : TA and
kB : TB . The same Γ is then used to independently type the initiator and the responder.

Rules Applied Γ ⊢C Initiator

RES − (�k : SymKHH [HH ])
OUT . . . , k : SymKHH [HH ] c⟨{∣[A,B, k]kB ∣}aek(kA)⟩
IN − c(xe)

ASYM DEC . . . , xe : LL case xe of {∣xm∣}sk in 0
STOP . . . , xm : HH 0

In the initiator process, the restriction of the session key is typed by RES, which intro-
duces the type binding k : SymKHH [HH ]. The output of {∣[A,B, k]kB

∣}aek(kA) is typed
by OUT: in order to apply this rule, we have to prove that [A,B, k]kB

is of type HH

(DIGSIG) and {∣[A,B, k]kB
∣}aek(kA) is of type LH (ASYMENC) and thus LL by sub-

sumption. Notice that the ciphertext has to be given type LL since the type of c in Γ is in-
deed LL. The input of the response xe is typed by IN, which introduces the type binding
xe : LL. The decryption of the ciphertext is typed by SYM DEC, which introduces the
type binding xm : HH , since HH is the type transported by key k. Process 0 is finally
typed by STOP.



Rules Applied Γ ⊢C Responder

IN − c(xe).
SYM DEC . . . , xe : LL case xe of {∣xs∣}akA

in
SIGN CHECK . . . , xs : LL / . . . , xs : HH case xs of [xA, xB , xk]vk(kB) in

COND . . . , xA : LL, xB : LL, xk : Tk if A = xA then
RES − (�m : HH )
OUT . . . ,m : HH c⟨{∣m∣}sxk

⟩

In the responder process, the input of the challenge is typed by IN, which introduces the
type binding xe : LL. The decryption of this message is typed by ASYM DEC: Since the
ciphertext is of low confidentiality and we cannot statically determine if the ciphertext
originates from the attacker or not, we have to type the continuation process twice, under
the assumptions xs : LL and xs : HH . The two typing derivations are, however, the
same since xs occurs only in the following signature check, which is typed by SIGN

CHECK independently of the type of xs. This rule introduces the bindings xA : LL, xB :
LL, xk : Tk, as specified in the type of kB . The equality test is typed by COND and the
generation of message m by RES. We finally type-check process c⟨{∣m∣}sxk

⟩ by OUT,
showing that {∣m∣}sxk

is of type LL by ASYMENC and subsumption. ⊓⊔

Example 7 As previously discussed, in our type system the process after an asymmetric
decryption has to be type-checked twice only if the ciphertext is at low integrity. If the
ciphertext is instead at high integrity, we type-check the continuation process only once,
with the type information specified in the key, thus gaining precision in the analysis. We
illustrate this technique on the following protocol:

A B C

[{∣m∣}a
ek(kB)]kA

//

{∣m∣}s
k

//

A sends message m, encrypted and then signed, to B. B forwards this message to C,
after encrypting it with a symmetric-key. The goal of this protocol is to guarantee the
confidentiality and integrity of m. Notice that the two messages constitute different, but
in a sense equivalent, cryptographic implementations of the (abstract) protocol shown in
Example 3, which is based on ideal secure pi-calculus channels.

For typing this protocol, we give kB type DecKHH [HH], kA type SigKHH [LH],
and the key shared between B and C type SymKHH [HH]. Notice that ciphertext
{∣m∣}aek(kB) is typed at level LH since it has been generated with the high integrity en-
cryption key ek(K) of type EncKLH [HH]. It can thus be signed with key kA. The ob-
tained term is of type LH ≤ LL and can be sent on the network.

Intuitively, B knows that this ciphertext comes from A, since only A knows the
signing key kA and this key is only used in the protocol to sign encryptions of messages
of level HH . Our type-system elegantly deals with this form of nested cryptography by
giving the ciphertext {∣m∣}aek(kB) obtained after signature verification type LH , as spec-
ified in the vk(kA) type VerKLH [LH]. This allows us to give to decrypted message m
type HH , as specified by the type of kB . Notice that the high-integrity of the ciphertext,
achieved via digital signature, allows us to type-check the continuation process once,
with m bound to the correct type HH . B can thus encrypt m with symmetric key k of



type SymKHH [HH]. In the type system presented in [3], this protocol would not type-
check since the process following the decryption would be type-checked a second time
with m : LL. This would forbid the encryption with k since LL ∕⊑ HH . ⊓⊔

Example 8 We now illustrate an interesting application of rule NONCE CHECK, which
allows us to prune one of the typing branches introduced by ASYM DEC, in case the
type of some of the decrypted messages suffices to determine that the ciphertext does not
come from the attacker. Let us consider the Needham-Schroeder-Lowe protocol:

A B

oo {∣nB ,B∣}a
ek(kA)

{∣nA,nB ,A∣}a
ek(kB)

//

oo {∣nA∣}a
ek(k′

A
)

For the sake of simplicity, our type system does not support types describing multiple
usages of the same key. For type-checking this protocol, we have thus to assume that the
first and the third ciphertext are encrypted using two different keys ek(kA) and ek(k′A).

B encrypts a fresh nonce nB with A’s public key and later receives a ciphertext
encrypted with his own public key containing nB , A’s nonce nA, and A’s identifier.
Let the two nonces nA, nB be given type HH and A’s identifier type LL. Suppose the
decryption of the second ciphertext binds these values to variables xnA

, xnB
, and xA,

respectively. Notice now that typing the decryption of the second message requires to
type the continuation process twice, once with the expected payload types HH,HH,LL
and once with types LL,LL,LL, to account for an encryption performed by the attacker.
After decryption, however, B performs a nonce check by comparing xnB

with nB . By
rule NONCE CHECK, we prune the case of xnB

having type LL, since LL and the type
HH of the nonce nB are incomparable. Intuitively, the type system ensures that variables
of type LL can only be instantiated to values of type T ≤ LL and therefore an equality
check between a name of type HH and a variable of type LL will always fail at run-time,
since HH ∕≤ LL. ⊓⊔

Exercise 1 Model the Needham-Schroeder-Lowe protocol in the spi-calculus such that
the resulting process type-checks. Give the two nonces type HH and provide suitable
typing annotations for keys. (Hint: Pay attention to the type of nB in the second encryp-
tion.)

Exercise 2 Extend the type system so to support multiple usages of the same key. This
can be done by introducing the following type:

�Kℓ[T̃1 + . . .+ T̃n]

This type describes keys used to encrypt tagged payloads msgi(M̃i) of type T̃i, which
is close in spirit to the tagged unions used in [23,24]. The calculus has to be ex-
tended with a term of the form {∣msgi(M̃)∣}aK and a decryption primitive of the form
case M of {∣msgi(x̃)∣}aK in P , which checks at run-time that msgi is the tag of the
messages encrypted in M .



Properties of the Type System. We leave as an exercise to the interested reader the
proof of strengthening, weakening, substitution, and opponent typability. We now prove
subject congruence and subject reduction.

Proposition 12 (Subject Congruence and Reduction for ⊢C) Let Γ ⊢C P . Then

1. P ≡ Q implies Γ ⊢C Q;
2. P → Q implies Γ ⊢C Q.

Proof:
1. The proof of subject congruence is the same as the one of Proposition 5 (Subject con-
gruence and reduction)(1) as ≡ is unchanged and the typing rules for processes related
by ≡ are also unchanged.

2. For proving subject reduction, we have to consider the typing rules introduced in
Table 10 and the new reduction rules of Table 7.

For the NONCE CHECK rule, we know that Γ ⊢C if M = n then P1 else P2,
Γ ⊢C M : T , Γ(n) = T ′, ℒ(T ′) ∕≤ ℒ(T ), and Γ ⊢C P2. We prove that if M =
n then P1 else P2 ∕→ P1, i.e., by RED COND 1 M ∕= n, which immediately proves the
thesis since Γ ⊢C P2. Let us assume by contradiction that M = n. Thus Γ ⊢C n : T , and
Γ(n) = T ′ which imply T ′ ≤ T . By Remark 2 (Level subtyping for ≤C), ℒ(T ′) ≤ ℒ(T ),
which contradicts our hypothesis ℒ(T ′) ∕≤ ℒ(T ).

We now consider the reduction rule of Table 7

case ⟨M̃⟩K+ of ⟨x̃⟩K− in P → P{M̃/x̃}

By hypothesis, Γ ⊢C case ⟨M̃⟩K+ of ⟨x̃⟩K− in P . The three rules for proving this
judgment are SYM DEC, ASYM DEC and SIGN CHECK. They all require Γ ⊢C ⟨M̃⟩K+ :
T and Γ ⊢C K− : �Kℓ[T̃ ] and Γ, x̃ : T̃ ⊢C P , with � = Sym,Dec,Ver, respectively. We
examine the three different cases:

Symmetric decryption. By Proposition 11 (Payload Type for ⊢C)(1), we have Γ ⊢C
M̃ : T̃ . Since Γ, x̃ : T̃ ⊢C P , by the substitution lemma, we obtain Γ ⊢C P{M̃/x̃}, as
desired.

Asymmetric decryption. Rule ASYM DEC additionally requires variables to be typed
LL, i.e., Γ, x̃ : LL ⊢C P , when ℒI(T ) = L. By Proposition 11 (Payload Type for ⊢C)(2),
we know that Γ ⊢C M̃ : T̃ or ℒI(T ) = L ∧ Γ ⊢C M̃ : LL. Since Γ, x̃ : T̃ ⊢C P and
Γ, x̃ : LL ⊢C P when ℒI(T ) = L, in both cases we can apply the substitution lemma
and obtain Γ ⊢C P{M̃/x̃}, as desired.

Sign check. We cannot directly apply Proposition 11 (Payload Type for ⊢C)(3) since
� = Ver, i.e., K− = vk(K) and Γ ⊢C vk(K) : VerKℓ[T̃ ]. Proposition 9 (Public Keys
for ⊢C) tells us that ℓ ∈ {LL,LH}.

If ℓ = LH , Γ ⊢C vk(K) : VerKℓ[T̃ ] can only derive from VERKEY, which implies Γ ⊢C
K : SigKℓCH [T̃ ]. By Proposition 11 (Payload Type for ⊢C)(3) we have Γ ⊢C M̃ : T̃ . By
the substitution lemma, we obtain Γ ⊢C P{M̃/x̃}, as desired.

If, instead, ℓ = LL, by Proposition 7 (Low Keys for ⊢C) we must have T̃ = LL, . . . ,LL,
and the judgment might derive either from VERKEY or from SUBSUMPTION. Anyway,



at some point of the derivation of Γ ⊢C vk(K) : VerKLL[T̃ ] we know it has been
applied VERKEY as it is the only rule for typing term vk(K). This implies Γ ⊢C K :
SigKℓ[T̃ ′]. Thus, by Proposition 11 (Payload Type for ⊢C)(3) we have Γ ⊢C M̃ : T̃ ′ and
ℒC(T ) = ⊔T ′∈T̃ ′ℒC(T

′). Now recall that rule SIGN CHECK requires that ℒC(T ) =
H implies ℓI = H . Since we have taken ℓI = L we know that ℒC(T ) = L. From
ℒC(T ) = ⊔T ′∈T̃ ′ℒC(T

′) we get ∀T ′ ∈ T̃ ′,ℒC(T
′) = L which implies ℒ(T ′) ≤C LL

and also T ′ ≤C LL (since we always have T ≤C ℒ(T )). From Γ ⊢C M̃ : T̃ ′ and
SUBSUMPTION we thus get Γ ⊢C M̃ : LL. By the substitution lemma, we obtain Γ ⊢C
P{M/x}, as desired. ⊓⊔

Secrecy and Integrity of cryptographic protocols. The following lemma relates the pre-
viously defined semantic characterization of integrity to the notion of integrity captured
in the type system: the integrity level of a typed message is always bounded by the in-
tegrity level of its type. In particular, messages with a high integrity type are shown to be
at high integrity. In other words, the type system provides a sound overapproximation of
the integrity level of messages.

Lemma 4 (Integrity) Γ ⊢C M : T implies ℒI,Γ(M) ⊑I ℒI(T ).

The proof is left as an exercise to the reader. We can finally show that our type system
statically enforces secrecy and integrity.

Theorem 2 (Secrecy and Integrity for ⊢C) Let Γ ⊢C P with img(Γ) = {LL}. Then P
preserves both secrecy and integrity.

Proof:
As for Theorem 1 (Secrecy and Integrity for ⊢) we pick an opponent O and we easily
show that by extending Γ with the free names of O which are missing we obtain a Γ′

such that Γ′ ⊢C P ∣ O. The proof of secrecy follows exactly the one of Theorem 1
(Secrecy and Integrity for ⊢). We thus focus on the integrity property. We first consider
the following reduction:

P ∣ Q →∗ (�k+ : �KHH [T ]) (�ã : T̃ ) (P ′ ∣ case ⟨M⟩k+ of ⟨x⟩k− in P ′′)

If ℒI(T ) = L we have nothing to prove. Let thus ℒI(T ) = H . By Proposition 12 (Subject
Congruence and Reduction for ⊢C)(2) we get

Γ′ ⊢C (�k+ : �KHH [T ]) (�ã : T̃ ) (P ′ ∣ case ⟨M⟩k+ of ⟨x⟩k− in P ′′)

Let Γ′′ = Γ′, k+ : �KHH [T ], ã : T̃ . By repeatedly applying RES and finally by PAR
we have: Γ′′ ⊢C case ⟨M⟩k+ of ⟨x⟩k− in P ′′ and Γ′′ ⊢C ⟨M⟩k+ : T for some T .
Now notice that k+ must be an atomic term since it is restricted, i.e., it cannot be ek(k)
and thus ⟨M⟩k+ ∕= {∣M ∣}ak+ , and by Γ′′ ⊢C ⋄ we have � ∈ {Sym,Dec,Sig}. Thus,
Γ′′ ⊢C ⟨M⟩k+ : T implies Γ′′ ⊢C k+ : �′Kℓ[T ′], with �′ = Sym or �′ = Sig when
⟨M⟩k+ is a symmetric encryption or a digital signature, respectively.

Since Γ′′ ⊢C k+ : �KHH [T ], Proposition 10 (Uniqueness of Key Types for ⊢C)
proves that � = �′, i.e., the � in the restriction is coherent with the cryptographic opera-
tion. Therefore by Proposition 11 (Payload Type for ⊢C) we get Γ′′ ⊢C M : T . Lemma 4
(Integrity) finally gives ℒI,Γ′′(M) ⊑I ℒI(T ).



The proof for the other reduction:

P ∣ O →∗ (�c : CHH [T ]) (�ã : T̃ ) (P ′ ∣ c⟨M⟩.P ′′)

follows exactly the same steps as the one of Theorem 1 (Secrecy and Integrity for ⊢)
to derive that Γ′′ ⊢C M : T . By Lemma 4 (Integrity) we directly obtain ℒI,Γ′′(M) ⊑I

ℒI(T ). ⊓⊔

6. Authentication Protocols

In this section, we extend our type system in order to statically verify authentication
protocols. Following the terminology introduced in [15], these protocols enable a party,
called the claimant, to authenticate herself and possibly some messages with another
party, called the verifier. In particular, we focus on a variant of the agreement prop-
erty [28] that is well-suited to reason about authentication in cryptographic protocols
based on nonce handshakes. The type system combines the main ideas of the type and ef-
fect systems for authentication protocols [23,24,30,15,8] with a more elegant formalism
borrowed from the type systems for authorization policies [21,10].

6.1. Authentication

In this chapter, we consider the strongest of the authentication definitions proposed by
Gavin Lowe in [28], namely agreement. Intuitively,

“a protocol guarantees to a verifier A agreement with a claimant B on a set of data
items ds if, whenever A (acting as verifier) completes a run of the protocol, appar-
ently with claimant B, then B has previously been running the protocol, apparently
with A, and B was acting as claimant in his run, and the two agents agreed on the data
values corresponding to all the variables in ds, and each such run of A corresponds
to a unique run of B.”

In [28], the verifier and claimant are called initiator and responder, respectively. This
property is formalized by annotating the point in the protocol where the claimant starts
the authentication session (begin assertion) and the point in the protocol where the veri-
fier accepts the authentication request (end assertion). These annotations are also known
as correspondence assertions [38].

In this chapter, we focus on a variant of correspondence assertions introduced in
[15], which is well-suited to reason about authentication protocols based on nonce hand-
shakes. A nonce handshake is composed of two messages, the challenge sent by the
verifier to the claimant and the response sent by the claimant to the verifier. Both the
challenge and the response contain a random value (called nonce) freshly generated by
the verifier: the nonce guarantees the freshness of the response, which entails the fresh-
ness of the authentication request. Of course, both the challenge and the response may
contain, possibly encrypted or signed, other messages as well.

The syntax of processes is extended as follows:

P,Q,R,O ::= . . . (as in Table 6)
beginN (M̃ ; Ñ) begin assertion
endN (M̃ ; Ñ) end assertion



The begin and end assertions have three fundamental components: (i) the messages M̃
sent in the challenge, (ii) the messages Ñ sent in the response, and (iii) the nonce N .
The agreement property is formalized as follows:

Definition 5 (Agreement) A process P guarantees agreement if whenever P ≡ (�ã :

T̃ ) endN (M̃ ; Ñ) ∣Q, we have that Q ≡ beginN (M̃ ; Ñ) ∣Q′ for some Q′ and (�ã : T̃ )Q′

guarantees agreement.

Here and throughout this chapter we assume that replications are guarded and, in partic-
ular, they are never of the form !P with P ≡ (�ã : T̃ ) endN (M̃ ; Ñ) ∣ Q. Otherwise the
definition above would not be well-founded due to the unbounded number of top-level
end assertions possibly introduced in the process via structural equivalence. We refine the
notion of opponent by disallowing the presence of begin and end assertions. The former
would break opponent typability, while the latter would vacuously break the agreement
property even for safe protocols.

Definition 6 (Opponent) A process O is an opponent if it contains neither begin nor
end assertions and all (�a : T ) occurring therein are such that T = LL.

We are interested in processes that guarantee agreement in the presence of arbitrary op-
ponents. This property, called robust agreement, is stated below.

Definition 7 (Robust Agreement) A process P guarantees robust agreement if for every
opponent O and process Q such that P ∣ O →∗ Q, Q guarantees agreement.

Example 9 Let us consider again the Blanchet protocol of Example 4. This protocol is
based on a nonce handshake between A and B, where B sends in the challenge a fresh
session key k that is used by A to encrypt message m in the response. We decorate the
code of the initiator as follows:

Initiator ≜ (�k : Tk) c⟨{∣[A,B, k]kB
∣}aek(kA)⟩.c(xe).

case xe of {∣xm∣}sk in endk(A,B;xm)

For the moment let us ignore the typing annotation. The endk(A,B;xm) assertion says
that B concludes an authentication session where he has sent the two identifiers A and B
in the challenge and received message xm in the response. The session key k guarantees
the freshness of the authentication request, since each authentication session relies on a
different key. In other words, in this protocol the session key plays the role of the nonce.

The process modelling the responder is reported below:

Responder ≜ c(xe).case xe of {∣xs∣}akA
in case xs of [xA, xB , xk]vk(kB) in

if A = xA then (�m : HH) beginxk
(xA, xB ;m) ∣ c⟨{∣m∣}sxk

⟩

The beginxk
(xA, xB ;m) assertion says that A confirms the reception of the identifiers

xA, xB and declares the intention to authenticate the message m sent in the response.
The session key xk received in the challenge is supposed to guarantee the freshness of
the authentication request. ⊓⊔



F,E ::= fresh(N) ∣ ChalN (M̃) ∣ RespN (M̃) ∣ M = N

T ::= . . . as in Equation 4
∣ �Kℓ

(x)
[x̃ : T̃ ∣ F̃ ] (scope of x, x̃ is F̃ , fnfv(F̃ ) ⊆ {x, x̃}, and ∄N.fresh(N) ∈ F̃ )

� ::= x : T ∣ F
Γ ::= �1, . . . , �n

Notation: dom(�1, . . . , �n) = dom(�1) ∪ . . . ∪ dom(�n), dom(x : T ) = {x}, dom(F ) = ∅
eff(�1, . . . , �n) = eff(�1) ∪ . . . ∪ eff(�n), eff(x : T ) = ∅, eff(F ) = {F}
types(�1, . . . , �n) = types(�1) ∪ . . . ∪ types(�n), types(x : T ) = {x : T}, types(F ) = ∅

.

Table 11. Syntax of Types

6.2. Type System

Following [21,10], the typing environment is defined as a list of effects and type bindings.
The syntax of effects and types is shown in Table 11.

The effects are similar to the ones used in [30,15,8]. The effect fresh(N) witnesses
that N is a fresh nonce, i.e., it is restricted and it does not occur in any of the active
end assertions. The effect ChalN (M̃) witnesses a challenge to authenticate messages M̃
with a fresh nonce N . In particular, if ChalN (M̃) belongs to the effect associated to a
particular protocol point, then we know that at run-time, whenever that protocol point is
reached, a party has sent (or is allowed to send) a challenge to authenticate M̃ with nonce
N . Similarly, the effect RespN (M̃) witnesses a response to authenticate messages M̃
with nonce N . Finally, M = N witnesses that M is equal to N . Intuitively, the restric-
tion of nonce N justifies fresh(N) and ChalN (M̃). The latter justifies a beginN (M̃ ; Ñ)
assertion, which in turn justifies RespN (Ñ). The effects fresh(N), ChalN (M̃), and
RespN (Ñ) together justify the assertion endN (M̃ ; Ñ), which annotates the end of a
challenge-response protocol based on nonce N where M̃ have been sent in the challenge
and Ñ in the response.

We introduce the new key type �Kℓ
(x)[x̃ : T̃ ∣ F̃ ] that, besides the type of encrypted

messages, describes their role in the challenge-response protocol. In particular, this type
describes keys of security level ℓ that are used to encrypt a tuple x̃ of type T̃ such that
the effects F̃ are justified. The scope of x, x̃ is F̃ , where x is a binder for the (symmetric,
encryption, or verification) key itself. We require that key types are closed (i.e., they
do not contain free names or free variables) and do not contain fresh effects, since the
freshness of a nonce is an information that is just used locally to type-check the process
generating that nonce. In the following, we use �Kℓ[T̃ ] as an abbreviation for �Kℓ

(x)[x̃ :

T̃ ∣ ∅]. The subtyping relation is extended as expected:

. . . as in Equation 5

�Kℓ
(⋅)[ . . . ∣ . . . ] ≤ ℓ

LL ≤ �KLL
(x)[x1 : LL, . . . , xn : LL ∣ ∅]

Keys of level ℓ can be used in place of values of type ℓ and, conversely, values of type
LL can be used in place of LL keys that are supposed to encrypt LL messages for which
no effect is justified, i.e., without providing any authentication guarantee.



EMPTY
∅ ⊢A ⋄

A-ENV
Γ ⊢A ⋄ u /∈ dom(Γ)

T = Cℓ[. . .], �Kℓ
(⋅)[ . . . ∣ . . . ] ⇒ ℓ = HH,� ∈ {Sym,Dec, Sig}

Γ, u : T ⊢A ⋄

A-EFF
Γ ⊢A ⋄ fnfv(F ) ⊆ dom(Γ)

Γ, F ⊢A ⋄

Table 12. Well-formedness of Environments

The typing rules for the well-formedness of environments are shown in Table 12.
A-ENV is the natural extension of ENV, while A-EFF says that an effect is well-formed
if its free names and variables are bound in the typing environment.

Example 10 Let us consider again the Blanchet protocol described in Example 9. The
types TA and TB of kA and kB are reported below:

TA ≜ DecKHH [HH]

TB ≜ SigKHH
(z) [zA : LL, zB : LL, zk : Tk ∣ Chalzk(zA, zB)]

Tk ≜ SymKHH
(z) [zm : HH ∣ Respz(zm)]

The two key-pairs are not revealed to and do not come from the attacker, hence their
security level is HH . The type TA says that the responder’s key pair is used by well-typed
parties only for encrypting messages at high confidentiality and high integrity, that is the
signature generated by the initiator. The type TB says that the initiator’s key pair is only
used to sign triples composed of two public and low integrity identifiers zA and zB and a
session key zk of type Tk and that the resulting signature constitutes a challenge from zB
to zA in a handshake whose freshness is guaranteed by the freshness of the session key
zk. Finally, the type Tk says that the session key is confidential and high-integrity, it is
only used to encrypt a secret and high-integrity message zm, and the resulting ciphertext
constitutes a response to authenticate zm in a handshake whose freshness is guaranteed
by the freshness of the session key itself. ⊓⊔

Typing Terms. The typing rules for terms are reported in Table 13. These rules are
similar to the rules of Table 4. The main difference is that we check, before encrypting
M̃ with a key K of type �Kℓ

(x)[x̃ : T̃ ∣ F̃ ], that the effects F̃{M̃/x̃,K ′/x} occur in
the typing environment (cf. A-SYMENC, A-ASYMENC, A-SIGN). This is crucial for the
soundness of the type system since the type of the key allows us to statically transfer
effects from the sender to the receiver. As a matter of fact, the typing rules for decryption
and signature verification extend the typing environment with the effects indicated in the
key type. Notice that the key K ′ replacing the variable x is the key available to both the
sender and the receiver, i.e., the symmetric key, the encryption key, or the verification
key.

Characterizing Keys and Ciphertexts. We now see how the properties of keys and ci-
phertexts stated for type system ⊢C can be smoothly extended to type system ⊢A. We
first extend Proposition 6 (High Keys for ⊢C) to dependent key types.



A-ATOM
Γ ⊢A ⋄ M : T in Γ

Γ ⊢A M : T

A-SUBSUMPTION
Γ ⊢A M : T ′ T ′ ≤ T

Γ ⊢A M : T

A-ENCKEY
Γ ⊢A K : DecK

ℓCℓI
(x)

[x̃ : T̃ ∣ F̃ ]

Γ ⊢A ek(K) : EncK
LℓI
(x)

[x̃ : T̃ ∣ F̃ ]

A-VERKEY
Γ ⊢A K : SigK

ℓCℓI
(x)

[x̃ : T̃ ∣ F̃ ]

Γ ⊢A vk(K) : VerK
LℓI
(x)

[x̃ : T̃ ∣ F̃ ]

A-SYMENC
Γ ⊢A K : SymK

ℓCℓI
(x)

[x̃ : T̃ ∣ F̃ ] Γ ⊢A M̃ : T̃ F̃{M̃/x̃,K/x} ∈ eff(Γ)

Γ ⊢A {∣M̃ ∣}sK : LℓI

A-ASYMENC
Γ ⊢A K : EncK

ℓCℓI
(x)

[x̃ : T̃ ∣ F̃ ] Γ ⊢A M̃ : T̃ F̃{M̃/x̃,K/x} ∈ eff(Γ)

Γ ⊢A {∣M̃ ∣}aK : LℓI

A-SIGN
Γ ⊢A K : SigK

ℓCℓI
(x)

[x̃ : T̃ ∣ F̃ ]

Γ ⊢A M̃ : T̃ ℓ′C = ⊔T∈T̃ℒC(T ) F̃{M̃/x̃, vk(K)/x} ∈ eff(Γ)

Γ ⊢A [M̃ ]K : ℓ′CℓI

Notation: F1, . . . , Fm ∈ eff(Γ) iff ∀i ∈ [1, n], Fi ∈ eff(Γ).
Table 13. Typing Rules for Terms

Proposition 13 (High Keys for ⊢A) Γ ⊢A M : �KHH
(x) [x̃ : T̃ ∣ F̃ ] implies M :

�KHH
(x) [x̃ : T̃ ∣ F̃ ] is in Γ.

We then extend Proposition 7 (Low Keys for ⊢C) by stating that low-level keys do not
provide any authentication guarantees.

Proposition 14 (Low Keys for ⊢A) Γ ⊢A N : �KLL
(x)[x̃ : T̃ ∣ F̃ ] implies T̃ =

LL, . . . , LL and F̃ = ∅.

The next two lemmas are the direct counterpart of Proposition 8 (Private Keys for ⊢C)
and Proposition 9 (Public Keys for ⊢C).

Proposition 15 (Private Keys for ⊢A) Γ ⊢A N : �Kℓ
(x)[x̃ : T̃ ∣ F̃ ] with � ∈

{Sym,Sig,Dec} implies ℓ ∈ {LL,HH}.

Proposition 16 (Public Keys for ⊢A) Γ ⊢A N : �Kℓ
(x)[x̃ : T̃ ∣ F̃ ] with � ∈ {Enc,Ver}

implies ℓ ∈ {LL,LH}.

An important property of our type system is that channels as well as private keys have a
unique type. Additionally, the typing of channels does not depend on effects.

Proposition 17 (Uniqueness of Channel types for ⊢A) If Γ ⊢A N : Cℓ[T̃ ] and Γ′ ⊢A
N : Cℓ′ [T̃ ′] with types(Γ) = types(Γ′) and ∣T̃ ∣ = ∣T̃ ′∣ then Cℓ[T̃ ] = Cℓ′ [T̃ ′].

Proposition 18 (Uniqueness of Key Types for ⊢A) If Γ ⊢C K : �Kℓ
(x)[x̃ : T̃ ∣ F̃ ] and

Γ ⊢C K : �′Kℓ′

(x)[x̃ : T̃ ′ ∣ F̃ ′] with � ∈ {Sym,Sig,Dec} and ∣T̃ ∣ = ∣T̃ ′∣ then ℓ = ℓ′,

T̃ = T̃ ′, and F̃ = F̃ ′. When ℓ = ℓ′ = HH , we also have � = �′.



Finally, we characterize the type of encrypted (or signed) messages, in the same style as
Proposition 11 (Payload Type for ⊢C). Notice that the effects in the key type must belong
to the typing environment used to type-check the ciphertext (or the signature).

Proposition 19 (Payload Type for ⊢A) The following implications hold:

1. If Γ ⊢A {∣M̃ ∣}sK : T and Γ ⊢A K : SymKℓ
(x)[x̃ : T̃ ∣ F̃ ], then Γ ⊢A M̃ : T̃ and

F̃{K/x, M̃/x̃} ∈ eff(Γ).
2. If Γ ⊢A {∣M̃ ∣}aek(K) : T and Γ ⊢A K : DecKℓ

(x)[x̃ : T̃ ∣ F̃ ], then Γ ⊢A M̃ : T̃

and F̃{ek(K)/x, M̃/x̃} ∈ eff(Γ), or ℒI(T ) = L and Γ ⊢A M̃ : LL.
3. If Γ ⊢A [M̃ ]K : T and Γ ⊢A K : SigKℓ

(x)[x̃ : T̃ ∣ F̃ ], then Γ ⊢A M̃ : T̃ and

F̃ ∈ {vk(K)/x, M̃/x̃} ∈ eff(Γ) and ℒC(T ) = ⊔T∈T̃ℒC(T ).

Typing Processes The typing rules for processes are reported in Table 14. The main
difference with respect to the rules of Table 10 is the part related to the effects, since the
type bindings are managed in the same way.

A-STOP checks the well-formedness of the typing environment. A-PAR says that
the parallel composition P ∣ Q is well typed in the typing environment Γ if P and Q are
well-typed in typing environments obtained from Γ by partitioning the freshness effects.
This is crucial to ensure that each nonce is used in at most one end assertion. In addition,
the typing environment used to type-check P also contains the response effects justified
by the top-level begin assertions in Q (and vice-versa). This technical detail is important,
since the begin assertions do not have a continuation process and the response effect
they justify has to be propagated to the processes in parallel composition. Function P
returns the response atomic effects justified by the top-level begin assertions in P but the
effects containing names restricted in P . Function Γ∣E returns the projection of Γ to type
bindings and effects in E.

A-REPL checks that the typing environment contains no fresh effects, since we want
to prevent multiple end assertions with the same nonce. A-RES says that the restriction
(�a : T )P justifies the effects Chala(M̃), fresh(a) in the continuation process P . Notice
that the type system is not syntax-directed since A-RES can add an arbitrary prefix of
Chala(M̃), fresh(a) to the typing environment and the M̃ ’s are non-deterministically
chosen.

A-IN, and A-OUT do not modify the effects. A-SYMDEC, A-ASYMDEC, A-
SIGCHECK say that the decryption (or signature verification) case M of ⟨x̃⟩K− in P
with a key of type �Kℓ

(y)[ỹ : T̃ ∣ F̃ ] justifies the effect F̃{K ′/y, x̃/ỹ} in the continuation
process P , where, as discussed before, K ′ is the key available to both the sender and the
receiver, i.e., the symmetric key, the encryption key, and the verification key, respectively.

A-COND type-checks the equality test if M = N then P , justifying in the typing
environment of the continuation process the equality M = N . A-BEGIN type-checks the
begin assertion beginN (M̃ ; Ñ), requiring that the terms M̃ have indeed been received
in a challenge with nonce N (i.e., ChalN (M̃) belongs to the typing environment). Sim-
ilarly, A-END type-checks the end assertion endn(M̃ ; Ñ), requiring that the terms M̃
have been sent in a challenge with nonce n, the terms Ñ have been received in a response
with nonce n, and n is fresh (i.e., the typing environment contains the effects Chaln(M̃),
RespN (Ñ), and fresh(n) as well as effects proving the equality between n and N ).



A-STOP
Γ ⊢A ⋄
Γ ⊢A 0

A-PAR
Γ∣EP

, Q ⊢A P Γ∣EQ
, P ⊢A Q

EP ∪ EQ = eff(Γ) EP ∩ EQ = {f ∈ eff(Γ) ∣ ∄N.f = fresh(N)}
Γ ⊢A P ∣ Q

A-REPL
Γ ⊢A P ∄N.fresh(N) ∈ eff(Γ)

Γ ⊢A!P

A-RES
Γ, a : T,Γ′ ⊢A P Γ′ ⪯ Chala(M̃), fresh(a)

Γ ⊢A (�a : T ) P

A-IN
Γ, x̃ : T̃ ⊢A P Γ ⊢A N : Cℓ[T̃ ]

Γ ⊢A N(x̃).P

A-OUT
Γ ⊢A M̃ : T̃ Γ ⊢A P Γ ⊢A N : Cℓ[T̃ ]

Γ ⊢A N⟨M̃⟩.P

A-SYMDEC
Γ ⊢A M : T Γ ⊢A K : SymKℓ

(y)[ỹ : T̃ ∣ F̃ ] Γ, x̃ : T̃ , F̃{K/y, x̃/ỹ} ⊢A P

Γ ⊢A case M of {∣x̃∣}sK in P

A-ASYMDEC
Γ ⊢A M : T Γ ⊢A K : DecKℓ

(y)[ỹ : T̃ ∣ F̃ ]

Γ, x̃ : T̃ , F̃{ek(K)/y, x̃/ỹ} ⊢A P ℒI(T ) = L ⇒ Γ, x̃ : LL ⊢A P

Γ ⊢A case M of {∣x̃∣}aK in P

A-SIGCHECK
Γ ⊢A M : T Γ ⊢A K : VerKℓ

(y)[ỹ : T̃ ∣ F̃ ]

Γ, x̃ : T̃ , F̃{K/y, x̃/ỹ} ⊢A P ℒC(T ) = H ⇒ ℓI = H

Γ ⊢A case M of [x̃]K in P

A-COND
Γ ⊢A M : T Γ ⊢A N : T ′ Γ,M = N ⊢A P Γ ⊢A Q

Γ ⊢A if M = N then P else Q

A-NONCE CHECK
Γ ⊢A M : T Γ(n) = T ′ ℒ(T ′) ∕≤ ℒ(T ) Γ ⊢A P2

Γ ⊢A if M = n then P1 else P2

A-BEGIN
ChalN (M̃) ∈ eff(Γ) fnfv(Ñ) ⊆ dom(Γ) Γ ⊢A ⋄

Γ ⊢A beginN (M̃ ; Ñ)

A-END
n =Γ N fresh(n),Chaln(M̃),RespN (Ñ) ∈ eff(Γ) Γ ⊢A ⋄

Γ ⊢A endn(M̃ ; Ñ)

Notation:
P = {RespN (Ñ) s.t. P ≡ beginN (M̃ ; Ñ) ∣ P ′}.

∅∣E = ∅; (Γ, x : T )∣E = Γ∣E , x : T ; (Γ, F )∣E = Γ∣E if F /∈ E; (Γ, F )∣E = Γ∣E , F if F ∈ E.

Γ ⪯ Γ′ iff Γ is a, possibly empty, prefix of Γ′.

=Γ is the smallest equivalence relation on terms such that if N = M ∈ Γ then N =Γ M.

Table 14. Typing Rules for Processes.



Example 11 We prove that the Blanchet protocol is well typed, i.e., A : LL,B : LL, c :
LL ⊢A Protocol. In the following, we illustrate the typing derivation, focusing just on
the effects and omitting the type bindings, since the latter are exactly as in Example 6.

Rules Applied eff(Γ) ⊢A Protocol

A-RES ∅ (�kA : TA)
A-RES ∅ (�kB : TB)
A-PAR ∅ (Initiator ∣ Responder)

The two restrictions do not involve nonces, so they do not increase the effect.

Rules Applied eff(Γ) ⊢A Initiator

A-RES − (�k : Tk)
A-OUT fresh(k),Chalk(A,B) c⟨{∣[A,B, k]kB ∣}aek(kA)⟩
A-IN − c(xe)

A-SYMDEC − case xe of {∣xm∣}sk in
A-END . . . ,Respk(xm) endk(A,B;xm)

In the initiator process, the restriction of the session key is typed by A-RES, which
introduces the effects fresh(k) and Chalk(A,B). The output of {∣[A,B, k]kB

∣}aek(kA) is
typed by A-OUT: in order to apply this rule, we have to prove that [A,B, k]kB

is of type
HH (A-SIGN) and {∣[A,B, k]kB

∣}aek(kA) is of type LH (A-ASYMENC) and thus LL by
subsumption. This requires that Chalk(A,B) belongs to the current typing environment,
since the signing key has type SigKHH

(z) [zA : LL, zB : LL, zk : Tk ∣ Chalzk(zA, zB)].
The input of the response xe is typed by A-IN, which does not change the effects. The
decryption of the ciphertext is typed by A-SYMDEC, which introduces the response
effect Respk(xm) obtained from the type SymKHH

(z) [zm : HH ∣ Respz(zm)] of the
session key after replacement of the variables z and zm by k and xm, respectively. Since
the typing environment contains the effects fresh(k), Chalk(A,B), and Respk(xm), the
assertion endk(A,B;xm) can be typed by A-END.

Rules Applied eff(Γ) ⊢A Responder

A-IN − c(xe).
A-ASYMDEC − case xe of {∣xs∣}akA

in
A-SIGCHECK − case xs of [xA, xB , xk]vk(kB) in

A-COND Chalxk (xA, xB) if A = xA then
A-RES . . . , A = xA (�m : HH)

A-BEGIN − beginxk
(xA, xB ;m) ∣

A-OUT . . . ,Respxk
(m) c⟨{∣m∣}sxk

⟩

In the responder process, the input of the challenge and the decryption do not mod-
ify the effect. A-SIGCHECK introduces the effect Chalxk

(xA, xB), as specified in the
type VerKLH

(z) [zA : LL, zB : LL, zk : Tk ∣ Chalzk(zA, zB)] of vk(kB). The equality
test is typed by A-COND and the generation of the message to authenticate by A-RES.
Since the typing environment contains the effect Chalxk

(xA, xB), we can type-check
beginxk

(xA, xB ;m) by A-BEGIN. Rule A-Par allows us to exploit the effect Respxk
(m)

derived from the begin assertion when typing c⟨{∣m∣}sxk
⟩. A-OUT is applied by showing

that {∣m∣}sxk
is of type LL (by A-ASYMENC and subsumption), which in turn requires

that the effect Respxk
(m) belongs to the current typing environment. ⊓⊔



Exercise 3 Model and type-check the Needham-Schroeder-Lowe protocol annotated as
follows:

A B

oo {∣nB ,B∣}aek(kA)

beginnB
(;A, ek(kB), nA)

{∣nA,nB ,A∣}aek(kB)
//

endnB (;A, ek(kB), nA)

beginnA
(A, ek(kB), nB ; )

oo {∣nA∣}a
ek(k′

A
)

endnA (A, ek(kB), nB ; )

These assertions model mutual authentication between A and B on the two nonces nA

and nB . Notice that the public encryption key ek(kB) takes the role of B’s identifier in
the correspondence assertions, since B’s identifier is not sent in the second message and
in our type system the dependent key types must be closed (i.e., the effects occurring
therein can solely depend on encrypted terms and encryption keys). In fact, in the second
ciphertext B is identified via his own public key.

6.3. Properties of the Type System

We extend the strengthening lemma to effects by showing that removing duplicate ef-
fects as well as effects containing names or variables not occurring in J preserves the
typability of J .

Lemma 5 (Strengthening for ⊢A) The following properties hold:

1. If Γ,M : T,Γ′ ⊢A J and M ∕∈ fnfv(J ) ∪ fnfv(Γ′), then Γ; Γ′ ⊢A J .
2. If Γ, F,Γ′ ⊢A J and F ∈ eff(Γ,Γ′), then Γ,Γ′ ⊢A J .
3. If Γ, F,Γ′ ⊢A J and fnfv(F ) ∕⊆ fnfv(J ), then Γ,Γ′ ⊢A J .

The weakening lemma allows us to arbitrarily extend the typing environment as long as
we do not introduce fresh atomic effects. Extensions with fresh atomic effects would, for
instance, prevent us from type-checking replications.

Lemma 6 (Weakening for ⊢A) The following properties hold:

1. If Γ,Γ′ ⊢A J and Γ, x : T,Γ′ ⊢A ⋄ then Γ, x : T,Γ′ ⊢A J .
2. If Γ,Γ′ ⊢A J and Γ, F,Γ′ ⊢A ⋄ and ∄N.F = fresh(N) then Γ, F,Γ′ ⊢A J .

The substitution lemma is stated below. Notice that the substitution applies also to the
typing environment because of dependent types and effects.

Lemma 7 (Substitution for ⊢A) If Γ ⊢A M : T , then Γ, x : T,Γ′ ⊢A J implies
Γ,Γ′{M/x} ⊢A J {M/x}.



The proofs of these properties and the proof of opponent typability are left as an exercise
to the interested reader. An important property of our type system is that removing fresh
effects from the typing environment does not affect the typing of terms. This property is
used in the proof of subject reduction.

Lemma 8 (Fresh and Terms) If Γ, fresh(N),Γ′ ⊢A M : T then Γ,Γ′ ⊢A M : T .

Proof:
By induction on the derivation of Γ, fresh(N),Γ′ ⊢A M : T and in the proof of the A-
SYMENC, A-ASYMENC and A-SIGN cases by observing that, by syntactic restriction,
Γ ⊢ K : �Kℓ

(x)[x̃ : T̃ ∣ F̃ ] implies ∄N.fresh(N) ∈ F̃ . ⊓⊔

Finally, we show that type bindings and effects can be swapped as long as the well-
formedness of the typing environment is preserved.

Lemma 9 (Exchange) If Γ, �, �′,Γ′ ⊢A J and dom(�) ∩ fnfv(�′) = ∅, then
Γ, �′, �,Γ′ ⊢A J .

With this setup in place, we can finally prove subject congruence and subject reduction.
We have, however, to make an important change in the semantics of the calculus, i.e., we
remove rule (�a : T ) (�b : T ′) P ≡ (�b : T ′) (�a : T ) P from the definition of the
structural equivalence relation. When the type system is dependent, this rule is problem-
atic since T ′ might depend on a, thus breaking subject congruence. A common solution
to this problem is indeed to forbid the exchange of restrictions (see, e.g., [24,10]). An
alternative solution is possible when the type annotations capture all the dependencies
introduced in the typing environment: in this case, we can keep the rule and additionally
require a /∈ fn(T ′) (cf. [23]). This is not possible in our type system since the challenge
effects introduced by A-RES are not captured by the typing annotations.

Proposition 20 (Subject Congruence and Reduction for ⊢A) Let Γ ⊢A P . Then

1. P ≡ Q implies Γ ⊢A Q;
2. P → Q implies Γ ⊢A Q.

Proof:
1. The only interesting case is when (�a : T ) (P ∣ Q) ≡ P ∣ (�a : T ) Q with a /∈ fn(P ).
We have Γ, a : T,Γ′ ⊢A P ∣ Q, with Γ′ ⪯ Chala(M̃), fresh(a), which can only be
proved by A-PAR. We thus have (Γ, a : T,Γ′)∣EP

, Q ⊢A P and (Γ, a : T,Γ′)∣EQ
, P ⊢A

Q, with EP ∪ EQ = eff(Γ,Γ′) and EP ∩ EQ = {f ∈ eff(Γ,Γ′) ∣ ∄N.f = fresh(N)}.
Since a /∈ fn(P ), by applying Lemma 5 (Strengthening for ⊢A) (3), we get

Γ∣EP
, (�a : T ) Q ⊢A P . Notice that (�a : T ) Q removes from Q all the response effects

with occurrences of a.
Since a /∈ fn(P ) and thus a /∈ fn(P ), we can apply Lemma 9 (Exchange) to get

Γ∣EQ
, P , a : T,Γ′

∣EQ
⊢A Q. By A-RES, we obtain Γ∣EQ

, P ⊢A (�a : T ) Q. By A-PAR,
we finally get Γ ⊢A P ∣ (�a : T ) Q.

Conversely, Γ ⊢A P ∣ (�a : T ) Q can only be proved by A-PAR, which implies
Γ∣EP

, (�a : T ) Q ⊢A P and Γ∣EQ
, P ⊢A (�a : T ) Q, with EP ∪ EQ = eff(Γ) and

EP ∩ EQ = {f ∈ eff(Γ) ∣ ∄N.f = fresh(N)}.



The judgment Γ∣EQ
, P ⊢A (�a : T )Q can only be proved by A-RES, which implies

Γ∣EQ
, P , a : T,Γ′ ⊢A Q, with Γ′ ⪯ Chala(M̃), fresh(a).

Since a /∈ fn(P ), we have a /∈ fn(P ). Therefore, by Lemma 9 (Exchange), we also
have Γ∣EQ

, a : T,Γ′, P ⊢A Q
Since a /∈ fn(P ), we can apply Lemma 6 (Weakening for ⊢A) to add a : T and

Chala(M̃) and Q ∖ (�a : T ) Q to the typing environment used to type-check P , thus
obtaining Γ∣EP

, a : T,Γ′
∣{Chala(M̃)}, Q ⊢A P from Γ∣EP

, (�a : T ) Q ⊢A P .
Notice that fresh(a) is possibly used for typing Q, but it is not used when typing

P . We can therefore apply A-PAR to get Γ, a : T,Γ′ ⊢A P ∣ Q. By A-RES, we finally
obtain Γ ⊢A (�a : T ) P ∣ Q.

2. The proof is by induction on the derivation of P → Q and by case analysis of the last
applied rule. We prove the interesting cases below:

(RED RES) Straightforward, by A-RES and induction hypothesis.
(RED PAR) We know that P ∣ R → Q ∣ R is derived from P → Q and we have Γ ⊢A

P ∣ R. This typing judgment can only be proved by A-PAR, which implies
Γ∣EP

, R ⊢A P and Γ∣ER
, P ⊢A R with EP ∪ER = eff(Γ) and EP ∩ER = {f ∈

eff(Γ) ∣ ∄N.f = fresh(N)}.
By induction hypothesis, Γ∣EP

, R ⊢A Q. By an inspection of rule A-BEGIN and
by observing that Γ ⊢A J implies Γ ⊢ ⋄, we can easily see that P ⊆ Q and
fn(Q) ⊆ dom(Γ). By Lemma 6 (Weakening for ⊢A), we get Γ∣ER

, Q ⊢A R. By
A-PAR, we finally obtain Γ ⊢A Q ∣ R.

RED I/O We have N⟨M̃⟩.P ∣ N(x̃).Q → P ∣ Q{M̃/x̃} and Γ ⊢A N⟨M̃⟩.P ∣ N(x̃).Q.
Since this typing judgment can only by proved by A-PAR and N⟨M̃⟩.P =
N(x̃).Q = ∅, we have Γ∣EP

⊢A N⟨M̃⟩.P and Γ∣EQ
⊢A N(x̃).Q.

By A-Out, we must have Γ∣EP
⊢A M̃ : T̃ with Γ∣EP

⊢A N : Cℓ[T̃ ] and Γ∣EP
⊢A

P .
By A-IN and Proposition 17 (Uniqueness of Channel types for ⊢A), we must have
Γ∣EQ

⊢ N : Cℓ[T̃ ] and Γ∣EQ
, x̃ : T̃ ⊢A Q.

Since EP ∩ EQ = {f ∈ eff(Γ) ∣ ∄N.f = fresh(N)} and Γ∣EP
⊢A M̃ : T̃

, by Lemma 8 (Fresh and Terms) and Lemma 6 (Weakening for ⊢A) we obtain
Γ∣EQ

⊢A M̃ : T̃ . By Lemma 7 (Substitution for ⊢A), Γ∣EQ
⊢A Q{M̃/x̃}.

As before, we can see that fn(P ) ⊆ dom(Γ) and fnfv(Q) ⊆ dom(Γ). By Lemma 6
(Weakening for ⊢A), we get Γ∣EP

, Q ⊢A P and Γ∣EQ
, P ⊢A Q{M̃/x̃}. By PAR,

we get Γ ⊢A P ∣ Q{M̃/x̃}.
(RED DEC/CHECK) We have case ⟨M̃⟩K+ of ⟨ỹ⟩K− in P → P{M̃/ỹ}.

By hypothesis, Γ ⊢A case ⟨M̃⟩K+ of ⟨ỹ⟩K− in P . The three rules for prov-
ing this judgment are A-SYMDEC, A-ASYMDEC and A-SIGCHECK. They all
require Γ ⊢A ⟨M̃⟩K+ : T and Γ ⊢A K− : �Kℓ

(x)[x̃ : T̃ ∣ F̃ ] and Γ, ỹ :

T̃ , F̃{K ′/x, ỹ/x̃} ⊢A P , with � = Sym,Dec,Ver and K ′ = K,K+,K−, re-
spectively.
We examine in detail the case of symmetric decryption, which follows similarly
to the corresponding case in the proof of Proposition 12 (Subject Congruence and
Reduction for ⊢C). The proof for the other cases is similar.



Symmetric decryption By Proposition 19 (Payload Type for ⊢A)(1), we have
Γ ⊢A M̃ : T̃ and F̃{K/x, M̃/ỹ} ∈ eff(E).
Since Γ, ỹ : T̃ , F̃{K ′/x, ỹ/x̃} ⊢A P , by Lemma 7 (Substitution for ⊢A) we
obtain Γ, F̃{K/x, M̃/x̃} ⊢A P{M̃/ỹ}.
Since F̃{K/x, M̃/ỹ} ∈ eff(E), by Lemma 5 (Strengthening for ⊢A) (2) we obtain
Γ ⊢A P{M̃/ỹ}.

⊓⊔

We can finally state the main result of our analysis technique, i.e., well-typed processes
guarantee robust agreement.

Theorem 3 (Robust Agreement) Let Γ ⊢A P with img(Γ) = {LL}. Then P guaran-
tees robust agreement.

Proof:
We have to prove that for every Q and opponent O such that P ∣ O →∗ Q, Q guarantees
agreement.

As for Theorem 1 (Secrecy and Integrity for ⊢), we can show that by extending Γ
with the free names of O that are missing we obtain a Γ′ such that Γ′ ⊢C P ∣ O.

By Proposition 20 (Subject Congruence and Reduction for ⊢A), we have Γ′ ⊢A Q.
If Q ≡ (�ã : T̃ ) endN (M̃ ; Ñ) ∣ Q′, then ChalN (M̃),RespN (Ñ) and fresh(N) belong
to the typing environment used to type-check the end assertion (cf. rule A-END). The
presence of the fresh effect implies N ∈ ã. The presence of the response effect implies
Q′ ≡ beginN (M̃ ′; Ñ) ∣ Q′′ for some M̃ ′, Q′′. We must have that ChalN (M̃ ′) belongs
to the typing environment used to type-check the begin assertion. Since the ã’s are pair-
wise distinct (otherwise the typing environment used to type-check the end assertion
would not be well-formed), we have that the two challenge effects derive from the same
restriction and are thus the same, implying M̃ = M̃ ′.

We also know that there are no other occurrences of endN (M̃ ; Ñ) in Q′′, since each
of them would require a typing environment containing fresh(N), but the typing rule for
parallel composition requires that the typing environments of the two parallel processes
do not share any single fresh effect. This implies that Q guarantees agreement.

⊓⊔

Exercise 4 Extend the type system with dependent channel types of the form Cℓ
(x)[x̃ :

T̃ ∣ F ] and show that such an extension preserves the properties studied in this section.
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