
Using Horn Clauses for Analyzing
Security Protocols

Bruno BLANCHET1

CNRS, École Normale Supérieure, INRIA, Paris, France

Abstract. This chapter presents a method for verifying security protocols based on
an abstract representation of protocols by Horn clauses. This method is the foun-
dation of the protocol verifier ProVerif. It is fully automatic, efficient, and can han-
dle an unbounded number of sessions and an unbounded messagespace. It sup-
ports various cryptographic primitives defined by rewrite rules or equations. Even
if we focus on secrecy in this chapter, this method can also prove other security
properties, including authentication and process equivalences.

Keywords. Automatic verification, security protocols, Horn clauses,secrecy.

Introduction

Security protocols can be verified by an approach based on Horn clauses; the main goal
of this approach is to prove security properties of protocols in the Dolev-Yao model in
a fully automatic way without bounding the number of sessions or the message space
of the protocol. In contrast to the case of a bounded number ofsessions in which de-
cidability results could be obtained (see Chapters“ Verifying a bounded number of ses-
sions and its complexity”and“Constraint solving techniques and enriching the model
with equational theories”), the case of an unbounded number of sessions is undecidable
for a reasonable model of protocols [56]. Possible solutions to this problem are rely-
ing on user interaction, allowing non-termination, and performing sound approximations
(in which case the technique is incomplete: correct security properties cannot always
be proved). Theorem proving [84] and logics (Chapter“ Protocol Composition Logic”)
rely on user interaction or on manual proofs. Typing (Chapter “Using types for security
protocol analysis”) generally relies on lightweight user annotations and is incomplete.
Strand spaces (Chapter“Shapes: Surveying Crypto Protocol Runs”) and rank functions
(Chapter“Security analysis using rank functions in CSP”) also provide techniques that
can handle an unbounded number of sessions at the cost of incompleteness.

Many methods rely on sound abstractions [50]: they overestimate the possibilities
of attacks, most of the time by computing an overapproximation of the attacker knowl-
edge. They make it possible to obtain fully automatic, but incomplete, systems. The Horn
clause approach is one such method. It was first introduced byWeidenbach [86]. This
chapter presents a variant of his method and extensions thatare at the basis of the auto-

1Corresponding Author: Bruno Blanchet, École Normale Supérieure, DI, 45 rue d’Ulm, 75005 Paris, France;
E-mail: blanchet@di.ens.fr.

matic protocol verifier ProVerif that we developed. In this method, messages are repre-
sented by termsM ; the factattacker(M) means that the attacker may have the message
M ; Horn clauses (i.e. logic programming rules) give implications between these facts.
An efficient resolution algorithm determines whether a factis derivable from the clauses,
which can be used for proving security properties. In particular, whenattacker(M) is
not derivable from the clauses, the attacker cannot haveM , that is,M is secret. This
method is incomplete since it ignores the number of repetitions of each action in the
protocol. (Horn clauses can be applied any number of times.)This abstraction is key to
avoid bounding the number of runs of the protocol. It is sound, in the sense that if the
verifier does not find a flaw in the protocol, then there is no flaw. The verifier therefore
provides real security guarantees. In contrast, it may givea false attack against the proto-
col. However, false attacks are rare in practice, as experiments demonstrate. Termination
is not guaranteed in general, but it is guaranteed on certainsubclasses of protocols and
can be obtained in all cases by an additional approximation (see Section 2.4).

Without this additional approximation, even if it does not always terminate and is in-
complete, this method provides a good balance in practice: it terminates in the vast major-
ity of cases and is very efficient and precise. It can handle a wide variety of cryptographic
primitives defined by rewrite rules or by equations, including shared-key and public-key
cryptography (encryption and signatures), hash functions, and the Diffie-Hellman key
agreement. It can prove various security properties (secrecy, authentication, and process
equivalences). We mainly focus on secrecy in this chapter and give references for other
properties in Section 3.2.

Other methods rely on abstractions:

∙ Bolignano [40] was a precursor of abstraction methods for security protocols. He
merges keys, nonces, . . . so that only a finite set remains and applies a decision
procedure.

∙ Monniaux [80] introduced a verification method based on an abstract representa-
tion of the attacker knowledge by tree automata. This methodwas extended by
Goubault-Larrecq [62]. Genet and Klay [59] combine tree automata with rewrit-
ing. This method has lead to the implementation of the TA4SP verifier (Tree-
Automata-based Automatic Approximations for the Analysisof Security Proto-
cols) [39].
The main drawback of this approach is that, in contrast to Horn clauses, tree au-
tomata cannot represent relational information on messages: when a variable ap-
pears several times in a message, one forgets that it has the same value at all its oc-
currences, which limits the precision of the analysis. The Horn clause method can
be understood as a generalization of the tree automata technique. (Tree automata
can be encoded into Horn clauses.)

∙ Control-flow analysis [36,38] computes the possible messages at each program
point. It is also non-relational, and merges nonces createdat the same program
point in different sessions. These approximations make it possible to obtain a
complexity at most cubic in the size of the protocol. It was first defined for secrecy
for shared-key protocols, then extended to message authenticity and public-key
protocols [37], with a polynomial complexity.

∙ Most protocol verifiers compute the knowledge of the attacker. In contrast, Her-
mès [41] computes the form of messages, for instance encryption under certain
keys, that guarantee the preservation of secrecy. The paperhandles shared-key

M,N ::= terms
x variable
a[M1, . . . ,Mn] name
f(M1, . . . ,Mn) function application

F ::= p(M1, . . . ,Mn) fact

R ::= F1 ∧ . . . ∧ Fn ⇒ F Horn clause

Figure 1. Syntax of our protocol representation

and public-key encryption, but the method also applies to signatures and hash
functions.

∙ Backes et al. [15] prove secrecy and authentication by an abstract-interpretation-
based analysis. This analysis builds a causal graph that captures the causality
between events in the protocol. The security properties areproved by traversing
this graph. This analysis always terminates but is incomplete. It assumes that
messages are typed, so that names (which represent random numbers) can be
distinguished from other messages.

One of the first verification methods for security protocols,the Interrogator [79] is also
related to the Horn clause approach: in this system, writtenin Prolog, the reachability
of the state after a sequence of messages is represented by a predicate, and the program
uses a backward search in order to determine whether a state is reachable or not. The
main problem of this approach is non-termination, and it is partly solved by relying on
user interaction to guide the search. In contrast, we provide a fully automatic approach
by using a different resolution strategy that provides termination in most cases.

The NRL protocol analyzer [77,57] improves the technique ofthe Interrogator by
using narrowing on rewriting systems. It does not make abstractions, so it is correct and
complete but may not terminate.

Overview Section 1 details our protocol representation. Section 2 describes our resolu-
tion algorithm, and sketches its proof of correctness. Several extensions of this work are
detailed in Section 3. Section 4 presents experimental results and Section 5 concludes.

1. Abstract Representation of Protocols by Horn Clauses

A protocol is represented by a set of Horn clauses; the syntaxof these clauses is given
in Figure 1. In this figure,x ranges over variables,a over names,f over function sym-
bols, andp over predicate symbols. The termsM represent messages that are exchanged
between participants of the protocol. A variable can represent any term. Names repre-
sent atomic values, such as keys and nonces (random numbers). Each principal has the
ability of creating new names: fresh names are created at each run of the protocol. Here,
the created names are considered as functions of the messages previously received by
the principal that creates the name. Thus, names are distinguished only when the pre-
ceding messages are different. As noticed by Martín Abadi (personal communication),
this approximation is in fact similar to the approximation done in some type systems
(such as [2]): the type of the new name depends on the types in the environment. It is

enough to handle many protocols, and can be enriched by adding other parameters to
the name. In particular, by adding as parameter a session identifier that takes a different
value in each run of the protocol, one can distinguish all names. This is necessary for
proving authentication but not for secrecy, so we omit session identifiers here for simplic-
ity. We refer the reader to [32,58] for additional information. The function applications
f(M1, . . . ,Mn) build terms: examples of functions are encryption and hash functions.
A fact F = p(M1, . . . ,Mn) expresses a property of the messagesM1, . . . ,Mn. Several
predicatesp can be used but, for a first example, we are going to use a singlepredicate
attacker, such that the factattacker(M) means “the attacker may have the messageM ”.
A clauseR = F1 ∧ . . . ∧ Fn ⇒ F means that, if all factsF1, . . . , Fn are true, thenF is
also true. A clause with no hypothesis⇒ F is written simplyF .

We use as a running example the naive handshake protocol introduced in Example 1
of Chapter“Introduction” :

Message 1. A→ B :
{
∣

∣[k]skA

∣

∣

}

a

pk
B

Message 2. B → A : {∣s∣}sk

We refer the reader to Chapter“Introduction” for an explanation of this protocol. We
denote byskA the secret key ofA, pkA his public key,skB the secret key ofB, pkB his
public key.

1.1. Representation of Primitives

Cryptographic primitives are represented by functions. For instance, we represent the
public-key encryption by a functionpencrypt(m, pk), which takes two arguments: the
messagem to encrypt and the public keypk . There is a functionpk that builds the public
key from the secret key. (We could also have two functionspk andsk to build respectively
the public and secret keys from a secret.) The secret key is represented by a name that
has no arguments (that is, there exists only one copy of this name)skA[] for A andskB []
for B. ThenpkA = pk(skA[]) andpkB = pk(skB[]).

More generally, we consider two kinds of functions: constructors and destructors.
The constructors are the functions that explicitly appear in the terms that represent mes-
sages. For instance,pencrypt andpk are constructors. Destructors manipulate terms. A
destructorg is defined by a setdef(g) of rewrite rules of the formg(M1, . . . ,Mn)→M
whereM1, . . . ,Mn,M are terms that contain only variables and constructors and the
variables ofM all occur inM1, . . . ,Mn. For instance, the decryptionpdecrypt is a de-
structor, defined bypdecrypt(pencrypt(m, pk(sk)), sk) → m. This rewrite rule mod-
els that, by decrypting a ciphertext with the correspondingsecret key, one obtains the
cleartext. Other functions are defined similarly:

∙ For signatures, we use a constructorsign and writesign(m, sk) for the messagem
signed under the secret keysk . A destructorgetmess defined bygetmess(sign(m,
sk))→ m returns the message without its signature, andchecksign(sign(m, sk),
pk(sk))→ m returns the message only if the signature is valid.

∙ The shared-key encryption is a constructorsencrypt and the decryption is a de-
structorsdecrypt, defined bysdecrypt(sencrypt(m, k), k)→ m.

∙ A one-way hash function is represented by a constructorℎ (and no destructor).

∙ Tuples of arityn are represented by a constructor(_, . . . , _) andn destructors
ithn defined byithn((x1, . . . , xn))→ xi, i ∈ {1, . . . , n}. Tuples can be used to
represent various data structures in protocols.

Rewrite rules offer a flexible method for defining many cryptographic primitives. It can
be further extended by using equations, as sketched in Section 3.1.

1.2. Representation of the Abilities of the Attacker

We assume that the protocol is executed in the presence of an attacker that can intercept
all messages, compute new messages from the messages it has received, and send any
message it can build, following the so-called Dolev-Yao model [55]. We first present the
encoding of the computation abilities of the attacker. The encoding of the protocol will
be detailed in Section 1.3.

During its computations, the attacker can apply all constructors and destructors. Iff
is a constructor of arityn, this leads to the clause:

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn)).

If g is a destructor, for each rewrite ruleg(M1, . . . ,Mn) → M in def(g), we have the
clause:

attacker(M1) ∧ . . . ∧ attacker(Mn)⇒ attacker(M).

The destructors never appear in the clauses, they are coded by pattern-matching on their
parameters (hereM1, . . . ,Mn) in the hypothesis of the clause and generating their result
in the conclusion. In the particular case of public-key encryption, this yields:

attacker(m) ∧ attacker(pk)⇒ attacker(pencrypt(m, pk)),

attacker(sk)⇒ attacker(pk(sk)),

attacker(pencrypt(m, pk(sk))) ∧ attacker(sk)⇒ attacker(m), (1)

where the first two clauses correspond to the constructorspencrypt andpk, and the last
clause corresponds to the destructorpdecrypt. When the attacker has an encrypted mes-
sagepencrypt(m, pk) and the decryption keysk , then it also has the cleartextm. (We
assume that the cryptography is perfect, hence the attackercan obtain the cleartext from
the encrypted message only if it has the key.)

Clauses for signatures (sign, getmess, checksign) and for shared-key encryption
(sencrypt, sdecrypt) are given in Figure 2.

The clauses above describe the computation abilities of theattacker. Moreover, the
attacker initially has the public keys of the protocol participants. Therefore, we add the
clausesattacker(pk(skA[])) and attacker(pk(skB [])). We also give a namea to the
attacker, that will represent all names it can generate:attacker(a[]). In particular,a[] can
represent the secret key of any dishonest participant, his public key beingpk(a[]), which
the attacker can compute by the clause for constructorpk.

1.3. Representation of the Protocol Itself

Now, we describe how the protocol itself is represented. We consider thatA and
B are willing to talk to any principal,A, B but also malicious principals that
are represented by the attacker. Therefore, the first message sent byA can be
pencrypt(sign(k, skA[]), pk(x)) for any x. We leave to the attacker the task of start-
ing the protocol with the principal it wants, that is, the attacker will send a preliminary
message toA, mentioning the public key of the principal with whichA should talk.
This principal can beB, or another principal represented by the attacker. Hence, if the
attacker has some keypk(x), it can sendpk(x) to A; A replies with his first message,
which the attacker can intercept, so the attacker obtainspencrypt(sign(k, skA[]), pk(x)).
Therefore, we have a clause of the form

attacker(pk(x))⇒ attacker(pencrypt(sign(k, skA[]), pk(x))).

Moreover, a new keyk is created each time the protocol is run. Hence, if two different
keyspk(x) are received byA, the generated keysk are certainly different:k depends on
pk(x). The clause becomes:

attacker(pk(x))⇒ attacker(pencrypt(sign(k[pk(x)], skA[]), pk(x))). (2)

WhenB receives a message, he decrypts it with his secret keyskB, so B ex-
pects a message of the formpencrypt(x′, pk(skB[])). Next, B tests whetherA has
signedx′, that is,B evaluateschecksign(x′, pkA), and this succeeds only whenx′ =
sign(y, skA[]). If so, he assumes that the keyy is only known byA, and sends a secret
s (a constant that the attacker does not have a priori) encrypted undery. We assume that
the attacker relays the message coming fromA, and intercepts the message sent byB.
Hence the clause:

attacker(pencrypt(sign(y, skA[]), pk(skB [])))⇒ attacker(sencrypt(s, y)).

Remark 1 With these clauses,A cannot play the role ofB and vice-versa. In order to
model a situation in which all principals play both roles, wecan replace all occurrences
of skB[] with skA[] in the clauses above. ThenA plays both roles, and is the only honest
principal. A single honest principal is sufficient for proving secrecy properties by [48].

More generally, a protocol that containsn messages is encoded byn sets of clauses.
If a principalX sends theith message, theith set of clauses contains clauses that have
as hypotheses the patterns of the messages previously received byX in the protocol, and
as conclusion the pattern of theith message. There may be several possible patterns for
the previous messages as well as for the sent message, in particular when the principalX
uses a function defined by several rewrite rules, such as the functionexp of Section 3.1.
In this case, a clause must be generated for each combinationof possible patterns. More-
over, notice that the hypotheses of the clauses describe allmessages previously received,
not only the last one. This is important since in some protocols the fifth message for
instance can contain elements received in the first message.The hypotheses summarize
the history of the exchanged messages.

Computation abilities of the attacker:
For each constructorf of arity n:

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn))
For each destructorg, for each rewrite ruleg(M1, . . . ,Mn)→M in def(g):

attacker(M1) ∧ . . . ∧ attacker(Mn)⇒ attacker(M)
that is
pencrypt attacker(m) ∧ attacker(pk)⇒ attacker(pencrypt(m, pk))
pk attacker(sk)⇒ attacker(pk(sk))
pdecrypt attacker(pencrypt(m, pk(sk))) ∧ attacker(sk)⇒ attacker(m)
sign attacker(m) ∧ attacker(sk)⇒ attacker(sign(m, sk))
getmess attacker(sign(m, sk))⇒ attacker(m)
checksign attacker(sign(m, sk)) ∧ attacker(pk(sk))⇒ attacker(m)
sencrypt attacker(m) ∧ attacker(k)⇒ attacker(sencrypt(m, k))
sdecrypt attacker(sencrypt(m, k)) ∧ attacker(k)⇒ attacker(m)

Name generation:attacker(a[])

Initial knowledge: attacker(pk(skA[])), attacker(pk(skB[]))

The protocol:
First message: attacker(pk(x))

⇒ attacker(pencrypt(sign(k[pk(x)], skA[]), pk(x)))
Second message:attacker(pencrypt(sign(y, skA[]), pk(skB[])))

⇒ attacker(sencrypt(s, y))

Figure 2. Summary of our representation of the protocol of Example 1 ofChapter“Introduction”

Remark 2 When the protocol makes some communications on private channels, on
which the attacker cannot a priori listen or send messages, asecond predicate can be
used:message(C,M) meaning “the messageM can appear on channelC”. In this
case, if the attacker manages to get the name of the channelC, it will be able to lis-
ten and send messages on this channel. Thus, two new clauses have to be added to
describe the behavior of the attacker. The attacker can listen on all channels it has:
message(x, y) ∧ attacker(x)⇒ attacker(y). It can send all messages it has on all chan-
nels it has:attacker(x) ∧ attacker(y)⇒ message(x, y).

1.4. Summary

To sum up, a protocol can be represented by three sets of Horn clauses, as detailed in
Figure 2 for the protocol of Example 1 of Chapter“Introduction” :

∙ Clauses representing the computation abilities of the attacker: constructors, de-
structors, and name generation.

∙ Facts corresponding to the initial knowledge of the attacker. In general, there are
facts giving the public keys of the participants and/or their names to the attacker.

∙ Clauses representing the messages of the protocol itself. There is one set of
clauses for each message in the protocol. In the set corresponding to theith mes-
sage, sent by principalX , the clauses are of the formattacker(Mj1) ∧ . . . ∧
attacker(Mjn) ⇒ attacker(Mi) whereMj1 , . . . , Mjn are the patterns of the
messages received byX before sending theith message, andMi is the pattern of
theith message.

1.5. Approximations

The reader can notice that our representation of protocols is approximate. Specifically,
the number of repetitions of each action is ignored, since Horn clauses can be applied
any number of times. So a step of the protocol can be completedseveral times, as long as
the previous steps have been completed at least once betweenthe same principals (even
when future steps have already been completed). For instance, consider the following
protocol (communicated by Véronique Cortier)

First step: A sends{∣⟨N1,M⟩∣}
s

k, {∣⟨N2,M⟩∣}
s

k

Second step: IfA receives{∣⟨x,M⟩∣}sk, he replies withx
Third step: IfA receivesN1, N2, he replies withs

whereN1,N2, andM are nonces. In an exact model,A never sendss, since{∣⟨N1,M⟩∣}
s

k

or {∣⟨N2,M⟩∣}
s

k can be decrypted, but not both. In the Horn clause model, eventhough
the first step is executed once, the second step may be executed twice for the sameM
(that is, the corresponding clause can be applied twice), sothat both{∣⟨N1,M⟩∣}

s

k and
{∣⟨N2,M⟩∣}

s

k can be decrypted, andA may sends. We have a false attack against the
secrecy ofs.

However, the important point is that the approximations aresound: if an attack exists
in a more precise model, such as the applied pi calculus [6] ormultiset rewriting [52],
then it also exists in our representation. This is shown for the applied pi calculus in [3]
and for multiset rewriting in [29]. In particular, we have shown formally that the only ap-
proximation with respect to the multiset rewriting model isthat the number of repetitions
of actions is ignored. Performing approximations enables us to build a much more effi-
cient verifier, which will be able to handle larger and more complex protocols. Another
advantage is that the verifier does not have to limit the number of runs of the protocol.
The price to pay is that false attacks may be found by the verifier: sequences of clause
applications that do not correspond to a protocol run, as illustrated above. False attacks
appear in particular for protocols with temporary secrets:when some value first needs
to be kept secret and is revealed later in the protocol, the Horn clause model considers
that this value can be reused in the beginning of the protocol, thus breaking the protocol.
When a false attack is found, we cannot know whether the protocol is secure or not: a
real attack may also exist. A more precise analysis is required in this case. Fortunately,
our representation is precise enough so that false attacks are rare. (This is demonstrated
by our experiments, see Section 4.)

1.6. Secrecy Criterion

Our goal is to determine secrecy properties: for instance, can the attacker get the secret
s? That is, can the factattacker(s) be derived from the clauses? Ifattacker(s) can be
derived, the sequence of clauses applied to deriveattacker(s) will lead to the description
of an attack.

Our notion of secrecy is similar to that of [2,36,44]: a termM is secret if the attacker
cannot get it by listening and sending messages, and performing computations. This
notion of secrecy is weaker than non-interference, but it isadequate to deal with the
secrecy of fresh names. Non-interference is better at excluding implicit information flows

or flows of parts of compound values. (See [1, Section 6] for further discussion and
references.)

In our running example,attacker(s) is derivable from the clauses. The derivation is
as follows. The attacker generates a fresh namea[] (considered as a secret key), it com-
putespk(a[]) by the clause forpk, obtainspencrypt(sign(k[pk(a[])], skA[]), pk(a[]))
by the clause for the first message. It decrypts this message using the clause forpdecrypt
and its knowledge ofa[], thus obtainingsign(k[pk(a[])], skA[]). It reencrypts the sig-
nature underpk(skB[]) by the clause forpencrypt (using its initial knowledge of
pk(skB[])), thus obtainingpencrypt(sign(k[pk(a[])], skA[]), pk(skB[])). By the clause
for the second message, it obtainssencrypt(s, k[pk(a[])]). On the other hand, from
sign(k[pk(a[])], skA[]), it obtainsk[pk(a[])] by the clause forgetmess, so it can de-
cryptsencrypt(s, k[pk(a[])]) by the clause forsdecrypt, thus obtainings. In other words,
the attacker starts a session betweenA and a dishonest participant of secret keya[]. It
gets the first messagepencrypt(sign(k, skA[]), pk(a[])), decrypts it, reencrypts it under
pk(skB[]), and sends it toB. ForB, this message looks like the first message of a ses-
sion betweenA andB, soB replies withsencrypt(s, k), which the attacker can decrypt
since it obtainsk from the first message. Hence, the obtained derivation corresponds to
the known attack against this protocol. In contrast, if we fixthe protocol by adding the
public key ofB in the first message

{∣

∣[⟨pkB, k⟩]skA

∣

∣

}

a

pkB

, attacker(s) is not derivable

from the clauses, so the fixed protocol preserves the secrecyof s.
Next, we formally define when a given fact can be derived from agiven set of

clauses. We shall see in the next section how we determine that. Technically, the hy-
pothesesF1, . . . , Fn of a clause are considered as a multiset. This means that the order
of the hypotheses is irrelevant, but the number of times a hypothesis is repeated is im-
portant. (This is not related to multiset rewriting models of protocols: the semantics of a
clause does not depend on the number of repetitions of its hypotheses, but considering
multisets is necessary in the proof of the resolution algorithm.) We useR for clauses
(logic programmingrules), H for hypothesis, andC for conclusion.

Definition 1 (Subsumption) We say thatH1 ⇒ C1 subsumesH2 ⇒ C2, and we write
(H1 ⇒ C1) ⊒ (H2 ⇒ C2), if and only if there exists a substitution� such that�C1 =
C2 and�H1 ⊆ H2 (multiset inclusion).

We write R1 ⊒ R2 whenR2 can be obtained by adding hypotheses to a particular
instance ofR1. In this case, all facts that can be derived byR2 can also be derived by
R1.

A derivation is defined as follows, as illustrated in Figure 3.

Definition 2 (Derivability) Let F be a closed fact, that is, a fact without variable. Let
ℛ be a set of clauses.F is derivable fromℛ if and only if there exists a derivation ofF
fromℛ, that is, a finite tree defined as follows:

1. Its nodes (except the root) are labeled by clausesR ∈ ℛ;
2. Its edges are labeled by closed facts;
3. If the tree contains a node labeled byR with one incoming edge labeled byF0

andn outgoing edges labeled byF1, . . . , Fn, thenR ⊒ F1 ∧ . . . ∧ Fn ⇒ F0.
4. The root has one outgoing edge, labeled byF . The unique son of the root is

named thesubroot.

subroot

root

FnF1

.

. . .
. . .

. . .

�′

�

R′

R

F

F0

Figure 3. Derivation ofF

In a derivation, if there is a node labeled byR with one incoming edge labeled by
F0 andn outgoing edges labeled byF1, . . . , Fn, thenF0 can be derived fromF1, . . . , Fn

by the clauseR. Therefore, there exists a derivation ofF fromℛ if and only ifF can be
derived from clauses inℛ (in classical logic).

2. Resolution Algorithm

Our representation is a set of Horn clauses, and our goal is todetermine whether a given
fact can be derived from these clauses or not. This is exactlythe problem solved by usual
Prolog systems. However, we cannot use such systems here, because they would not
terminate. For instance, the clause:

attacker(pencrypt(m, pk(sk))) ∧ attacker(sk)⇒ attacker(m)

leads to considering more and more complex terms, with an unbounded number of en-
cryptions. We could of course limit arbitrarily the depth ofterms to solve the problem,
but we can do much better than that.

As detailed below, the main idea is to combine pairs of clauses by resolution, and to
guide this resolution process by a selection function: our resolution algorithm is resolu-
tion with free selection [51,75,14]. This algorithm is similar to ordered resolution with
selection, used by [86], but without the ordering constraints.

Notice that, since a term is secret when a fact isnot derivable from the clauses,
soundness in terms of security (if the verifier claims that there is no attack, then there is
no attack) corresponds to the completeness of the resolution algorithm in terms of logic
programming (if the algorithm claims that a fact is not derivable, then it is not). The
resolution algorithm that we use must therefore be complete.

2.1. The Basic Algorithm

Let us first define resolution: when the conclusion of a clauseR unifies with a hypothesis
of another (or the same) clauseR′, resolution infers a new clause that corresponds to
applyingR andR′ one after the other. Formally, resolution is defined as follows:

Definition 3 LetR andR′ be two clauses,R = H ⇒ C, andR′ = H ′ ⇒ C′. Assume
that there existsF0 ∈ H ′ such thatC andF0 are unifiable and� is the most general
unifier ofC andF0. In this case, we defineR ∘F0

R′ = �(H ∪ (H ′ ∖ {F0})) ⇒ �C′.
The clauseR ∘F0

R′ is the result of resolvingR′ withR uponF0.

For example, ifR is the clause (2),R′ is the clause (1), and the factF0 is F0 =
attacker(pencrypt(m, pk(sk))), thenR ∘F0

R′ is

attacker(pk(x)) ∧ attacker(x)⇒ attacker(sign(k[pk(x)], skA[]))

with the substitution� = {sk 7→ x,m 7→ sign(k[pk(x)], skA[])}.
We guide the resolution by a selection function:

Definition 4 A selection functionsel is a function from clauses to sets of facts, such that
sel(H ⇒ C) ⊆ H . If F ∈ sel(R), we say thatF is selected inR. If sel(R) = ∅, we say
that no hypothesis is selected inR, or that the conclusion ofR is selected.

The resolution algorithm is correct (sound and complete) with any selection function, as
we show below. However, the choice of the selection functioncan change dramatically
the behavior of the algorithm. The essential idea of the algorithm is to combine clauses
by resolution only when the facts unified in the resolution are selected. We will therefore
choose the selection function to reduce the number of possible unifications between se-
lected facts. Having several selected facts slows down the algorithm, because it has more
choices of resolutions to perform, therefore we will selectat most one fact in each clause.
In the case of protocols, facts of the formattacker(x), with x variable, can be unified
will all facts of the formattacker(M). Therefore, we should avoid selecting them. So a
basic selection function is a functionsel0 that satisfies the constraint

sel0(H ⇒ C) =

{

∅ if ∀F ∈ H, ∃x variable,F = attacker(x)

{F0} whereF0 ∈ H and∀x variable,F0 ∕= attacker(x)
(3)

The resolution algorithm works in two phases, described in Figure 4. The first phase
transforms the initial set of clauses into a new one that derives the same facts. The second
phase uses a depth-first search to determine whether a fact can be derived or not from the
clauses.

The first phase,saturate(ℛ0), contains 3 steps.

∙ The first step inserts inℛ the initial clauses representing the protocol and the
attacker (clauses that are inℛ0), after elimination of subsumed clauses byelim:
if R′ subsumesR, andR andR′ are inℛ, thenR is removed byelim(ℛ).

∙ The second step is a fixpoint iteration that adds clauses created by resolution. The
resolution of clausesR andR′ is added only if no hypothesis is selected inR and
the hypothesisF0 of R′ that we unify is selected. When a clause is created by
resolution, it is added to the set of clausesℛ. Subsumed clauses are eliminated
fromℛ.

∙ At last, the third step returns the set of clauses ofℛ with no selected hypothesis.

Basically,saturate preserves derivability (it is both sound and complete):

First phase: saturation
saturate(ℛ0) =

1.ℛ ← ∅.
For eachR ∈ ℛ0,ℛ ← elim({R} ∪ℛ).

2. Repeat until a fixpoint is reached
for eachR ∈ ℛ such thatsel(R) = ∅,

for eachR′ ∈ ℛ, for eachF0 ∈ sel(R′) such thatR ∘F0
R′ is defined,

ℛ ← elim({R ∘F0
R′} ∪ ℛ).

3. Return{R ∈ ℛ ∣ sel(R) = ∅}.

Second phase: backward depth-first search

deriv(R,ℛ,ℛ1) =

⎧







⎨







⎩

∅ if ∃R′ ∈ ℛ, R′ ⊒ R

{R} otherwise, ifsel(R) = ∅
∪

{deriv(R′ ∘F0
R, {R} ∪ ℛ,ℛ1) ∣ R′ ∈ ℛ1,

F0 ∈ sel(R) such thatR′ ∘F0
R is defined} otherwise

derivable(F,ℛ1) = deriv(F ⇒ F, ∅,ℛ1)

Figure 4. Resolution algorithm

Lemma 1 (Correctness ofsaturate) LetF be a closed fact.F is derivable fromℛ0 if
and only if it is derivable fromsaturate(ℛ0).

This result is proved by transforming a derivation ofF from ℛ0 into a deriva-
tion of F from saturate(ℛ0). Basically, when the derivation contains a clauseR′ with
sel(R′) ∕= ∅, we replace in this derivation two clausesR, with sel(R) = ∅, andR′ that
have been combined by resolution during the execution ofsaturate with a single clause
R∘F0

R′. This replacement decreases the number of clauses in the derivation, so it termi-
nates, and, upon termination, all clauses of the obtained derivation satisfysel(R′) = ∅
so they are insaturate(ℛ0). A detailed proof is given in Section 2.2.

Usually, resolution with selection is used for proofs by refutation. That is, the nega-
tion of the goalF is added to the clauses, under the form of a clause without conclu-
sion:F ⇒. The goalF is derivable if and only if the empty clause “⇒” can be derived.
Here, we would like to avoid repeating the whole resolution process for each goal, since
in general we prove the secrecy of several values for the sameprotocol. For non-closed
goals, we also want to be able to know which instances of the goal can be derived. That
is why we prove that the clauses insaturate(ℛ0) derive the same facts as the clauses in
ℛ0. The set of clausessaturate(ℛ0) can then be used to query several goals, using the
second phase of the algorithm described next.

The second phase searches the facts that can be derived fromℛ1 = saturate(ℛ0).
This is simply a backward depth-first search. The callderivable(F,ℛ1) returns a set of
clausesR = H ⇒ C with no selected hypothesis, such thatR can be obtained by
resolution fromℛ1, C is an instance ofF , and all instances ofF derivable fromℛ1 can
be derived by using as last clause a clause ofderivable(F,ℛ1). (Formally, if F ′ is an
instance ofF derivable fromℛ1, then there exist a clauseH ⇒ C ∈ derivable(F,ℛ1)
and a substitution� such thatF ′ = �C and�H is derivable fromℛ1.)

The search itself is performed byderiv(R,ℛ,ℛ1). The functionderiv starts with
R = F ⇒ F and transforms the hypothesis ofR by using a clauseR′ of ℛ1 to derive

an elementF0 of the hypothesis ofR. SoR is replaced withR′ ∘F0
R (third case of the

definition ofderiv). The factF0 is chosen using the selection functionsel . (Hencederiv
derives the hypothesis ofR using a backward depth-first search. At each step, the clause
R can be obtained by resolution from clauses ofℛ1, andR concludes an instance ofF .)
The setℛ is the set of clauses that we have already seen during the search. Initially,ℛ is
empty, and the clauseR is added toℛ in the third case of the definition ofderiv.

The transformation ofR described above is repeated until one of the following two
conditions is satisfied:

∙ R is subsumed by a clause inℛ: we are in a cycle; we are looking for instances
of facts that we have already looked for (first case of the definition of deriv);

∙ sel(R) is empty: we have obtained a suitable clauseR and we return it (second
case of the definition ofderiv).

Intuitively, the correctness ofderivable expresses that ifF ′, instance ofF , is deriv-
able, thenF ′ is derivable fromℛ1 by a derivation in which the clause that concludesF ′

is in derivable(F,ℛ1).

Lemma 2 (Correctness ofderivable) LetF ′ be a closed instance ofF . F ′ is derivable
fromℛ1 if and only if there exist a clauseH ⇒ C in derivable(F,ℛ1) and a substitution
� such that�C = F ′ and all elements of�H are derivable fromℛ1.

Basically, this result is proved by transforming a derivation ofF ′ fromℛ1 into a deriva-
tion of F ′ whose last clause (the one that concludesF ′) is H ⇒ C and whose other
clauses are still inℛ1. The transformation relies on the replacement of clauses combined
by resolution during the execution ofderivable. A detailed proof is given in Section 2.2.

It is important to applysaturate beforederivable, so that all clauses inℛ1 have no
selected hypothesis. Then the conclusion of these clauses is in general notattacker(x)
(with the optimizations of Section 2.3 and a selection function that satisfies (3), it is never
attacker(x)), so that we avoid unifying withattacker(x).

The following theorem gives the correctness of the whole algorithm. It shows that
we can use our algorithm to determine whether a fact is derivable or not from the initial
clauses. The first part simply combines Lemmas 1 and 2. The second part mentions two
easy and important particular cases.

Theorem 1 (Correctness)LetF ′ be a closed instance ofF . F ′ is derivable fromℛ0 if
and only if there exist a clauseH ⇒ C in derivable(F, saturate(ℛ0)) and a substitution
� such that�C = F ′ and all elements of�H are derivable fromsaturate(ℛ0).

In particular, if derivable(F, saturate(ℛ0)) = ∅, then no instance ofF is deriv-
able fromsaturate(ℛ0). If the selection function satisfies(3) andF is closed, thenF is
derivable fromℛ0 if and only ifderivable(F, saturate(ℛ0)) ∕= ∅.

Proof:
The first part of the theorem is obvious from Lemmas 1 and 2. Thefirst particular case
is also an obvious consequence. For the second particular case, ifF is derivable from
ℛ0, thenderivable(F, saturate(ℛ0)) ∕= ∅ by the first particular case. For the converse,
suppose thatderivable(F, saturate(ℛ0)) ∕= ∅. Thenderivable(F, saturate(ℛ0)) contains
a clauseH ⇒ C. By definition ofderivable, C is an instance ofF , soC = F , and
sel(H ⇒ C) = ∅, so all elements ofH are of the formattacker(xi) for some variable

�′′R′′

�′

�

R′

R

C′

1

H1

H ′

1

C′

1

H1 ∪ (H ′

1
∖ {�F0})

�F0

Figure 5. Merging of nodes of Lemma 3

xi. The attacker has at least one termM , for instancea[], soattacker(�xi) is derivable
fromℛ0, where�xi = M . Hence all elements of�H are derivable fromℛ0, so from
saturate(ℛ0), and�C = F . Therefore,F is derivable fromℛ0. ⊓⊔

2.2. Proofs

In this section, we detail the proofs of Lemmas 1 and 2. We firstneed to prove a few
preliminary lemmas. The first one shows that two nodes in a derivation can be replaced
by one when combining their clauses by resolution.

Lemma 3 Consider a derivation containing a node�′, labeledR′. LetF0 be a hypothe-
sis ofR′. Then there exists a son� of �′, labeledR, such that the edge�′ → � is labeled
by an instance ofF0, R ∘F0

R′ is defined, and one obtains a derivation of the same fact
by replacing the nodes� and�′ with a node�′′ labeledR′′ = R ∘F0

R′.

Proof:
This proof is illustrated in Figure 5. LetR′ = H ′ ⇒ C′, H ′

1
be the multiset of the labels

of the outgoing edges of�′, andC′

1
the label of its incoming edge. We haveR′ ⊒ (H ′

1
⇒

C′

1
), so there exists a substitution� such that�H ′ ⊆ H ′

1
and�C′ = C′

1
. SinceF0 ∈ H ′,

�F0 ∈ H ′

1
, so there is an outgoing edge of�′ labeled�F0. Let � be the node at the end

of this edge, letR = H ⇒ C be the label of�. We rename the variables ofR so that they
are distinct from the variables ofR′. LetH1 be the multiset of the labels of the outgoing
edges of�. SoR ⊒ (H1 ⇒ �F0). By the above choice of distinct variables, we can then
extend� so that�H ⊆ H1 and�C = �F0.

The edge�′ → � is labeled�F0, instance ofF0. Since�C = �F0, the factsC and
F0 are unifiable, soR ∘F0

R′ is defined. Let�′ be the most general unifier ofC and
F0, and�′′ such that� = �′′�′. We haveR ∘F0

R′ = �′(H ∪ (H ′ ∖ {F0})) ⇒ �′C′.
Moreover,�′′�′(H ∪ (H ′ ∖ {F0})) ⊆ H1 ∪ (H ′

1
∖ {�F0}) and�′′�′C′ = �C′ = C′

1
.

HenceR′′ = R∘F0
R′ ⊒ (H1∪(H ′

1
∖{�F0}))⇒ C′

1
. The multiset of labels of outgoing

edges of�′′ is preciselyH1 ∪ (H ′

1
∖ {�F0}) and the label of its incoming edge isC′

1
,

therefore we have obtained a correct derivation by replacing � and�′ with �′′. ⊓⊔

Lemma 4 If a node� of a derivationD is labeled byR, then one obtains a derivation
D′ of the same fact asD by relabeling� with a clauseR′ such thatR′ ⊒ R.

Proof:
LetH be the multiset of labels of outgoing edges of the considerednode�, andC be the
label of its incoming edge. We haveR ⊒ H ⇒ C. By transitivity of⊒, R′ ⊒ H ⇒ C.
So we can relabel� with R′. ⊓⊔

Lemma 5 At the end ofsaturate,ℛ satisfies the following properties:

1. For all R ∈ ℛ0, R is subsumed by a clause inℛ;
2. LetR ∈ ℛ andR′ ∈ ℛ. Assume thatsel(R) = ∅ and there existsF0 ∈ sel(R′)

such thatR ∘F0
R′ is defined. In this case,R ∘F0

R′ is subsumed by a clause in
ℛ.

Proof:
To prove the first property, letR ∈ ℛ0. We show that, after the addition ofR toℛ, R is
subsumed by a clause inℛ.

In the first step ofsaturate, we execute the instructionℛ ← elim({R} ∪ ℛ). After
execution of this instruction,R is subsumed by a clause inℛ.

Assume that we executeℛ← elim({R′′}∪ℛ) for some clauseR′′ and that, before
this execution,R is subsumed by a clause inℛ, sayR′. If R′ is removed by this instruc-
tion, there exists a clauseR′

1
in ℛ that subsumesR′, so by transitivity of subsumption,

R′

1
subsumesR, henceR is subsumed by the clauseR′

1
∈ ℛ after this instruction. IfR′

is not removed by this instruction, thenR is subsumed by the clauseR′ ∈ ℛ after this
instruction.

Hence, at the end ofsaturate, R is subsumed by a clause inℛ, which proves the
first property.

In order to prove the second property, we just need to notice that the fixpoint is
reached at the end ofsaturate, soℛ = elim({R ∘F0

R′} ∪ ℛ). Hence,R ∘F0
R′ is

eliminated byelim, so it is subsumed by some clause inℛ. ⊓⊔

Proof of Lemma 1:
Assume thatF is derivable fromℛ0 and consider a derivation ofF fromℛ0. We show
thatF is derivable fromsaturate(ℛ0).

We consider the value of the set of clausesℛ at the end ofsaturate. For each clause
R in ℛ0, R is subsumed by a clause inℛ (Lemma 5, Property 1). So, by Lemma 4, we
can replace all clausesR in the considered derivation with a clause inℛ. Therefore, we
obtain a derivationD of F fromℛ.

Next, we build a derivation ofF fromℛ1, whereℛ1 = saturate(ℛ0). If D contains
a node labeled by a clause not inℛ1, we can transformD as follows. Let�′ be a lowest
node ofD labeled by a clause not inℛ1. So all sons of�′ are labeled by elements ofℛ1.
Let R′ be the clause labeling�′. SinceR′ /∈ ℛ1, sel(R′) ∕= ∅. TakeF0 ∈ sel(R′). By
Lemma 3, there exists a son of� of �′ labeled byR, such thatR∘F0

R′ is defined, and we
can replace� and�′ with a node�′′ labeled byR ∘F0

R′. Since all sons of�′ are labeled
by elements ofℛ1, R ∈ ℛ1. Hencesel(R) = ∅. So, by Lemma 5, Property 2,R ∘F0

R′

is subsumed by a clauseR′′ in ℛ. By Lemma 4, we can relabel�′′ with R′′. The total
number of nodes strictly decreases since� and�′ are replaced with a single node�′′.

So we obtain a derivationD′ of F from ℛ, such that the total number of nodes
strictly decreases. Hence, this replacement process terminates. Upon termination, all
clauses are inℛ1. So we obtain a derivation ofF fromℛ1, which is the expected result.

For the converse implication, notice that, if a fact is derivable fromℛ1, then it is
derivable fromℛ, and that all clauses added toℛ do not create new derivable facts: if a
fact is derivable by applying the clauseR ∘F0

R′, then it is also derivable by applyingR
andR′. ⊓⊔

Proof of Lemma 2:
Let us prove the direct implication. We show that, ifF ′ is derivable fromℛ1, then there
exist a clauseH ⇒ C in derivable(F,ℛ1) and a substitution� such that�C = F ′ and
all elements of�H are derivable fromℛ1.

LetD be the set of derivationsD′ of F ′ such that, for someℛ, the clauseR′ at the
subroot ofD′ satisfiesderiv(R′,ℛ,ℛ1) ⊆ derivable(F,ℛ1) and∀R′′ ∈ ℛ, R′′ ∕⊒ R′,
and the other clauses ofD′ are inℛ1.

Let D0 be a derivation ofF ′ from ℛ1. Let D′

0
be obtained fromD0 by adding

a node labeled byR′ = F ⇒ F at the subroot ofD0. By definition of derivable,
deriv(R′, ∅,ℛ1) ⊆ derivable(F,ℛ1), and∀R′′ ∈ ∅, R′′ ∕⊒ R′. HenceD′

0
is a derivation

of F ′ in D, soD is non-empty.
Now, consider a derivationD1 in D with the smallest number of nodes. The clause

R′ labeling the subroot�′ of D1 satisfiesderiv(R′,ℛ,ℛ1) ⊆ derivable(F,ℛ1), and
∀R′′ ∈ ℛ, R′′ ∕⊒ R′. In order to obtain a contradiction, we assume thatsel(R′) ∕= ∅. Let
F0 ∈ sel(R′). By Lemma 3, there exists a son� of �′, labeled byR, such thatR ∘F0

R′

is defined and we can replace� and�′ with a node�′′ labeled byR0 = R ∘F0
R′,

obtaining a derivationD2 of F ′ with fewer nodes thanD1. The subroot ofD2 is the node
�′′ labeled byR0.

By hypothesis on the derivationD1, R ∈ ℛ1, so deriv(R0, {R′} ∪ ℛ,ℛ1) ⊆
deriv(R′,ℛ,ℛ1) ⊆ derivable(F,ℛ1) (third case of the definition ofderiv(R′,ℛ,ℛ1)).

∙ If ∀R1 ∈ {R′} ∪ ℛ, R1 ∕⊒ R0, D2 is a derivation ofF ′ in D, with fewer nodes
thanD1, which is a contradiction.

∙ Otherwise,∃R1 ∈ {R′} ∪ ℛ, R1 ⊒ R0. Therefore, by Lemma 4, we can build
a derivationD3 by relabeling�′′ with R1 in D2. There is an older call toderiv,
of the formderiv(R1,ℛ′,ℛ1), such thatderiv(R1,ℛ′,ℛ1) ⊆ derivable(F,ℛ1).
Moreover,R1 has been added toℛ′ in this call, sinceR1 appears in{R′} ∪ ℛ.
Therefore the third case of the definition ofderiv(R1,ℛ′,ℛ1) has been applied,
and not the first case. So∀R2 ∈ ℛ′, R2 ∕⊒ R1, so the derivationD3 is inD and
has fewer nodes thanD1, which is a contradiction.

In all cases, we could find a derivation inD that has fewer nodes thanD1. This is a
contradiction, sosel(R′) = ∅, hencederiv(R′,ℛ,ℛ1) = {R′} (second case of the
definition ofderiv), soR′ ∈ derivable(F,ℛ1). The other clauses of this derivation are in
ℛ1. By definition of a derivation,R′ ⊒ H ′ ⇒ F whereH ′ is the multiset of labels of
the outgoing edges of the subroot of the derivation. TakingR′ = H ⇒ C, there exists�
such that�C = F and�H ⊆ H ′, so all elements of�H are derivable fromℛ1.

The proof of the converse implication is left to the reader. (Basically, if a fact is
derivable by applying the clauseR ∘F0

R′, then it is also derivable by applyingR and
R′.) ⊓⊔

2.3. Optimizations

The resolution algorithm uses several optimizations, in order to speed up resolution. The
first two are standard, while the last three are specific to protocols.

Elimination of duplicate hypothesesIf a clause contains several times the same hy-
potheses, the duplicate hypotheses are removed, so that at most one occurrence of each
hypothesis remains.

Elimination of tautologies If a clause has a conclusion that is already in the hypotheses,
this clause is a tautology: it does not derive new facts. Suchclauses are removed.

Elimination of hypothesesattacker(x) If a clauseH ⇒ C contains in its hypotheses
attacker(x), wherex is a variable that does not appear elsewhere in the clause, then the
hypothesisattacker(x) is removed. Indeed, the attacker always has at least one message,
soattacker(x) is always satisfied for some value ofx.

Decomposition of data constructorsA data constructor is a constructorf of arity n
that comes with associated destructorsgi for i ∈ {1, . . . , n} defined bygi(f(x1, . . . ,
xn))→ xi. Data constructors are typically used for representing data structures. Tuples
are examples of data constructors. For each data constructor f , the following clauses are
generated:

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn)) (Rf)

attacker(f(x1, . . . , xn))⇒ attacker(xi) (Rg)

Therefore,attacker(f(p1, . . . , pn)) is derivable if and only if∀i ∈ {1, . . . , n},
attacker(pi) is derivable. When a fact of the formattacker(f(p1, . . . , pn)) is met, it is
replaced withattacker(p1)∧. . .∧attacker(pn). If this replacement is done in the conclu-
sion of a clauseH ⇒ attacker(f(p1, . . . , pn)), n clauses are created:H ⇒ attacker(pi)
for eachi ∈ {1, . . . , n}. This replacement is of course done recursively: ifpi itself is
a data constructor application, it is replaced again. The clauses (Rf) and (Rg) for data
constructors are left unchanged. (Whenattacker(x) cannot be selected, the clauses (Rf)
and (Rg) for data constructors are in fact not necessary, because they generate only tau-
tologies during resolution. However, whenattacker(x) can be selected, which cannot be
excluded with certain extensions, these clauses may becomenecessary for soundness.)

Secrecy assumptionsWhen the user knows that a fact will not be derivable, he can tell
it to the verifier. (When this fact is of the formattacker(M), the user tells thatM remains
secret.) The tool then removes all clauses which have this fact in their hypotheses. At
the end of the computation, the tool checks that the fact is indeed underivable from
the obtained clauses. If the user has given erroneous information, an error message is
displayed. Even in this case, the verifier never wrongly claims that a protocol is secure.

Mentioning such underivable facts prunes the search space,by removing useless
clauses. This speeds up the resolution algorithm. In most cases, the secret keys of
the principals cannot be known by the attacker. So, examplesof underivable facts are
attacker(skA[]), attacker(skB []), . . .

For simplicity, the proofs given in Section 2.2 do not take into account these opti-
mizations. For a full proof, we refer the reader to [30, Appendix C].

2.4. Termination

In general, the resolution algorithm may not terminate. (The derivability problem is un-
decidable.) In practice, however, it terminates in most examples.

We have shown with Podelski that it always terminates on a large and interesting
class of protocols, thetagged protocols[35]. We consider protocols that use as crypto-
graphic primitives only public-key encryption and signatures with atomic keys, shared-
key encryption, message authentication codes, and hash functions. Basically, a protocol
is tagged when each application of a cryptographic primitive is marked with a distinct
constant tag. It is easy to transform a protocol into a taggedprotocol by adding tags. For
instance, our example of protocol can be transformed into a tagged protocol, by adding
the tagsc0, c1, c2 to distinguish the encryptions and signature:

Message 1. A→ B :
{
∣

∣⟨c1, [⟨c0, k⟩]skA
⟩
∣

∣

}

a

pk
B

Message 2. B → A : {∣⟨c2, s⟩∣}
s

k

Adding tags preserves the expected behavior of the protocol, that is, the attack-free ex-
ecutions are unchanged. In the presence of attacks, the tagged protocol may be more
secure. Hence, tagging is a feature of good protocol design,as explained e.g. in [9]: the
tags are checked when the messages are received; they facilitate the decoding of the re-
ceived messages and prevent confusions between messages. More formally, tagging pre-
vents type-flaw attacks [66], which occur when a message is taken for another message.
However, the tagged protocol is potentially more secure than its untagged version, so, in
other words, a proof of security for the tagged protocol doesnot imply the security of its
untagged version.

Other authors have proved related results: Ramanujan and Suresh [85] have shown
that secrecy is decidable for tagged protocols. However, their tagging scheme is stronger
since it forbids blind copies. A blind copy happens when a protocol participant sends
back part of a message he received without looking at what is contained inside this part.
On the other hand, they obtain a decidability result, while we obtain a termination result
for an algorithm which is sound, efficient in practice, but approximate. Arapinis and Du-
flot [13] extend this result but still forbid blind copies. Comon-Lundh and Cortier [47]
show that an algorithm using ordered binary resolution, ordered factorization and split-
ting terminates on protocols that blindly copy at most one term in each message. In con-
trast, our result puts no limit on the number of blind copies,but requires tagging.

For protocols that are not tagged, we have also designed someheuristics to adapt the
selection function in order to obtain termination more often. We refer the reader to [32,
Section 8.2] for more details.

It is also possible to obtain termination in all cases at the cost of additional abstrac-
tions. For instance, Goubault-Larrecq shows that one can abstract the clauses into clauses
in the decidable classℋ1 [63], by losing some relational information on the messages.

3. Extensions

3.1. Treatment of Equations

Up to now, we have defined cryptographic primitives by associating rewrite rules to de-
structors. Another way of defining primitives is by equational theories, as in the applied

pi calculus [6]. This allows us to model, for instance, variants of encryption for which
the failure of decryption cannot be detected or more complexprimitives such as Diffie-
Hellman key agreements. The Diffie-Hellman key agreement [54] enables two principals
to build a shared secret. It is used as an elementary step in more complex protocols, such
as Skeme [69], SSH, SSL, and IPsec.

The Horn clause verification approach can be extended to handle some equational
theories. For example, the Diffie-Hellman key agreement canbe modeled by using a
constantg and a functionexp that satisfy the equation

exp(exp(g, x), y) = exp(exp(g, y), x). (4)

In practice, the function isexp(x, y) = xy mod p, wherep is prime andg is a gen-
erator ofℤ∗

p. The equationexp(exp(g, x), y) = (gx)y mod p = (gy)x mod p =
exp(exp(g, y), x) is satisfied. In ProVerif, following the ideas used in the applied pi cal-
culus [6], we do not consider the underlying number theory; we work abstractly with
the equation (4). The Diffie-Hellman key agreement involvestwo principalsA andB. A
chooses a random namex0, and sendsexp(g, x0) to B. Similarly,B chooses a random
namex1, and sendsexp(g, x1) to A. ThenA computesexp(exp(g, x1), x0) andB com-
putesexp(exp(g, x0), x1). Both values are equal by (4), and they are secret: assuming
that the attacker cannot havex0 or x1, it can compute neitherexp(exp(g, x1), x0) nor
exp(exp(g, x0), x1).

In ProVerif, the equation (4) is translated into the rewriterules

exp(exp(g, x), y)→ exp(exp(g, y), x) exp(x, y)→ exp(x, y).

Notice that this definition ofexp is non-deterministic: a term such asexp(exp(g, a), b)
can be reduced toexp(exp(g, b), a) andexp(exp(g, a), b), so thatexp(exp(g, a), b) re-
duces to its two forms modulo the equational theory. The rewrite rules in the definition
of function symbols are applied exactly once when the function is applied. So the rewrite
rule exp(x, y) → exp(x, y) is necessary to make sure thatexp never fails, even when
the first rewrite rule cannot be applied, and these rewrite rules do not loop because they
are applied only once at each application ofexp. More details on the treatment of equa-
tions in ProVerif and, in particular, a proof that these rewrite rules correctly model the
equation (4) can be found in [33, Section 5].

This treatment of equations has the advantage that resolution can still use syntactic
unification, so it remains efficient. However, it also has limitations; for example, it cannot
handle associative functions, such as XOR, because it wouldgenerate an infinite number
of rewrite rules for the destructors. Recently, other treatments of equations that can han-
dle XOR and Diffie-Hellman key agreements with more detailedalgebraic relations (in-
cluding equations of the multiplicative group modulop) within the Horn clause approach
have been proposed by Küsters and Truderung: they handle XORprovided one of its two
arguments is a constant in the clauses that model the protocol [71] and Diffie-Hellman
key agreements provided the exponents are constants in the clauses that model the pro-
tocol [72]; they proceed by transforming the initial clauses into richer clauses on which
the standard resolution algorithm is applied. We refer the reader to Chapter“Verifying
a bounded number of sessions and its complexity”for the treatment of equations for a
bounded number of sessions, to [49,46] for treatments of XORfor a bounded number

of sessions, and to [76,45,65,78] for other treatments of Diffie-Hellman key agreements,
using unification modulo [76,65] or for a bounded number of sessions [45,78].

3.2. Translation from the Applied Pi Calculus

ProVerif does not require the user to manually enter the Hornclauses described previ-
ously. These clauses can be generated automatically from a specification of the protocol
in the applied pi calculus [6]. (Chapter“Applied Pi Calculus” presents cryptographic pi
calculi, and the applied pi calculus in particular.) On suchspecifications, ProVerif can
verify various security properties, by using an adequate translation into Horn clauses:

∙ secrecy, as described above. The translation from the applied pi calculus to Horn
clauses is given in [3].

∙ correspondences, which are properties of the form “if an event has been executed,
then other events have been executed” [32]. They can in particular be used for
formalizing authentication.

∙ some process equivalences, which mean intuitively that theattacker cannot dis-
tinguish two processes (i.e. protocols). Process equivalences can be used for for-
malizing various security properties, in particular by expressing that the attacker
cannot distinguish a process from its specification. ProVerif can prove particu-
lar cases of observational equivalences. It can prove strong secrecy [28], which
means that the attacker cannot see when the value of the secret changes. This is a
stronger notion of secrecy than the one mentioned previously. It can be used, for
instance, for expressing the secrecy of values taken among aset of known con-
stants, such as bits: one shows that the attacker cannot distinguish whether the bit
is 0 or 1. More generally, ProVerif can also prove equivalences between processes
that differ by the terms they contain, but have otherwise thesame structure [33].
In particular, these equivalences can express that a password-based protocol is
resistant to guessing attacks: even if the attacker guessesthe password, it cannot
verify that its guess is correct.

As for secrecy, when no derivation from the clauses is found,the desired security prop-
erty is proved. When a derivation is found, there may be attack. ProVerif then tries to
reconstruct a trace in the applied pi calculus semantics that corresponds to this deriva-
tion [11]. (Trace reconstruction may fail, in particular when the derivation corresponds
to a false attack; in this case, one does not know whether there is an attack or not.)

4. Application to Examples of Protocols

The automatic protocol verifier ProVerif is available athttp://www.proverif.
ens.fr/. It was successfully applied to many protocols of the literature, to prove
secrecy and authentication properties: flawed and corrected versions of the Needham-
Schroeder public-key [81,73] and shared-key [81,42,82], Woo-Lam public-key [87,88]
and shared-key [87,12,9,88,61], Denning-Sacco [53,9], Yahalom [42], Otway-Rees [83,
9,84], and Skeme [69] protocols. No false attack occurred inthese tests and the only non-
termination cases were some flawed versions of the Woo-Lam shared-key protocol. The
other protocols were verified in less than one second each on aPentium M 1.8 GHz [30].

ProVerif was also used for proving strong secrecy in the corrected version of the
Needham-Schroeder public-key protocol [73] and in the Otway-Rees [83], Yahalom [42],
and Skeme [69] protocols, the resistance to guessing attacks for the password-based pro-
tocols EKE [18] and Augmented EKE [19], and authentication in the Wide-Mouth-Frog
protocol [8] (version with one session). The runtime went from less than one second to
15 s on these tests, on a Pentium M 1.8 GHz [28,33].

Moreover, ProVerif was also used in more substantial case studies:

∙ With Abadi [4], we applied it to the verification of a certifiedemail protocol [7].
We use correspondence properties to prove that the receiverreceives the message
if and only if the sender has a receipt for the message. (We usesimple manual
arguments to take into account that the reception of sent messages is guaranteed.)
One of the tested versions includes the SSH transport layer in order to establish a
secure channel. (Total runtime: 6 min on a Pentium M 1.8 GHz.)

∙ With Abadi and Fournet [5], we studied the JFK protocol (Just Fast Keying) [10],
which was one of the candidates to the replacement of IKE as key exchange proto-
col in IPSec. We combined manual proofs and ProVerif to provecorrespondences
and equivalences. (Total runtime: 3 min on a Pentium M 1.8 GHz.)

∙ With Chaudhuri [34], we studied the secure filesystem Plutus[67] with ProVerif,
which allowed us to discover and fix weaknesses of the initialsystem.

Other authors also use ProVerif for verifying protocols or for building other tools:

∙ Bhargavan et al. [26,22,20] use it to build the Web services verification tool Tu-
laFale: Web services are protocols that send XML messages; TulaFale translates
them into the input format of ProVerif and uses ProVerif to prove the desired
security properties.

∙ Bhargavan et al. [25,23,24] use ProVerif for verifying implementations of pro-
tocols in F# (a functional language of the Microsoft .NET environment): a sub-
set of F# large enough for expressing security protocols is translated into the in-
put format of ProVerif. The TLS protocol, in particular, wasstudied using this
technique [21].

∙ Canetti and Herzog [43] use ProVerif for verifying protocols in the computational
model: they show that, for a restricted class of protocols that use only public-key
encryption, a proof in the Dolev-Yao model implies securityin the computational
model, in the universal composability framework. Authentication is verified using
correspondences, while secrecy of keys corresponds to strong secrecy.

∙ ProVerif was also used for verifying a certified email web service [74], a certified
mailing-list protocol [68], e-voting protocols [70,16], the ad-hoc routing protocol
ARAN (Authenticated Routing for Adhoc Networks) [60], and zero-knowledge
protocols [17].

Finally, Goubault-Larrecq and Parrennes [64] also use the Horn clause method for ana-
lyzing implementations of protocols written in C. However,they translate protocols into
clauses of theℋ1 class and use theℋ1 prover by Goubault-Larrecq [63] rather than
ProVerif to prove secrecy properties of the protocol.

5. Conclusion

A strong aspect of the Horn clause approach is that it can prove security properties of
protocols for an unbounded number of sessions, in a fully automatic way. This is essential
for the certification of protocols. It also supports a wide variety of security primitives and
can prove a wide variety of security properties.

On the other hand, the verification problem is undecidable for an unbounded number
of sessions, so the approach is not complete: it does not always terminate and it performs
approximations, so there exist secure protocols that it cannot prove, even if it is very
precise and efficient in practice.

AcknowledgmentsThis work owes much to discussions with Martín Abadi. I am very
grateful to him for what he taught me. We thank Mark Ryan and Ben Smyth for com-
ments on a draft of this chapter. This work was partly done at Bell Labs Research, Lucent
Technologies, Palo Alto and at Max-Planck-Institut für Informatik, Saarbrücken. This
chapter borrows material from [27,31,32].

References

[1] M. Abadi. Security protocols and their properties. InFoundations of Secure Computation, NATO
Science Series, pages 39–60. IOS Press, 2000.

[2] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. InFoundations of Software
Science and Computation Structures (FoSSaCS 2001), volume 2030 ofLNCS, pages 25–41. Springer,
Apr. 2001.

[3] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic programs.Journal
of the ACM, 52(1):102–146, Jan. 2005.

[4] M. Abadi and B. Blanchet. Computer-assisted verification of a protocol for certified email.Science of
Computer Programming, 58(1–2):3–27, Oct. 2005. Special issue SAS’03.

[5] M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying inthe pi calculus. ACM Transactions on
Information and System Security (TISSEC), 10(3):1–59, July 2007.

[6] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In28th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’01), pages 104–115.
ACM Press, Jan. 2001.

[7] M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified emailwith a light on-line trusted third party:
Design and implementation. In11th International World Wide Web Conference, pages 387–395. ACM
Press, May 2002.

[8] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.Information and
Computation, 148(1):1–70, Jan. 1999.

[9] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols.IEEE Transac-
tions on Software Engineering, 22(1):6–15, Jan. 1996.

[10] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, K. Keromytis, and O. Reingold. Just Fast
Keying: Key agreement in a hostile Internet.ACM Transactions on Information and System Security,
7(2):242–273, May 2004.

[11] X. Allamigeon and B. Blanchet. Reconstruction of attacks against cryptographic protocols. In18th
IEEE Computer Security Foundations Workshop (CSFW-18), pages 140–154. IEEE, June 2005.

[12] R. Anderson and R. Needham. Programming Satan’s computer. In Computer Science Today: Recent
Trends and Developments, volume 1000 ofLNCS, pages 426–440. Springer, 1995.

[13] M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In27th Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS’07), volume 4855 of
LNCS, pages 376–387. Springer, Dec. 2007.

[14] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated Reasoning,
volume 1, chapter 2, pages 19–100. North Holland, 2001.

[15] M. Backes, A. Cortesi, and M. Maffei. Causality-based abstraction of multiplicity in security protocols.
In 20th IEEE Computer Security Foundations Symposium (CSF’07), pages 355–369. IEEE, July 2007.

[16] M. Backes, C. Hritcu, and M. Maffei. Automated verification of electronic voting protocols in the
applied pi-calculus. In21st IEEE Computer Security Foundations Symposium (CSF’08), pages 195–209.
IEEE Computer Society, June 2008.

[17] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and automated verifi-
cation of the direct anonymous attestation protocol. In29th IEEE Symposium on Security and Privacy,
pages 202–215. IEEE, May 2008.

[18] S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-based protocols secure against
dictionary attacks. InProceedings of the 1992 IEEE Computer Society Symposium on Research in
Security and Privacy, pages 72–84, May 1992.

[19] S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: a password-based protocol secure
against dictionary attacks and password file compromise. InProceedings of the First ACM Conference
on Computer and Communications Security, pages 244–250, Nov. 1993.

[20] K. Bhargavan, R. Corin, C. Fournet, and A. Gordon. Secure sessions for web services. InACM Workshop
on Secure Web Services (SWS’04), Oct. 2004.

[21] K. Bhargavan, R. Corin, C. Fournet, and E. Zălinescu. Cryptographically verified implementations
for TLS. In Proceedings of the 15th ACM Conference on Computer and Communications Security
(CCS’08), pages 459–468. ACM, Oct. 2008.

[22] K. Bhargavan, C. Fournet, and A. Gordon. Verifying policy-based security for web services. InACM
Conference on Computer and Communications Security (CCS’04), pages 268–277. ACM, Oct. 2004.

[23] K. Bhargavan, C. Fournet, and A. Gordon. Verified reference implementations of WS-Security protocols.
In 3rd International Workshop on Web Services and Formal Methods (WS-FM 2006), volume 4184 of
LNCS, pages 88–106. Springer, Sept. 2006.

[24] K. Bhargavan, C. Fournet, A. Gordon, and N. Swamy. Verified implementations of the information card
federated identity-management protocol. InACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS’08), pages 123–135. ACM, Mar. 2008.

[25] K. Bhargavan, C. Fournet, A. Gordon, and S. Tse. Verifiedinteroperable implementations of security
protocols. In19th IEEE Computer Security Foundations Workshop (CSFW’06), pages 139–152. IEEE
Computer Society, July 2006.

[26] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. TulaFale: A security tool for web services. In
Formal Methods for Components and Objects (FMCO 2003), volume 3188 ofLNCS, pages 197–222.
Springer, Nov. 2003. Paper and tool available athttp://securing.ws/.

[27] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In14th IEEE Computer
Security Foundations Workshop (CSFW-14), pages 82–96. IEEE Computer Society, June 2001.

[28] B. Blanchet. Automatic proof of strong secrecy for security protocols. InIEEE Symposium on Security
and Privacy, pages 86–100, May 2004.

[29] B. Blanchet. Security protocols: From linear to classical logic by abstract interpretation.Information
Processing Letters, 95(5):473–479, Sept. 2005.

[30] B. Blanchet. Automatic verification of correspondences for security protocols. Report
arXiv:0802.3444v1, 2008. Available athttp://arxiv.org/abs/0802.3444v1.

[31] B. Blanchet. Vérification automatique de protocoles cryptographiques :modèle formel et modèle cal-
culatoire. Mémoire d’habilitation à diriger des recherches, Université Paris-Dauphine, Nov. 2008.

[32] B. Blanchet. Automatic verification of correspondences for security protocols.Journal of Computer
Security, 17(4):363–434, July 2009.

[33] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for security
protocols.Journal of Logic and Algebraic Programming, 75(1):3–51, Feb.–Mar. 2008.

[34] B. Blanchet and A. Chaudhuri. Automated formal analysis of a protocol for secure file sharing on
untrusted storage. InIEEE Symposium on Security and Privacy, pages 417–431. IEEE, May 2008.

[35] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces termination.
Theoretical Computer Science, 333(1-2):67–90, Mar. 2005. Special issue FoSSaCS’03.

[36] C. Bodei.Security Issues in Process Calculi. PhD thesis, Università di Pisa, Jan. 2000.
[37] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson. Static validation of security protocols.

Journal of Computer Security, 13(3):347–390, 2005.
[38] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control flow analysis for the�-calculus. In

International Conference on Concurrency Theory (CONCUR’98), volume 1466 ofLNCS, pages 84–98.

Springer, Sept. 1998.
[39] Y. Boichut, N. Kosmatov, and L. Vigneron. Validation ofprouvé protocols using the automatic tool

TA4SP. InProceedings of the Third Taiwanese-French Conference on Information Technology (TFIT
2006), pages 467–480, Mar. 2006.

[40] D. Bolignano. Towards a mechanization of cryptographic protocol verification. In9th International
Conference on Computer Aided Verification (CAV’97), volume 1254 ofLNCS, pages 131–142. Springer,
1997.

[41] L. Bozga, Y. Lakhnech, and M. Périn. Pattern-based abstraction for verifying secrecy in protocols.
International Journal on Software Tools for Technology Transfer (STTT), 8(1):57–76, Feb. 2006.

[42] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the Royal Society
of London A, 426:233–271, 1989.

[43] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentication and key
exchange protocols. InProceedings, Theory of Cryptography Conference (TCC’06), volume 3876 of
LNCS, pages 380–403. Springer, Mar. 2006.

[44] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. InCONCUR 2000: Concurrency
Theory, volume 1877 ofLNCS, pages 365–379. Springer, Aug. 2000.

[45] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security of protocols with
Diffie-Hellman exponentiation and products in exponents. In FST TCS 2003: Foundations of Software
Technology and Theoretical Computer Science, 23rd Conference, volume 2914 ofLNCS, pages 124–
135. Springer, Dec. 2003.

[46] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure for protocol
insecurity with XOR.Theoretical Computer Science, 338(1–3):247–274, June 2005.

[47] H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic and applica-
tion to cryptographic protocols. In14th Int. Conf. Rewriting Techniques and Applications (RTA’2003),
volume 2706 ofLNCS, pages 148–164. Springer, June 2003.

[48] H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. InProgramming Lan-
guages and Systems: 12th European Symposium on Programming(ESOP’03), volume 2618 ofLNCS,
pages 99–113. Springer, Apr. 2003.

[49] H. Comon-Lundh and V. Shmatikov. Intruder deductions,constraint solving and insecurity decision in
presence of exclusive or. InSymposium on Logic in Computer Science (LICS’03), pages 271–280. IEEE
Computer Society, June 2003.

[50] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In6th Annual ACM
Symposium on Principles of Programming Languages, pages 269–282, 29-31 Jan. 1979.

[51] H. de Nivelle. Ordering Refinements of Resolution. PhD thesis, Technische Universiteit Delft, Oct.
1995.

[52] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis in Maude. InWorkshop on
Formal Methods and Security Protocols, 25 June 1998.

[53] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols.Commun. ACM, 24(8):533–
536, Aug. 1981.

[54] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
IT-22(6):644–654, Nov. 1976.

[55] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, IT-29(12):198–208, Mar. 1983.

[56] N. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and the complexity of bounded
security protocols.Journal of Computer Security, 12(2):247–311, 2004.

[57] S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system for the NRL protocol
analyzer and its meta-logical properties.Theoretical Computer Science, 367(1-2):162–202, 2006.

[58] G. Filé and R. Vigo. Expressive power of definite clausesfor verifying authenticity. In22nd IEEE
Computer Security Foundations Symposium (CSF’09), pages 251–265. IEEE, July 2009.

[59] T. Genet and F. Klay. Rewriting for cryptographic protocol verification. In17th International Conference
on Automated Deduction (CADE-17), volume 1831 ofLNCS, pages 271–290. Springer, June 2000.

[60] J. C. Godskesen. Formal verification of the ARAN protocol using the applied pi-calculus. In6th
International IFIP WG 1.7 Workshop on Issues in the Theory ofSecurity (WITS’06), pages 99–113, Mar.
2006.

[61] A. Gordon and A. Jeffrey. Authenticity by typing for security protocols.Journal of Computer Security,
11(4):451–521, 2003.

[62] J. Goubault-Larrecq. A method for automatic cryptographic protocol verification (extended abstract),
invited paper. InFifth International Workshop on Formal Methods for Parallel Programming: Theory
and Applications (FMPPTA’2000), volume 1800 ofLNCS, pages 977–984. Springer, May 2000.

[63] J. Goubault-Larrecq. Decidingℋ1 by resolution.Information Processing Letters, 95(3):401–408, Aug.
2005.

[64] J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. InProceed-
ings of the 6th International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI’05), volume 3385 ofLNCS, pages 363–379. Springer, Jan. 2005.

[65] J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abstraction and resolution modulo AC: How to verify
Diffie-Hellman-like protocols automatically.Journal of Logic and Algebraic Programming, 64(2):219–
251, Aug. 2005.

[66] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security protocols. In13th
IEEE Computer Security Foundations Workshop (CSFW-13), pages 255–268, July 2000.

[67] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure file sharing
on untrusted storage. In2nd Conference on File and Storage Technologies (FAST’03), pages 29–42.
Usenix, Apr. 2003.

[68] H. Khurana and H.-S. Hahm. Certified mailing lists. InProceedings of the ACM Symposium on Com-
munication, Information, Computer and Communication Security (ASIACCS’06), pages 46–58. ACM,
Mar. 2006.

[69] H. Krawczyk. SKEME: A versatile secure key exchange mechanism for Internet. InInternet Society
Symposium on Network and Distributed Systems Security, Feb. 1996.

[70] S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied pi calculus. InPro-
gramming Languages and Systems: 14th European Symposium onProgramming, ESOP 2005, volume
3444 ofLNCS, pages 186–200. Springer, Apr. 2005.

[71] R. Küsters and T. Truderung. Reducing protocol analysis with XOR to the XOR-free case in the Horn
theory based approach. InProceedings of the 15th ACM conference on Computer and communications
security (CCS’08), pages 129–138. ACM, Oct. 2008.

[72] R. Küsters and T. Truderung. Using ProVerif to analyze protocols with Diffie-Hellman exponentiation.
In 22nd IEEE Computer Security Foundations Symposium (CSF’09), pages 157–171. IEEE, July 2009.

[73] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. InTools and Al-
gorithms for the Construction and Analysis of Systems, volume 1055 ofLNCS, pages 147–166. Springer,
1996.

[74] K. D. Lux, M. J. May, N. L. Bhattad, and C. A. Gunter. WSEmail: Secure internet messaging based on
web services. InInternational Conference on Web Services (ICWS’05), pages 75–82. IEEE Computer
Society, July 2005.

[75] C. Lynch. Oriented equational logic programming is complete. Journal of Symbolic Computation,
21(1):23–45, 1997.

[76] C. Meadows and P. Narendran. A unification algorithm forthe group Diffie-Hellman protocol. In
Workshop on Issues in the Theory of Security (WITS’02), Jan. 2002.

[77] C. A. Meadows. The NRL protocol analyzer: An overview.Journal of Logic Programming, 26(2):113–
131, 1996.

[78] J. Millen and V. Shmatikov. Symbolic protocol analysiswith an abelian group operator or Diffie-
Hellman exponentiation.Journal of Computer Security, 13(3):515–564, 2005.

[79] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol security analysis.IEEE
Transactions on Software Engineering, SE-13(2):274–288, Feb. 1987.

[80] D. Monniaux. Abstracting cryptographic protocols with tree automata.Science of Computer Program-
ming, 47(2–3):177–202, 2003.

[81] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks of comput-
ers.Commun. ACM, 21(12):993–999, Dec. 1978.

[82] R. M. Needham and M. D. Schroeder. Authentication revisited. Operating Systems Review, 21(1):7,
1987.

[83] D. Otway and O. Rees. Efficient and timely mutual authentication. Operating Systems Review, 21(1):8–
10, 1987.

[84] L. C. Paulson. The inductive approach to verifying cryptographic protocols.Journal of Computer
Security, 6(1–2):85–128, 1998.

[85] R. Ramanujam and S. Suresh. Tagging makes secrecy decidable with unbounded nonces as well. In

FST TCS 2003: Foundations of Software Technology and Theoretical Computer Science, volume 2914
of LNCS, pages 363–374. Springer, Dec. 2003.

[86] C. Weidenbach. Towards an automatic analysis of security protocols in first-order logic. In16th Inter-
national Conference on Automated Deduction (CADE-16), volume 1632 ofLecture Notes in Artificial
Intelligence, pages 314–328. Springer, July 1999.

[87] T. Y. C. Woo and S. S. Lam. Authentication for distributed systems.Computer, 25(1):39–52, Jan. 1992.
[88] T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. InInternet Besieged: Countering

Cyberspace Scofflaws, pages 319–355. ACM Press and Addison-Wesley, Oct. 1997.

