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Abstract. This chapter presents a method for verifying security prai®based on
an abstract representation of protocols by Horn clauseis.fiathod is the foun-
dation of the protocol verifier ProVerif. It is fully automat efficient, and can han-
dle an unbounded number of sessions and an unbounded mepsage It sup-
ports various cryptographic primitives defined by rewriiées or equations. Even
if we focus on secrecy in this chapter, this method can alswepother security
properties, including authentication and process ecgnas.
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Introduction

Security protocols can be verified by an approach based on tlauses; the main goal
of this approach is to prove security properties of protedolthe Dolev-Yao model in
a fully automatic way without bounding the number of sessionthe message space
of the protocol. In contrast to the case of a bounded numbeesdions in which de-
cidability results could be obtained (see Chaptererifying a bounded number of ses-
sions and its complexityand“Constraint solving techniques and enriching the model
with equational theories’), the case of an unbounded number of sessions is undecidable
for a reasonable model of protocols [56]. Possible solstitmthis problem are rely-
ing on user interaction, allowing non-termination, and@ening sound approximations
(in which case the technique is incomplete: correct secyribperties cannot always
be proved). Theorem proving [84] and logics (Chapterotocol Composition Logic)
rely on user interaction or on manual proofs. Typing (Chafitising types for security
protocol analysis) generally relies on lightweight user annotations and ®inplete.
Strand spaces (Chapt&hapes: Surveying Crypto Protocol Runsind rank functions
(Chapter‘Security analysis using rank functions in CSRAlso provide techniques that
can handle an unbounded number of sessions at the cost afijpheieness.

Many methods rely on sound abstractions [50]: they overedt the possibilities
of attacks, most of the time by computing an overapproxiomadif the attacker knowl-
edge. They make it possible to obtain fully automatic, babmplete, systems. The Horn
clause approach is one such method. It was first introducefdigienbach [86]. This
chapter presents a variant of his method and extensionarthait the basis of the auto-

1Corresponding Author: Bruno Blanchet, Ecole Normale Siepée, DI, 45 rue d’UIm, 75005 Paris, France;
E-mail: blanchet@di.ens.fr.



matic protocol verifier ProVerif that we developed. In thistinod, messages are repre-
sented by terma/; the factattacker(M) means that the attacker may have the message
M; Horn clauses (i.e. logic programming rules) give implicas between these facts.
An efficient resolution algorithm determines whether a faderivable from the clauses,
which can be used for proving security properties. In palic whenattacker(M) is
not derivable from the clauses, the attacker cannot idyehat is, M is secret. This
method is incomplete since it ignores the number of repettiof each action in the
protocol. (Horn clauses can be applied any number of tinTdgg abstraction is key to
avoid bounding the number of runs of the protocol. It is squndhe sense that if the
verifier does not find a flaw in the protocol, then there is no fltlae verifier therefore
provides real security guarantees. In contrast, it may@fatse attack against the proto-
col. However, false attacks are rare in practice, as exgaisdemonstrate. Termination
is not guaranteed in general, but it is guaranteed on cestdinlasses of protocols and
can be obtained in all cases by an additional approximasiea §ection 2.4).

Without this additional approximation, even if it does niwtays terminate and is in-
complete, this method provides a good balance in practitsrnninates in the vast major-
ity of cases and is very efficient and precise. It can handlela wariety of cryptographic
primitives defined by rewrite rules or by equations, inchgdshared-key and public-key
cryptography (encryption and signatures), hash functiand the Diffie-Hellman key
agreement. It can prove various security properties (sgcagithentication, and process
equivalences). We mainly focus on secrecy in this chaptegare references for other
properties in Section 3.2.

Other methods rely on abstractions:

e Bolignano [40] was a precursor of abstraction methods fousty protocols. He
merges keys, nonces, ... so that only a finite set remainsgpittsia decision
procedure.

e Monniaux [80] introduced a verification method based on asirabt representa-

tion of the attacker knowledge by tree automata. This methasl extended by
Goubault-Larrecq [62]. Genet and Klay [59] combine treeoedta with rewrit-
ing. This method has lead to the implementation of the TA48Hfigr (Tree-
Automata-based Automatic Approximations for the AnalggiSecurity Proto-
colg) [39].
The main drawback of this approach is that, in contrast tmtttaiuses, tree au-
tomata cannot represent relational information on messagween a variable ap-
pears several times in a message, one forgets that it haatteevalue at all its oc-
currences, which limits the precision of the analysis. Therttlause method can
be understood as a generalization of the tree automataitgEhriTree automata
can be encoded into Horn clauses.)

e Control-flow analysis [36,38] computes the possible messag each program
point. It is also non-relational, and merges nonces creattelde same program
point in different sessions. These approximations makedsible to obtain a
complexity at most cubic in the size of the protocol. It wastfitefined for secrecy
for shared-key protocols, then extended to message aiditgnaind public-key
protocols [37], with a polynomial complexity.

e Most protocol verifiers compute the knowledge of the attadkecontrast, Her-
mes [41] computes the form of messages, for instance encnyphder certain
keys, that guarantee the preservation of secrecy. The pamelies shared-key



M,N ::= terms

T variable

a[My, ..., M,) name

f(My, ..., My) function application
F =p(My,...,M,) fact
Ri:=FON...NF,=F Horn clause

Figure 1. Syntax of our protocol representation

and public-key encryption, but the method also applies goatures and hash
functions.

e Backes et al. [15] prove secrecy and authentication by amaadtsnterpretation-
based analysis. This analysis builds a causal graph thatireapthe causality
between events in the protocol. The security propertiepareed by traversing
this graph. This analysis always terminates but is incoteplé assumes that
messages are typed, so that names (which represent randobers) can be
distinguished from other messages.

One of the first verification methods for security protoctie Interrogator [79] is also
related to the Horn clause approach: in this system, writidProlog, the reachability
of the state after a sequence of messages is representedénieape, and the program
uses a backward search in order to determine whether a stegadhable or not. The
main problem of this approach is non-termination, and itaglp solved by relying on
user interaction to guide the search. In contrast, we peoai€ully automatic approach
by using a different resolution strategy that provides taation in most cases.

The NRL protocol analyzer [77,57] improves the techniquéhef Interrogator by
using narrowing on rewriting systems. It does not make abstms, so it is correct and
complete but may not terminate.

Overview Section 1 details our protocol representation. Sectiors2ritges our resolu-
tion algorithm, and sketches its proof of correctness. @dextensions of this work are
detailed in Section 3. Section 4 presents experimentaltsemod Section 5 concludes.

1. Abstract Representation of Protocols by Horn Clauses

A protocol is represented by a set of Horn clauses; the syoftéxese clauses is given
in Figure 1. In this figureg ranges over variables,over namesyf over function sym-
bols, andy over predicate symbols. The termé represent messages that are exchanged
between participants of the protocol. A variable can regmeany term. Names repre-
sent atomic values, such as keys and nonces (random nunibacs) principal has the
ability of creating new names: fresh names are created htreamf the protocol. Here,
the created names are considered as functions of the megsay®ously received by
the principal that creates the name. Thus, names are dighed only when the pre-
ceding messages are different. As noticed by Martin Abaglisgmal communication),
this approximation is in fact similar to the approximatioong in some type systems
(such as [2]): the type of the new name depends on the typéiervironment. It is



enough to handle many protocols, and can be enriched by gaddirer parameters to
the name. In particular, by adding as parameter a sessiatifidethat takes a different
value in each run of the protocol, one can distinguish all @anThis is necessary for
proving authentication but not for secrecy, so we omit sesisientifiers here for simplic-
ity. We refer the reader to [32,58] for additional infornmatti The function applications
f(My,..., M,) build terms: examples of functions are encryption and haslatfons.
Afact F' = p(M, ..., M,) expresses a property of the messabhgs. . ., M,,. Several
predicate® can be used but, for a first example, we are going to use a gingikcate
attacker, such that the factttacker(M) means “the attacker may have the messije
AclauseR = F| A ... A F,, = F means that, if all fact$1, ..., F,, are true, ther¥ is
also true. A clause with no hypothesis F' is written simplyF'.

We use as a running example the naive handshake protoamlirted in Example 1
of Chapter‘Introduction” :

Message 1. A — B : {|[k],, |};k
Message 2. B — A : {s[}},

We refer the reader to Chapténtroduction” for an explanation of this protocol. We
denote bysk 4 the secret key ofi, pk 4 his public key,sk 5 the secret key oB, pk 5 his
public key.

1.1. Representation of Primitives

Cryptographic primitives are represented by functions. iRstance, we represent the
public-key encryption by a functiopencrypt(m, pk), which takes two arguments: the
messagen to encrypt and the public keyk. There is a functiopk that builds the public
key from the secret key. (We could also have two functjgnandsk to build respectively
the public and secret keys from a secret.) The secret keypigsented by a name that
has no arguments (that is, there exists only one copy of #rigesk 4[| for A andsk ]
for B. Thenpk 4, = pk(ska[]) andpk 5 = pk(skp[]).

More generally, we consider two kinds of functions: constious and destructors.
The constructors are the functions that explicitly appedhé terms that represent mes-
sages. For instanceencrypt andpk are constructors. Destructors manipulate terms. A
destructoy is defined by a setef(g) of rewrite rules of the forng (M3, ..., M,) - M
whereM,, ..., M,, M are terms that contain only variables and constructors la@d t
variables ofM all occur inM,, ..., M,. For instance, the decryptigriecrypt is a de-
structor, defined bydecrypt(pencrypt(m, pk(sk)), sk) — m. This rewrite rule mod-
els that, by decrypting a ciphertext with the correspondiagret key, one obtains the
cleartext. Other functions are defined similarly:

e For signatures, we use a construsign and writesign(m, sk) for the message:
signed under the secret kely. A destructogetmess defined bygetmess(sign(m,
sk)) — m returns the message without its signature, ereksign(sign(m, sk),
pk(sk)) — m returns the message only if the signature is valid.

e The shared-key encryption is a construciercrypt and the decryption is a de-
structorsdecrypt, defined bysdecrypt(sencrypt(m, k), k) — m.

e A one-way hash function is represented by a constructand no destructor).



e Tuples of arityn are represented by a constructor...,_) andn destructors
ith,, defined byith,, ((z1,...,2,)) = @i,i € {1,...,n}. Tuples can be used to
represent various data structures in protocols.

Rewrite rules offer a flexible method for defining many crygrtphic primitives. It can
be further extended by using equations, as sketched inoBex:tl.

1.2. Representation of the Abilities of the Attacker

We assume that the protocol is executed in the presence dfeeier that can intercept
all messages, compute new messages from the messageseta@ed, and send any
message it can build, following the so-called Dolev-Yao ei¢85]. We first present the
encoding of the computation abilities of the attacker. Theogling of the protocol will
be detailed in Section 1.3.

During its computations, the attacker can apply all corstms and destructors. ff
is a constructor of arity, this leads to the clause:

attacker(x1) A ... A attacker(z,,) = attacker(f(x1,...,2,)).

If ¢ is a destructor, for each rewrite rW@M, ..., M, ) — M in def(g), we have the
clause:

attacker(Mi) A ... A attacker(M,,) = attacker(M).

The destructors never appear in the clauses, they are cggettbrn-matching on their
parameters (herkly, . .., M,,) in the hypothesis of the clause and generating their result
in the conclusion. In the particular case of public-key gption, this yields:

attacker(m) A attacker(pk) = attacker(pencrypt(m, pk)),
attacker(sk) = attacker(pk(sk)),
attacker(pencrypt(m, pk(sk))) A attacker(sk) = attacker(m), Q)

where the first two clauses correspond to the construptarsypt andpk, and the last
clause corresponds to the destrugtdecrypt. When the attacker has an encrypted mes-
sagepencrypt(m, pk) and the decryption keyk, then it also has the cleartext. (We
assume that the cryptography is perfect, hence the attaakewbtain the cleartext from
the encrypted message only if it has the key.)

Clauses for signaturesign, getmess, checksign) and for shared-key encryption
(sencrypt, sdecrypt) are given in Figure 2.

The clauses above describe the computation abilities ddittlaeker. Moreover, the
attacker initially has the public keys of the protocol papants. Therefore, we add the
clausesattacker(pk(sk4[])) andattacker(pk(skg[])). We also give a name to the
attacker, that will represent all names it can geneeatacker(a[]). In particulara[] can
represent the secret key of any dishonest participantiBqkey beingpk(a[]), which
the attacker can compute by the clause for constrydtor



1.3. Representation of the Protocol Itself

Now, we describe how the protocol itself is represented. \Oesider that4 and

B are willing to talk to any principal,A, B but also malicious principals that
are represented by the attacker. Therefore, the first messagt by A can be
pencrypt(sign(k, ska[]), pk(z)) for any . We leave to the attacker the task of start-
ing the protocol with the principal it wants, that is, theaatter will send a preliminary
message tad, mentioning the public key of the principal with which should talk.
This principal can be3, or another principal represented by the attacker. Hehtleg i
attacker has some kexk(z), it can sendbk(z) to A; A replies with his first message,
which the attacker can intercept, so the attacker obtaimsypt(sign(k, sk a[]), pk(x)).
Therefore, we have a clause of the form

attacker(pk(x)) = attacker(pencrypt(sign(k, ska[]), pk(z))).

Moreover, a new key: is created each time the protocol is run. Hence, if two déffeer
keyspk(z) are received by, the generated keysare certainly differentt depends on
pk(z). The clause becomes:

attacker(pk(z)) = attacker(pencrypt(sign(k[pk(z)], sk a[]), pk(z))). 2

When B receives a message, he decrypts it with his secretskey so B ex-
pects a message of the forpencrypt(z’, pk(skp[])). Next, B tests whethetd has
signedz’, that is, B evaluateshecksign(z’, pk 4), and this succeeds only whet =
sign(y, ska[]). If so, he assumes that the kgys only known byA, and sends a secret
s (a constant that the attacker does not have a priori) ersxdyyrtdery. We assume that
the attacker relays the message coming frdpand intercepts the message senthy
Hence the clause:

attacker(pencrypt(sign(y, ska[]), pk(skg[]))) = attacker(sencrypt(s,y)).

Remark 1 With these clausesd cannot play the role oB and vice-versa. In order to
model a situation in which all principals play both roles, gan replace all occurrences
of sk p[] with sk 4[] in the clauses above. Thehplays both roles, and is the only honest
principal. A single honest principal is sufficient for pragisecrecy properties by [48].

More generally, a protocol that containsnessages is encoded hgets of clauses.
If a principal X sends theth message, thih set of clauses contains clauses that have
as hypotheses the patterns of the messages previouslyaetsiX in the protocol, and
as conclusion the pattern of thiln message. There may be several possible patterns for
the previous messages as well as for the sent message jqulzanvhen the principak
uses a function defined by several rewrite rules, such asutiaidbnexp of Section 3.1.
In this case, a clause must be generated for each combimdpassible patterns. More-
over, notice that the hypotheses of the clauses descrilbreeaages previously received,
not only the last one. This is important since in some prdotee fifth message for
instance can contain elements received in the first mes$agenypotheses summarize
the history of the exchanged messages.



Computation abilities of the attacker:
For each constructgf of arity n:

attacker(z1) A ... A attacker(z,,) = attacker(f(x1,...,2n))

For each destructay, for each rewrite rulg (M, ..., M,) — M in def(g):

that is
pencrypt
pk
pdecrypt
sign
getmess
checksign
sencrypt
sdecrypt

Name generation:

Initial knowledge:

The protocol:
First message:

Second message:

attacker(M1) A ... A attacker(M,,) = attacker(M)
attacker(m) A attacker(pk) = attacker(pencrypt(m, pk))
attacker(sk) = attacker(pk(sk))
attacker(pencrypt(m, pk(sk))) A attacker(sk) = attacker(m)
attacker(m) A attacker(sk) = attacker(sign(m, sk))
attacker(sign(m, sk)) = attacker(m)
attacker(sign(m, sk)) A attacker(pk(sk)) = attacker(m)
attacker(m) A attacker(k) = attacker(sencrypt(m, k))
attacker(sencrypt(m, k)) A attacker(k) = attacker(m)
attacker(a[])

(

attacker(pk(skal])), attacker(pk(skz[]))

attacker(pk(z))

= attacker(pencrypt(sign(k[pk(z)], sk a[]), pk(z)))
attacker(pencrypt(sign(y, sk a[]), pk(skzs[])))

= attacker(sencrypt(s, y))

Figure 2. Summary of our representation of the protocol of Example Chudpter‘Introduction”

Remark 2 When the protocol makes some communications on privatengignon
which the attacker cannot a priori listen or send messagescand predicate can be
used: message(C, M) meaning “the messag&/ can appear on channél”. In this
case, if the attacker manages to get the name of the chéahriewill be able to lis-
ten and send messages on this channel. Thus, two new claagedchbe added to
describe the behavior of the attacker. The attacker caenlien all channels it has:
message(z, y) A attacker(x) = attacker(y). It can send all messages it has on all chan-
nels it hasattacker(x) A attacker(y) = message(z, y).

1.4. Summary

To sum up, a protocol can be represented by three sets of Haees, as detailed in
Figure 2 for the protocol of Example 1 of Chaptértroduction” :

e Clauses representing the computation abilities of theclatta constructors, de-
structors, and name generation.

e Facts corresponding to the initial knowledge of the attadkegeneral, there are
facts giving the public keys of the participants and/oritim@mes to the attacker.

e Clauses representing the messages of the protocol itdedfreTis one set of
clauses for each message in the protocol. In the set comdsppto theith mes-
sage, sent by principaX, the clauses are of the forattacker(M;, ) A ... A
attacker(M;,) = attacker(M;) wherel;, , ..., M;, are the patterns of the
messages received By before sending thééh message, antl/; is the pattern of
theith message.



1.5. Approximations

The reader can notice that our representation of protos@gproximate. Specifically,
the number of repetitions of each action is ignored, sincenHitauses can be applied
any number of times. So a step of the protocol can be compdeteztal times, as long as
the previous steps have been completed at least once betiveesame principals (even
when future steps have already been completed). For irestaoasider the following

protocol (communicated by Véronique Cortier)

Firststep: A sends{(Ny, M)}, { (N2, M)}
Second step:  IfA receives{|(z, M)[};, he replies withr
Third step: IfA receivesNy, Ns, he replies witts

whereN;, N», andM are nonces. In an exact moddlnever sends, since{|(N1, M)},
or {|(N2, M)[};, can be decrypted, but not both. In the Horn clause model, thargh
the first step is executed once, the second step may be eddwite for the same/
(that is, the corresponding clause can be applied twicefhaoboth{(Ny, M)[}; and
{{N2, M)[}; can be decrypted, and may sencs. We have a false attack against the
secrecy of.

However, the important point is that the approximationssarend: if an attack exists
in a more precise model, such as the applied pi calculus [&)udtiset rewriting [52],
then it also exists in our representation. This is shownHerapplied pi calculus in [3]
and for multiset rewriting in [29]. In particular, we haveostm formally that the only ap-
proximation with respect to the multiset rewriting modetiat the number of repetitions
of actions is ignored. Performing approximations enabte®lbuild a much more effi-
cient verifier, which will be able to handle larger and morenptex protocols. Another
advantage is that the verifier does not have to limit the nurabeuns of the protocol.
The price to pay is that false attacks may be found by the gergequences of clause
applications that do not correspond to a protocol run, astilated above. False attacks
appear in particular for protocols with temporary secretsen some value first needs
to be kept secret and is revealed later in the protocol, tha diause model considers
that this value can be reused in the beginning of the prottimas breaking the protocol.
When a false attack is found, we cannot know whether the pobie secure or not: a
real attack may also exist. A more precise analysis is reduir this case. Fortunately,
our representation is precise enough so that false attaeksue. (This is demonstrated
by our experiments, see Section 4.)

1.6. Secrecy Criterion

Our goal is to determine secrecy properties: for instanae te attacker get the secret
s? That is, can the facittacker(s) be derived from the clauses?dftacker(s) can be
derived, the sequence of clauses applied to detiweker(s) will lead to the description
of an attack.

Our notion of secrecy is similar to that of [2,36,44]: a tekinis secret if the attacker
cannot get it by listening and sending messages, and parfgraomputations. This
notion of secrecy is weaker than non-interference, but #dsquate to deal with the
secrecy of fresh names. Non-interference is better at dixgjumplicit information flows



or flows of parts of compound values. (See [1, Section 6] fothfer discussion and
references.)

In our running exampleattacker(s) is derivable from the clauses. The derivation is
as follows. The attacker generates a fresh nafhéconsidered as a secret key), it com-
putespk(a[]) by the clause fopk, obtainspencrypt(sign(k[pk(a[])], skal[]), pk(al]))
by the clause for the first message. It decrypts this messagg the clause fosdecrypt
and its knowledge ofi[ ], thus obtainingign(k[pk(a[])], ska[]). It reencrypts the sig-
nature undermpk(skp[]) by the clause fompencrypt (using its initial knowledge of
pk(skg[])), thus obtainingencrypt(sign(k[pk(a[])], ska[]), pk(sks[])). By the clause
for the second message, it obtaicrypt(s, k[pk(a[])]). On the other hand, from
sign(k[pk(a[])], ska[]), it obtainsk[pk(a[])] by the clause fogetmess, so it can de-
cryptsencrypt(s, k[pk(a[])]) by the clause fosdecrypt, thus obtaining. In other words,
the attacker starts a session betweleand a dishonest participant of secret kgy. It
gets the first messagencrypt(sign(k, ska[]), pk(a[])), decrypts it, reencrypts it under
pk(skg[]), and sends it td. For B, this message looks like the first message of a ses-
sion betweemM and B, so B replies withsencrypt(s, k), which the attacker can decrypt
since it obtaing: from the first message. Hence, the obtained derivation sporeds to
the known attack against this protocol. In contrast, if wetlfi@ protocol by adding the
public key of B in the first messagd{[(pk 5, k)], }}:kB, attacker(s) is not derivable

from the clauses, so the fixed protocol preserves the seofacy

Next, we formally define when a given fact can be derived fromiveen set of
clauses. We shall see in the next section how we determitieToehnically, the hy-
pothesed, ..., F, of a clause are considered as a multiset. This means thatdke o
of the hypotheses is irrelevant, but the number of times athgsis is repeated is im-
portant. (This is not related to multiset rewriting moddipmtocols: the semantics of a
clause does not depend on the number of repetitions of itethgpes, but considering
multisets is necessary in the proof of the resolution athori) We useR for clauses
(logic programmingules), H for hypothesis, and’ for conclusion.

Definition 1 (Subsumption) We say that{; = C; subsume$i, = Cs, and we write
(Hy = C1) 3 (He = (C5), if and only if there exists a substitutiensuch thatoC; =

Cs ando H; C H, (multiset inclusion).

We write Ry J R, when R, can be obtained by adding hypotheses to a particular
instance ofRz;. In this case, all facts that can be derived®y can also be derived by
R;.

A derivation is defined as follows, as illustrated in Figure 3

Definition 2 (Derivability) Let F' be a closed fact, that is, a fact without variable. Let
R be a set of claused! is derivable fronfR if and only if there exists a derivation &f
from R, that is, a finite tree defined as follows:

1. Its nodes (except the root) are labeled by clauBes R;

2. Its edges are labeled by closed facts;

3. If the tree contains a node labeled Bywith one incoming edge labeled By
andn outgoing edges labeled Wy, ..., F,,, thenR J Fy A ... A F,, = Fy.

4. The root has one outgoing edge, labeled ByThe unique son of the root is
named thesubroot
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Figure 3. Derivation of I/

In a derivation, if there is a node labeled Bywith one incoming edge labeled by
Fp andn outgoing edges labeled &y, . . ., F),, thenF, can be derived frond, ..., F),
by the clauser. Therefore, there exists a derivationfofrom R if and only if F' can be
derived from clauses iR (in classical logic).

2. Resolution Algorithm

Our representation is a set of Horn clauses, and our goatisteymine whether a given
fact can be derived from these clauses or not. This is extdmlproblem solved by usual
Prolog systems. However, we cannot use such systems heaydsethey would not
terminate. For instance, the clause:

attacker(pencrypt(m, pk(sk))) A attacker(sk) = attacker(m)

leads to considering more and more complex terms, with aowmted number of en-
cryptions. We could of course limit arbitrarily the depthtefms to solve the problem,
but we can do much better than that.

As detailed below, the main idea is to combine pairs of clabseresolution, and to
guide this resolution process by a selection function: esolution algorithm is resolu-
tion with free selection [51,75,14]. This algorithm is sianito ordered resolution with
selection, used by [86], but without the ordering constrsin

Notice that, since a term is secret when a fachas derivable from the clauses,
soundness in terms of security (if the verifier claims thatehs no attack, then there is
no attack) corresponds to the completeness of the resolalgmrithm in terms of logic
programming (if the algorithm claims that a fact is not dehble, then it is not). The
resolution algorithm that we use must therefore be complete

2.1. The Basic Algorithm

Let us first define resolution: when the conclusion of a cldasaifies with a hypothesis
of another (or the same) claug®, resolution infers a new clause that corresponds to
applyingR and R’ one after the other. Formally, resolution is defined as fadto



Definition 3 Let R and R’ be two clausesil = H = C,andR’ = H' = (C’. Assume
that there existd, € H’ such thatC' and Iy are unifiable andr is the most general
unifier of C' and Fy. In this case, we definB o, R’ = o(H U (H' \ {Fy})) = oC".
The clauseR of, R’ is the result of resolving?’ with R upon Fy.

For example, ifR is the clause (2)R’ is the clause (1), and the faét is Fy =
attacker(pencrypt(m, pk(sk))), thenR op, R’ is

attacker(pk(z)) A attacker(z) = attacker(sign(k[pk(z)], sk a[]))

with the substitutiomr = {sk — x, m — sign(k[pk(x)], sk a[])}
We guide the resolution by a selection function:

Definition 4 A selection functiomel is a function from clauses to sets of facts, such that
sel(H= C) C H.If F € sel(R), we say tha¥ is selected irR. If sel(R) = ), we say
that no hypothesis is selectedit) or that the conclusion oR is selected.

The resolution algorithm is correct (sound and completdf) any selection function, as
we show below. However, the choice of the selection funatimm change dramatically
the behavior of the algorithm. The essential idea of therélgo is to combine clauses
by resolution only when the facts unified in the resolutiomselected. We will therefore
choose the selection function to reduce the number of plessitifications between se-
lected facts. Having several selected facts slows downl¢fugithm, because it has more
choices of resolutions to perform, therefore we will selehost one fact in each clause.
In the case of protocols, facts of the foettacker(z), with 2 variable, can be unified
will all facts of the formattacker(M). Therefore, we should avoid selecting them. So a
basic selection function is a functiaal, that satisfies the constraint

0 if VF' € H, 3z variable,F’ = attacker(x)

3
{Fo} whereF, € H andVzx variable,F; # attacker(z) 3)

selo(H=C) = {

The resolution algorithm works in two phases, describeddnre 4. The first phase
transforms the initial set of clauses into a new one thavdetthe same facts. The second
phase uses a depth-first search to determine whether a felse ckerived or not from the
clauses.

The first phasesaturate(Ry), contains 3 steps.

e The first step inserts ifR the initial clauses representing the protocol and the
attacker (clauses that areRy), after elimination of subsumed clausesdbiyn:
if R’ subsumes, andR andR’ are inR, thenR is removed bylim(R).

e The second step is a fixpoint iteration that adds clausegectést resolution. The
resolution of clause® and R’ is added only if no hypothesis is selecteddrand
the hypothesig|, of R’ that we unify is selected. When a clause is created by
resolution, it is added to the set of claugésSubsumed clauses are eliminated
fromR.

e Atlast, the third step returns the set of clause®aofith no selected hypothesis.

Basically,saturate preserves derivability (it is both sound and complete):



First phase: saturation
saturate(Ro) =
1R« 0.
For eachR € Rg, R + elim({R} UR).
2. Repeat until a fixpoint is reached
for eachR € R such thatsel(R) = 0,
for eachR’ € R, for eachF} € sel(R’) such thatR oy, R’ is defined,
R «elim({Rop, R’} UR).
3.Return{R € R | sel(R) = 0}.

Second phase: backward depth-first search
0 if IR e R, R IR

deriv(R. R, Ry) — {R} - otherwise, ifsel(R) = ()
U{deriv(R' o, R,{R} UR,R1) | R’ € Rq,
F, € sel(R) suchthatR’ op, R is defined  otherwise
derivable(F, Ry) = deriv(F = F,0,R1)

Figure 4. Resolution algorithm

Lemma 1 (Correctness okaturate) Let I’ be a closed factF is derivable fromR if
and only if it is derivable fromsaturate(RRg).

This result is proved by transforming a derivation Bffrom R, into a deriva-
tion of F' from saturate(R,). Basically, when the derivation contains a cladgewith
sel(R') # 0, we replace in this derivation two clausBswith sel(R) = (), and R’ that
have been combined by resolution during the executiaatairate with a single clause
Rop, R'. This replacement decreases the number of clauses in tiatit®r, so it termi-
nates, and, upon termination, all clauses of the obtaingdati®n satisfysel(R’) = 0
so they are isaturate(Ry). A detailed proof is given in Section 2.2.

Usually, resolution with selection is used for proofs byutafion. That is, the nega-
tion of the goalF' is added to the clauses, under the form of a clause withoutl@on
sion: F' =. The goalF' is derivable if and only if the empty clauses” can be derived.
Here, we would like to avoid repeating the whole resolutioocpss for each goal, since
in general we prove the secrecy of several values for the gaatecol. For non-closed
goals, we also want to be able to know which instances of tiaéagan be derived. That
is why we prove that the clausesdaturate(R) derive the same facts as the clauses in
Ro. The set of clausesaturate(R() can then be used to query several goals, using the
second phase of the algorithm described next.

The second phase searches the facts that can be derive®Rfremsaturate(Ry).
This is simply a backward depth-first search. The datlvable(F, R,) returns a set of
clausesR = H = C with no selected hypothesis, such tlfatcan be obtained by
resolution fromR, C'is an instance of’, and all instances of’ derivable fronR; can
be derived by using as last clause a clausdesivable(F,R1). (Formally, if F” is an
instance off" derivable fromiR, then there exist a claugé = C € derivable(F, Rq)
and a substitutiosr such thatF” = ¢C ando H is derivable fronR;.)

The search itself is performed hieriv(R, R, R1). The functionderiv starts with
R = F = F and transforms the hypothesis Bfby using a claus&’ of R; to derive



an element, of the hypothesis oR. SoR is replaced withR’ o, R (third case of the
definition ofderiv). The factF} is chosen using the selection functiedi. (Hencederiv
derives the hypothesis @t using a backward depth-first search. At each step, the clause
R can be obtained by resolution from clause®af and R concludes an instance #t.)
The setR is the set of clauses that we have already seen during thehsésitially, R is
empty, and the clausk is added tdR in the third case of the definition @kriv.

The transformation ofz described above is repeated until one of the following two
conditions is satisfied:

e Ris subsumed by a clauseT: we are in a cycle; we are looking for instances
of facts that we have already looked for (first case of the difinof deriv);

e scl(R) is empty: we have obtained a suitable claisand we return it (second
case of the definition aferiv).

Intuitively, the correctness aferivable expresses that ", instance ofF’, is deriv-
able, thenF” is derivable fromR, by a derivation in which the clause that conclud&s
is in derivable(F, Rq).

Lemma 2 (Correctness ofderivable) Let I’ be a closed instance @f. I is derivable
from R if and only if there exist a clausé = C'in derivable(F, R) and a substitution
o such thatrC' = F’ and all elements of H are derivable fronk ;.

Basically, this result is proved by transforming a derieatdf 7’ from R, into a deriva-
tion of F’ whose last clause (the one that conclud@®sis H = C and whose other
clauses are still ifR,. The transformation relies on the replacement of clausetbowed
by resolution during the execution dérivable. A detailed proof is given in Section 2.2.

It is important to applyaturate beforederivable, so that all clauses iR, have no
selected hypothesis. Then the conclusion of these classegyeneral nosttacker(x)
(with the optimizations of Section 2.3 and a selection figrcthat satisfies (3), it is never
attacker(x)), so that we avoid unifying withttacker(x).

The following theorem gives the correctness of the wholertlgm. It shows that
we can use our algorithm to determine whether a fact is dglevar not from the initial
clauses. The first part simply combines Lemmas 1 and 2. Tlandgeart mentions two
easy and important particular cases.

Theorem 1 (Correctness)Let I’ be a closed instance d@f. F” is derivable froniR, if
and only if there exist a clausé = C in derivable(F, saturate(R¢)) and a substitution
o such thaC' = F’ and all elements of H are derivable fromsaturate(Ry).

In particular, if derivable(F, saturate(Rq)) = 0, then no instance of" is deriv-
able fromsaturate(Ry). If the selection function satisfi¢3) and F is closed, therF is
derivable fron1R, if and only ifderivable(F, saturate(Ry)) # 0.

Proof:

The first part of the theorem is obvious from Lemmas 1 and 2.fifseparticular case
is also an obvious consequence. For the second particidar iéd” is derivable from
Ro, thenderivable(F, saturate(Rg)) # 0 by the first particular case. For the converse,
suppose thaterivable(F, saturate(Rg)) # (). Thenderivable(F, saturate(R,)) contains

a clauseH = C. By definition ofderivable, C' is an instance of’, soC = F, and
sel(H = C) = 0, so all elements off are of the formattacker(x;) for some variable
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Figure 5. Merging of nodes of Lemma 3

x;. The attacker has at least one tekii) for instancez[ |, soattacker(oz;) is derivable
from R, whereox; = M. Hence all elements af H are derivable froniky, so from
saturate(Ry), andoC' = F. ThereforeF' is derivable fromR,. O

2.2. Proofs

In this section, we detail the proofs of Lemmas 1 and 2. We fliegid to prove a few
preliminary lemmas. The first one shows that two nodes in &atén can be replaced
by one when combining their clauses by resolution.

Lemma 3 Consider a derivation containing a nod@ég labeledR’. Let F; be a hypothe-

sis of R’. Then there exists a sapof 7/, labeledR, such that the edgg — 7 is labeled

by an instance ofy, R op, R’ is defined, and one obtains a derivation of the same fact
by replacing the nodeg andn’ with a noden” labeledR” = Rop, R'.

Proof:
This proofis illustrated in Figure 5. L&t’ = H' = C’, H| be the multiset of the labels
of the outgoing edges of, andC the label of its incoming edge. We hai 3 (H; =
(1), so there exists a substitutiersuch thab H' C H| andoC’ = (. SinceF, € H’,
oFy € Hi, so there is an outgoing edgexgflabeleds Fyy. Let 7 be the node at the end
of this edge, leR = H = C be the label of). We rename the variables &fso that they
are distinct from the variables @f'. Let H; be the multiset of the labels of the outgoing
edges of). SoR 1 (H; = oFy). By the above choice of distinct variables, we can then
extends so thatc H C H; andoC = o Fy,.

The edge;’ — 7 is labeleds Fy, instance ofFy. SincecC' = o Fy, the factsC and
F, are unifiable, saR o, R’ is defined. Lets’ be the most general unifier ¢f and
Fy, ando” such that = 0”0’. We haveR oy, R’ = o/(H U (H' \ {Fov})) = o'C".
Moreover,c”’o’(H U (H' \ {Fo})) € Hy U (H; \ {cFp}) ando”o’C’ = oC' = C].
HenceR” = Rop, R’ J (H1U(H{\{cFy})) = Ci. The multiset of labels of outgoing
edges ofy” is preciselyH; U (H] \ {¢Fy}) and the label of its incoming edge (%,
therefore we have obtained a correct derivation by reptagiandr’ with n". O



Lemma 4 If a noden of a derivationD is labeled byR, then one obtains a derivation
D’ of the same fact aB by relabelingy with a clauseR’ such thatk’ J R.

Proof:

Let H be the multiset of labels of outgoing edges of the consideoei#r, andC' be the
label of its incoming edge. We have J H = C. By transitivityof 3, R J H = C.
So we can relabej with R’. O

Lemma 5 At the end ogaturate, R satisfies the following properties:

1. Forall R € Ry, R is subsumed by a clauseR;

2. LetR € R and R’ € R. Assume thatel(R) = () and there exist$y € sel(R’)
such thatR o, R’ is defined. In this cas&? o, R’ is subsumed by a clause in
R.

Proof:
To prove the first property, |8 € Ry. We show that, after the addition &fto R, R is
subsumed by a clause .

In the first step oBaturate, we execute the instructioR + elim({R} U R). After
execution of this instruction is subsumed by a clausef.

Assume that we executfe «+ elim({R"”} UR) for some claus&®’ and that, before
this executionR is subsumed by a clause®, sayR’. If R’ is removed by this instruc-
tion, there exists a clause, in R that subsume®&’, so by transitivity of subsumption,
R} subsumegR, henceR is subsumed by the claug® € R after this instruction. IfR’
is not removed by this instruction, théhis subsumed by the claugg€ € R after this
instruction.

Hence, at the end ahturate, R is subsumed by a clause 1, which proves the
first property.

In order to prove the second property, we just need to noliae the fixpoint is
reached at the end @fturate, SOR = elim({R op, R'} UR). Hence,R o, R is
eliminated byelim, so it is subsumed by some clauseidn ad

Proof of Lemma 1:
Assume thaf is derivable fronfky and consider a derivation & from Ry. We show
that F is derivable fronsaturate(Ry).

We consider the value of the set of claugeat the end ogaturate. For each clause
Rin Ry, Ris subsumed by a clause’ (Lemma 5, Property 1). So, by Lemma 4, we
can replace all clausd? in the considered derivation with a clauseRRn Therefore, we
obtain a derivatiorD of F' from R.

Next, we build a derivation of from R, whereR, = saturate(Ry). If D contains
a node labeled by a clause noti, we can transfornD as follows. Let)’ be a lowest
node ofD labeled by a clause notiR;. So all sons ofy’ are labeled by elements &;.
Let R be the clause labeling. SinceR’ ¢ R1, sel(R') # (). TakeFy € sel(R'). By
Lemma 3, there exists a sonwpbf n’ labeled byR, such thatR o, R’ is defined, and we
can replace) andn’ with a noden” labeled byR o, R’. Since all sons off are labeled
by elements oR, R € R;. Hencesel(R) = (). So, by Lemma 5, Property & o, R’
is subsumed by a claug®’ in R. By Lemma 4, we can relabel’ with R”. The total
number of nodes strictly decreases sin@ndr’ are replaced with a single nogé.



So we obtain a derivatio®’ of F' from R, such that the total number of nodes
strictly decreases. Hence, this replacement processrates. Upon termination, all
clauses are ifik,. So we obtain a derivation df from R, which is the expected result.

For the converse implication, notice that, if a fact is dable from7RR, then it is
derivable fromR, and that all clauses added?®do not create new derivable facts: if a
fact is derivable by applying the claugec i, R/, then itis also derivable by applying
andR’. O

Proof of Lemma 2:

Let us prove the direct implication. We show thatFifis derivable fronfR 1, then there
exist a clausé? = C in derivable(F, R,) and a substitutioar such thavC = F’ and
all elements ot H are derivable fronRk ;.

Let D be the set of derivation®’ of F’ such that, for som®&, the clauseR’ at the
subroot ofD’ satisfiesderiv(R',R,R1) C derivable(F,R;) andVR" € R,R" 2 R/,
and the other clauses &f are inRR.

Let Dy be a derivation off” from R,. Let D|, be obtained fromD, by adding
a node labeled by?’ = F = F at the subroot ofD,. By definition of derivable,
deriv(R',, R1) C derivable(F, R1), andvVR” € ), R” 2 R’. HenceDj, is a derivation
of F’ in D, soD is non-empty.

Now, consider a derivatioP; in D with the smallest number of nodes. The clause
R’ labeling the subroot’ of D, satisfiesderiv(R/, R, R1) C derivable(F,R;), and
VR” € R,R” 2 R'. In order to obtain a contradiction, we assume #hétR’) # . Let
F, € sel(R'). By Lemma 3, there exists a sgrof 7/, labeled byR, such thatR o, R’
is defined and we can replageand’ with a noder/’ labeled byRy = R op, R/,
obtaining a derivatiom,, of F’ with fewer nodes tha®;. The subroot oD is the node
7" labeled byR,.

By hypothesis on the derivatio®,, R € R, soderiv(Ry,{R'} UR,R1) C
deriv(R', R, R1) C derivable(F,R1) (third case of the definition aferiv(R’, R, R1)).

e If VRy € {R'}UR, Ry 2 Ry, Ds is a derivation off” in D, with fewer nodes
than D+, which is a contradiction.

e Otherwise3R; € {R'} UR, Ry J Ry. Therefore, by Lemma 4, we can build
a derivationD3 by relabelingy” with R; in D». There is an older call tderiv,
of the formderiv(R1,R’, R1), such thatleriv(R;, R', R1) C derivable(F, R1).
Moreover,R; has been added ®'’ in this call, sinceR; appears iR’} U R.
Therefore the third case of the definitiondsfriv(R;,R’, R1) has been applied,
and not the first case. StR; € R’, R» 2 R, so the derivatiorDs is in D and
has fewer nodes thah, which is a contradiction.

In all cases, we could find a derivation i that has fewer nodes than;. This is a
contradiction, sosel(R’) = 0, hencederiv(R',R,R1) = {R’} (second case of the
definition ofderiv), SOR’ € derivable(F, R1). The other clauses of this derivation are in
‘R1. By definition of a derivation®’ 3 H' = F whereH’ is the multiset of labels of
the outgoing edges of the subroot of the derivation. Talkthg- H = C, there exists
such thavC = F andoH C H’, so all elements of H are derivable fronRk ;.

The proof of the converse implication is left to the readBagjcally, if a fact is
derivable by applying the clause oy, R', then it is also derivable by applying and
R) O



2.3. Optimizations

The resolution algorithm uses several optimizations, deoto speed up resolution. The
first two are standard, while the last three are specific ttopais.

Elimination of duplicate hypothesedf a clause contains several times the same hy-
potheses, the duplicate hypotheses are removed, so thaisabme occurrence of each
hypothesis remains.

Elimination of tautologies If a clause has a conclusion that is already in the hypotheses
this clause is a tautology: it does not derive new facts. Slalses are removed.

Elimination of hypothesesttacker(z) If a clauseH = C contains in its hypotheses
attacker(z), wherex is a variable that does not appear elsewhere in the clawesetlike
hypothesisittacker(x) is removed. Indeed, the attacker always has at least onegegss
soattacker(x) is always satisfied for some valueof

Decomposition of data constructorsA data constructor is a constructgrof arity n
that comes with associated destructgrdor i € {1,...,n} defined byg;(f(z1,...,
xn)) — x;. Data constructors are typically used for representing ditictures. Tuples
are examples of data constructors. For each data constiydtee following clauses are
generated:

attacker(z1) A ... A attacker(zy,) = attacker(f(z1,...,2n)) (Rf)

attacker(f(x1,...,2,)) = attacker(z;) (Rg)

Therefore, attacker(f(p1,...,pr)) is derivable if and only ifvi € {1,...,n},
attacker(p;) is derivable. When a fact of the formtacker(f(p1,...,pn)) iS met, it is
replaced withattacker(p1 ) A. . . Aattacker(p,,). If this replacementis done in the conclu-
sion of a clauséf = attacker(f(p1,...,pn)), n clauses are createH: = attacker(p;)

for eachi € {1,...,n}. This replacement is of course done recursivelyy;iftself is

a data constructor application, it is replaced again. Thasgs (Rf) and (Rg) for data
constructors are left unchanged. (Whetacker(z) cannot be selected, the clauses (Rf)
and (Rg) for data constructors are in fact not necessargusecthey generate only tau-
tologies during resolution. However, whettacker(z) can be selected, which cannot be
excluded with certain extensions, these clauses may begeogssary for soundness.)

Secrecy assumptions/Vhen the user knows that a fact will not be derivable, he cln te
it to the verifier. (When this fact is of the formtacker(/), the user tells that/ remains
secret.) The tool then removes all clauses which have thisirfatheir hypotheses. At
the end of the computation, the tool checks that the factdeed underivable from
the obtained clauses. If the user has given erroneous iataym an error message is
displayed. Even in this case, the verifier never wronglynetaihat a protocol is secure.

Mentioning such underivable facts prunes the search spgcesmoving useless
clauses. This speeds up the resolution algorithm. In mosts;ahe secret keys of
the principals cannot be known by the attacker. So, exangdlemderivable facts are
attacker(sk a[]), attacker(skg[]), ...

For simplicity, the proofs given in Section 2.2 do not takeiaccount these opti-
mizations. For a full proof, we refer the reader to [30, Apgi&rC].



2.4. Termination

In general, the resolution algorithm may not terminate g(@erivability problem is un-
decidable.) In practice, however, it terminates in mostgXas.

We have shown with Podelski that it always terminates on geland interesting
class of protocols, theagged protocol$35]. We consider protocols that use as crypto-
graphic primitives only public-key encryption and signatwith atomic keys, shared-
key encryption, message authentication codes, and hastidns. Basically, a protocol
is tagged when each application of a cryptographic primitssmarked with a distinct
constant tag. It is easy to transform a protocol into a taggetbcol by adding tags. For
instance, our example of protocol can be transformed insmged protocol, by adding
the tags, c1, co to distinguish the encryptions and signature:

Message 1. A — B : {|{c1, [{co, k}]skAﬂ};kB
Message 2. B — A: {/{cs, s)[}}.

Adding tags preserves the expected behavior of the protthalis, the attack-free ex-
ecutions are unchanged. In the presence of attacks, thedgggtocol may be more
secure. Hence, tagging is a feature of good protocol deagaxplained e.g. in [9]: the
tags are checked when the messages are received; thetafadiie decoding of the re-
ceived messages and prevent confusions between messagedokially, tagging pre-
vents type-flaw attacks [66], which occur when a messagdéntéor another message.
However, the tagged protocol is potentially more secure ttsauntagged version, so, in
other words, a proof of security for the tagged protocol dussmply the security of its
untagged version.

Other authors have proved related results: Ramanujan aest5[85] have shown
that secrecy is decidable for tagged protocols. Howeveir, thgging scheme is stronger
since it forbids blind copies. A blind copy happens when agwol participant sends
back part of a message he received without looking at whatrigained inside this part.
On the other hand, they obtain a decidability result, whideobtain a termination result
for an algorithm which is sound, efficient in practice, bupagximate. Arapinis and Du-
flot [13] extend this result but still forbid blind copies. @on-Lundh and Cortier [47]
show that an algorithm using ordered binary resolutionered factorization and split-
ting terminates on protocols that blindly copy at most ommti each message. In con-
trast, our result puts no limit on the number of blind copmsg,requires tagging.

For protocols that are not tagged, we have also designediseunistics to adapt the
selection function in order to obtain termination more ofté/e refer the reader to [32,
Section 8.2] for more details.

It is also possible to obtain termination in all cases at thet of additional abstrac-
tions. For instance, Goubault-Larrecq shows that one cstnaatt the clauses into clauses
in the decidable clasH; [63], by losing some relational information on the messages

3. Extensions

3.1. Treatment of Equations

Up to now, we have defined cryptographic primitives by asgoaj rewrite rules to de-
structors. Another way of defining primitives is by equatibtheories, as in the applied



pi calculus [6]. This allows us to model, for instance, vatsaof encryption for which
the failure of decryption cannot be detected or more compiexitives such as Diffie-
Hellman key agreements. The Diffie-Hellman key agreemetjtgbables two principals
to build a shared secret. Itis used as an elementary steprimcomplex protocols, such
as Skeme [69], SSH, SSL, and IPsec.

The Horn clause verification approach can be extended toldnandhe equational
theories. For example, the Diffie-Hellman key agreementlmamodeled by using a
constang and a functiorexp that satisfy the equation

exp(exp(g, ), y) = exp(exp(g,y), T). 4)

In practice, the function isxp(z,y) = z¥ mod p, wherep is prime andg is a gen-
erator of Z;. The equatiorexp(exp(g,z),y) = (g*) mod p = (g¥)® mod p =
exp(exp(g, y), z) is satisfied. In ProVerif, following the ideas used in the laggppi cal-
culus [6], we do not consider the underlying number theorg;work abstractly with
the equation (4). The Diffie-Hellman key agreement involves principals4 andB. A
chooses a random namsg, and sendsxp(g, x) to B. Similarly, B chooses a random
namez;, and sendsxp(g, z1) to A. ThenA computesxp(exp(g, 1), o) and B com-
putesexp(exp(g, zo), x1). Both values are equal by (4), and they are secret: assuming
that the attacker cannot hawg or z, it can compute neithesxp(exp(g, 1), xo) nor
exp(exp(g, o), 71).

In ProVerif, the equation (4) is translated into the rewritkes

exp(exp(g; 7),y) — exp(exp(g, y), ) exp(x,y) — exp(x,y).

Notice that this definition oéxp is non-deterministic: a term such asp(exp(g, a),b)
can be reduced texp(exp(g, b),a) andexp(exp(g,a), b), so thatexp(exp(g,a),b) re-
duces to its two forms modulo the equational theory. The itewules in the definition
of function symbols are applied exactly once when the famds applied. So the rewrite
rule exp(z,y) — exp(z,y) is necessary to make sure tlap never fails, even when
the first rewrite rule cannot be applied, and these rewritesrdo not loop because they
are applied only once at each applicatiorexgp. More details on the treatment of equa-
tions in ProVerif and, in particular, a proof that these rigsvrules correctly model the
equation (4) can be found in [33, Section 5].

This treatment of equations has the advantage that resolcdin still use syntactic
unification, so it remains efficient. However, it also hagtations; for example, it cannot
handle associative functions, such as XOR, because it vgmridrate an infinite number
of rewrite rules for the destructors. Recently, other treatts of equations that can han-
dle XOR and Diffie-Hellman key agreements with more detadliggbbraic relations (in-
cluding equations of the multiplicative group modwlowithin the Horn clause approach
have been proposed by Kusters and Truderung: they handlepi@itied one of its two
arguments is a constant in the clauses that model the ptditideand Diffie-Hellman
key agreements provided the exponents are constants ifetlses that model the pro-
tocol [72]; they proceed by transforming the initial clasigeto richer clauses on which
the standard resolution algorithm is applied. We refer gaaler to Chaptéierifying
a bounded number of sessions and its complexity'the treatment of equations for a
bounded number of sessions, to [49,46] for treatments of X@R bounded number



of sessions, and to [76,45,65,78] for other treatments fificbiHellman key agreements,
using unification modulo [76,65] or for a bounded humber akgns [45,78].

3.2. Translation from the Applied Pi Calculus

ProVerif does not require the user to manually enter the Htanses described previ-
ously. These clauses can be generated automatically frgmcisation of the protocol

in the applied pi calculus [6]. (Chaptékpplied Pi Calculus” presents cryptographic pi
calculi, and the applied pi calculus in particular.) On sgpkcifications, ProVerif can

verify various security properties, by using an adequatesiation into Horn clauses:

e secrecy, as described above. The translation from theegppiicalculus to Horn
clauses is given in [3].

e correspondences, which are properties of the form “if amelvas been executed,
then other events have been executed” [32]. They can incpéatibe used for
formalizing authentication.

e some process equivalences, which mean intuitively thaatteeker cannot dis-
tinguish two processes (i.e. protocols). Process equigakecan be used for for-
malizing various security properties, in particular by eegsing that the attacker
cannot distinguish a process from its specification. Prib\¢an prove particu-
lar cases of observational equivalences. It can prove gtsenrecy [28], which
means that the attacker cannot see when the value of the skarges. This is a
stronger notion of secrecy than the one mentioned prewioliglan be used, for
instance, for expressing the secrecy of values taken amaeeg @ known con-
stants, such as bits: one shows that the attacker canniagdgisth whether the bit
is 0 or 1. More generally, ProVerif can also prove equivagsrtmetween processes
that differ by the terms they contain, but have otherwisestirae structure [33].
In particular, these equivalences can express that a pesddased protocol is
resistant to guessing attacks: even if the attacker guéssgmssword, it cannot
verify that its guess is correct.

As for secrecy, when no derivation from the clauses is fotimel desired security prop-
erty is proved. When a derivation is found, there may be kttRooVerif then tries to
reconstruct a trace in the applied pi calculus semantidsctiraesponds to this deriva-
tion [11]. (Trace reconstruction may fail, in particular @hthe derivation corresponds
to a false attack; in this case, one does not know whetheg then attack or not.)

4. Application to Examples of Protocols

The automatic protocol verifier ProVerif is availabletdtt p: / / www. pr overi f .
ens. fr/. It was successfully applied to many protocols of the liiera, to prove
secrecy and authentication properties: flawed and codeassions of the Needham-
Schroeder public-key [81,73] and shared-key [81,42,82JpMam public-key [87,88]
and shared-key [87,12,9,88,61], Denning-Sacco [53,%akan [42], Otway-Rees [83,
9,84], and Skeme [69] protocols. No false attack occurrelddse tests and the only non-
termination cases were some flawed versions of the Woo-Lamedkkey protocol. The
other protocols were verified in less than one second eaclPenttum M 1.8 GHz [30].



ProVerif was also used for proving strong secrecy in theemted version of the
Needham-Schroeder public-key protocol [73] and in the @tRaes [83], Yahalom [42],
and Skeme [69] protocols, the resistance to guessing attackhe password-based pro-
tocols EKE [18] and Augmented EKE [19], and authenticatiothie Wide-Mouth-Frog
protocol [8] (version with one session). The runtime webotrirless than one second to
15 s on these tests, on a Pentium M 1.8 GHz [28,33].

Moreover, ProVerif was also used in more substantial casbest:

e With Abadi [4], we applied it to the verification of a certifiednail protocol [7].
We use correspondence properties to prove that the recenaives the message
if and only if the sender has a receipt for the message. (Weiogge manual
arguments to take into account that the reception of serdaes is guaranteed.)
One of the tested versions includes the SSH transport layeder to establish a
secure channel. (Total runtime: 6 min on a Pentium M 1.8 GHz.)

e With Abadi and Fournet [5], we studied the JFK protochigt Fast Keying[10],
which was one of the candidates to the replacement of IKEwaeXehange proto-
col in IPSec. We combined manual proofs and ProVerif to pomreespondences
and equivalences. (Total runtime: 3 min on a Pentium M 1.8 GHz

e With Chaudhuri[34], we studied the secure filesystem PI[@d§with ProVerif,
which allowed us to discover and fix weaknesses of the irgtiatem.

Other authors also use ProVerif for verifying protocolsarhuilding other tools:

e Bhargavan et al. [26,22,20] use it to build the Web serviaa#igation tool Tu-
laFale: Web services are protocols that send XML messagdstdle translates
them into the input format of ProVerif and uses ProVerif toye the desired
security properties.

e Bhargavan et al. [25,23,24] use ProVerif for verifying irplentations of pro-
tocols in F# (a functional language of the Microsoft .NET ieomrment): a sub-
set of F# large enough for expressing security protocolsisstated into the in-
put format of ProVerif. The TLS protocol, in particular, wasidied using this
technique [21].

e Canetti and Herzog [43] use ProVerif for verifying protogol the computational
model: they show that, for a restricted class of protocas tise only public-key
encryption, a proof in the Dolev-Yao model implies secuirtyhe computational
model, in the universal composability framework. Autheation is verified using
correspondences, while secrecy of keys corresponds togssexrecy.

e ProVerif was also used for verifying a certified email webviss [74], a certified
mailing-list protocol [68], e-voting protocols [70,16he ad-hoc routing protocol
ARAN (Authenticated Routing for Adhoc Netwoy§60], and zero-knowledge
protocols [17].

Finally, Goubault-Larrecq and Parrennes [64] also use tha ldlause method for ana-

lyzing implementations of protocols written in C. Howeuiey translate protocols into

clauses of theH; class and use th#{; prover by Goubault-Larrecq [63] rather than
ProVerif to prove secrecy properties of the protocol.



5. Conclusion

A strong aspect of the Horn clause approach is that it canepsecurity properties of
protocols for an unbounded number of sessions, in a fullgraatic way. This is essential
for the certification of protocols. It also supports a widdety of security primitives and
can prove a wide variety of security properties.

On the other hand, the verification problem is undecidablaficunbounded number
of sessions, so the approach is not complete: it does noyal@aninate and it performs
approximations, so there exist secure protocols that ihagprove, even if it is very
precise and efficient in practice.
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