Analysing Security Protocols using CSP

Gavin LOWE
Oxford University Computing Laboratory

1. Introduction

In this chapter we describe how security protocols can béyse@d using the process
algebra CSP and the model checker FDR. The basic techniqoadisld a CSP model
of a small system running the protocol, together with thetrgeseral intruder who can
interact with that protocol, and then to use the model cheEkKiR to explore the state
space, looking for insecure behaviours.

We will base our explanation of the technique upon the boekining example:

Messagel. a — b : {|[ksx(a) ox
Message2. b — a : {s[};,

The initiatora creates a fresh session keysigns it with her secret ke§K (a), encrypts
it with the respondeb’s public key PK (b), and sends it td. The respondeb then
usesk to encrypt some secret valudo return toa.

We analyse the protocol in the context of the Dolev-Yao m@o¥B3]. We assume
that the intruder has complete control of the network andau ©verhear messages
passing on the network; intercept messages, to preventrgching their intended re-
cipients; encrypt and decrypt messages using keys he krsoass to learn new mes-
sages; and send messages that he knows, possibly using &fatsity. However, we
do not allow the intruder to perform cryptanalytic attacke effectively assume perfect
cryptography.

In the next section we give a brief introduction to CSP. Tie®ection 3 we produce
a CSP model of the protocol: we build a model of a small systeming the protocol,
including a single initiator, Alice, and a single respond&ub, together with the most
general intruder who can interact with the protocol. In #ectt we describe how the
security properties of secrecy and authentication can ptiged as CSP specifications,
and how FDR can be used to find attacks against these prapewie then adapt the
protocol to prevent these attacks. FDR finds no attacks viliensed to analyse a small
system running the adapted protocol. However, this doesnmoiediately imply that
there is no attack against some larger system running theqmio We tackle this issue
in Section 5, by showing how to build a model that abstractsraiirary system running
the protocol: any attack upon an arbitrary system runniegpttotocol will be reflected
in an attack upon this model. In Section 6 we desc@hsper, a compiler that can be
used to produce the CSP models from a more abstract desoriptid in Section 7 we
give bibliographic notes and briefly discuss some exterssidthe technique.

2. A brief overview of CSP

Communicating Sequential Processes (CSP) [Hoa85,Ros@f}liocess algebra for de-
scribing programs oprocesseshat interact with their environment by communication.
That environment might be other processes running in gdyrat might be processes
outside the system being modelled. In this section we giveed tverview of the frag-
ment of the syntax that we use subsequently, and descrilteaite semantics of CSP;
for more details, see [R0s97].

CSP processes communicate via atomic events, from sorde S8fpically, events
correspond to communications over channels; for exampl@wentc. 3 represents the
communication of the value 3 over the channeEach channel is declared to pass data
of a particular type. The set of events over chanrisldenoted]c|}.

The simplest process i$T'OP, which represents a deadlocked process that cannot
communicate with its environment. The process— P offers its environment the
eventa; if the event is performed, it then acts like This is generalised by the process
c?x : X — P(xz), which is willing to do any event of the form.«z for z € X, and then
acts like P(z); this represents an input ef on channek; if the setX is omitted, it is
taken to be the type of the channel.

If bis a boolean and is a process, theh & P represents the process that acts
like Pif bis true, and likeSTOP if b is false; in other wordsp acts as a boolean guard
onP.

The proces® O () can act like eitheP or @: the environment is offered the choice
between the initial events d? and). The procesﬂi_l P(i) represents an indexed
choice between the processeéi) for i € I. Chaos(A) is a totally nondeterministic
process that can communicate arbitrary events flom

The processP || @ runs P and @ in parallel, synchronising on events fror,

A

i.e. events fromA can occur only when botk and @ are willing to perform them. An
indexed version is written aﬁi_l[ai]Pi: each proces®; synchronises on events from
its alphabety;. By contrastP ||| Q runsP and(in parallel with no synchronisation.

The process® \ A acts like P, except the events from are hidden, i.e. turned
into internal, invisible events, denoted Finally, the process[a/b] represents the
processP but where every occurrence of the evéint renamed ta. An indexed version
of this is written, for exampleP[c.z/d.z | z € X].

A traceis a sequence of events that a process can perform; we auites(P) for
the set of traces aP. We say thatP is refined byQ, written P T @, if all the traces
of @ are traces of’:

PCr @ < traces(P) D traces(Q).

Typically, @ will be a model of a system an#t will be a specification process that
can perform those traces that meet some requirement; themefint will hold if P can
perform only traces that meet the requirement. The tool FR&8P4,For97] can be used
to test such refinements automatically, for finite state gsees.

3. Modelling the protocol

In this section we describe the basic technique of CSP mbaeking of security proto-
cols. As noted in the introduction, we consider a small systenning the protocol: we
include a single initiator Alice, who will use the sessioly k€a, and a single responder
Bob, who will use the secrefth. We also include an intruder, Mallory, who has complete
control over the network, as illustrated in Figure 1.

(Initiator(AIice,Ka)) (Responder(Bob,SB

Figurel. The system

In the next subsection we give some basic definitions of tlterdying types, etc.
In Subsection 3.2 we give CSP models for the honest partitspa the protocol, and in
Subsection 3.3 we give a model for the intruder. Finally, itlo&ction 3.4 we put them
together to form a model of the whole system.

We present the definitions using “blackboard CSP”; it isigtriorward to translate
this into machine-readable CSP, for use with FDR.

3.1. The basics

We begin by defining a datatygéncryption representing the space of all possible mes-
sages. The datatype includes the atomic values indicatedyirre 1, together with a
session key and a secret that the intruder will know initidtlincludes constructors that
correspond to concatenation and encryption; we do nohdisish between symmetric
encryption, asymmetric encryption and signing, althougtwiuld be straightforward to
include separate constructors for each of these. The gatalgo includes constructors
to give the public keys and secret keys of agents.

datatypeFncryption =
Alice | Bob | Mallory | Ka | Km | Sb | Sm | PK_.Agent | SK_.Agent |
Sq.Seq(Encryption) | Encrypt.(AllKeys, Encryption),

where the setAliKeys is defined below. For example, a typical instance of
message 1 of the fornd|[k]gy (4 [px(,) Would be represented by the element
Encrypt.(PK_.b, Encrypt.(SK_.a, k)) of Encryption.

For convenience, we define functions to return the publicseudet keys of agents,
and a number of subtypes 8hcryption.

PK(a) = PK_.a, SK(a) = SK_.a,
Agent = { Alice, Bob, Mallory}, Honest = Agent — { Mallory},
Secret = {Sb, Sm}, SessionKey = {Ka, Km},
PublicKey = {PK (a) | a € Agent}, SecretKey = {SK (a) | a € Agent},
AllKeys = SessionKey U PublicKey U Secretkey.

We also define a function to return the inverse key of a givegn ke

inverse(Ka) = Ka, inverse(Km) = Km,
inverse(PK_.a) = SK_.a, inverse(SK_.a) = PK_.a.

We will represent each message bylabel, Encryption) pair (the Label simply
helps with interpretation of the output from FDR). We defilfeg to be the set of all
such pairs that are used in the protocol:

datatypeLabel = Msgl | Msg2 | Env0,
Msg = {(Msg1, Encrypt.(PK (b), Encrypt.(SK (a), k))) |
k € SessionKey, a € Agent, b € Agent} U
{(Msg2, Encrypt.(k,s)) | k € SessionKey, s € Secret}.

And we define channels to represent the sending and recaifimgssages:
channekend, receive : Agent.Agent.Msg.

For example, agent sending a message 1 of the protocol intended for agenil
be represented by the eveatd.a.b.(Msgl, Encrypt.(PK (b), Encrypt.(SK (a), k)));
agentb receiving the message will be represented by the evertve.a.b.(Msgl,
Encrypt.(PK (b), Encrypt.(SK (a), k))).

Itis useful to model interactions between the protocol &drvironment (e.g. com-
mands from a user to run the protocol). Here we want to modebptiotocol for the
initiator receiving a message from its environment, tellinto run the protocol with a
particular agenb.

EnvMsg = {(Env0,b) | b € Agent},
channeknv : EnvMsg.

3.2. Modelling the honest agents

We now describe how we can model the honest agents runnimyabacol as CSP pro-
cesses. We give a parametrised prodessator(a, k) to represent an agentrunning
the protocol as initiator, and using session keyrhe process starts by receiving a mes-
sage from the environment, telling it with whom to run thetpoml. It then sends an ap-
propriate message 1, and receives back an appropriategeessantaining an arbitrary
value fors.

Initiator(a, k) =
biAgent env.a.(Env0,b) —
send.a.b.(Msgl, Encrypt.(PK (b), Encrypt.(SK(a), k))) —

s Secret receive.b.a.(Msg2, Encrypt.(k, s)) — STOP.

The definition of the responder is similar: the procd&sponder(b,s) represents
agentb running the protocol as responder using segr@the responder starts by receiv-
ing a message 1, from an arbitrary agerggnd containing an arbitrary session Keyit
then sends back the corresponding message 2.

Responder(b, s) =
a:Agent,k:SessionKey

recewe.a.b.(Msgl, Encrypt.(PK (b), Encrypt.(SK (a), k))) —
send.b.a.(Msg2, Encrypt.(k,s)) — STOP.

As noted above, we consider a small system, comprising Aateng as initiator,
using keyKa, and Bob acting as responder, using seéttet The two agents do not
communicate directly: we arrange below for all communaagito go via the intruder.
We model this as an interleaving.

Systemg = Initiator(Alice, Ka) ||| Responder(Bob, Sb).

Of course, it is straightforward to consider larger systemith more agents, or with
particular agents running the protocol multiple timeshags with different roles.

3.3. Modelling the intruder

We now describe how we can model the intruder. The main issueoidelling which
messages the intruder is able to understand and to createe&Ueto keep track, there-
fore, of which submessages of protocol messages the imtkumsvs; we term these
facts

Fact = {Encrypt.(PK (b), Encrypt.(SK (a), k)) |
k € SessionKey, a € Agent,b € Agent} U
{Encrypt.(k,s) | k € SessionKey, s € Secret} U
{Encrypt.(SK(a), k) | k € SessionKey, a € Agent} U
Agent U SessionKey U Secret U SecretKey U PublicKey.

What we do is define a deduction system to capture the inteucipabilities: we write
X F fif, given set of factsX, he is able to create the fatt The relatiort is defined by
the following four rules:

{f,k}F Encrypt.(k,f), fork € AllKeys,

{Encrypt.(k, f), inverse(k)} F f, for k € AllKeys,
{1, ol ESef1,. . fu),
{Sq.(fr, - f} F 1, fori=1,...,n.

If the intruder knows a fact and a keyk then he can encrygtwith &; if he knows an
encrypted message and the corresponding decryption kegrhgerform the decryption
to obtain the body; if he knows a collection of facts, he cancatenate them together;
if he knows a concatenation, he can split it up into the irdlial components.

We will create a definition for the intruder that can hear rages sent across the
network, deduce new facts from what he knows (as defined bly tiedation), and then
send facts he knows to other agents (possibly using idesttiher than his own).

We defineMsgBody to be the bodies of messages (i.e., without the label), and de
clare two channels on which the intruder can hear and sayagessdies; later we will
arrange for these events to synchronise withd andreceive events of honest agents.
We also declare a channel to capture inferences, and a diarwaich the intruder can
signal that he knows a particular secret.

MsgBody = {m |31 e (I,m) € Msg},
channehear, say : MsgBody,
channelnfer : {(f,X) | X F f},
channeleak : Secret.

One way to define the intruder is as follows; the paramé&tegpresents the intruder’s
current knowledge.

Intrudery(S) =
hear?f : MsgBody — Intrudery(S U {f})
O
say?f : SN MsgBody — Intrudery(S)
O
leak?f : S N Secret — Intrudery(S)
O

f:Pact, XS, X-f. {5 infer.(f, X) — Intrudery (S U{f}).
The intruder can: hear a message sent on the network, and taduis knowledge; say
a message that he knows; signal that he knows a particulatsecinfer a new facf if
for some subseX of his current knowledgeX + f, and then add to his knowledge.

Below we will instantiateS with a set//K that represents the intruder’s initial
knowledge; we assume that the intruder knows all the agefdigtities, all the public
keys, his own secret key, a session key, and a secret:

IIK = Agent U{PK (a) | a € Agent} U {SK(Mallory), Km, Sm}.
The definition of the intruder ensufes

Vir' " (say.f) € traces(Intrudery(IIK)) o
IS CHK U{f"| hear.f intr'} ¢« SE f.

The intruder can say a message only if he can deduce it fromitisd knowledge and
what he has heard.

The above design of the intruder process works in theoryisbugry inefficient in
practice, because of the way FDR works. FDR produces ekptiie machines for se-
quential processes, such Bgrudery (IIK) above. If there aréV facts that the intruder
might learn, then théntruder, process hag” states. Itis typical forV to be of the or-
der of several thousand; clearly it is infeasible to cortiite intruder process explicitly
in such cases.

Observe, though, that most states of the intruder will natlaghable in the context
of a particular system — otherwise model checking would besisible. What we want

1« denotes concatenation of traces.

to do is avoid constructing the entire intruder processshuply to explore the parts that
are reachable in the context of the given system.

The way we do this is to construct the intruder in a differeaywRather than build
the intruder as a single sequential process @ithstates, we build it out oV component
processes, one for each fa¢each with two states corresponding to whether the intruder
does or does not knoyu

Ignorant(f) =
f € MsgBody & hear.f — Knows(f)
O

XCFact, X1t infer.(f, X) — Knows(f),

Knows(f) =
f € MsgBody & hear.f — Knows(f)
O

f € MsgBody & say.f — Knows(f)
O

f € Secret & leak.f — Knows(f)
O

f':Fact, XCFact, feX, X+f’ mfer.(f’, X) - Knows(f).
If the intruder doesn’t knovf, he can heaf on the network, or deduce it from some
setX (that he does know), at which point he will kngwWhen he knowg he can: hear
it on the network again; say it; signal that he knows it (ifsitai secret); or use it within
the inference of another fact.

We build the intruder by composing the component processgsiier in parallel,
where the component for fagtsynchronises on the events in its alphadgha(f).

Intrudery = H [alpha(f)] if f € IIK then Knows(f) elselgnorant(f),

f:Fact

alpha(f) = {hear.f, say.f, leak.f} U
{infer.(f,X)| X C Fact, X - f} U
{infer.(f', X) | f' € Fact, X C Fact, f € X, X F f'}.

Note in particular that an inference of the formyer.(f, X) can occur precisely when
the component for fact is in the Ignorant state, and for eacfl € X, the component
for /" is in the Knows state. The above highly parallel process is, then, equivédehe
original sequential definition, but FDR can construct it imawore quickly.

We can make the definition more efficient, still, in order tduee the size of the
state space explored by FDR. When the intruder learns omnehlacan often use it to
deduce many more facts; thus deductions often come togelter more deductions
that are made, the more the intruder can do, so it makes sefisecé the intruder to
make all possible inferences, rather than allowing FDR fdae states where he makes
a subset of those deductions. Further, if the intruder caterhandependent such new
deductions, then there ake orders in which those deductions can be made. But all
different orders of the deductions reach the same state,dgesn’'t matter what order
they are made in: we should force FDR to consider jisstgleorder of those deductions.

The FDR functiorchase will do both of these for us: it forces internalevents to occur,
but picking an arbitrary order, and performing as many asiptes We therefore hide
the inferences and apphase, to force the intruder to perform as many inferences as
possible, but in an arbitrary order.

Intruder; = chase(Intrudery \ {infer[}).

Finally, we rename théear andsay events within the intruder teend andreceive
events, ready to synchronise with the honest agents.

Intruder = Intruder;
[send.a.b.(I,m)/hear.m |
a € Agent — {Mallory}, b € Agent, (I, m) € Msg]
[receive.a.b.(I, m)/say.m |
a € Agent, b € Agent — {Mallory}, (I, m) € Msg]

3.4. Putting it together

Finally, we construct our model of the complete system bymosing the honest agents
and the intruder together in parallel, synchronising otthelsend andreceive events to
reflect the fact that the intruder has complete control dvemtetwork:

System = Systemy I Intruder.

{|send,receivel}

4. Testing for security properties

We now describe how to test for various security properfiest secrecy properties, then
authentication properties.

4.1. Secrecy properties

There are two properties concerning the seetéat we want to test for:

1. If an initiator a receives a value, apparently fromb, andb is not the intruder,
then the intruder does not know

2. If a respondeb sends a value, intended fora, anda is not the intruder, then
the intruder does not know

We can test for both of these together.

What we do is introduce new events of the foefaimSecret.a.s.b to indicate that
a thinks thats is a secret that only should know, and similar events with and b
swapped. We transform the system so that these events obeuranand b receive or
send (respectively) a message 2, corresponding to itemd 2 ahove. We then hide all
events other than th€aimSecret andleak events.

SecretSystem =
System [claimSecret.a.s.b/receive.b.a.(Msg2, Encrypt.(k, s)),
claimSecret.b.s.a/send.b.a.(Msg2, Encrypt.(k, s)) |
a € Agent, b € Agent, s € Secret, k € SessionKey]
\ (X = {|claimSecret, leak]}).

We want to test that, whenever an honest ageperforms aclaim Secret.a.s.b
event, withb not the intruder, the intruder does not subsequently perfesk. s indicat-
ing that he has learnt The proces$ecretSpec below allows precisely those traces that
satisfy this property; the parameter of the subsidiary @seSecretSpec’ records those
secrets for which there has been a correspondinign.Secret, and so must not be leaked
by the intruder.

SecretSpec = SecretSpec’ ({}),
SecretSpec'(secs) =
claimSecret?a?s?b —
if b € Honest thenSecretSpec’(secs U {s}) elseSecretSpec’(secs)
O
leak?s : Secret — secs — SecretSpec’(secs).

We can then test our secrecy properties by checking thag eaee ofSecretSystem
is also a trace ofecretSpec; we can do this by using FDR to test the refinement

SecretSpec T SecretSystem.

When we perform this check, FDR finds that the refinement doelsaid, and gives
a witness trace ofecretSystem that is not a trace ofecretSpec; this correspond to an
attack against item 2 above. It turns out, though, that tiseme attack against item 1.
The witness trace returned by FDR is

(claimSecret. Bob.Sb. Alice, leak.Sb).

Bob believes tha$ is a secret that only Alice should learn, yet the intrudersdearn it.
The FDR debugger can be used to find that the correspondirgdfdystem is:

(env.Alice.(Env0, Mallory),
send.Alice. Mallory.

(Msgl1, Encrypt.(PK_.Mallory, Encrypt.(SK _. Alice, Ka))),
receive. Alice. Bob.(Msg1, Encrypt.(PK _.Bob, Encrypt.(SK _. Alice, Ka))),
send.Bob. Alice.(Msg2, Encrypt.(Ka, Sb)),
leak.Sh).

This can be described in more standard notation as folldves(otation/ ;.. represents
the intruder faking a message, pretending to be Alice, erasipting a message intended
for Alice):

Message). — Alice : Mallory
Messagel. Alice — Mallory : {{[Ka] g asice)}prc(atationry)
Messagel. Tance = Bob : {[Kal gk aneer For (5ob)

Messag@' Bob — IAl'Lce : {|Sb|}sKa
The intruder knowsSs.

Alice runs the protocol with Mallory, sending him a ké&u, signed with her public key.
But Mallory can then use this signed key to send a fake medsageb, pretending to
be Alice. Bob accepts this key as having come from Alice, andses it to try to send
Alice the secret5h. However, the intruder knowk'a so can learrbb.

4.2. Authentication

We now consider authentication of the responder to theaioitj and vice versa. More
precisely, we consider the following questions:

1. If an initiator completes a run of the protocol, apparently withthen hash
been running the protocol, apparently withand do they agree upon the value
of the secret and the session key?

2. If arespondeb completes a run of the protocol, apparently withthen hasa
been running the protocol, apparently withand do they agree upon the value
of the session key? (Note thath can receive no guarantee that he anagree
upons, because he cannot be sure tha&ven receives message 2.)

We describe how to test for the latter property; the testHerformer is very similar.
We introduce new events, as follows:

e The eventRunning.InitiatorRole.a.b.k indicates that thinks that she is run-
ning the protocol as initiator, apparently withusing session key;

e The eventComplete. ResponderRole.b.a.k indicates thab thinks he has com-
pleted a run of the protocol as responder, apparently withsing session kej.

We will then check that whenever the latter event occursidhmer event has previously
occurred.

We arrange for initiator to perform theRunning event when she sends message 1,
and we arrange for respondeto perform theComplete event when he sends message 2;
we hide all other events.

AuthSystemy =
System[Running.InitiatorRole.a.b.k/
send.a.b.(Msgl, Encrypt.(PK (b), Encrypt.(SK(a), k))),
Complete. ResponderRole.b.a.k/
send.b.a.(Msg2, Encrypt.(k, s)) |
a € Agent, b € Agent, k € SessionKey, s € Secret]
\ (X — alphaAuthSystem),

alphaAuthSystem =
{| Running.InitiatorRole.a.b, Complete. ResponderRole.b.a |
a € Honest, b € Honestl}.

(More generally, thelomplete event is performed at the last step in the protocol taken
by that agent, and thRunning event is performed when the agent sends a message that
should be causally linked to the other agent receiving a ages}

Recall that we want to check that whenever a respoadegrforms aComplete
event concerning initiato#, thena has previously performed a correspondignning
event concerning. We therefore consider the following specification procedsich
allows only such traces

AuthSpec = Running.InitiatorRole?a.b.k —
Chaos({ Complete. ResponderRole.b.a.k}).

Note that this specification allows to perform an arbitrary number ofomplete
events corresponding to a singlunning event, and so does not insist that there
is a one-one relationship between the runsesoéind the runs ofb. We could test
for such a relationship by replacing ttiéaos({ Complete. ResponderRole.b.a.k}) by
Complete. ResponderRole.b.a.k — STOP.

We can use FDR to test the refinement

AuthSpec Cp AuthSystem.

(The above refinement test is appropriate sideghSystem performs at most aingle
Running event; for a system that could perfornsuch events, we would replace the left
hand side of the refinement test by an interleaving abpies ofAuthSpec.) FDR finds
that this refinement does not hold, and returns the followtitgess trace:

(Complete. ResponderRole. Bob. Alice. Ka).

Bob thinks he has completed a run of the protocol with Alicg,Alice did not think that
she was running the protocol with Bob. We can again use the éé&ifrgger to find the
corresponding trace dfystem:

(env.Alice.(Env0, Mallory)
send.Alice. Mallory.
(Msgl1, Encrypt.(PK_.Mallory, Encrypt.(SK _. Alice, Ka)))
receive. Alice. Bob.(Msg1, Encrypt.(PK _.Bob, Encrypt.(SK_. Alice, Ka)))
send.Bob. Alice.(Msg2, Encrypt.(Kal, Sb))).

This is the same as the attack against secrecy.

We can test whether the responder is authenticated to tietd@mi(item 1 above) in
a similar way. FDR finds no attack in this case.

It is interesting to consider what guarantees the respoddes receive from the
protocol. We claim that if respondércompletes a run of the protocol, apparently with
thena has been running the protocol, and that they agree upon the gathe session
key k. Note though that might have been running the protocol with some ageather
than b, and so performed Running.InitiatorRole.Alice.c.k event. We can test this
condition using the refinement check

AlivenessSpec T SystemAliveness,
where

AlivenessSpec = Running.InitiatorRole. Alice?c?k —
Chaos({ Complete. ResponderRole.b. Alice.k | b € Agent}),

SystemAliveness = AuthSystemy \ (X — alphaSystemAliveness),

alphaSystemAliveness =
{Running.InitiatorRole.a.b, Complete. ResponderRole.b.qa |
a € Honest, b € Agent}.

4.3. Correcting the protocol

It is fairly straightforward to correct the protocol to pesit the attacks identified above.
Each attack was caused by Bob accepting a key signed by Alatdaid been intended
for Mallory rather than himself. The obvious way to prevenistattack, then, is to
include the intended recipient’s identity within this ssghmessage. We also include the
sender’s identity, although this is not actually necessary

Messagel. a— b : {[a, b, klgx o) Fox o)
Message?. b — a : {s[}},

It is straightforward to adapt the CSP model to reflect thengfe in the protocol: it
simply requires a change to the definitions of the honesttagtre setd/sg and Fact,
and the renamings performed to the final system, all resttitd the parts that deal with
message 1.

When we analyse this version of the protocol using FDR, werimdttacks against
the main security properties discussed above. If we usedison of the authentication
check that tests whether there is a one-one relationshipeleatthe runs of, and the
runs of b, we find that this does not hold: clearly the intruder canag@ message 1
sent bya multiple times so thab thinks he’s performed multiple runs corresponding to
a single run ofa; we consider this a limitation of the protocol rather tharedaus flaw.

We should be clear, though, about the limitations of thidysi® When we model
check a particular system running the protocol and find rackst, that does not nec-
essarily imply that there is no attack upon some other systeming the protocol (al-
though in practice most attacks can be found by considedinty small systems). We
address this problem in the following section.

5. Model checking arbitrary systems

In this section we show how to build a model that abstractarhitrary system running
the protocol: if no attack is found on this model, then nocttexists on the protocol.

For ease of exposition, we consider only the question ofkdtapon the responder.
By symmetry, it is enough to consider attacks upgradicular instance of garticular
responder, say the instanBesponder(Bob, Sb), which we call therincipal responder
We want to consider all possible systems containing thisggal responder, together
with arbitrary other instances of honest agents (possibly including dtistances of
Bob, as either initiator or responder) and the intruder.nEsach system can be written
in the form

Systemg = (Responder(Bob, Sb) ||| Others) I Intruder,

{|send,receivel}

whereOthers models all the other honest instances. Of course, therafimgely many
such systems. However, we show how to construct a modeldiyaidaranteed to find all
attacks upon all such systems.

Our development proceeds in several steps. In the next cifisewe show how
to build models that represent the effects of the other haagents,Others, internally
within the intruder. However, that still produces an innitumber of models, param-

eterised by the types used. In Subsection 5.2 we show howdteeethose models to
a single finite model, using techniques from the area of datapendence. Finally, in
Subsection 5.3 we show how we can analyse the resulting maa/ if we find no at-
tacks, deduce that there are no attacks upon an arbitragnsys the form ofSystemy,
above.

5.1. Internalising agents

Recall that we are interested only in attacks against threejp@l responder. In so far as
such attacks are concerned, there are two contributionsht@ather instance®thers
can make:

1. Aninitiator instance withirOthers can send a message 1, which the intruder can
overhear and hence use;

2. A responder instance withi@thers can send a message 2, which the intruder
can overhear and hence use; note that this will happen otdy tafat responder
has received a corresponding message 1, which the intruti&naw.

We build a new intruder procesB;iruder’, that corresponds to the combination of
Intruder and Others, except it represents messages sent by the other honets agan
different way. We represent those messages as deductitims thie new intruder, rather
than as explicit messages: in other words, these interectice modelled internally to
the intruder, rather than externally.

Consider, first, item 1 above, corresponding to an initiietance« say, sending
a message 1. Our new model will represent this by a deducfitimeocorresponding
message from the empty set. For later convenience, weipartiie setSessionKey
into three subtypes: those keys that an honest initiatenitg to share with the intruder,
denotedSessionKeyKnown; those keys that an honest initiator intends to share with
an honest agent, denotddssionKey Unknown; and those keys that the intruder knows
initially, denotedSessionKeylIntruder; in the first two cases, the suffixégnown and
Unknown indicate whether or not we expect the value to be known by niveider.
The intruder overhearing a message 1 intended for some thagestb can then be
represented by a deduction of the following form:

{} F Encrypt.(PK(b), Encrypt.(SK (a), Sq.(a, b, k))),
for a, b € Honest, k € SessionKeyUnknown.

1)

Similarly, the intruder receiving a message 1 intended iimiskIf can be represented by
a deduction of the following form:

{} b Encrypt.(PK (Mallory), Encrypt.(SK (a), Sq.(a, Mallory, k))),
for a € Honest, k € SessionKeyKnown.

2

We now consider item 2 above, corresponding to the respandending a mes-
sage 2 in response to receiving a message 1 that the intrandessk We can represent
this by a deduction of the message 2 from the message 1. Waqgmatecret into four
subtypes: the distinguished secft used by the principal responder; those other se-
crets that an honest responder intends to share with thelertrdenote@ecret Known;
those other secrets that an honest responder intends te sfithr an honest agent,

denotedSecret Unknown; and those secrets that the intruder knows initially, dedot
SecretIntruder. The intruder overhearing a message 2 intended for somehagent:
can then be represented by a deduction of the following form:

{Encrypt.(PK(b), Encrypt.(SK (a), Sq.{a, b, k)))} & Encrypt.(k, s),
for a,b € Honest, s € SecretUnknown, k € SessionKey.

®3)

Similarly, the intruder receiving a message 2 intended iimskIf can be represented by
a deduction of the following form:

{Encrypt.(PK (b), Encrypt.(SK (Mallory), Sq.(Mallory, b, k)))}
F Encrypt.(k, s), (4)
for b € Honest, s € SecretKnown, k € SessionKey.

Note that in both cases we allowto range oveanll of SessionKey: we do not want to
make any assumptions about the set of keys for which thedetrcan construct a valid
message 1 that is accepted by an honest agent.

Let Intruder’ be constructed using this extended deduction relationhénsame
way that/ntruder was constructed in Section 3.3, except with none ofitifer events
corresponding to new deductions hidden. We can then canistmew system

Systempn: = Responder(Bob, Sb) I Intruder’.

{|send,receivel}

This is analogous tdystem, except that messages from the other agents have been
replaced by correspondingfer events.

In fact, System ,; has slightly more behaviours thaipstem. For example, it allows
multipledeductions that produce messages containing the samev&iesh for instance,
it would allow the intruder to perforrhoththe deductions

{} b Encrypt.(PK (Bob), Encrypt.(SK (Alice), Sq.{Alice, Bob, K1))),
{} F Encrypt.(PK (Bill), Encrypt.(SK (Alison), Sq.(Alison, Bill, K1))),

using the same ke¥(1, whereas withinSystem only a single message 1 containiig
would be sent. Of course, these extra behaviours are safee dan verifySystemy,,
then we can deduce th8stem is secure. There is a possibility of these extra behaviours
leading to the discovery dhlse attacks attacks agains$ystemy,; where there is no
corresponding attack oflystem. However, we have designeétlstem;,; so that these
false attacks do not arise in practice: this is one reasonwehgartitionedSessionKey
andSecret into those values intended for use with the intruder or wihést agents.

Note that we have, in fact, produced arfinite family of systems, one for each
choice of the typeslgent, SessionKey and Secret (and their subtypes); we sometimes
write Systemy,:(Agent, SessionKey, Secret) to make this dependence explicit. Note
in particular that the intruder is also parameterised bgdftgpes, both in the definition
of the set of deductions, and in the definition of his initiabkledgel/K as defined in
Section 3.3. We cannot directly check all members of thisliarim the next section we
show how to perform a further reduction, in order to redueeahalysis ofll systems
of the form Systemy,.(Agent, SessionKey, Secret) to the analysis of @ingle system
Systemp (Agent’, SessionKey', Secret’), for some fixed typesgigent?, SessionKey'
andSecret!.

5.2. Reducing the system

A processP(T) is said to belata independen its type parametef if it can input and
output values fronil’, store them for later use, perform polymorphic operatiarthsas
tupling upon them, but not perform any computations thastaim what7" may be. The
processes we have defined to model the protocol have beeimdependent in the types
Agent, SessionKey, andSecret. A number of interesting results have been proven that
allow one to deduce results about a data independent pr&¢dssfor all choices of T’
from an analysis oP (T'1) for some fixed typel''; see, for example [Ros97, Chapter 15].
We apply some of the theory of data independence here.

Without loss of generality, we may assume that each typent, SessionKey
and Secret contains at least as many elements as the corresponding fype:t’,
SessionKey' and Secret’, since increasing the sizes of the types does not remove any
traces fromSystem,.(Agent, SessionKey, Secret).

In order to reduce the infinite family of systems of the formfstem,;, we
will define a function¢ : Fact — Fact, and (informally speaking) consider a system
that uses fact(f) wheneverSystemy,, usesf. Given a particular choice afigent,
SessionKey andSecret, we definep as the homomorphism induced by three surjective
functions on atomic types:

Pag : Agent — Agent!,
bsk : SessionKey — SessionKey',

OSec : Secret — Secret!.
So, for example,

¢(Encrypt.(SK (a), Sq.{a,b,k))) =
(Encrypt.(SK (¢ag(a)), Sq.(pag(a), pag(b), dsk (k)))).

We lift ¢ to events in the obvious way, for examplésend.a.b.(I, m)) = send.
dag(a).daq(b).(1,0(m)). We lift ¢ to sets, traces, etc., by point-wise application.
The system we will consider, then, is

System! = Systemp: (pa,(Agent), dsi (SessionKey), pgec(Secret))
= Systemp,; (Agent’, SessionKey', Secret?).

We give the definitions of 44, etc., below (in fact, we’ll use different definitions de-
pending on the property we're checking). However, they widch map values onto
small fixed rangesdgent!, etc., so that the above proceSgtem! is independent of
the choices ofdgent, SessionKey andSecret. In other words, we will reduce arbitrary
systems to some fixed finite system.

In order to deduce results aboSstem;,,; from an analysis obystem !, we would
like to be able to relate their traces. The property we woilkkelto deduce is

traces(System') D

{@(tr) | tr € traces(Systempn(Agent, SessionKey, Secret))}. ©)

If we can do that, and prove some property of the traceSyefern (by performing a
refinement check using FDR) we will be able to deduce a cooredipg property about
the traces ofSystem,;. Equation (5) does hold, but this requires some justificatio
indeed the generalisation to an arbitrary CSP pro¢eparameterised by typé,

traces(P(o(T)) 2 {o(tr) | tr € traces(P(T))}, (6)
does not hold. To see why not, consider the process (takem[RB99]):
P(T)=1in?x: T —in?y: T —if v = y thena — STOP elseb — STOP.

Supposel’ = {0, 1} and¢(0) = ¢(1) = 0; then the tracéin.0, in.0, b) is contained
in {¢(tr) | tr € traces(T)}, but notintraces(P(¢(T))).

Lazi¢ [Laz99] shows that the following condition, knownRasConjEqT (positive
conjunction of equality testsis enough to ensure that equation (6) does hold (in fagt, th
two sides of the equation are equal in this case):

A processP satisfiedPosConjEQT precisely when the failure of each equality check
in P results in the processSTOP.

For example, the following process satisfitesConjEqT:
P(T)=im?x: T —in?y: T —if z = y thena — STOP elseSTOP.

The CSP processes we have defined to model the honest prp#oticipants satisfy
PosConjEQT. However, this won't be the case in protocols where an agerfopns
inequality tests —say between two values she receives, toreke the identity of her
apparent partner and her own identity— before proceeding.

The process we have defined to model the intruder also satisfaation (6).
In [RB99], it is shown that this will be the case provided thelarlying deduction rela-
tion I~ is positive i.e., whenevelX I f, it is also the case that(X) F ¢(f); in other
words, if the intruder can make a particular deduction ketbe types are collapsed, he
can make the corresponding deduction after the types alagpseld. This is true of the
deduction system we are using hére.

We have shown that both components$yfstem! satisfy equation (6). One can
show that this property is preserved by parallel compasitidence the entire protocol
modelSystem satisfies equation (5).

5.3. Testing for secrecy and authentication

We now describe how to adapt the refinement test for secreay ection 4.1. Recall
that we are only considering secrecy from the point of viewhefprincipal responder.

We define the reduction functiors,,, etc., as follows, to reduce each of the sub-
types to singleton values:

2As an example of a deduction system that is not positive,idenshe following, designed to capture the
cracking of a one-time pad that has been used with two didémnts (5 denotes bit-wise exclusive-or):

{koti,kdts} -k, fork e Key, t1,t2 € Texat, t; # to.

If ¢(t1) = ¢(t2), for somet; # ¢z, then the deduction system is not positive.

$aq(Bob) = Bob,
®ag(Mallory) = Mallory,
$ag(a) = Alice, for a € Honest — { Bob},
¢Sec(b) = Sb7
¢ 3ec(s) = Sm, for s € SecretKnown U SecretIntruder,
Gsec(s) = Sa, for s € SecretUnknown,
dsi (k) = Km, for k € SessionKeyKnown U

SessionKeylntruder,
sk (k) = Ka, for k € SessionKeyUnknown.

This definition means thatgent' = { Alice, Bob, Mallory}, Secret! = {Sa, Sb, Sm},
andSessionKey' = {Ka, Km}. For convenience, writélonest' for { Alice, Bob}.

In particular, the effect of this reduction is to reduce thietder’s initial knowledge
in the new system to

{Alice, Bob, Mallory, Sm, Km, SK (Mallory),
PK (Alice), PK (Bob), PK (Mallory)}.

Further, it reduces the deductions corresponding to iatsed agents (equations (1-4))
to the following, where: andb range ovetHonest', andk ranges oveBessionKey':

{} F Encrypt.(PK (b), Encrypt.(SK (a), Sq.(a, b, Ka))),
{} & Encrypt.(PK (Mallory), Encrypt.(SK (a), Sq.(a, Mallory, Km))),
{Encrypt.(PK (b), Encrypt.(SK (a), Sq.(a, b, k)))} & Encrypt.(k, Sa),
{Encrypt.(PK (b), Encrypt.(SK (Mallory), Sq.(Mallory, b, k)))}

F Encrypt.(k, Sm).

In order to test whether the secrecy property is satisfiedp@&éorm a renaming
and hiding toSystem’, analogous to that which producédcretSystem (but with the
renaming restricted to just the principal responder):

SecretSystem! =
System! [claimSecret. Bob.Sb.a/send.Bob.a.(Msg2, Encrypt.(k, Sb)) |
a € Agent’ k € SessionKey']
\ (X — { claimSecret, leak.Sb|}).

We consider a specification analogousSt@retSpec, but restricted to just the principal
responder and the principal responder’s noisie,

SecretSpect = claimSecret. Bob.Sbh?a —
if o € Honest™ thenSecretSpec1’ elseSecretSpect
O
leak.Sb — SecretSpect,

SecretSpec1t = claimSecret. Bob.Sb?a — SecretSpecl .

We can then use FDR to verify that
SecretSpec’ T SecretSystem .

We now deduce a corresponding result fstemy,;. The success of the above
refinement test means théécretSystem! has no trace of the form

(..., claimSecret.Bob.Sb.a, . .., leak.Sb),
for a € Honest!. HenceSystem! has no trace of the form
(...,send.Bob.a.(Msg2, Encrypt.(k, Sb)), ..., leak.Sb),

for k € SessionKey!. Therefore, by equation (5), and using the definitiop@f etc.,
Systemn: (Agent, SessionKey, Secret) has no trace of the form

(..., send.Bob.a.(Msg2, Encrypt.(k, Sb)), ..., leak.Sb),

for a € Honest andk € SessionKey. We deduce that there is no secrecy attack against
Systemn: (Agent, SessionKey, Secret), for all choices of the types.

Thus we have verified that, for an arbitrary system runnirggpfotocol, there is
no secrecy attack against the principal responder, ancehéycsymmetry, there is no
secrecy attack against an arbitrary responder.

We now consider how to adapt the test for authentication f&attion 4.2. Recall
that we are considering only authentication attacks onestibation against the principal
responder, and testing for agreement on the session key.

We let Agent’ = {Alice, Bob, Mallory}, SessionKey' = {Ka, Kb, Km} and
Secret! = {Sa, Sb, Sm}. We let¢s.. be as in the previous section; we defing, and
¢sx below.

In order to test for authentication, we produce a systemiaing AuthSystem from
Section 4.2. However, we are only interested in checkingihentication to the princi-
pal respondeBob, so we need produce only the correspondigning and Complete
signals. Recall that in Section 4.2 tli&nning event was produced by renaming the
sending of a message 1. HoweverSigstem! that send is modelled by an internalised
inference, of the form

infer.(Encrypt.(PK (Bob), Encrypt.(SK (a), Sq.(a, Bob, k))),{}).

For ease of reference, we wrildsg1Inf (a, k) for the above event. We therefore need
to produce theRunning event by renaming the correspondib@ginf (a, k) event?

3In the interests of efficiency, we should hide and chaseéngdiflr events other than/sg1Inf (a, k) events
when we construct the intruder process.

AuthSystem’ =
System !
[Running.InitiatorRole.a.Bob.k/ MsglInf (a, k),
Complete. ResponderRole. Bob.a.k/send.Bob.a.(Msg2, Encrypt.(k, s)) |
a € Agent, k € SessionKey, s € Secret]
\ (¥ — alphaAuthSystem?),

alphaAuthSystem' =
{| Running.InitiatorRole.a.Bob, Complete. ResponderRole. Bob.a |
a € Honestl}.

We can also produce a specification process, similatuth.Spec from Section 4.2, but
specialised to the principal responder:

AuthSpect = Running. InitiatorRole? a! Bob?k —
Chaos({ Complete. ResponderRole. Bob.a.k}).

We can then use FDR to verify that
AuthSpect Crp AuthSystemT.

We can use this to deduce a corresponding result§etem,;. The success of the
above refinement test means that for every traae System!, and for alla € Honest'
andk € SessionKey!

if tr = tr'"(send.Bob.a.(Msg2, Encrypt.(k, s))))
then Msg1Inf(a, k) in tr'.

We claim that a similar result holds fatystem,: (Agent, SessionKey, Secret). Sup-
pose, for a contradiction, thafystemy,:(Agent, SessionKey, Secret) does have a
tracetr such that for somel € Honest andK € SessionKey

tr = tr'"(send.Bob.A.(Msg2, Encrypt.(K, s))))
but notMsg1inf (A, K) in tr'.

Consider the collapsing functiogs, and¢ s, below:

Pag(A) = Alice,
$a4(Bob) = Bob,
¢ag(c) = Mallory, forc# A, Bob,
¢sk (K) = Kb,
sk (k) = Km, for k € SessionKeyKnown U
SessionKeyIntruder — { K },
sk (k) = Ka, for k € SessionKeyUnknown — {K}.

Then

o(tr) = ¢(tr') " (send.Bob.Alice.(Msg2, Encrypt.(Kb, ¢sec(s)))).

However,¢(¢r') has no correspondinysg1Inf (Alice, Kb) event, by the way we have
constructeds. But equation (5) implies thab(tr) € traces(System!), which con-
tradicts equation (7). Thus we have obtained a contradi¢dtoequation (8). Hence
Systemyn: (Agent, SessionKey, Secret) satisfies the authentication property, for all
choices of the types. Thus we have verified that, for an ayitsystem running the
protocol, there is no authentication attack against thecgal responder, and hence, by
symmetry, no authentication attack against an arbitrasyoader.

6. Casper

In the previous sections, we have described the CSP modsésafity protocols. How-
ever, creating these models by hand is time-consuming amod-@rone. Casper is a
compiler that automates this process, creating the CSPImfsxde a more abstract de-
scription written by the user. In this section we briefly (ugltheCasper input syntax;
for more details see [LBDH].

A complete input file, corresponding to the model in Secti8red 4, is given in
Figure 2. The script is split into eight sections, each beigig with a header starting
with “#". The first three sections describe the protocol; the fogattion defines the
specifications for it to be tested against; and the last fectiens describe the system to
be checked.

The #Free vari abl es section declares the variables to be used in the protocol
description, together with their types; it also defines \utkeys are inverses of one an-
other. The#Pr ocesses section defines names for the agents running in the protocol,
together with parameters for the@asper uses these names for the corresponding CSP
processes. This section also defines the initial knowlefitfeecagentsCasper uses this
information to check that the protocol is feasible, in thatleagent has all the informa-
tion necessary to run the protocol. T#er ot ocol descri pti on section defines the
protocol itself, using an ascii representation of stangaeodocol notation. In particular,
it includes a message 0 thateceives from its environment, telling it with whom to run
the protocol, and corresponding to the environment medsafge CSP model.

The #Speci fi cati on section defines the security properties to be tested. The
two Secr et specifications correspond to the two secrecy propertiesidered in Sec-
tion 4.1: thata believes thast is a secret that onlig should know, and vice versa. The
two Agr eenent specifications correspond to the first two authenticatiaperties con-
sidered in Section 4.2: thatis authenticated ta and that they agree upon the values
of s andk; and thata is authenticated td and that they agree upon the valuekof
TheAl i veness specification corresponds to the property considered arideof Sec-
tion 4.2: that ifb completes a run of the protocol, apparently waththena has previ-
ously been running the protocol.

The#Act ual vari abl es section defines the atomic values to be used in the pro-
tocol model; this is used in the definition of tl&.cryption datatype in the model. This
section also defines which keys are inverses of one anotter#HAunct i ons section
tells Casper to produce symbolic definitions for the functioR& and SK; alternatively,
the user can provide his own definitions. T#®y st emsection defines the instances of
honest agents in the system. Finally, hient r uder | nf or mati on section gives the
name of the intruder, and his initial knowledge (correspogtb /7K in the CSP model).

#Free vari abl es

a, b : Agent

k : Sessi onKey

s : Secret

PK : Agent -> PublicKey

SK : Agent -> SecretKey

I nverseKeys = (PK, SK), (k, k)

#Processes
Initiator(a, k) knows PK, SK(a)
Responder (b, s) knows PK, SK(b)

#Pr ot ocol description

0. ->a: b

1. a->b: { {k}{SK(a)} }{PK(b)}
2. b ->a: {s}{k}

#Speci fication
Secret(a, s, [Db])
Secret(b, s, [a])
Agreenent (b, a, [s,k])
Agreement (a, b, [k])
Aliveness(a, b)

#Actual vari abl es

Alice, Bob, Mallory : Agent

Ka, Km: Sessi onKey

Sb, Sm: Secret

I nverseKeys = (Ka, Ka), (Km Km

#Functi ons
symbol i ¢ PK, SK

#System
Initiator(Alice, Ka)
Responder (Bob, Sh)

#l ntruder | nformation
Intruder = Mallory
I nt ruder Knowl edge =\
{Alice, Bob, Mallory, PK, SK(Mallory), Km Sm

Figure 2. Casper script for the example protocol

Casper also provides support for analysing systems of unboundedas described
in Section 5. Most sections of theasper script are unchanged; Figure 3 gives those
sections that are changed.

The gener at es clauses in the#Processes section indicates that the initia-
tor and responder generate fresh valueskfand s, respectively. The#l ntruder
I nf or mat i on section includes the directivenboundPar al | el = True to indicate
that unboundedly many instances of other agents should kelfed as internal agents.

#Processes
I NI TI ATOR(a, k) knows PK, SK(a) generates k
RESPONDER(b, s) knows PK, SK(b) generates s

#Act ual vari abl es
Mal | ory : Agent

#System
Cener at eSystem = True

#l ntruder Infornmation

Intruder = Mallory

I ntruder Knowl edge = {PK, SK(Mallory)}
UnboundParal | el = True

Figure 3. Changes to th€asper script to allow checking of arbitrary systems

Those types used gener at es clauses (her8essi onKey andSecr et) and the types
of agent identities (herggent) are treated as being data independent.

The#Syst emsection includes the directivener at eSyst em = Tr ue to indicate
thatCasper should automatically generate a system containing jusigmagents, gen-
erate types containing just enough values, and give thedatjust enough initial knowl-
edge, in order for the security of this small system to imply $ecurity of arbitrary sys-
tems, using an argument as in Section 5.3. The user has tareexily the intruder’s
identity, and to specify what initial knowledge from nontaléndependent types the in-
truder should have. (It is also possible for the user to $péué system and types, as in
a standard script.)

Analyses based on scripts of this form are less good for tietgattacks than those
of the standard form, since counterexamples returned by &feRarder to understand
(many of the details of the attack are hidden within inteiggal deductions), but are
appropriate for protocols that are believed to be correct.

7. Notes

In this section we give brief historical notes concerning tlevelopment of the tech-
niques described in this chapter, and pointers to othensixss.

The first uses of model checkers to analyse security pratca@ due to Millen
et al. [MCF87] and Meadows [Mea96]. Roscoe was the first tesictam the use of CSP
and FDR in [Ros95], but the ideas gained more prominencedwfl6] and [LR97]. The
highly-parallel model of the intruder from Section 3.3 wasgmsed in [RG97].

Casper was first described in [Low97a,Low98[asper itself is available from
[Low09]. Different types of authentication requiremeraisgd how to model them in CSP,
were discussed in [Low97b]. The book [RSQ0] includes a more detailed description
of the CSP approach to modelling and analysis of securitiopods.

A number of other extensions have been made to the approante &yptographic
systems have interesting algebraic properties; for exanvMeirnam encryption (bit-wise
exclusive-or) is associative and commutative, and Diffehdan encryption depends
upon commutativity of exponentiation. In [RG97], Roscod &vldsmith describe how

to model such algebraic properties, by renaming each factépresentative member of
its equivalence class. Some protocols make use of passwenitsh might be poorly-
chosen and so appear in an on-line dictionary; some sucbqmistmay be subject to
guessing attacksvhere the intruder is able to test in some way whether aqueatti guess
of the password is correct, and to iterate this process ¢firaill words in the dictionary;
[Low04] describes how to analyse protocols for such gugssitacks. In some protocols
(such as the running example in this book!), if an old seskmnis compromised, the
intruder can replay it in order to launch subsequent atteftksiOl] describes how to
find such attacks.

The theory of data independence, as applied to CSP, wasopedtin [Laz99].
Roscoe first applied data independence to security pratdgecdRos98], using a tech-
nique to “recycle” fresh values in a protocol, to give a mottheit simulated a system
with an unbounded number of sequential runs (but with aéchitumber of concurrent
runs). Roscoe and Broadfoot extended these ideas in [RBA8]introduced the idea of
internalising agents, although there it was applied to isdany agents such as servers,
and was intended as a technique for reducing the size of &éte space rather than to
provide for a general proof. These ideas were extended iQPREB001] to show that in-
ternalising agents can be used to provide a general proakver, in that development,
considerable machinery was necessary to avoid false attd¢le models we have pre-
sented here are due to Kleiner [KIe08]; Kleiner also pressentne extensions we have
not discussed, and presents several theorems giving apgisoghoices for the collapsed
datatypes for checking different security properties.

Acknowledgments

I would like to thank Bill Roscoe for discussions about séguprotocols and their
analysis using CSP, stretching over the last 15 years. |dvalsb like to thank Eldar
Kleiner for discussions about his techniques for intesiladj agents and applying data
independence techniques. | received useful comments ®afthpter from Tom Gibson-
Robinson, Steve Kremer, Tomasz Mazur, Toby Murray and Bdr8afrin.

References

[BRO2] P. J. Broadfoot and A. W. Roscoe. Capturing paratielcks within the data independence frame-
work. In Proceedings of the 15th IEEE Computer Security Foundatiaskshop 2002.

[Bro01] Philippa BroadfootData independence in the model checking of security prégoBdhil thesis,
Oxford University, 2001.

[DY83] D. Dolev and A.C. Yao. On the security of public-keyopocols. Communications of the ACM
29(8):198-208, August 1983.

[For97] Formal Systems (Europe) Ltdrailures-Divergence Refinement—FDR 2 User Mand&i97.
Available via URLht t p: / / www. f or mal . denon. co. uk/ FDR2. ht m .

[Hoa85] C. A. R. HoareCommunicating Sequential ProcessBsentice Hall, 1985.

[Huio1] Mei Lin Hui. A CSP Appraoch to the Analysis of Security Protoc#sD thesis, University of
Leicester, 2001.

[Kle08] Eldar Kleiner. A Web Services Security Study usfdasper and FDR DPhil thesis, Oxford
University, 2008.

[Laz99] Ranko Lafi. A Semantic Study of Data Independence with Applications ddeViChecking
DPhil thesis, Oxford University, 1999.

[LBDH]

[Low96]

[Low97a]
[Low97b]
[Low98]
[Low04]

[Low09]

[LR97]
[MCF87]
[Meag6]
[RB99]

[RG97]

[Ros94]
[Ros95]

[Ros97]
[Ros98]

[RSG+00]

Gavin Lowe, Philippa Broadfoot, Christopher Dill@ay, and Mei Lin Hui. Casper: A Com-
piler for the Analysis of Security Protocols, User Manuatidrutorial. Oxford University Com-
puting Laboratory. Available vidtt p: //ww. conl ab. ox. ac. uk/ peopl e/ gavi n.

| owe/ Security/ Casper/index. ht M %

Gavin Lowe. Breaking and fixing the Needham-Scheyeplublic-key protocol using FDR. In
Proceedings of TACASolume 1055 ofLecture Notes in Computer Sciengeages 147-166.
Springer Verlag, 1996. Also iBoftware—Concepts and Tool¥:93-102, 1996.

Gavin Lowe.Casper: A compiler for the analysis of security protocols. Pmoceedings of 10th
IEEE Computer Security Foundations Workshpages 18-30, 1997.

Gavin Lowe. A hierarchy of authentication spedtfions. InProceedings of 10th IEEE Computer
Security Foundations Workshop997.

Gavin Lowe. Casper: A compiler for the analysis of security protocol3ournal of Computer
Security 6:53-84, 1998.

Gavin Lowe. Analysing protocols subject to guegsattacks. Journal of Computer Security
12(1):83-98, 2004.

Gavin Lowe. Casper: A compiler for the analysis of security protocols, 1996820
World Wide Web home page at URlt t p: / / www. conl ab. ox. ac. uk/ peopl e/ gavi n.

| owe/ Security/ Casper/index. ht M %

Gavin Lowe and Bill Roscoe. Using CSP to detect eriotee TMN protocol.l[EEE Transactions
on Software Engineerin@3(10):659-669, 1997.

J. K. Millen, S. C. Clark, and S. B. Freedman. Therirdgator: Protocol security analysi€EEE
Transactions on software Engineerjni3(2), 1987.

Catherine Meadows. The NRL Protocol Analyzer: Aemiew. Journal of Logic Programming
26(2):113-131, 1996.

A. W. Roscoe and P. J. Broadfoot. Proving securitytgrols with model checkers by data inde-
pendence techniquedournal of Computer Security (2, 3):147-190, 1999.

A. W. Roscoe and M. H. Goldsmith. The perfect “spy” foodel-checking cryptoprotocols. In
Proceedings of the DIMACS Workshop on Design and Formafivtion of Security Protoco)s
1997. Available via URLhtt p://di macs. rutgers. edu/ Wr kshops/ Security/
progran®/ program htni .

A. W. Roscoe. Model-checking CSP.ArClassical Mind, Essays in Honour of C. A. R. Hoare
Prentice-Hall, 1994.

A. W. Roscoe. Modelling and verifying key-exchargetocols using CSP and FDR. 8th
IEEE Computer Security Foundations Workshd§95.

A. W. RoscoeThe Theory and Practice of Concurrendyrentice Hall, 1997.

A. W. Roscoe. Proving security protocols with mattedckers by data independence techniques.
In 11th Computer Security Foundations Workshoages 84-95, 1998.

Peter Ryan, Steve Schneider, Michael Goldsmith, Gawind, and Bill RoscoeModelling and
Analysis of Security Protocol$earson Education, 2000.

