
Analysing Security Protocols using CSP

Gavin LOWE

Oxford University Computing Laboratory

1. Introduction

In this chapter we describe how security protocols can be analysed using the process
algebra CSP and the model checker FDR. The basic technique isto build a CSP model
of a small system running the protocol, together with the most general intruder who can
interact with that protocol, and then to use the model checker FDR to explore the state
space, looking for insecure behaviours.

We will base our explanation of the technique upon the book’srunning example:

Message1 . a → b : {∣[k ]SK (a)∣}
a

PK (b)

Message2 . b → a : {∣s ∣}
s

k

The initiatora creates a fresh session keyk , signs it with her secret keySK (a), encrypts
it with the responderb’s public keyPK (b), and sends it tob. The responderb then
usesk to encrypt some secret values to return toa.

We analyse the protocol in the context of the Dolev-Yao model[DY83]. We assume
that the intruder has complete control of the network and so can: overhear messages
passing on the network; intercept messages, to prevent themreaching their intended re-
cipients; encrypt and decrypt messages using keys he knows,so as to learn new mes-
sages; and send messages that he knows, possibly using a false identity. However, we
do not allow the intruder to perform cryptanalytic attacks:we effectively assume perfect
cryptography.

In the next section we give a brief introduction to CSP. Then in Section 3 we produce
a CSP model of the protocol: we build a model of a small system running the protocol,
including a single initiator, Alice, and a single responder, Bob, together with the most
general intruder who can interact with the protocol. In Section 4 we describe how the
security properties of secrecy and authentication can be captured as CSP specifications,
and how FDR can be used to find attacks against these properties. We then adapt the
protocol to prevent these attacks. FDR finds no attacks when it is used to analyse a small
system running the adapted protocol. However, this does notimmediately imply that
there is no attack against some larger system running the protocol. We tackle this issue
in Section 5, by showing how to build a model that abstracts anarbitrary system running
the protocol: any attack upon an arbitrary system running the protocol will be reflected
in an attack upon this model. In Section 6 we describeCasper, a compiler that can be
used to produce the CSP models from a more abstract description, and in Section 7 we
give bibliographic notes and briefly discuss some extensions of the technique.



2. A brief overview of CSP

Communicating Sequential Processes (CSP) [Hoa85,Ros97] is a process algebra for de-
scribing programs orprocessesthat interact with their environment by communication.
That environment might be other processes running in parallel, or might be processes
outside the system being modelled. In this section we give a brief overview of the frag-
ment of the syntax that we use subsequently, and describe thetrace semantics of CSP;
for more details, see [Ros97].

CSP processes communicate via atomic events, from some setΣ . Typically, events
correspond to communications over channels; for example the eventc.3 represents the
communication of the value 3 over the channelc. Each channel is declared to pass data
of a particular type. The set of events over channelc is denoted{∣c∣}.

The simplest process isSTOP , which represents a deadlocked process that cannot
communicate with its environment. The processa → P offers its environment the
eventa; if the event is performed, it then acts likeP . This is generalised by the process
c?x : X → P(x ), which is willing to do any event of the formc.x for x ∈ X , and then
acts likeP(x ); this represents an input ofx on channelc; if the setX is omitted, it is
taken to be the type of the channel.

If b is a boolean andP is a process, thenb & P represents the process that acts
like P if b is true, and likeSTOP if b is false; in other words,b acts as a boolean guard
onP .

The processP □ Q can act like eitherP orQ : the environment is offered the choice
between the initial events ofP andQ . The process□

i:I
P(i) represents an indexed

choice between the processesP(i) for i ∈ I . Chaos(A) is a totally nondeterministic
process that can communicate arbitrary events fromA.

The processP ∥
A

Q runsP andQ in parallel, synchronising on events fromA,

i.e. events fromA can occur only when bothP andQ are willing to perform them. An
indexed version is written as∥

i:I
[�i ]Pi : each processPi synchronises on events from

its alphabet�i . By contrast,P ∣∣∣ Q runsP andQ in parallel with no synchronisation.
The processP ∖ A acts likeP , except the events fromA are hidden, i.e. turned

into internal, invisible events, denoted� . Finally, the processP [[a/b]] represents the
processP but where every occurrence of the eventb is renamed toa. An indexed version
of this is written, for example,P [[c.x/d .x ∣ x ∈ X ]].

A trace is a sequence of events that a process can perform; we writetraces(P) for
the set of traces ofP . We say thatP is refined byQ , writtenP ⊑T Q , if all the traces
of Q are traces ofP :

P ⊑T Q ⇔ traces(P) ⊇ traces(Q).

Typically, Q will be a model of a system andP will be a specification process that
can perform those traces that meet some requirement; the refinement will hold ifP can
perform only traces that meet the requirement. The tool FDR [Ros94,For97] can be used
to test such refinements automatically, for finite state processes.



3. Modelling the protocol

In this section we describe the basic technique of CSP model checking of security proto-
cols. As noted in the introduction, we consider a small system running the protocol: we
include a single initiator Alice, who will use the session key Ka, and a single responder
Bob, who will use the secretSb. We also include an intruder, Mallory, who has complete
control over the network, as illustrated in Figure 1.

Intruder

sendAlice.Mallory
receive.Mallory.Bob

receive.Alice.Bobsend.Alice.Bob

Initiator(Alice,Ka) Responder(Bob,Sb)

Figure 1. The system

In the next subsection we give some basic definitions of the underlying types, etc.
In Subsection 3.2 we give CSP models for the honest participants in the protocol, and in
Subsection 3.3 we give a model for the intruder. Finally, in Subsection 3.4 we put them
together to form a model of the whole system.

We present the definitions using “blackboard CSP”; it is straightforward to translate
this into machine-readable CSP, for use with FDR.

3.1. The basics

We begin by defining a datatypeEncryption representing the space of all possible mes-
sages. The datatype includes the atomic values indicated inFigure 1, together with a
session key and a secret that the intruder will know initially. It includes constructors that
correspond to concatenation and encryption; we do not distinguish between symmetric
encryption, asymmetric encryption and signing, although it would be straightforward to
include separate constructors for each of these. The datatype also includes constructors
to give the public keys and secret keys of agents.

datatypeEncryption =

Alice ∣ Bob ∣ Mallory ∣ Ka ∣ Km ∣ Sb ∣ Sm ∣ PK .Agent ∣ SK .Agent ∣

Sq.Seq(Encryption) ∣ Encrypt .(AllKeys ,Encryption),

where the setAllKeys is defined below. For example, a typical instance of
message 1 of the form{∣[k ]SK (a)∣}

a

PK (b) would be represented by the element
Encrypt .(PK .b,Encrypt .(SK .a, k)) of Encryption.

For convenience, we define functions to return the public andsecret keys of agents,
and a number of subtypes ofEncryption.



PK (a) = PK .a, SK (a) = SK .a,

Agent = {Alice,Bob,Mallory}, Honest = Agent − {Mallory},

Secret = {Sb, Sm}, SessionKey = {Ka,Km},

PublicKey = {PK (a) ∣ a ∈ Agent}, SecretKey = {SK (a) ∣ a ∈ Agent},

AllKeys = SessionKey ∪ PublicKey ∪ Secretkey.

We also define a function to return the inverse key of a given key:

inverse(Ka) = Ka, inverse(Km) = Km,

inverse(PK .a) = SK .a, inverse(SK .a) = PK .a.

We will represent each message by a(Label ,Encryption) pair (theLabel simply
helps with interpretation of the output from FDR). We defineMsg to be the set of all
such pairs that are used in the protocol:

datatypeLabel = Msg1 ∣ Msg2 ∣ Env0 ,

Msg = {(Msg1 ,Encrypt .(PK (b),Encrypt .(SK (a), k))) ∣

k ∈ SessionKey, a ∈ Agent , b ∈ Agent} ∪

{(Msg2 ,Encrypt .(k , s)) ∣ k ∈ SessionKey, s ∈ Secret}.

And we define channels to represent the sending and receivingof messages:

channelsend , receive : Agent .Agent .Msg.

For example, agenta sending a message 1 of the protocol intended for agentb will
be represented by the eventsend .a.b.(Msg1 ,Encrypt .(PK (b),Encrypt .(SK (a), k)));
agentb receiving the message will be represented by the eventreceive.a.b.(Msg1 ,
Encrypt .(PK (b),Encrypt .(SK (a), k))).

It is useful to model interactions between the protocol and its environment (e.g. com-
mands from a user to run the protocol). Here we want to model the protocol for the
initiator receiving a message from its environment, telling it to run the protocol with a
particular agentb.

EnvMsg = {(Env0 , b) ∣ b ∈ Agent},

channelenv : EnvMsg.

3.2. Modelling the honest agents

We now describe how we can model the honest agents running theprotocol as CSP pro-
cesses. We give a parametrised processInitiator(a, k) to represent an agenta running
the protocol as initiator, and using session keyk . The process starts by receiving a mes-
sage from the environment, telling it with whom to run the protocol. It then sends an ap-
propriate message 1, and receives back an appropriate message 2 containing an arbitrary
value fors .

Initiator(a, k) =

□
b:Agent

env .a.(Env0 , b) →

send .a.b.(Msg1 ,Encrypt .(PK (b),Encrypt .(SK (a), k))) →

□
s:Secret

receive.b.a.(Msg2 ,Encrypt .(k , s)) → STOP .



The definition of the responder is similar: the processResponder(b, s) represents
agentb running the protocol as responder using secrets . The responder starts by receiv-
ing a message 1, from an arbitrary agenta and containing an arbitrary session keyk . It
then sends back the corresponding message 2.

Responder(b, s) =

□
a:Agent,k :SessionKey

receive.a.b.(Msg1 ,Encrypt .(PK (b),Encrypt .(SK (a), k))) →

send .b.a.(Msg2 ,Encrypt .(k , s)) → STOP .

As noted above, we consider a small system, comprising Aliceacting as initiator,
using keyKa, and Bob acting as responder, using secretSb. The two agents do not
communicate directly: we arrange below for all communications to go via the intruder.
We model this as an interleaving.

System0 = Initiator(Alice,Ka) ∣∣∣ Responder(Bob, Sb).

Of course, it is straightforward to consider larger systems, with more agents, or with
particular agents running the protocol multiple times, perhaps with different roles.

3.3. Modelling the intruder

We now describe how we can model the intruder. The main issue is modelling which
messages the intruder is able to understand and to create. Weneed to keep track, there-
fore, of which submessages of protocol messages the intruder knows; we term these
facts:

Fact = {Encrypt .(PK (b),Encrypt .(SK (a), k)) ∣

k ∈ SessionKey, a ∈ Agent , b ∈ Agent} ∪

{Encrypt .(k , s) ∣ k ∈ SessionKey, s ∈ Secret} ∪

{Encrypt .(SK (a), k) ∣ k ∈ SessionKey, a ∈ Agent} ∪

Agent ∪ SessionKey ∪ Secret ∪ SecretKey ∪ PublicKey.

What we do is define a deduction system to capture the intruder’s capabilities: we write
X ⊢ f if, given set of factsX , he is able to create the factf . The relation⊢ is defined by
the following four rules:

{f , k} ⊢ Encrypt .(k , f ), for k ∈ AllKeys ,
{Encrypt .(k , f ), inverse(k)} ⊢ f , for k ∈ AllKeys ,

{f1 , . . . , fn} ⊢ Sq.⟨f1 , . . . , fn⟩,

{Sq.⟨f1 , . . . , fn⟩} ⊢ fi , for i = 1 , . . . , n.

If the intruder knows a factf and a keyk then he can encryptf with k ; if he knows an
encrypted message and the corresponding decryption key, hecan perform the decryption
to obtain the body; if he knows a collection of facts, he can concatenate them together;
if he knows a concatenation, he can split it up into the individual components.

We will create a definition for the intruder that can hear messages sent across the
network, deduce new facts from what he knows (as defined by the⊢ relation), and then
send facts he knows to other agents (possibly using identities other than his own).



We defineMsgBody to be the bodies of messages (i.e., without the label), and de-
clare two channels on which the intruder can hear and say message bodies; later we will
arrange for these events to synchronise withsend andreceive events of honest agents.
We also declare a channel to capture inferences, and a channel on which the intruder can
signal that he knows a particular secret.

MsgBody = {m ∣ ∃ l ∙ (l ,m) ∈ Msg},

channelhear , say : MsgBody,

channelinfer : {(f ,X ) ∣ X ⊢ f },

channelleak : Secret .

One way to define the intruder is as follows; the parameterS represents the intruder’s
current knowledge.

Intruder0 (S ) =

hear?f : MsgBody → Intruder0 (S ∪ {f })

□

say?f : S ∩MsgBody → Intruder0 (S )

□

leak?f : S ∩ Secret → Intruder0 (S )

□

□
f :Fact,X⊆S ,X⊢f , f /∈S

infer .(f ,X ) → Intruder0 (S ∪ {f }).

The intruder can: hear a message sent on the network, and add it to his knowledge; say
a message that he knows; signal that he knows a particular secret; or infer a new factf if
for some subsetX of his current knowledge,X ⊢ f , and then addf to his knowledge.

Below we will instantiateS with a setIIK that represents the intruder’s initial
knowledge; we assume that the intruder knows all the agent’sidentities, all the public
keys, his own secret key, a session key, and a secret:

IIK = Agent ∪ {PK (a) ∣ a ∈ Agent} ∪ {SK (Mallory),Km, Sm}.

The definition of the intruder ensures1

∀ tr ′⌢⟨say.f ⟩ ∈ traces(Intruder0 (IIK )) ∙

∃S ⊆ IIK ∪ {f ′ ∣ hear .f ′ in tr ′} ∙ S ⊢ f .

The intruder can say a message only if he can deduce it from hisinitial knowledge and
what he has heard.

The above design of the intruder process works in theory, butis very inefficient in
practice, because of the way FDR works. FDR produces explicit state machines for se-
quential processes, such asIntruder0 (IIK ) above. If there areN facts that the intruder
might learn, then theIntruder0 process has2N states. It is typical forN to be of the or-
der of several thousand; clearly it is infeasible to construct the intruder process explicitly
in such cases.

Observe, though, that most states of the intruder will not bereachable in the context
of a particular system — otherwise model checking would be infeasible. What we want

1“⌢” denotes concatenation of traces.



to do is avoid constructing the entire intruder process, butsimply to explore the parts that
are reachable in the context of the given system.

The way we do this is to construct the intruder in a different way. Rather than build
the intruder as a single sequential process with2N states, we build it out ofN component
processes, one for each factf , each with two states corresponding to whether the intruder
does or does not knowf .

Ignorant(f ) =

f ∈ MsgBody & hear .f → Knows(f )

□

□
X⊆Fact,X⊢f

infer .(f ,X ) → Knows(f ),

Knows(f ) =

f ∈ MsgBody & hear .f → Knows(f )

□

f ∈ MsgBody & say.f → Knows(f )

□

f ∈ Secret & leak .f → Knows(f )

□

□
f ′:Fact,X⊆Fact, f∈X ,X⊢f ′

infer .(f ′,X ) → Knows(f ).

If the intruder doesn’t knowf , he can hearf on the network, or deduce it from some
setX (that he does know), at which point he will knowf . When he knowsf he can: hear
it on the network again; say it; signal that he knows it (if it is a secret); or use it within
the inference of another fact.

We build the intruder by composing the component processes together in parallel,
where the component for factf synchronises on the events in its alphabetalpha(f ).

Intruder0 = ∥
f :Fact

[alpha(f )] if f ∈ IIK thenKnows(f ) elseIgnorant(f ),

alpha(f ) = {hear .f , say.f , leak .f } ∪

{infer .(f ,X ) ∣ X ⊆ Fact , X ⊢ f } ∪

{infer .(f ′,X ) ∣ f ′ ∈ Fact , X ⊆ Fact , f ∈ X , X ⊢ f ′}.

Note in particular that an inference of the forminfer .(f ,X ) can occur precisely when
the component for factf is in theIgnorant state, and for eachf ′ ∈ X , the component
for f ′ is in theKnows state. The above highly parallel process is, then, equivalent to the
original sequential definition, but FDR can construct it much more quickly.

We can make the definition more efficient, still, in order to reduce the size of the
state space explored by FDR. When the intruder learns one fact, he can often use it to
deduce many more facts; thus deductions often come together. The more deductions
that are made, the more the intruder can do, so it makes sense to force the intruder to
make all possible inferences, rather than allowing FDR to explore states where he makes
a subset of those deductions. Further, if the intruder can make k independent such new
deductions, then there arek ! orders in which those deductions can be made. But all
different orders of the deductions reach the same state, so it doesn’t matter what order
they are made in: we should force FDR to consider just asingleorder of those deductions.



The FDR functionchase will do both of these for us: it forces internal� events to occur,
but picking an arbitrary order, and performing as many as possible. We therefore hide
the inferences and applychase, to force the intruder to perform as many inferences as
possible, but in an arbitrary order.

Intruder1 = chase(Intruder0 ∖ {∣infer ∣}).

Finally, we rename thehear andsay events within the intruder tosend andreceive
events, ready to synchronise with the honest agents.

Intruder = Intruder1

[[send .a.b.(l ,m)/hear .m ∣

a ∈ Agent − {Mallory}, b ∈ Agent , (l ,m) ∈ Msg]]

[[receive.a.b.(l ,m)/say.m ∣

a ∈ Agent , b ∈ Agent − {Mallory}, (l ,m) ∈ Msg]]

3.4. Putting it together

Finally, we construct our model of the complete system by composing the honest agents
and the intruder together in parallel, synchronising on allthesend andreceive events to
reflect the fact that the intruder has complete control over the network:

System = System0 ∥
{∣send,receive∣}

Intruder .

4. Testing for security properties

We now describe how to test for various security properties:first secrecy properties, then
authentication properties.

4.1. Secrecy properties

There are two properties concerning the secrets that we want to test for:

1. If an initiatora receives a values , apparently fromb, andb is not the intruder,
then the intruder does not knows ;

2. If a responderb sends a values , intended fora, anda is not the intruder, then
the intruder does not knows .

We can test for both of these together.
What we do is introduce new events of the formclaimSecret .a.s .b to indicate that

a thinks thats is a secret that onlyb should know, and similar events witha and b

swapped. We transform the system so that these events occur whena andb receive or
send (respectively) a message 2, corresponding to items 1 and 2 above. We then hide all
events other than theclaimSecret andleak events.

SecretSystem =

System [[claimSecret .a.s .b/receive.b.a.(Msg2 ,Encrypt .(k , s)),

claimSecret .b.s .a/send .b.a.(Msg2 ,Encrypt .(k , s)) ∣

a ∈ Agent , b ∈ Agent , s ∈ Secret , k ∈ SessionKey]]

∖ (Σ − {∣claimSecret , leak ∣}).



We want to test that, whenever an honest agenta performs aclaimSecret .a.s .b
event, withb not the intruder, the intruder does not subsequently perform leak .s indicat-
ing that he has learnts . The processSecretSpec below allows precisely those traces that
satisfy this property; the parameter of the subsidiary processSecretSpec′ records those
secrets for which there has been a correspondingclaimSecret , and so must not be leaked
by the intruder.

SecretSpec = SecretSpec′({}),

SecretSpec′(secs) =

claimSecret?a?s?b →

if b ∈ Honest thenSecretSpec′(secs ∪ {s}) elseSecretSpec′(secs)
□

leak?s : Secret − secs → SecretSpec′(secs).

We can then test our secrecy properties by checking that every trace ofSecretSystem
is also a trace ofSecretSpec; we can do this by using FDR to test the refinement

SecretSpec ⊑T SecretSystem.

When we perform this check, FDR finds that the refinement does not hold, and gives
a witness trace ofSecretSystem that is not a trace ofSecretSpec; this correspond to an
attack against item 2 above. It turns out, though, that thereis no attack against item 1.

The witness trace returned by FDR is

⟨claimSecret .Bob.Sb.Alice, leak .Sb⟩.

Bob believes thatSb is a secret that only Alice should learn, yet the intruder does learn it.
The FDR debugger can be used to find that the corresponding trace ofSystem is:

⟨ env .Alice.(Env0 ,Mallory),

send .Alice.Mallory.

(Msg1 ,Encrypt .(PK .Mallory,Encrypt .(SK .Alice,Ka))),

receive.Alice.Bob.(Msg1 ,Encrypt .(PK .Bob,Encrypt .(SK .Alice,Ka))),

send .Bob.Alice.(Msg2 ,Encrypt .(Ka, Sb)),

leak .Sb ⟩.

This can be described in more standard notation as follows (the notationIAlice represents
the intruder faking a message, pretending to be Alice, or intercepting a message intended
for Alice):

Message0 . → Alice : Mallory

Message1 . Alice → Mallory : {∣[Ka]SK (Alice)∣}
a

PK (Mallory)

Message1 . IAlice → Bob : {∣[Ka]SK (Alice)∣}
a

PK (Bob)

Message2 . Bob → IAlice : {∣Sb∣}
s

Ka

The intruder knowsSb.

Alice runs the protocol with Mallory, sending him a keyKa, signed with her public key.
But Mallory can then use this signed key to send a fake messageto Bob, pretending to
be Alice. Bob accepts this key as having come from Alice, and so uses it to try to send
Alice the secretSb. However, the intruder knowsKa so can learnSb.



4.2. Authentication

We now consider authentication of the responder to the initiator, and vice versa. More
precisely, we consider the following questions:

1. If an initiatora completes a run of the protocol, apparently withb, then hasb
been running the protocol, apparently witha, and do they agree upon the value
of the secrets and the session keyk?

2. If a responderb completes a run of the protocol, apparently witha, then hasa
been running the protocol, apparently withb, and do they agree upon the value
of the session keyk? (Note thatb can receive no guarantee that he anda agree
upons , because he cannot be sure thata even receives message 2.)

We describe how to test for the latter property; the test for the former is very similar.
We introduce new events, as follows:

∙ The eventRunning.InitiatorRole.a.b.k indicates thata thinks that she is run-
ning the protocol as initiator, apparently withb, using session keyk ;

∙ The eventComplete.ResponderRole.b.a.k indicates thatb thinks he has com-
pleted a run of the protocol as responder, apparently witha, using session keyk .

We will then check that whenever the latter event occurs, theformer event has previously
occurred.

We arrange for initiatora to perform theRunning event when she sends message 1,
and we arrange for responderb to perform theComplete event when he sends message 2;
we hide all other events.

AuthSystem0 =

System[[Running.InitiatorRole.a.b.k/

send .a.b.(Msg1 ,Encrypt .(PK (b),Encrypt .(SK (a), k))),

Complete.ResponderRole.b.a.k/

send .b.a.(Msg2 ,Encrypt .(k , s)) ∣

a ∈ Agent , b ∈ Agent , k ∈ SessionKey, s ∈ Secret ]]

∖ (Σ − alphaAuthSystem),

alphaAuthSystem =

{∣Running.InitiatorRole.a.b,Complete.ResponderRole.b.a ∣

a ∈ Honest , b ∈ Honest ∣}.

(More generally, theComplete event is performed at the last step in the protocol taken
by that agent, and theRunning event is performed when the agent sends a message that
should be causally linked to the other agent receiving a message.)

Recall that we want to check that whenever a responderb performs aComplete

event concerning initiatora, thena has previously performed a correspondingRunning

event concerningb. We therefore consider the following specification process, which
allows only such traces

AuthSpec = Running.InitiatorRole?a.b.k →

Chaos({Complete.ResponderRole.b.a.k}).



Note that this specification allowsb to perform an arbitrary number ofComplete

events corresponding to a singleRunning event, and so does not insist that there
is a one-one relationship between the runs ofa and the runs ofb. We could test
for such a relationship by replacing theChaos({Complete.ResponderRole.b.a.k}) by
Complete.ResponderRole.b.a.k → STOP .

We can use FDR to test the refinement

AuthSpec ⊑T AuthSystem.

(The above refinement test is appropriate sinceAuthSystem performs at most asingle
Running event; for a system that could performn such events, we would replace the left
hand side of the refinement test by an interleaving ofn copies ofAuthSpec.) FDR finds
that this refinement does not hold, and returns the followingwitness trace:

⟨Complete.ResponderRole.Bob.Alice.Ka⟩.

Bob thinks he has completed a run of the protocol with Alice, but Alice did not think that
she was running the protocol with Bob. We can again use the FDRdebugger to find the
corresponding trace ofSystem:

⟨ env .Alice.(Env0 ,Mallory)

send .Alice.Mallory.

(Msg1 ,Encrypt .(PK .Mallory,Encrypt .(SK .Alice,Ka)))

receive.Alice.Bob.(Msg1 ,Encrypt .(PK .Bob,Encrypt .(SK .Alice,Ka)))

send .Bob.Alice.(Msg2 ,Encrypt .(Ka1 , Sb)) ⟩.

This is the same as the attack against secrecy.
We can test whether the responder is authenticated to the initiator (item 1 above) in

a similar way. FDR finds no attack in this case.
It is interesting to consider what guarantees the responderdoes receive from the

protocol. We claim that if responderb completes a run of the protocol, apparently witha,
thena has been running the protocol, and that they agree upon the value of the session
keyk . Note though thata might have been running the protocol with some agentc other
thanb, and so performed aRunning.InitiatorRole.Alice.c.k event. We can test this
condition using the refinement check

AlivenessSpec ⊑T SystemAliveness ,

where

AlivenessSpec = Running.InitiatorRole.Alice?c?k →

Chaos({Complete.ResponderRole.b.Alice.k ∣ b ∈ Agent}),

SystemAliveness = AuthSystem0 ∖ (Σ − alphaSystemAliveness),

alphaSystemAliveness =

{Running.InitiatorRole.a.b,Complete.ResponderRole.b.a ∣

a ∈ Honest , b ∈ Agent}.



4.3. Correcting the protocol

It is fairly straightforward to correct the protocol to prevent the attacks identified above.
Each attack was caused by Bob accepting a key signed by Alice that had been intended
for Mallory rather than himself. The obvious way to prevent this attack, then, is to
include the intended recipient’s identity within this signed message. We also include the
sender’s identity, although this is not actually necessary:

Message1 . a → b : {∣[a, b, k ]SK (a)∣}
a

PK (b)

Message2 . b → a : {∣s ∣}
s

k

It is straightforward to adapt the CSP model to reflect this change in the protocol: it
simply requires a change to the definitions of the honest agents, the setsMsg andFact ,
and the renamings performed to the final system, all restricted to the parts that deal with
message 1.

When we analyse this version of the protocol using FDR, we findno attacks against
the main security properties discussed above. If we use the version of the authentication
check that tests whether there is a one-one relationship between the runs ofa and the
runs ofb, we find that this does not hold: clearly the intruder can replay a message 1
sent bya multiple times so thatb thinks he’s performed multiple runs corresponding to
a single run ofa; we consider this a limitation of the protocol rather than a serious flaw.

We should be clear, though, about the limitations of this analysis. When we model
check a particular system running the protocol and find no attacks, that does not nec-
essarily imply that there is no attack upon some other systemrunning the protocol (al-
though in practice most attacks can be found by considering fairly small systems). We
address this problem in the following section.

5. Model checking arbitrary systems

In this section we show how to build a model that abstracts anarbitrary system running
the protocol: if no attack is found on this model, then no attack exists on the protocol.

For ease of exposition, we consider only the question of attacks upon the responder.
By symmetry, it is enough to consider attacks upon aparticular instance of aparticular
responder, say the instanceResponder(Bob, Sb), which we call theprincipal responder.
We want to consider all possible systems containing this principal responder, together
with arbitrary other instances of honest agents (possibly including otherinstances of
Bob, as either initiator or responder) and the intruder. Each such system can be written
in the form

System0 = (Responder(Bob, Sb) ∣∣∣ Others) ∥
{∣send,receive∣}

Intruder ,

whereOthers models all the other honest instances. Of course, there are infinitely many
such systems. However, we show how to construct a model that is guaranteed to find all
attacks upon all such systems.

Our development proceeds in several steps. In the next subsection, we show how
to build models that represent the effects of the other honest agents,Others , internally
within the intruder. However, that still produces an infinite number of models, param-



eterised by the types used. In Subsection 5.2 we show how to reduce those models to
a single finite model, using techniques from the area of data independence. Finally, in
Subsection 5.3 we show how we can analyse the resulting model, and, if we find no at-
tacks, deduce that there are no attacks upon an arbitrary system of the form ofSystem0 ,
above.

5.1. Internalising agents

Recall that we are interested only in attacks against the principal responder. In so far as
such attacks are concerned, there are two contributions that the other instancesOthers

can make:

1. An initiator instance withinOthers can send a message 1, which the intruder can
overhear and hence use;

2. A responder instance withinOthers can send a message 2, which the intruder
can overhear and hence use; note that this will happen only after that responder
has received a corresponding message 1, which the intruder will know.

We build a new intruder process,Intruder ′, that corresponds to the combination of
Intruder andOthers , except it represents messages sent by the other honest agents in a
different way. We represent those messages as deductions within the new intruder, rather
than as explicit messages: in other words, these interactions are modelled internally to
the intruder, rather than externally.

Consider, first, item 1 above, corresponding to an initiatorinstance,a say, sending
a message 1. Our new model will represent this by a deduction of the corresponding
message from the empty set. For later convenience, we partition the setSessionKey

into three subtypes: those keys that an honest initiator intends to share with the intruder,
denotedSessionKeyKnown; those keys that an honest initiator intends to share with
an honest agent, denotedSessionKeyUnknown; and those keys that the intruder knows
initially, denotedSessionKeyIntruder ; in the first two cases, the suffixesKnown and
Unknown indicate whether or not we expect the value to be known by the intruder.
The intruder overhearing a message 1 intended for some honest agentb can then be
represented by a deduction of the following form:

{} ⊢ Encrypt .(PK (b),Encrypt .(SK (a), Sq.⟨a, b, k⟩)),

for a, b ∈ Honest , k ∈ SessionKeyUnknown.
(1)

Similarly, the intruder receiving a message 1 intended for himself can be represented by
a deduction of the following form:

{} ⊢ Encrypt .(PK (Mallory),Encrypt .(SK (a), Sq.⟨a,Mallory , k⟩)),

for a ∈ Honest , k ∈ SessionKeyKnown.
(2)

We now consider item 2 above, corresponding to the responderb sending a mes-
sage 2 in response to receiving a message 1 that the intruder knows. We can represent
this by a deduction of the message 2 from the message 1. We partition Secret into four
subtypes: the distinguished secretSb used by the principal responder; those other se-
crets that an honest responder intends to share with the intruder, denotedSecretKnown;
those other secrets that an honest responder intends to share with an honest agent,



denotedSecretUnknown; and those secrets that the intruder knows initially, denoted
SecretIntruder . The intruder overhearing a message 2 intended for some honest agenta
can then be represented by a deduction of the following form:

{Encrypt .(PK (b),Encrypt .(SK (a), Sq.⟨a, b, k⟩))} ⊢ Encrypt .(k , s),

for a, b ∈ Honest , s ∈ SecretUnknown, k ∈ SessionKey.
(3)

Similarly, the intruder receiving a message 2 intended for himself can be represented by
a deduction of the following form:

{Encrypt .(PK (b),Encrypt .(SK (Mallory), Sq.⟨Mallory , b, k⟩))}

⊢ Encrypt .(k , s),

for b ∈ Honest , s ∈ SecretKnown, k ∈ SessionKey.

(4)

Note that in both cases we allowk to range overall of SessionKey: we do not want to
make any assumptions about the set of keys for which the intruder can construct a valid
message 1 that is accepted by an honest agent.

Let Intruder ′ be constructed using this extended deduction relation, in the same
way thatIntruder was constructed in Section 3.3, except with none of theinfer events
corresponding to new deductions hidden. We can then construct a new system

SystemInt = Responder(Bob, Sb) ∥
{∣send,receive∣}

Intruder ′.

This is analogous toSystem, except that messages from the other agents have been
replaced by correspondinginfer events.

In fact,SystemInt has slightly more behaviours thanSystem. For example, it allows
multipledeductions that produce messages containing the same freshvalue: for instance,
it would allow the intruder to performboththe deductions

{} ⊢ Encrypt .(PK (Bob),Encrypt .(SK (Alice), Sq.⟨Alice,Bob,K1 ⟩)),

{} ⊢ Encrypt .(PK (Bill),Encrypt .(SK (Alison), Sq.⟨Alison,Bill ,K1 ⟩)),

using the same keyK1 , whereas withinSystem only a single message 1 containingK1

would be sent. Of course, these extra behaviours are safe: ifwe can verifySystemInt

then we can deduce thatSystem is secure. There is a possibility of these extra behaviours
leading to the discovery offalse attacks: attacks againstSystemInt where there is no
corresponding attack onSystem. However, we have designedSystemInt so that these
false attacks do not arise in practice: this is one reason whywe partitionedSessionKey

andSecret into those values intended for use with the intruder or with honest agents.
Note that we have, in fact, produced aninfinite family of systems, one for each

choice of the typesAgent , SessionKey andSecret (and their subtypes); we sometimes
write SystemInt (Agent , SessionKey, Secret) to make this dependence explicit. Note
in particular that the intruder is also parameterised by these types, both in the definition
of the set of deductions, and in the definition of his initial knowledgeIIK as defined in
Section 3.3. We cannot directly check all members of this family. In the next section we
show how to perform a further reduction, in order to reduce the analysis ofall systems
of the formSystemInt (Agent , SessionKey, Secret) to the analysis of asinglesystem
SystemInt (Agent

†, SessionKey†, Secret†), for some fixed typesAgent†, SessionKey†

andSecret†.



5.2. Reducing the system

A processP(T ) is said to bedata independentin its type parameterT if it can input and
output values fromT , store them for later use, perform polymorphic operations such as
tupling upon them, but not perform any computations that constrain whatT may be. The
processes we have defined to model the protocol have been dataindependent in the types
Agent , SessionKey, andSecret . A number of interesting results have been proven that
allow one to deduce results about a data independent processP(T ) for all choices ofT
from an analysis ofP(T †) for some fixed typeT †; see, for example [Ros97, Chapter 15].
We apply some of the theory of data independence here.

Without loss of generality, we may assume that each typeAgent , SessionKey

and Secret contains at least as many elements as the corresponding types Agent†,
SessionKey† andSecret†, since increasing the sizes of the types does not remove any
traces fromSystemInt (Agent , SessionKey, Secret).

In order to reduce the infinite family of systems of the form ofSystemInt , we
will define a function� : Fact → Fact , and (informally speaking) consider a system
that uses fact�(f ) wheneverSystemInt usesf . Given a particular choice ofAgent ,
SessionKey andSecret , we define� as the homomorphism induced by three surjective
functions on atomic types:

�Ag : Agent → Agent†,

�SK : SessionKey → SessionKey†,

�Sec : Secret → Secret†.

So, for example,

�(Encrypt .(SK (a), Sq.⟨a, b, k⟩)) =

(Encrypt .(SK (�Ag (a)), Sq.⟨�Ag (a), �Ag (b), �SK (k)⟩)).

We lift � to events in the obvious way, for example�(send .a.b.(l ,m)) = send .
�Ag(a).�Ag (b).(l , �(m)). We lift � to sets, traces, etc., by point-wise application.

The system we will consider, then, is

System† = SystemInt (�Ag(Agent), �SK (SessionKey), �Sec(Secret))

= SystemInt (Agent
†, SessionKey†, Secret†).

We give the definitions of�Ag , etc., below (in fact, we’ll use different definitions de-
pending on the property we’re checking). However, they willeach map values onto
small fixed ranges,Agent†, etc., so that the above processSystem† is independent of
the choices ofAgent , SessionKey andSecret . In other words, we will reduce arbitrary
systems to some fixed finite system.

In order to deduce results aboutSystemInt from an analysis ofSystem†, we would
like to be able to relate their traces. The property we would like to deduce is

traces(System†) ⊇

{�(tr) ∣ tr ∈ traces(SystemInt (Agent , SessionKey, Secret))}.
(5)



If we can do that, and prove some property of the traces ofSystem† (by performing a
refinement check using FDR) we will be able to deduce a corresponding property about
the traces ofSystemInt . Equation (5) does hold, but this requires some justification;
indeed the generalisation to an arbitrary CSP processP parameterised by typeT ,

traces(P(�(T )) ⊇ {�(tr) ∣ tr ∈ traces(P(T ))}, (6)

does not hold. To see why not, consider the process (taken from [RB99]):

P(T ) = in?x : T → in?y : T → if x = y thena → STOP elseb → STOP .

SupposeT = {0 , 1} and�(0 ) = �(1 ) = 0 ; then the trace⟨in.0 , in.0 , b⟩ is contained
in {�(tr) ∣ tr ∈ traces(T )}, but not intraces(P(�(T ))).

Lazić [Laz99] shows that the following condition, known asPosConjEqT (positive
conjunction of equality tests), is enough to ensure that equation (6) does hold (in fact, the
two sides of the equation are equal in this case):

A processP satisfiesPosConjEqT precisely when the failure of each equality check
in P results in the processSTOP .

For example, the following process satisfiesPosConjEqT:

P(T ) = in?x : T → in?y : T → if x = y thena → STOP elseSTOP .

The CSP processes we have defined to model the honest protocolparticipants satisfy
PosConjEqT. However, this won’t be the case in protocols where an agent performs
inequality tests —say between two values she receives, or between the identity of her
apparent partner and her own identity— before proceeding.

The process we have defined to model the intruder also satisfies equation (6).
In [RB99], it is shown that this will be the case provided the underlying deduction rela-
tion ⊢ is positive, i.e., wheneverX ⊢ f , it is also the case that�(X ) ⊢ �(f ); in other
words, if the intruder can make a particular deduction before the types are collapsed, he
can make the corresponding deduction after the types are collapsed. This is true of the
deduction system we are using here.2

We have shown that both components ofSystem† satisfy equation (6). One can
show that this property is preserved by parallel composition. Hence the entire protocol
modelSystem† satisfies equation (5).

5.3. Testing for secrecy and authentication

We now describe how to adapt the refinement test for secrecy from Section 4.1. Recall
that we are only considering secrecy from the point of view ofthe principal responder.

We define the reduction functions�Ag , etc., as follows, to reduce each of the sub-
types to singleton values:

2As an example of a deduction system that is not positive, consider the following, designed to capture the
cracking of a one-time pad that has been used with two distinct texts (⊕ denotes bit-wise exclusive-or):

{k ⊕ t1 , k ⊕ t2 } ⊢ k , for k ∈ Key , t1 , t2 ∈ Text , t1 ∕= t2 .

If �(t1 ) = �(t2 ), for somet1 ∕= t2 , then the deduction system is not positive.



�Ag(Bob) = Bob,

�Ag(Mallory) =Mallory,

�Ag(a) = Alice, for a ∈ Honest − {Bob},

�Sec(Sb) = Sb,

�Sec(s) = Sm, for s ∈ SecretKnown ∪ SecretIntruder ,

�Sec(s) = Sa, for s ∈ SecretUnknown,

�SK (k) = Km, for k ∈ SessionKeyKnown ∪

SessionKeyIntruder ,

�SK (k) = Ka, for k ∈ SessionKeyUnknown .

This definition means thatAgent† = {Alice,Bob,Mallory}, Secret† = {Sa, Sb, Sm},
andSessionKey† = {Ka,Km}. For convenience, writeHonest† for {Alice,Bob}.

In particular, the effect of this reduction is to reduce the intruder’s initial knowledge
in the new system to

{Alice,Bob,Mallory, Sm,Km, SK (Mallory),

PK (Alice),PK (Bob),PK (Mallory)}.

Further, it reduces the deductions corresponding to internalised agents (equations (1–4))
to the following, wherea andb range overHonest†, andk ranges overSessionKey†:

{} ⊢ Encrypt .(PK (b),Encrypt .(SK (a), Sq.⟨a, b,Ka⟩)),

{} ⊢ Encrypt .(PK (Mallory),Encrypt .(SK (a), Sq.⟨a,Mallory ,Km⟩)),

{Encrypt .(PK (b),Encrypt .(SK (a), Sq.⟨a, b, k⟩))} ⊢ Encrypt .(k , Sa),

{Encrypt .(PK (b),Encrypt .(SK (Mallory), Sq.⟨Mallory , b, k⟩))}

⊢ Encrypt .(k , Sm).

In order to test whether the secrecy property is satisfied, weperform a renaming
and hiding toSystem†, analogous to that which producedSecretSystem (but with the
renaming restricted to just the principal responder):

SecretSystem† =

System† [[claimSecret .Bob.Sb.a/send .Bob.a.(Msg2 ,Encrypt .(k , Sb)) ∣

a ∈ Agent†, k ∈ SessionKey†]]

∖ (Σ − {∣claimSecret , leak .Sb∣}).

We consider a specification analogous toSecretSpec, but restricted to just the principal
responder and the principal responder’s nonce,Sb:

SecretSpec† = claimSecret .Bob.Sb?a →

if a ∈ Honest† thenSecretSpec1 † elseSecretSpec†

□

leak .Sb → SecretSpec†,

SecretSpec1 † = claimSecret .Bob.Sb?a → SecretSpec1 †.



We can then use FDR to verify that

SecretSpec† ⊑T SecretSystem†.

We now deduce a corresponding result forSystemInt . The success of the above
refinement test means thatSecretSystem† has no trace of the form

⟨. . . , claimSecret .Bob.Sb.a, . . . , leak .Sb⟩,

for a ∈ Honest†. HenceSystem† has no trace of the form

⟨. . . , send .Bob.a.(Msg2 ,Encrypt .(k , Sb)), . . . , leak .Sb⟩,

for k ∈ SessionKey†. Therefore, by equation (5), and using the definition of�Ag etc.,
SystemInt (Agent , SessionKey, Secret) has no trace of the form

⟨. . . , send .Bob.a.(Msg2 ,Encrypt .(k , Sb)), . . . , leak .Sb⟩,

for a ∈ Honest andk ∈ SessionKey. We deduce that there is no secrecy attack against
SystemInt (Agent , SessionKey, Secret), for all choices of the types.

Thus we have verified that, for an arbitrary system running the protocol, there is
no secrecy attack against the principal responder, and hence, by symmetry, there is no
secrecy attack against an arbitrary responder.

We now consider how to adapt the test for authentication fromSection 4.2. Recall
that we are considering only authentication attacks on authentication against the principal
responder, and testing for agreement on the session key.

We let Agent† = {Alice,Bob,Mallory}, SessionKey† = {Ka,Kb,Km} and
Secret† = {Sa, Sb, Sm}. We let�Sec be as in the previous section; we define�Ag and
�SK below.

In order to test for authentication, we produce a system similar toAuthSystem from
Section 4.2. However, we are only interested in checking forauthentication to the princi-
pal responderBob, so we need produce only the correspondingRunning andComplete

signals. Recall that in Section 4.2 theRunning event was produced by renaming the
sending of a message 1. However, inSystem† that send is modelled by an internalised
inference, of the form

infer .(Encrypt .(PK (Bob),Encrypt .(SK (a), Sq.⟨a,Bob, k⟩)), {}).

For ease of reference, we writeMsg1Inf (a, k) for the above event. We therefore need
to produce theRunning event by renaming the correspondingMsg1Inf (a, k) event:3

3In the interests of efficiency, we should hide and chase allinfer events other thanMsg1Inf (a, k) events
when we construct the intruder process.



AuthSystem† =

System†

[[Running.InitiatorRole.a.Bob.k/Msg1Inf (a, k),

Complete.ResponderRole.Bob.a.k/send .Bob.a.(Msg2 ,Encrypt .(k , s)) ∣

a ∈ Agent , k ∈ SessionKey, s ∈ Secret ]]

∖ (Σ − alphaAuthSystem†),

alphaAuthSystem† =

{∣Running.InitiatorRole.a.Bob,Complete.ResponderRole.Bob.a ∣

a ∈ Honest ∣}.

We can also produce a specification process, similar toAuthSpec from Section 4.2, but
specialised to the principal responder:

AuthSpec† = Running.InitiatorRole?a!Bob?k →

Chaos({Complete.ResponderRole.Bob.a.k}).

We can then use FDR to verify that

AuthSpec† ⊑T AuthSystem†.

We can use this to deduce a corresponding result forSystemInt . The success of the
above refinement test means that for every tracetr of System†, and for alla ∈ Honest†

andk ∈ SessionKey†

if tr = tr ′⌢⟨send .Bob.a.(Msg2 ,Encrypt .(k , s))⟩

thenMsg1Inf (a, k) in tr ′.
(7)

We claim that a similar result holds forSystemInt (Agent , SessionKey, Secret). Sup-
pose, for a contradiction, thatSystemInt (Agent , SessionKey, Secret) does have a
tracetr such that for someA ∈ Honest andK ∈ SessionKey

tr = tr ′⌢⟨send .Bob.A.(Msg2 ,Encrypt .(K , s))⟩

but notMsg1Inf (A,K ) in tr ′.
(8)

Consider the collapsing functions�Ag and�SK below:

�Ag(A) = Alice,

�Ag(Bob) = Bob,

�Ag(c) =Mallory, for c ∕= A,Bob,

�SK (K ) = Kb,

�SK (k) = Km, for k ∈ SessionKeyKnown ∪

SessionKeyIntruder − {K},

�SK (k) = Ka, for k ∈ SessionKeyUnknown − {K}.

Then

�(tr) = �(tr ′)⌢⟨send .Bob.Alice.(Msg2 ,Encrypt .(Kb, �Sec (s)))⟩.



However,�(tr ′) has no correspondingMsg1Inf (Alice,Kb) event, by the way we have
constructed�. But equation (5) implies that�(tr) ∈ traces(System†), which con-
tradicts equation (7). Thus we have obtained a contradiction to equation (8). Hence
SystemInt (Agent , SessionKey, Secret) satisfies the authentication property, for all
choices of the types. Thus we have verified that, for an arbitrary system running the
protocol, there is no authentication attack against the principal responder, and hence, by
symmetry, no authentication attack against an arbitrary responder.

6. Casper

In the previous sections, we have described the CSP models ofsecurity protocols. How-
ever, creating these models by hand is time-consuming and error-prone. Casper is a
compiler that automates this process, creating the CSP models from a more abstract de-
scription written by the user. In this section we briefly outline theCasper input syntax;
for more details see [LBDH].

A complete input file, corresponding to the model in Sections3 and 4, is given in
Figure 2. The script is split into eight sections, each beginning with a header starting
with “#”. The first three sections describe the protocol; the fourthsection defines the
specifications for it to be tested against; and the last four sections describe the system to
be checked.

The #Free variables section declares the variables to be used in the protocol
description, together with their types; it also defines which keys are inverses of one an-
other. The#Processes section defines names for the agents running in the protocol,
together with parameters for them;Casper uses these names for the corresponding CSP
processes. This section also defines the initial knowledge of the agents;Casper uses this
information to check that the protocol is feasible, in that each agent has all the informa-
tion necessary to run the protocol. The#Protocol description section defines the
protocol itself, using an ascii representation of standardprotocol notation. In particular,
it includes a message 0 thata receives from its environment, telling it with whom to run
the protocol, and corresponding to the environment messagein the CSP model.

The #Specification section defines the security properties to be tested. The
two Secret specifications correspond to the two secrecy properties considered in Sec-
tion 4.1: thata believes thats is a secret that onlyb should know, and vice versa. The
two Agreement specifications correspond to the first two authentication properties con-
sidered in Section 4.2: thatb is authenticated toa and that they agree upon the values
of s andk; and thata is authenticated tob and that they agree upon the value ofk.
TheAliveness specification corresponds to the property considered at theend of Sec-
tion 4.2: that ifb completes a run of the protocol, apparently witha, thena has previ-
ously been running the protocol.

The#Actual variables section defines the atomic values to be used in the pro-
tocol model; this is used in the definition of theEncryption datatype in the model. This
section also defines which keys are inverses of one another. The#Functions section
tells Casper to produce symbolic definitions for the functionsPK andSK; alternatively,
the user can provide his own definitions. The#System section defines the instances of
honest agents in the system. Finally, the#Intruder Information section gives the
name of the intruder, and his initial knowledge (corresponding toIIK in the CSP model).



#Free variables
a, b : Agent
k : SessionKey
s : Secret
PK : Agent -> PublicKey
SK : Agent -> SecretKey
InverseKeys = (PK, SK), (k, k)

#Processes
Initiator(a, k) knows PK, SK(a)
Responder(b, s) knows PK, SK(b)

#Protocol description
0. -> a : b
1. a -> b : { {k}{SK(a)} }{PK(b)}
2. b -> a : {s}{k}

#Specification
Secret(a, s, [b])
Secret(b, s, [a])
Agreement(b, a, [s,k])
Agreement(a, b, [k])
Aliveness(a, b)

#Actual variables
Alice, Bob, Mallory : Agent
Ka, Km : SessionKey
Sb, Sm : Secret
InverseKeys = (Ka, Ka), (Km, Km)

#Functions
symbolic PK, SK

#System
Initiator(Alice, Ka)
Responder(Bob, Sb)

#Intruder Information
Intruder = Mallory
IntruderKnowledge = \

{Alice, Bob, Mallory, PK, SK(Mallory), Km, Sm}

Figure 2. Casper script for the example protocol

Casper also provides support for analysing systems of unbounded size, as described
in Section 5. Most sections of theCasper script are unchanged; Figure 3 gives those
sections that are changed.

The generates clauses in the#Processes section indicates that the initia-
tor and responder generate fresh values fork and s, respectively. The#Intruder
Information section includes the directiveUnboundParallel = True to indicate
that unboundedly many instances of other agents should be modelled as internal agents.



#Processes
INITIATOR(a,k) knows PK, SK(a) generates k
RESPONDER(b,s) knows PK, SK(b) generates s

#Actual variables
Mallory : Agent

#System
GenerateSystem = True

#Intruder Information
Intruder = Mallory
IntruderKnowledge = {PK, SK(Mallory)}
UnboundParallel = True

Figure 3. Changes to theCasper script to allow checking of arbitrary systems

Those types used ingenerates clauses (hereSessionKey andSecret) and the types
of agent identities (hereAgent) are treated as being data independent.

The#System section includes the directiveGenerateSystem = True to indicate
thatCasper should automatically generate a system containing just enough agents, gen-
erate types containing just enough values, and give the intruder just enough initial knowl-
edge, in order for the security of this small system to imply the security of arbitrary sys-
tems, using an argument as in Section 5.3. The user has to declare only the intruder’s
identity, and to specify what initial knowledge from non-data-independent types the in-
truder should have. (It is also possible for the user to specify the system and types, as in
a standard script.)

Analyses based on scripts of this form are less good for detecting attacks than those
of the standard form, since counterexamples returned by FDRare harder to understand
(many of the details of the attack are hidden within internalised deductions), but are
appropriate for protocols that are believed to be correct.

7. Notes

In this section we give brief historical notes concerning the development of the tech-
niques described in this chapter, and pointers to other extensions.

The first uses of model checkers to analyse security protocols are due to Millen
et al. [MCF87] and Meadows [Mea96]. Roscoe was the first to consider the use of CSP
and FDR in [Ros95], but the ideas gained more prominence in [Low96] and [LR97]. The
highly-parallel model of the intruder from Section 3.3 was proposed in [RG97].

Casper was first described in [Low97a,Low98];Casper itself is available from
[Low09]. Different types of authentication requirements,and how to model them in CSP,
were discussed in [Low97b]. The book [RSG+00] includes a more detailed description
of the CSP approach to modelling and analysis of security protocols.

A number of other extensions have been made to the approach. Some cryptographic
systems have interesting algebraic properties; for example, Vernam encryption (bit-wise
exclusive-or) is associative and commutative, and Diffie-Hellman encryption depends
upon commutativity of exponentiation. In [RG97], Roscoe and Goldsmith describe how



to model such algebraic properties, by renaming each fact toa representative member of
its equivalence class. Some protocols make use of passwords, which might be poorly-
chosen and so appear in an on-line dictionary; some such protocols may be subject to
guessing attacks, where the intruder is able to test in some way whether a particular guess
of the password is correct, and to iterate this process through all words in the dictionary;
[Low04] describes how to analyse protocols for such guessing attacks. In some protocols
(such as the running example in this book!), if an old sessionkey is compromised, the
intruder can replay it in order to launch subsequent attacks; [Hui01] describes how to
find such attacks.

The theory of data independence, as applied to CSP, was developed in [Laz99].
Roscoe first applied data independence to security protocols in [Ros98], using a tech-
nique to “recycle” fresh values in a protocol, to give a modelthat simulated a system
with an unbounded number of sequential runs (but with a limited number of concurrent
runs). Roscoe and Broadfoot extended these ideas in [RB99],and introduced the idea of
internalising agents, although there it was applied to secondary agents such as servers,
and was intended as a technique for reducing the size of the state space rather than to
provide for a general proof. These ideas were extended in [BR02,Bro01] to show that in-
ternalising agents can be used to provide a general proof; however, in that development,
considerable machinery was necessary to avoid false attacks. The models we have pre-
sented here are due to Kleiner [Kle08]; Kleiner also presents some extensions we have
not discussed, and presents several theorems giving appropriate choices for the collapsed
datatypes for checking different security properties.

Acknowledgments

I would like to thank Bill Roscoe for discussions about security protocols and their
analysis using CSP, stretching over the last 15 years. I would also like to thank Eldar
Kleiner for discussions about his techniques for internalising agents and applying data
independence techniques. I received useful comments on this chapter from Tom Gibson-
Robinson, Steve Kremer, Tomasz Mazur, Toby Murray and Bernard Sufrin.

References

[BR02] P. J. Broadfoot and A. W. Roscoe. Capturing parallel attacks within the data independence frame-
work. In Proceedings of the 15th IEEE Computer Security FoundationsWorkshop, 2002.

[Bro01] Philippa Broadfoot.Data independence in the model checking of security protocols. DPhil thesis,
Oxford University, 2001.

[DY83] D. Dolev and A.C. Yao. On the security of public-key protocols. Communications of the ACM,
29(8):198–208, August 1983.

[For97] Formal Systems (Europe) Ltd.Failures-Divergence Refinement—FDR 2 User Manual, 1997.
Available via URLhttp://www.formal.demon.co.uk/FDR2.html.

[Hoa85] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.
[Hui01] Mei Lin Hui. A CSP Appraoch to the Analysis of Security Protocols. PhD thesis, University of

Leicester, 2001.
[Kle08] Eldar Kleiner. A Web Services Security Study usingCasper and FDR. DPhil thesis, Oxford

University, 2008.
[Laz99] Ranko Lazíc. A Semantic Study of Data Independence with Applications to Model Checking.

DPhil thesis, Oxford University, 1999.



[LBDH] Gavin Lowe, Philippa Broadfoot, Christopher Dilloway, and Mei Lin Hui. Casper: A Com-
piler for the Analysis of Security Protocols, User Manual and Tutorial. Oxford University Com-
puting Laboratory. Available viahttp://www.comlab.ox.ac.uk/people/gavin.
lowe/Security/Casper/index.html%.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Proceedings of TACAS, volume 1055 ofLecture Notes in Computer Science, pages 147–166.
Springer Verlag, 1996. Also inSoftware—Concepts and Tools, 17:93–102, 1996.

[Low97a] Gavin Lowe.Casper: A compiler for the analysis of security protocols. InProceedings of 10th
IEEE Computer Security Foundations Workshop, pages 18–30, 1997.

[Low97b] Gavin Lowe. A hierarchy of authentication specifications. InProceedings of 10th IEEE Computer
Security Foundations Workshop, 1997.

[Low98] Gavin Lowe. Casper: A compiler for the analysis of security protocols.Journal of Computer
Security, 6:53–84, 1998.

[Low04] Gavin Lowe. Analysing protocols subject to guessing attacks. Journal of Computer Security,
12(1):83–98, 2004.

[Low09] Gavin Lowe. Casper: A compiler for the analysis of security protocols, 1996–2009.
World Wide Web home page at URLhttp://www.comlab.ox.ac.uk/people/gavin.
lowe/Security/Casper/index.html%.

[LR97] Gavin Lowe and Bill Roscoe. Using CSP to detect errorsin the TMN protocol.IEEE Transactions
on Software Engineering, 23(10):659–669, 1997.

[MCF87] J. K. Millen, S. C. Clark, and S. B. Freedman. The interrogator: Protocol security analysis.IEEE
Transactions on software Engineering, 13(2), 1987.

[Mea96] Catherine Meadows. The NRL Protocol Analyzer: An overview. Journal of Logic Programming,
26(2):113–131, 1996.

[RB99] A. W. Roscoe and P. J. Broadfoot. Proving security protocols with model checkers by data inde-
pendence techniques.Journal of Computer Security, 7(2, 3):147–190, 1999.

[RG97] A. W. Roscoe and M. H. Goldsmith. The perfect “spy” formodel-checking cryptoprotocols. In
Proceedings of the DIMACS Workshop on Design and Formal Verification of Security Protocols,
1997. Available via URLhttp://dimacs.rutgers.edu/Workshops/Security/
program2/program.html.

[Ros94] A. W. Roscoe. Model-checking CSP. InA Classical Mind, Essays in Honour of C. A. R. Hoare.
Prentice-Hall, 1994.

[Ros95] A. W. Roscoe. Modelling and verifying key-exchangeprotocols using CSP and FDR. In8th
IEEE Computer Security Foundations Workshop, 1995.

[Ros97] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1997.
[Ros98] A. W. Roscoe. Proving security protocols with modelcheckers by data independence techniques.

In 11th Computer Security Foundations Workshop, pages 84–95, 1998.
[RSG+00] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe.Modelling and

Analysis of Security Protocols. Pearson Education, 2000.


