Verifying a bounded number of sessions
and its complexity

Michael RUSINOWITCH* and Mathieu TURUANP
2INRIA Nancy Grand Est

Abstract. We investigate the complexity of the protocol insecuritplgem for a
finite number of sessions (fixed number of interleaved ruvi&).show that this
problem is NP-complete with respect to a Dolev-Yao modehttiders. The result
does not assume a limit on the size of messages and suppgristeés and non-
atomic symmetric encryption keys. We also prove that in otdéuild an attack
with a fixed number of sessions the intruder needs only tcefargssages of linear
size, provided that they are represented as DAGs.

1. Introduction

Although the general protocol verification problem is uridable [13] even in the re-
stricted case where the size of messages is bounded [12]nieresting to investigate
decidable fragments of the underlying logics and their dewity. The success of prac-
tical verification tools indicates that there may exist iagting decidable fragments that
capture many concrete security problems. Dolev and Yao peweed that for simple
ping-pong protocols, insecurity can be decided in polyradriine [10]. On the other
hand [12] shows that when messages are bounded and whencesr{pa. new data) are
created by the protocol and the intruder, then the existehaesecrecy flaw is decidable
and DEXPTIME-complete.

A related decidability result is presented in [14,1,204197,16]. The authors give a
procedure for checking whether an unsafe state is reachgldhes protocol. Their result
holds for the case of finite sessions but with no bounds onrtireder messages. The
proof in [1] does not allow general messages (not just naaegncryption keys. This
limitation is relaxed in [20,19,21]. The decision algonttpresented in this chapter is
similar to the one in [20] but its proof has been simplified.

The main result of this chapter states that for a fixed numbénterleaved pro-
tocol runs, but with no bounds on the intruder messages,Xiséeace of an attack is
NP-complete. We allow public key encryption as well as thegtaility of symmetric
encryption withcomposed keyise. with any message. Here we only considecrecy
properties. Howeveauthenticatiorcan be handled in a similar way. Hence, a protocol is
considered insecure if it is possible to reach a state wherentruder possesses a secret
term.

With the same proof technique it is possible to extend thelrégectly to various
intruder models and to protocols with choice points. Inipatar many algebraic prop-
erties of cryptographic primitives can be covered by theraggh ([5,6]). The result we

present here can also be derived through a constraint gogproach and the careful
design of simplification rules to be applied to intruder dosists ([8]).

Although this result is of a theoretical flavor, it gives infmation of practical rel-
evance since for its proof we have shown that in order to latiagrotocol an intruder
needs only to forge messages of linear size with respecetsitie of the protocol. This
gives a low bound for the message space to be explored whiein¢pfor a flaw e.g. with
a model-checker and this explains also why many tools likeQh-ATSE [22] backend
from the AVISPA Tool [2] are effective in protocol analysts: put it informally, in the
Dolev-Yao model flawed protocols can be attacked with sna&kb@l messages.

Layout of the chapter: We first introduce in Section 2 our model of protocols and in-
truder and give the notion afttackin Section 2.4. Then in Section 3 we study properties
of derivations with intruder rules. This allows us to dempaynomial bounds for normal
attacks in Section 4 and to show that the problem of findingrenabattack is in NP. We
show in Section 5 that the existence of an attack is NP-hard.

2. The Protocol Model

We consider a model of protocols in the style of [3]. The adiof any honest princi-
pal are specified as a partially ordered list that assoctatéhe format of) a received
message its corresponding reply. The activity of the irgrusl modeled by rewrite rules
on sets of messages. We suppose that the initializatiorepdfadistributing keys and
other information between principals is implicit. The apgch is quite natural and it is
simple to compile a wide range of protocol descriptions oformalism. For instance
existing tools such as CAPSL [18] or CASRUL [15] would perfothis translation with
few modifications. We present our model more formally now.

2.1. Messages

The messages exchanged during the protocol execution étrading pairing(_, _) and
encryption operator§_[}°, {|_[}. We add a superscript to distinguish between public key
(?) and symmetric key*j encryptions. The set of basic messages is finite and denoted
by Atoms. It contains names for principals and atomic keys from thei&eys. Since

we have a finite number of sessions we also assume any nondmgcamessage: we
consider that it has been created before the session antblselmthe initial knowledge

of the principal that generates it.

Any message can be used as a key for symmetric encryptiog.&arhents from
Keys are used for public key encryption. Given a public key (rgsjvate key)k, k~!
denotes the associated private key (resp. public key) dacit element of{ eys.

The messages are then generated by the following (tree)ngaam

msg 1= Atoms | (msg,msg) | {{msgltice,, | {msglt,.,

A signature, usually denoted Hy/],, with a private keyk’ (= k'), is repre-
sented here asgM [};,. For conciseness we denotedy, . . ., m,, the set of messages
{m1,...,my,}. Given two sets of messagé$ and M’ we denote by\/, M’ the union
of their elements and given a set of messalgeand a message we denote by, ¢ the
setM U {t}.

| Decomposition rules || Composition rules |

Ly({a,b)): {a,b) — a,b,{a,b) Lc({a,b)): a,b— a,b,{a,b)
La({lalts) s {ali, K" = {lahy, K 'a || Le({lal)): o, K = a, K, {al}y
La({lalt3) 1 dlaly, b — {lal};, ba Le({laly) s a,b— a,b {lalty

Table 1. Intruder Rules

2.2. Intruder

In the Dolev Yao model [10] the intruder has the ability to esdrop, divert and memo-
rize messages, to compose and decompose, to encrypt aggptdeben he has the key,
to generate new messages and send them to other participénts false identity. We
assume here without loss of generality that the intrudeesyatically diverts messages,
possibly modifies them and forwards them to the receiveruth@dgdentity of the official
sender. In other words all communications are mediated mstlé environment repre-
sented by the intruder. The intruder actions for modifyimg messages are simulated by
rewrite rules on sets of messages.

The set of messageh represents the initial knowledge of the intruder. We assume
that at least the name of the intrudéharlie belongs to this set.

Intruder rules are divided in several groups, for composingecomposing mes-
sages. These rules, which are described in Table 1, are hemawe consider in this
chapter and any mentions of “rules” refertteeserules. In Table 1 and in the remain-
ing of the chapterg, b andc represent any message aRdrepresents any element of
Key. For instance, the rule with labél.({(a, b)) replaces a set of message$ by the
following set of messages b, (a, b).

The rewrite relation is defined b — E’ if there exists one rulé¢ — r (from
Table 1) such that is a subset ofF and E’ is obtained by replacing by r in E.
We write —* for the reflexive and transitive closure ef. We denote the applica-
tion of a rule R to a setF of messages with result’ by £ —r E’. We write
L. = {L.(a) | forallmessages}, andL, in the same way. We catlerivationa se-
guence of rule application®y —r, E1 —gr, .- =g, En. TherulesR; fori = 1.n
are called the rules of this derivatidn. We write R € D (abusively) to denote thak
is one of the rulefk;, fori = 1..n, that has been used in the derivatibnWe omit the
subscriptsk; in the derivationD when they are not relevant to the discussion. We write
E —* E'if E = E’ orif there exists a derivatioB — E; — .. — E'.

One can remark that if the intruder was allowed to generatedaa he will not
get more power. He is already able to create infinitely martg daly known to him
with simple encryptions. For instance he can construct famiie sequence of terms only
known to him, like e.g{| N[}y, {{{N [}y |}jV ... assuming thaw is only known by the
intruder. For the class of protocols that we will considemést principals receiving these
terms for the first time cannot distinguish them from nonddternatively, the result
in this chapter can also be easily extended to allow nonaethéintruder, simply by
processing them like any composed term only checkable bntheder.

2.3. Protocols

We shall specify protocols by a list of actions for each ppat In order to describe the
protocol steps we introduce message terms (or terms fot)skidge assume that we have
a set of variable¥ ar. Then the set of terms is generated by the following tree gram

term ::= Var | Atoms | (term,term) | {|term|};(€y5 | {{term|}3.,...

As for messages, a signature usually denotef\&ls, with a private keyk’ € Keys

is here represented d9V/[};,. Let Var(t) be the set of variables that occur in a term
t. A substitutionassigns terms to variables. gkound substitutiorassigns messages to
variables. The application of a substitutiento a termt¢ is written to. We also write

[x +] the substitutiorr defined bys(z) = v ando(y) = y for y # z. The set of
subterms of is denoted bySub(t). These notations are extended to sets of tethis a
standard way. For instancBg = {to |t € E}.

A principal (except the initiator) reply after receiving &ssage matching a specified
term associated to its current state. Then from the preliceseived messages (and
initial knowledge) he builds the next message he will serfds Toncrete message is
obtained by instantiating the variables in the messagematissociated to the current
step in the protocol specification.

A protocol is given with a finite set of principal namé&mes C Atoms, and a
partially ordered list of steps for each principal name sTgartial order aims at ensuring
that the actions of each principal are performed in the ragker. More formally we
associate to each principdl a partially ordered finite sefi¥’4, <w,). Each protocol
step is specified by a pair of terms denofed= S and is intended to represent some
messager expected by a principad and his replyS to this message. Hence a protocol
specificationP is given by a set ofteps

{(t, R, = S.) |t €T}

whereZ = {(A,i) | A € Namesandi € W4} andR, and S, are terms. Given a
protocol, we will assume that for a4, i) € Z, for all z € Var(S4,)), there exists
J <w, i(i.e.j <w, iorj=i)suchthatt € Var(R4 ;) meaning that any variable
must be received before it is sent.

We write | Z| for the size off. Init and End are fixed messages used to initiate and
close a protocol session. Aanvironmentor a protocol is a set of messagescérrect
execution ordetr is a one-to-one mapping : Z' — {1, ..,|Z’|} such that 17’ C T7;

2) and for allA € Names andi <y, j with (A,j) € Z’, we have(4,i) € 7' and
m(A,i) < 7(4,j). In other wordsr defines an execution order for the protocol steps.
This order is compatible with the partial order of each ppat It is not supposed to
be complete, but it must be acceptable (i.e. runnable) fiacials. We write|Z’| for

the size ofZ’ in a correct execution order. For the readability of examplee allow
writing protocol steps as, .., r, = $1, .., Sq instead of(ry, (.., 7)) = (s1, (.., 54)). A
protocol executions given by a ground substitutian, a correct execution order and

a sequence of environments, .., £z, verifying: Init € Eo, End € E|7/, and for all
1<k< |II|, Rﬂ-—l(k)o' € Er— andSw_l(k)a € Eg.

Each step of the protocol extends the current environment by addiregcibrre-
sponding messag® o when R, o is present. One can remark that principals are not al-
lowed to generate any new data such as nonces. But this iggnobkem when the num-
ber of sessions is finite: in this setting from the operafi@amént it is equivalent to as-
sume that the new data generated by a principal during aguidégecution is part of his
initial knowledge.

[A] [&]
b,

{|0rbs

{ish%

Figure 1. Handshake Protocol

Example: Handshake protocol

We recall this simple protocol (from Chapténtroduction”) and its presentation by
a message sequence charis a symmetric keyK p a public key,K ;' a private key
associated to the public kdy 4 ands is a basic message.

Now we can express this protocol in our formal syntax. Theeorgys on steps is trivial
sinceW, = Wp = {1}.
a
}KB)

(A1), Init :>{‘{|k|}§ql
@D, (b}, =0)

2.4. Attacks: Passive and active cases

Considering a protocol specification and a special t8emret (called secret term), we
say that there is an attack ¥ protocol sessions if the intruder can obtain the secret term
in its knowledge set after completing at maétsessions.

2.4.1. Passive case

We consider first the case when the intruder has only the dépadf eavesdropping
messages between honest participants. Hence the intradieofcintercept and modify
the transmitted messages. If he can derive the secret vétte thmited means then we
say that the protocol is subject tpassive attack

We introduce a predicatferge for checking whether a message can be constructed
by the intruder from some known messages.

Definition 1 (forge) Let E be a set of terms and l¢tbe a term such that there &’
with £ —* E’ andt¢ € E’. Then we say thatis forged from £ and we denote it by

t € forge(E).

The existence of a passive attack can be reduced to a dedpotiblem:

Definition 2 (passive attack)If E contains the initial intruder knowledge and the set of
messages eavesdropped from the protocol sessions, theepassive attack ifecret €

forge(E).
2.4.2. Active case

Let us consider now the general case where the intruder has¥uer. Note that received
messages are matched by principals with the left-hand sideotocol steps, meaning
that some substitution unifies the messages sent by thel@rtamd the ones expected by
the principals. Hence the existence of an attack can be esguleas a constraint solving
problem: is there a way for the intruder to build from its iglitknowledge and already
sent messages a new message (defined by a substitution fearihbles of protocol
steps) that will be accepted by the recipient, and so onl, tinetiend of the session, and
such that at the end the secret term is known by the intruder.

In other words an active attack is a protocol execution wkieeéntruder can mod-
ify each intermediate environment and where the messageet belongs to the final
environment. In an active attack the intruder is able to daagy message by using its
initial knowledge and already sent messages (spied in thieomments). We note by
the cardinality ofZ’ in an (active) attack. Hence we can formulate the definitibaro
attack using the predicaferge:

Definition 3 (active attack) Given a protocolP = {R, = S/ |« € T}, a secret
message Secret and assuming the intruder has initial knowled§eg, an active at-
tack (or an attack in short) is described by a ground substituttoand a correct ex-
ecution orderr : 77 — 1,...,k such that for alli = 1,...,k, we haveR;c €
forge(So, S10, .., Si—10) andSecret € forge(Sy, Sy0,..,Skc) where R; = R;—l(i)
andS; = 5] i ;-

The definition of an active attack we give here is slightly engeneral than the one
in [20] and was first proposed in [9] since it does not requiegdrotocol to be completely
executed. Before proceeding let us give some detailed eeamp

Example: Attack on Handshake Protocol

Let us assume that Agent A initiates Handshake Protocol Géepter‘Introdution”)
with Intruder Charlie (C in short). Then using the first mggsftom A, C can imperson-
ate A and initiate a session with B. This allows C to get thesagss 4 5 that should
have been known only by A and B.

In order to detect the potential attack displayed in Figyneeset up a system built
from two handshake protocol sessions running in parallgs $ystem can be considered
as a single session for a protocol admitting 4 steps spetiéxiv:

a
e

a
b

(A1), Init j{‘{lk’A,CB’;{gl
@, {{tabicp}, = lsach
(AL), Init = {|1kasler
@1, {[lehifl,, = sl

~— N~ ~ =

[A] [¢] [B]
o

{[kachics

{|0kachis

a
}KB

{sasl, .

Figure 2. Attack on Simple Protocol

We assume that the initial intruder knowledgeSis= {Kp, K4, K¢, Kgl, Init}.
Then an attack is obtained by taking the following groundssitidttion and execution
order:

Substitution Protocol steps
o=z kac, ' < kac]l | m(4,1)=1,7(A4,1)=2, n(B,1')=3

This represents an attack since the following relationsoeachecked:
Ry—1(1)y0 € forge(So)
Rﬂ-—l(Q)O' € forge(So, 57‘.71(1)0')
Rﬂ-—l(g)o' € forge(So, 57‘.71(1)0', 57‘.71(2)0')
sa,B € forge(So, Sr-1(1)0, Sx—1(2)0, Sr-1(3)0)

This can be verified easily. For instance, the last relagoralid since

Ka,K;' € Sy Sr-1(1)0 = {’ﬂkA,Cm{;l

} Sr 1o = {sapll, . and
KC ’

ka6t {[kaclin |} Asashi,.
> KKt ke sabl, o fachic
- Ka, K¢, { {kacliy }Kc’ {sa.8l, o {kachy kac
— Ka, KG", { {kacly };c’ {sa.8l, o {kachy 1 kac.sam

[A] [B] [s |

(M, A, B), {Na, (M, A, B)), .

<M7A5B>7{|NA7 <M7A5B>|}SI{AS’
{lNBv <M7A’ B>|}KAS

< Mv{INAvKAB”Z(ASv
M {{Na, Kagltk, {INB, Kaplty, .

{|secret |}S}(A .

Figure 3. Otway-Rees Protocol

Example: Attack on Otway-Rees Protocol

The participants of the protocol ard, B and the serverS. The symmetric keys
Kas, Kbs will be respectively shared by the participatts S) and(B, S). The identi-
fiers M, Na, Nb represents nonces. In Stgpthe servelS creates the new secret sym-
metric key K ab to be used byd and B for further safe communications. We have ex-
tended the protocol with an extra step whdreses the keys 4 5 to send a secret mes-
sage toB. In the attack A will be fooled into believing that the terfi\/, A, B) (short-
hand for((M, A), B)) is in fact the new key. The sequence of messages definingyOtwa
Rees is depicted in Figure 3. Let us write now this protocektsjcation with our nota-
tion, withm 4 g as a short-hand foe7, x4, 5).

((A,1), Init = (M, A,B),{Na, (M,A, B>|}5K5As)
((B,1), (x2,3,B),74 = T2,73, B, 74, {Np, %2, 73, Bl)¢ ..)
S S S s

((5,1), m/AB7{‘187771AB‘}£{AS,{]-779,7”/AB|}£(BS é~T77{]fﬂs,Kahl}g(AS,{\-Tg,Kah\}sKBS)
map, {|zs, mapl i, 120 maslt,, = 27, {@s, Kl o o0 1790: Kavbpepe)

((B,2), x2,25,{|NB, 26|} 5, = T2,Ts5)
((4,2), M ANa,21lt%,, = {|Secret|},)
)

((B,3), {|Secret]};, = end

A protocol execution can be obtained by taking the protogsin the given order and
by applying the following substitution:

21 =Ko 20=M z3=A4A $5={|$8,Ka,b|}}As e =Ko za=A
LC4={|<NA,<M,A,B>>|}SKA‘ {L‘7:M LCgZNA {L‘QZNB LCB:B

An attack can be performed on this protocol with initial ider knowledgeS, =
{Charlie, Init}, using:

Substitution Protocol steps
o=z + (M,AB)] | 7(4,1)=1,7(4,2) =2

since we have:

Rr—1(1y0 € forge(So)
Rr—1(2)0 € forge(So, Sz—1(1y0)
Secret € forge(So, Srz—1(1y0, Sr—1(2)0)

3. Passive case

In this section we show how to decide efficiently the existeata passive attack on a
protocol. We first show some basic facts on the DAG-repregiemt of message terms.
Then we shall show how to obtain from any derivation a moregachone. We will then
be able to prove that a normal attack has a polynomial size the size of the protocol
and intruder knowledge, when using DAG representations.

3.1. DAG representation

The DAG-representation of a setE of message terms is the graph, £) with labeled
edges, where:

e the set of vertice¥ = Sub(E), the set of subterms df. The label of a vertice is
the root symbol of the corresponding subterm (), {_[}*,{_[}* or an element
from Atoms). -

e thesetofedge§ =&, UE;

&1 = {vs % v, |30, vy = {uelts or v, = {uef}: orv, = (v, b)}
& = {vs —5 ve | Tb, vy = b} orv, = {b[}3 orv, = (b,ve)}

Let us note that the DAG representation is unique. Moredveri$ the number of
elements irSub(t), one can remark thgv, £) has at most nodes an@.n edges. Hence
its size is linear i, and for convenience we shall define the DAG-sizdZpfdenoted
by |E|pac, to be the number of distinct subterms©f i.e the number of elements in
Sub(E). For a termt, we simply write|t| pac for [{t}|pac. We note that a standard
DAG representation of would useO(n.log(n)) space withn = |t|pa¢, but this differ-
ence with our DAG-size has no impact on the polynomial-tiomplexity of algorithms
presented below. An example of DAG representation can bedfouFigure 3.1.

Now, why do we define the DAG size for terms ? First, becauseatway to rep-
resent messages and thus protocols in a compact manndrémgitbens the complexity
result; And second, because the subterm sharing workswaltevith the replacement
of subterms by others, which will be the essence of the prbofiomain property. Con-
sequently, we uses DAG size also to measure the size of attaickt we concentrate on
the properties of smallest attacks callemrmal attackw.r.t the following definition :

Figure 4. DAG Representation of the First Message of Otway-Rees &wbto

Definition 4 Let P be a protocol and o, w) an attack onP. Then(o,) is a normal
attack iff it is minimal among all attacks di w.r.t the following measure :

l(o,7) = |{Charlie} U {o(x)}zevar| pac

This is as expected except for the presence of the special@tairiie. It ensures
that a normal attack uses preferabljtariie instead of any other atom or term, when it
is possible, thus allowing us to express properties on nloattecks which we prove by
replacing a subterm of by Charlie.

3.2. Simple lemmas on intruder derivations

In this section, we will give some useful definitions and mdies of derivations. We
shall introduce a notion of normal derivation, denoted’by-iv, (E). A related notion of
normal derivation has been studied in [7]. Rather than arabtieduction presentation
in [7] we use here term rewriting.

Definition 5 Given a derivationD = Ey —gr, F1 =g, .- —r, En, atermtis a goal
of Dift € E, andt ¢ E,,_1.

Forinstance it € forge(E) there exists a derivation with golalwe take a derivation
D = FE —pg, ... »r, E' witht € E’ and then we take the smallest prefix bf
containingt. We will consider particular derivations minimal in length

Definition 6 We denoteDeriv,(E) a derivation of minimal length among the deriva-
tions fromE with goalt (chosen arbitrarily among the possible ones).

In order to bound the length of such derivations, we can ptbeetwo following
lemmas: every intermediate term Periv,(E) is a subterm of or t. Lemma 1 means
that if a term is decomposed in a minimal derivation fréhthen this term has not been
composed before and therefore belong&'to

Lemma 1 If there existg’ such thatL,(¢') € Deriv,(E) thent’ is a subterm of2

Proof:

Let D = Derivy(E) = Ey —g, Ei1... —r, E, andt’ be (one of) the first occuring
term not validating the lemma fdp, assuming there exists one (or more). That is, there
existsp such thatr, = L,4(t'), t' is nota subterm of, D, = Ey —g, ...E,—1, and for

all Ly(v) € Dy, visasubterm of. (Note:p > 1sincet’ ¢ E) Moreover, by minimality

of D we haveL.(t') ¢ D. Thereforet’ has necessarily be obtained by a decomposition
rule in Dy, i.e. there exists a termwith ¢’ subterm ofu such that;(u) € D;. However,
thanks to the minimality of’, this means that is a subterm of2, and thug’ too. So the
assumption is contradicted, and consequently and the lespraved. a

Lemma 2 means that in a minimal derivation we only need to asagubterms of
the final goal or keys occurring in the initial s&t

Lemma 2 If there existg’ such thatlL.(¢') € Deriv:(E) thent’ is a subterm oft} UE

Proof:

LetD = Derivy(E) = Ey —gr, E1... —r, E, andt’ be (one of) the last occuring term
not validating the lemma fab, assuming there exists one (or more). That is, there exists
p such thatR, = L.(t'), t’ is not a subterm oft} U E, Dy = E,, —g,,, ...E,, and
forall L.(v) € Dy, vis a subterm oft} U E. (Note:p < n sincet’ # t) Moreover, by
minimality of D, we haveL,(t') ¢ D. Similarly, by minimality of D and since’ # ¢,
there exists a rule itD, usingt’: otherwiseL.(¢') would be useless anB would not
be minimal. Let us consider all possible rules usihip D,. Decomposition of’ is not
allowed as pointed above; Decomposition{jef}?,_. is not allowed becausgis not an
atom (since it is composed), and thus nofsiays; Decomposition of|u[};, means that
there existd.4(w) € D5 such that’ is a subterm ofv, and thus thanks to Lemmadl,
is a subterm oF; And finally, composition using’ means that there exisis.(u) € D,
with ¢ subterm ofu, and thus by hypothesis bothandt’ are subterms oft} U E.
Therefore, in every case the assumption is contradictaeticansequently the lemma is
proved. a

We show in the next proposition that there always exist @tions of a ternt from
a setE’ with a number of rules bounded by the DAG-size of initial am@Ffitermst, E.
This will be very useful to bound the length of the derivasamvolved in a normal attack.

Proposition 1 For any set of term& and for any termt, if Deriv(E) = E —p,
E,.. >, Eythenforalll <i<mn, E; C Sub(E;) C Sub(t, E).

Proof:

Let Deriv,(E) = E —y, ... —»1, E,.By definition of Deriv, for any termt¢’ subterm
of Uj—1. »F; \ E there exists, with ¢’ subterm ofu such that eithel 4(u) € D or
L.(u) € D. Therefore, thanks to Lemmas 1 and 2 abaev&nd thug’) is a subterm of
{t} UE. Itfollows that fori = 0..n, E; C Sub(t, E), which proves the proposition. O

3.3. Decision Algorithm
We can now give a simple algorithm to decide whether forge(E). It is depicted in

Algorithm 1, and assumes a representatiof@(£, t) as a DAG: anyway the DAG can
be computed in polynomial time from inputs given in standaeé representations.

1: INPUTS: E, ¢ represented by a DAG fdfub(E, t)
2. K1+ F

3 Ko+ Sub(E,t)\ E

4: repeat

5. C<+ 0

6: forall e € Sub(E,t)do

7 if e € Ko, andl,r € Ky, withe = {[}, ore = {|I}2 ore = (I,7) then
8: Ko+ Ky \ {6}

9: K+ KU {6}
10: C+ CU{e}
11 end if
12: if e € K1,1 € Ko, r € Ky, withe = {I[}] ore = {i[}2 then
13: Ko <+ Ko\ {l}

14: K, + K3 U{l}

15: C+ CuU{l}

16: end if

17: if e € K with e = (I, r) then

18: K, « K U{l,r}

19: end if
20: end for
21: until C=0Port e Ky
22: if t € Ky then
23: True
24: else
25: False
26: end if

Algorithm 1. Passive Attack Decision

The correctness of Algorithm 1 is a consequence of the puedammas. We only
need to compute the séf; of subterms ofF, ¢ that can be deduced frofi and check
whethert belongs to this set. The algorithm computes iterativ&ly by checking for
each term whether it can be derived from the curi€ntor can be decrypted (and if so
its content is added t&,).

The REPEAT loop can be entered at mpStb(E, t)|pac times. The FORALL
loop is executedSub(E,t)|pac times. The work done in this innermost loop is
also bounded by a constant. Hence the algorithm takés?) time wheren =
[Sub(E,t)|pac-

We now suggest a more efficient solution by reduction to Heaitr-

Proposition 2 Given a set of term& and a term¢ the existence of a passive attack can
be decided in linear time.

Proof:
Given Sub(FE,t), we consider each subtersne Sub(F,t) as a propositional variable
and we generate the following set of Horn clauses:

e fors = {lef}; ors = {e[}; we generate the clausesb = ¢ ande, b = s;
e fors = (I, r) we generate the clauses = s, s = [, ands = r;
e for s € F we generats;

The union of all generated clauses andis a set called{. Now obviously the set of
clausesH is satisfiable ifft cannot be derived by intruder rules frafnh There exists a
linear algorithm by Dowling and Gallier [11] to test the séifibility of a set of Horn
clauses, hence we can conclude. a

4. Active Case
4.1. Polynomial bound on attacks

We shall prove that when there exists an attack then a nottaakgsee Definition 4) can
always be constructed from subterms that are already angunrthe problem specifica-
tion. This will allow to give bounds on the message sizes anthe number of rewriting
rules involved in such an attack.

Let us consider a protocd? = {R, = S| | . € T}, a secret messag&ecret
and a set of messag#s as the initial intruder knowledge. We assume that thergxis
an attack described by a ground substituoand a correct execution order: 7 —
1,...,k (wherek is the cardinality off’). We definerz; = R/ _, ;) andS; = S/ _, ;, for
1 =1,...,k. Note thatR’, S’ now replacer, S for readability, unlike previous sections.

We also defineSP as the set of subterms of the terms in theBet {R; | j =
1,...,k}U{S; |7 =0,...,k}, andSP<; the set of subterms of the terms{iR, | j =
L...,i}U{S;|j=0,...,i}.

The following Proposition 3 is a key property of this chapteshows that every
substitutions in a normal attack is only built with parts of the protocol sifieation.
Using this, we will be able to prove that every substitutigrand every message, in a
normal attack have a DAG-size bounded by a polynomial in teéogol’'s DAG-size.

However, this relies on the technical Lemma 3. Informatlgtates that if a termy
can be forged from a set of messagdy composing two messages, v» both derived
from E then it is always possible to avoid decomposinip a derivation fromE (with
any goalt). Indeed, such a decomposition would generate messages that can be
derived directly fromF in another way.

Lemma3 Lett € forge(E) and~y € forge(E) such thatDeriv,(E) ends with an
application of arule inL.. Then there is a derivatio® with goalt starting fromFE, and
verifying Ly(vy) ¢ D.

Proof:

Lett € forge(E) andy € forge(E) be given withDeriv, (E) ending with an appli-
cation of a rule inL.. Let D be Deriv, (E) without its last rule, i.eDeriv,(E) is D
followed by L.. Let D’ be the derivation obtained froeriv,(E) by replacing every
decompositior.; of v by D. ThenD’ is a correct derivation, sincP generates: and
S which are the two direct subterms ¢f(+ is obtained by a composition)2 does not
contain a decompositiohy of v by definition of Deriv, (E), since it already contains

a composition ofy. HenceD’ build ¢ from E, satisfiesL4(y) ¢ D', and the lemma
follows. U

We now state and prove our main property:

Proposition 3 Given a normal attacKo, 7), for any variablex and anys subterm of
o(x), we haves € SPo.

Proof:
We prove this proposition by contradiction. That is, (et7) be a normal attack with
s € Sub(Var(P)o), and assume (*) ¢ SPo.

Let N beminimalsuch thats € Sub(Rxo, Snyo). It exists by definition ok, since
there exists at least one protocol step containing the blariahich value contains.
Consequently, there exisgse Var(Ry,Sy) such thats is a (strict) subterm of (y),
since otherwiselt € Sub(Ry,Sy) such thato = s, and (*) would be contradicted.
Moreover, by definition of> any variable (including) must be received before it is sent,
which means here thate Sub(Ryo) sinceN is minimal.

It follows thats ¢ Sub(Seo,..,Sn—10) buts € Sub(Ryo). However, we also
know thatRyo € forge(Spo, .., Sn—10), meaning that necessarily.(s) € D with
D = Derivgyo(So, .., Sn—10): only L. rules can create new subterms along a deriva-
tion. We note that ¢ Atoms (by definition of composition rules). By truncatidg up
to L.(s), it follows that :

s € forge(Sopo, .., SN-10)

Second, we use the fact thatan be built fromSyo, .., Sy_10 to create a new and
smaller attack fronw. Let D = Derivs(Spo, .., Sn—10). Thanks to the minimality of
N, s is not a subterm ofo, .., Sy_10, and thus, thanks to lemma 1 we know tliat
ends with a composition rule. We denoteddythe replacement of every occurrencesof
in aterm¢ by Charlie. The replacemeritis extended to sets of terms, substitutions and
rules in the natural way. The new attack we are interestedlim&defined byo’ = o6
and the same execution ordeas foro, at the condition that every messagesr’ can
still be build by the intruder fron$yo’, .., S;_10’, for any;. This is what we prove now:

e Thanks to (*),v¢ € SP including R; andS; for anyj, we haveto’ = t(0d) =
(to)d. Thus, this is simply denoted &sd.

o If j < N, thens ¢ Sub(Rjo, Ey) with Ey = Syo, .., S;—10, and thusR,o’ €
forge(Epo).

e If j > N, then thanks to Lemma 3 applied én there exists a derivation

Ey — I Fy — Ly -+ —L Ep

P
with goal R;o, starting fromE, = Syo, .., S;—10, and such thati, L, # Lq(s),
i.e. wheres is never decomposed. We show that for any= 1..p, E;6 C
forge(E;_10):

¥ If Li = L.(t) with t = (a,8) ort = {laf}} ort = {a}}, then eithers # ¢
i.e. E;0 C forge(E;_10) sincetd can be build fromnd and 54, ors = ti.e.
E;0 C forge(E;—10) sinceCharlie € Sy C E;_16.

« If Ly = Lq(t) with t = (a, 8) ort = {|af}} ort = {jaf}}, thens # ¢ by con-
struction of the derivation. Therefori, is non-atomic and can be decomposed
i.e.E;_16 > Ly(t5) E;6, meaning that;6 C forge(Ei,uS).

By iteration oni from 1 to p, it follows thatE,é C forge(Eyd), and thus :
Rjo’ € forge(Syo’, .., S;—10")

Consequently,o’,) defines an attack. However, this violates the minimalityafr)
as a normal attack (see Definition 4), since every occurgeotthe non-atomic term
in o were replaced by harlie. Please note that'harlie is counted in the size of an
attack, even if it is not a subterm ef Also, s appears inr at least once. Therefore, the
hypothesis (*) is contradicted, which proves the propositi O

We can now use this property to bound the DAG-size of ewény, and even all the
messages exchanged during a normal attack. This is showe foltowing theorem:

Theorem 1 If ¢ is the substitution in a normal attack, then for evéfyC SP we have
|Eo|pac < |Plpag- Inparticular, this holds folZ = Var, or E = {R; }US,U..US; 4
withi = 1..k, or E = {Secret} U Sy U .. U Sy.

Proof:

Leto andE be as above. That i§fo|, ,, = [Sub(Eo)| < |Sub(SPo)| with |F| the
number of elements ii". Let s be in Sub(SPo). By construction, there existse SP
such thats € Sub(uc). Therefore, we have two cases depending on wherecurs in
uo: eithers = /o withu’ € Sub(u),i.e.s € SPo;0rs € Sub(o(x)) withz € Var(u),
and thus thanks to Proposition 8, SPo. Since in both cases we havec SPo, it
follows thatSub(SPo) C SPo, and thus :

|Eo|pag < |SPo| < |SP|=[Plpac
since applyings to a set preserves or reduces its cardinality. a
4.2. Decision Algorithm for Active Attacks

We are now going to present a NP decision procedure for finaingttack. The proce-
dure amounts to guess a correct execution ordand a possible ground substitutien
with a polynomially bounded DAG-size, and finally to checlngsthe algorithm pre-
sented before for passive attacks that at each protocqlteemtruder can produce the
mesasge expected by honest participants.

We assume that we are given a protocol specificafionR, = S)) | « € Z}. Let
P ={R,,S/|. €1}, asecret messagicret and a finite set of messag#s for initial
intruder knowledge. IP, Sy are not given in DAG-representation, they are first congerte
to this format (in polynomial time). We assume that the DAG®f P, Sy, Secret is n,
and the finite set of variables occuringfhis V.

The procedure for checking the existence of an active ataekitten in Algo-
rithm 2. We discuss its correctness and complexity belogt, fior a single session then
for the several ones.

INPUTS: Protocol specificatiof, set of termsSy, and termSecret.
Guess a correct execution order 7/ — {1, .., k} with k = |Z/|
Guess a ground substitutiensuch thalVeo |, 4 < |Plpac

LetR; = R _,, andS; = 5, _,, fori e {1..k}

Let Ry, 1 beSecret.

For each € {1..k + 1}, check thatR,o € forge({S;o | j < i} U{So})
using Algorithm 1

7. If each check is successful then answer YES, otherwise ané@e

Algorithm 2. NP Decision Procedure for the Insecurity Problem

4.2.1. Single Session Case

Let us first remark that the procedure in Algorithm 2 is NP. Areot execution
order is a permutation of a subsetigfand can be guessed in polynomial time. A ground
substitutions such thafVo|, ,, < n can be guessed in polynomial time : first, guess
an ordered list of nodes] < n, and equip each of them with a label (either a binary
operator from the term algebra, an atomAror Charlie), plus two edges pointing to
higher ordered nodes if the label was a binary operator, ané if it was an atom irP
or Charlie; by construction this defines an acyclic graph of size at rpostnomial in
n, representing a set of terri This representation is not minimal as a DAG, but we
reduce it to a DAG representation by eliminating duplicatees (i.e. with same label
and same childs) in polynomial time. Now, we guesBy choosing a term ifi” as the
value ofx for each variabler in V. Finally, we know from Section 3 that the passive
attack decision algorithm is polynomial, and here it is ugtchostn + 1 times.

We can now see that this procedure is correct and complete gianswers YES if
and only if the protocol has aattack If an attack exists, then one of the smallest attacks
on this protocol is anormal attack defining a correct execution order and a ground
substitution which are possible guesses for the algorithoeghe passive attack decision
algorithm is complete. On the other hand if the procedurgvars YES, the verification
performed on the guessed substitution proves that the goblbas an attack, since the
passive attack decision algorithm is correct.

4.2.2. Multiple Sessions Case

We simulate the execution of several sessions of a protBcby the execution of a
single session for a more complex protogblof size polynomial in P| x m wherem is
the number of sessions. Therefore this will reduce immedtlidhe security problem for
several sessions to the security problem for one sessiowidlrsthow that the insecurity
problem is in NP for multiple sessions too. Note that the @gals may have some
common initial knowledge in different sessions. Hence #ms®ns are not necessarily
disjoint.

We assume given a protocol specificatiBrwith its associated partial order on
a set of stepdV. Let m be the number of sessions of this protocol we want to study,
let Var be the set of variables i and let Nonces be the set of nonces (a subset of
Atoms) in P. The nonces are given fresh values at each new session bitidefiAlso
variables from different sessions should be differentsTitibecause we consider that

in this model messages are not memorized from one sessiarotbea (except maybe
by the intruder). Therefore we shall definerenaming functions;, fori = 1..m, as
bijections fromWW U Nonces U Var to m new sets (mutually disjoint and disjoint from
W U Nonces U Var) such that:

vi(w) =w; forallw e W
v;(N) = N; forall N € Nonces
vi(x) =x; foralz e Var

We assume that each set of stépsfor i = 1..m, is provided with a partial ordet;
such that for alkw,w’ € W and for allw;,w, € W;, w < ' iff w; < w]. Let P;
be the protocol obtained by applying the renamingo P. We have nown copy P;,

i = 1..m, of the protocol. We combine them now into a unique protoeviatedm. P
as follows. The set of steps is by definition the unigfi , W; of the steps in all copies
P;, for i = 1..m. The partial order o J;" , W; is defined a$ J!" | <;. Itis easy to see
that the execution of one session of the new protocol is edgrt to the execution of,
interleaved sessions of the initial protocol.

Lemma 4 Let .S, be the initial intruder knowledge. The DAG-sizgof. P, Sy) is O(n x
m) wheren is the DAG-size oP, Sp.

Therefore a normal attack af. P can be bounded polynomially:

Corollary 1 If ¢ is the substitution in a normal attack of. P assuming that the initial
intruder knowledge i, and the DAG-size dfP, Sy) is n, thenc can be represented in
O((n x m)?).

Then applying the NP procedure for one session we derive diatedy:

Theorem 2 Protocol insecurity for a finite number of sessions is desid@and in NP.

5. Complexity

We show now that the existence of an attack when the input pretacol specification
and initial knowledge of the intruder is NP-hard by reductfoom 3-SAT. The proof
is similar to the one given by [1] for their model, but does neted any conditional
branching in the protocol specification. The propositiorsiables arery, .., z, = z,
and an instance of 3-SAT (') = A\, (2} Vi’ Va;y’) whereVi, j € I x {1..3},
z;j € {x1,..,xn}, €5 € {0,1}, andz® (respz!) meanse (resp—z).

The idea of the reduction is to let the intruder generate ariessagery, .., T,,
representing a possible solution for this 3-SAT problenanfrithis initial message a
principal A creates a term representing the instance of the forrfiddg this solution.
Then the intruder will use the principals C, D as oracles for verifying that this instance
can be evaluated to. In order to do it the intruder will have teelect an adequate
protocol execution where each principal checks the truth literal in a conjunct. For
instance when the first literal of a conjunct is a proposéaiorariable (resp. a negated
variable), principalB checks whether this variable was assigned the valfeesp._1).

If the execution can be achieved thénhgives theSecret term to the intruder, and the
protocol admits an attack.

Let us describe now the protocol. We introduce two atomicsk€yand P, and an
atomic termL for representing the boolean value False. The encryptidi il encode
negation, and thus, the boolean value True is representdd by{ L }5,. This coding
of 3-SAT do not requires e.g. th@t{|i|}}\}} reduce tal, so multiple encryption with
K over_L do not represent any specific boolean value. The symmetyid>kexists for
storing data under process. Then we define :

o g(0,25) = ij andg(1, z; ;) = {lo [} -
o fi(T) = {glci1,in), (g(ci2, Tin), gleis, i3))) foralliel

The protocol variables, y, z occurring in the description of stefl/, j) should be
considered as indexed Y/, j); the index will be omitted for readability. The partial
order on the protocol steps is the empty order. Hence thegubsteps can be executed
in any order. Note also that the number of steps for eachipahB, C, D is equal to the
number of conjuncts in the 3-SAT instance.

Principal A: (A,1), @1,... 20 = {{(f1(Z), (fo(T), (.. (fu(T), end)))[}p

Principal B:)y LY (), 2 = {205 for i c 1.
Principal C:)s e, AL),) = 1205 for i 1.
Principal D:), A, (W ALY) |}P = {z}}% for i € I.

Principal E: (E, 1), {end[} = Secret

We takeSy; = {T,.L} as the initial intruder knowledge. Remember that=

{ L[t By looking at this protocol, it is obvious that with such pawitial knowledge,
there is an attack iff the message sent by principal A can thece to{|end|} i.e. for
all i € I, there existg € {1,2,3} such thatg(e; ;,2; ;) = T. But this means that
the intruder has given td a term representing a solution of 3-SAT, singe; ;, z; ;) is
x;,;%7. Hence the protocol admits an attack iff the correspondi@AB problem has a
solution. Moreover this reduction is obviously polynomtdénce the problem of finding
an attack with bounded sessions is NP-hard.

The example above shows that the insecurity problem is N&fba protocols with
pairs, but without composed keys and without variables ingasitions. But we can ob-
tain hardness for a class of protocols with different regbns. The next protocol shows
that the insecurity problem remains NP-hard even withouspaithout composed keys
and with a unique honest principal whose steps are lineadgred. On the other hand
we need to use variables at key positions.

Hence our next result will show that finding an attack to a lgirsgssion of a se-
quential protocol is already an NP-hard problem. Therefioeenon-determinism of the
intruder is sufficient for the insecurity problem to be NRéha

Let f(7) = A/*, D, be an instance of 3-SAT following the same definition as
above (for the first protocol), and letbe the number of propositional variables 8f
In the following,z andy are protocol variables and we suppose that their occursence
represent different variables in different steps of thetguols i.e. they are implicitly
indexed by the protocol steps. To each propositional viriapwe associate an atom
Vj, forj =1,...,n. Theinitial intruder knowledge includes only these terms:

L {{PF [} {4Ph% [}, andP. The intruder will assign boolean valuesTo
by using{ P}, or {| P}
2. {{K[° |}, and{[{{K}5[};, . for j = 1..n. These are faked values faf al-

lowing the intruder to “skip” some protocol steps when nekdut doing that,
he will not gain any useful knowledge.

We use only one honest principd| and the protocol steps of are linearly ordered by:
(A, (4,7)) < (A, (@, 4") iff i < ori =i andj < j/,fori =0,...,m+1and
j=1...,n

(4,0,5)) = Azl = {«b3,

In these steps, the intruder selects valuesForSince there is one and only one
step for each valugj, the instantiation of? is complete and non redundant. Since the
intruder does not knouk , these values can only HgP[} or {| P[}*-.

For each conjunctindices 1 < i < m, and for eacly , 1 < j < n, such that; is
a variable in the conjundd;, let us define the stefH, (i, j)) as :

(A, (.) = {{wh5[};, = {ISecrets};, if x; occurs positively inD; or
(A, (5,5) : {{ylLl}s, = {Secrets[}; if 2; occurs negatively iD;

The goal of the intruder is to know all ternt&:cret;: this would prove that every
conjunctD; is evaluated tor. To do this, he must use fgr a value he knows in or-
der to decrypt at least one messa(@ecrem}z for eachi. However the intruder has

only two possible actions: either he sends4dhe messagé|{ K[} |}; or the mes-
J

sage{|{ K[}°_[};, butthen he will receive backSecret;[}3 which is useless (this step
can be considered as blank for the intruder), or he has assigrl/; the correct value
{{PL5), or {{ P, [}, . and by sending it tol at the right step he will get back

{|Secret; [} that he can decrypt witl® to getSecret;.

The last protocol step is to ensure that the intruder knowes Sacret;. For this
purpose let us introduce an ataBigSecret that will be revealed to the intruder iff he
knows every atonbecret;. The last protocol step is:

(A,(m+1,0)): P = {|..{|B¢gsecret|};mtl..\};mtm.

Therefore, the intruder knowBigSecret if and only if each conjuncD; is eval-
uated toT, and this protocol has an attack étigSecret if and only if the 3-SAT in-
stance admits a solution. This shows the correctness oéthestion, which is obviously
polynomial.

Itis interesting to see that the class of protocols coneidlar the previous reduction
is very close to the simple class of ping-pong protocols:[1®g only difference is the
use of variables as keys (but these variables can take amyi@values).

| Decomposition rules || Composition rules |

Ls(t): t—a,t witht = {{{lal}3]}; Le(t): a—a,t witht = {{al}}|};

Ls(t): t—a,t witht = {{{la}5[}5e—1 || Lr®): a—at witht = {{{la]}5[}5% -1
Table 3. Extension of the Intruder Model.

From the results above we finally conclude with the main tesul

Theorem 3 Finding an attack for a protocol with a fixed number of sessinan NP-
complete problem.

6. Conclusion

By representing messages as DAGs we have been able to pedwehtdn the number of
sessions of a protocol is fixed, an intruder needs only toefongssages of linear size in
order to find an attack. This result admits obvious practioglications since it gives an
a priori bound on the space of messages to be explored fongjrldiws in the protocol
(with a model-checker, for instance). We have then deriveNR-procedure for finding
an attack with a fixed number of sessions and composed kejsrdsult matches the
lower bound of the problem. Several interesting variantsuwfmodel can be reduced to
it. These variants are also easy to implement.

First we could consider that a principal is unable to recogihat a message sup-
posed to be encrypted by some K&yhas really been constructed by an encryption with
K. This can be exploited to derive new attacks: if we assumittigarules in Table 3
are added to the intruder model, then new attacks can nowrb@med as shown in the
following example (the messaged is omitted).

Protocol Rules Attack
((A4,0), init = {|Secret}} .
(A1), {Jlfie =) o(z) = {|{|Secret|}p |}
(A4.2), {{wb3)% =) o(y) = Secret

since {Secret[}3, =1, {Secret}p, {|{ {|Secret|};|};(‘};71
and (A, 1) produces]|{|Secret|}3 |} 5
and (A, 2) producesSecret

Obviously, such an attack cannot be performed if therules are not included in the
intruder rewrite system. Since simple cryptographic systgerify the property that en-
cryption is idempotent, it might be interesting to add these L,. rules. Moreover, it is
in fact quite easy to prove that the insecurity problem rem&IP-complete when these
L, and L, rules are included: they behave exactly in the same wdy. asd L, allow-
ing us again to restrict ourselves to consider only someiabaerivations. See [20] for
more informations on this.

We have only considered secrecy properties so far. Howewmgspondence prop-
erties like authentication, integrity, some kinds of faiss, etc.. can also be expressed us-
ing an appropriate execution order and a polynomial numbgérge constraints. Thus,
they can also be detected in NP time.

|| Without Nonces With Nonces

No bounds [13] Undecidable Undecidable
Infinite number of sessions, and bounded messages||1ZIEXPTIME-complete | Undecidable
Finite number of sessions, and unbounded messgges NP-complete NP-complete

Table 4. Known results

Moreover, protocols with more complex control can also bedkd in NP, as long
as executions can be described in polynomial space andethedka polynomial number
of protocol steps in polynomial time. In particular, braimghor synchronizations are not
a problem, thus allowing honest participants to make clsoice

Finally, let us notice that our model remains valid when theuder is allowed to
generate any number of new data: we simply replace in arkadthdata that is freshly
generated by the intruder by its nafiéarlie. Since honest agents do not test inequal-
ities, especially inequalities between data obtained fitwerintruder, all the constraints
are satisfied and the attack still works. Moreover, evemétlg inequalities is possible :
since in each attack at most a polynomial number of inedqealdan be performed, at
most a polynomial number of honces are required, and theg,dain be picked up from
the (finite) set of Atoms. This implies that in the finite sesstase, the intruder does not
gain any power by creating nonces. We can summarize the kresufts in the Table 4.

More extensions of the presented results, especially bingddgebraic properties
to the protocol and intruder models, can be found e.g. inIBJ6

References

[1] R. Amadio and D. Lugiez. On the reachability problem iggtographic protocols. In C. Palamidessi,
editor, Proceedings of ConcutNCS 1877, pages 380-394. Springer-Verlag, 2000.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compay J. Cuellar, P. Hankes Drielsma, P.-C.
Héam, O. Kouchnarenko, J. Mantovani, S. Médersheim, D. vioai@b, M. Rusinowitch, J. Santiago,
M. Turuani, L. Vigano, and L. Vigneron. The AVISPA Tool fore¢hautomated validation of internet
security protocols and applications. In K. Etessami andefarRani, editorsl7th International Confer-
ence on Computer Aided Verification, CAV'2006lume 3576 ol ecture Notes in Computer Science
pages 281-285, Edinburgh, Scotland, 2005. Springer.

[3] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and Ac&lrov. A meta-notation for protocol analysis.
In Proceedings of the 12th IEEE Computer Security Foundatitskshop: CSFW’99ages 55-69.
IEEE Computer Society Press, 1999.

[4] Y. Chevalier. Résolution de problemes d’accessibilité pour la compilatt la validation de protocoles
cryptographiques Phd thesis, Université Henri Poincaré, Nancy, deecemb@s.2

[5] Y. Chevalier, R. Kusters, M. Rusinowitch, and M. Turuamn NP Decision Procedure for Protocol
Insecurity with XOR. InProceedings of the Logic In Computer Science Conference@S'0B pages
261-270, 2003ht t p: / / www. avi spa- proj ect. org.

[6] Y. Chevalier, R. Kusters, M. Rusinowitch, M. Turuanidi. Vigneron. Deciding the Security of Proto-
cols with Diffie-Hellman Exponentiation and Products in Brpnts. InProceedings of FSTTCS'2003
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[7] E. M. Clarke, S. Jha, and W. R. Marrero. Using state spapdogation and a natural deduction style
message derivation engine to verify security protocolsPrisgramming Concepts and Methods, IFIP
TC2/WG2.2,2.3 International Conference on Programmingd@pts and Methods (PROCOMET '98)
8-12 June 1998, Shelter Island, New York, U88lume 125 ofIFIP Conference Proceedingpages
87-106. Chapman & Hall, 1998.

[8] H.Comon-Lundh, V. Cortier, and E. Zalinescu. Decidirgurity properties for cryptographic protocols.
application to key cyclesACM Trans. Comput. Logl11(2), 2010.

(10]
(11]
(12]
(13]
(14]

(15]

(16]

(17]
(18]
(19]

(20]

(21]

(22]

R. Corin and S. Etalle. An Improved Constraint-Basedt&ysfor the Verification of Security Protocols.
In Proceedings of SAS 2002NCS 2477, pages 326—341. Springer-Verlag, 2002.

D. Dolev and A. Yao. On the Security of Public-Key Prastec IEEE Transactions on Information
Theory 2(29), 1983.

W. F. Dowling and J. H. Gallier. Continuation semanftiosflowgraph equationsTheor. Comput. Sgi.
44:307-331, 1986.

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Urailgability of bounded security protocols. In
Proceedings of the Workshop on Formal Methods and Securitp&ols 1999.

S. Even and O. Goldreich. On the security of multi-puityg-pong protocolsfFoundations of Computer
Science, Annual IEEE Symposium 6r84—-39, 1983.

A. Huima. Efficient infinite-state analysis of securiyotocols. InProceedings of the FLOC’99 Work-
shop on Formal Methods and Security Protocols (FMSP'29p9.

F. Jacquemard, M. Rusinowitch, and L. Vigneron. Coimgiland Verifying Security Protocols. In
M. Parigot and A. Voronkov, editor®roceedings of LPAR 200ONCS 1955, pages 131-160. Springer-
Verlag, 2000.

Z. Liang and R. M. Verma. Correcting and Improving the Rof for Cryptographic Protocol Inse-
curity. InInformation Systems Security, 5th International ConfeeenCISS 2009, Kolkata, India, De-
cember 14-18, 2009, Proceedingslume 5905 ot.ecture Notes in Computer Scienpages 101-116.
Springer, 2009.

F. Martinelli and T. C. N. R. Analysis of security protals as open systemslheoretical Computer
Science290:1057-1106, 2003.

J. K. Millen and G. Denker. Capsl and mucapslournal of Telecommunications and Information
Technology4:16-27, 2002.

J. K. Millen and V. Shmatikov. Constraint solving forimeded-process cryptographic protocol analysis.
In ACM Conference on Computer and Communications Secpatyes 166—-175, 2001.

M. Rusinowitch and M. Turuani. Protocol Insecurity viEinite Number of Sessions is NP-Complete.
In 14th Computer Security Foundations Workshop (CSFW-14)200he 11-13, 2001, Cape Breton,
Nova Scotia, Canadgages 174—. IEEE Computer Society, 2001.

M. Turuani. Sécurité des Protocoles Cryptographiques: Décidabilit€@mnplexité Phd thesis, Univer-
sité Henri Poincaré, Nancy, december 2003.

M. Turuani. The CL-Atse Protocol Analyser. [Ferm Rewriting and Applications - Proc. of RTA
volume 4098 ol ecture Notes in Computer Scienpages 277-286, Seattle, WA, USA, 2006.

