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Abstract. We investigate the complexity of the protocol insecurity problem for a
finite number of sessions (fixed number of interleaved runs).We show that this
problem is NP-complete with respect to a Dolev-Yao model of intruders. The result
does not assume a limit on the size of messages and supports asymetric and non-
atomic symmetric encryption keys. We also prove that in order to build an attack
with a fixed number of sessions the intruder needs only to forge messages of linear
size, provided that they are represented as DAGs.

1. Introduction

Although the general protocol verification problem is undecidable [13] even in the re-
stricted case where the size of messages is bounded [12], it is interesting to investigate
decidable fragments of the underlying logics and their complexity. The success of prac-
tical verification tools indicates that there may exist interesting decidable fragments that
capture many concrete security problems. Dolev and Yao haveproved that for simple
ping-pong protocols, insecurity can be decided in polynomial time [10]. On the other
hand [12] shows that when messages are bounded and when no nonces (i.e. new data) are
created by the protocol and the intruder, then the existenceof a secrecy flaw is decidable
and DEXPTIME-complete.

A related decidability result is presented in [14,1,20,19,4,17,16]. The authors give a
procedure for checking whether an unsafe state is reachableby the protocol. Their result
holds for the case of finite sessions but with no bounds on the intruder messages. The
proof in [1] does not allow general messages (not just names)as encryption keys. This
limitation is relaxed in [20,19,21]. The decision algorithm presented in this chapter is
similar to the one in [20] but its proof has been simplified.

The main result of this chapter states that for a fixed number of interleaved pro-
tocol runs, but with no bounds on the intruder messages, the existence of an attack is
NP-complete. We allow public key encryption as well as the possibility of symmetric
encryption withcomposed keysi.e. with any message. Here we only considersecrecy
properties. Howeverauthenticationcan be handled in a similar way. Hence, a protocol is
considered insecure if it is possible to reach a state where the intruder possesses a secret
term.

With the same proof technique it is possible to extend the result directly to various
intruder models and to protocols with choice points. In particular many algebraic prop-
erties of cryptographic primitives can be covered by the approach ([5,6]). The result we



present here can also be derived through a constraint solving approach and the careful
design of simplification rules to be applied to intruder constraints ([8]).

Although this result is of a theoretical flavor, it gives information of practical rel-
evance since for its proof we have shown that in order to attack a protocol an intruder
needs only to forge messages of linear size with respect to the size of the protocol. This
gives a low bound for the message space to be explored when looking for a flaw e.g. with
a model-checker and this explains also why many tools like the CL-ATSE [22] backend
from the AVISPA Tool [2] are effective in protocol analysis:to put it informally, in the
Dolev-Yao model flawed protocols can be attacked with small faked messages.

Layout of the chapter: We first introduce in Section 2 our model of protocols and in-
truder and give the notion ofattackin Section 2.4. Then in Section 3 we study properties
of derivations with intruder rules. This allows us to derivepolynomial bounds for normal
attacks in Section 4 and to show that the problem of finding a normal attack is in NP. We
show in Section 5 that the existence of an attack is NP-hard.

2. The Protocol Model

We consider a model of protocols in the style of [3]. The actions of any honest princi-
pal are specified as a partially ordered list that associatesto (the format of) a received
message its corresponding reply. The activity of the intruder is modeled by rewrite rules
on sets of messages. We suppose that the initialization phase of distributing keys and
other information between principals is implicit. The approach is quite natural and it is
simple to compile a wide range of protocol descriptions intoour formalism. For instance
existing tools such as CAPSL [18] or CASRUL [15] would perform this translation with
few modifications. We present our model more formally now.

2.1. Messages

The messages exchanged during the protocol execution are built using pairing⟨_, _⟩ and
encryption operators{∣_∣}s_, {∣_∣}a_. We add a superscript to distinguish between public key
(p) and symmetric key (s) encryptions. The set of basic messages is finite and denoted
by Atoms. It contains names for principals and atomic keys from the set Keys. Since
we have a finite number of sessions we also assume any nonce is abasic message: we
consider that it has been created before the session and belongs to the initial knowledge
of the principal that generates it.

Any message can be used as a key for symmetric encryption. Only elements from
Keys are used for public key encryption. Given a public key (resp.private key)k, k−1

denotes the associated private key (resp. public key) and itis an element ofKeys.
The messages are then generated by the following (tree) grammar:

msg ::= Atoms ∣ ⟨msg,msg⟩ ∣ {∣msg∣}aKeys ∣ {∣msg∣}smsg

A signature, usually denoted by[M ]k′ with a private keyk′ (= k−1), is repre-
sented here ase{∣M ∣}ak′ . For conciseness we denote bym1, . . . ,mn the set of messages
{m1, . . . ,mn}. Given two sets of messagesM andM ′ we denote byM,M ′ the union
of their elements and given a set of messagesM and a messaget, we denote byM, t the
setM ∪ {t}.



Decomposition rules Composition rules

Ld(⟨a, b⟩) : ⟨a, b⟩ → a, b, ⟨a, b⟩ Lc(⟨a, b⟩) : a, b → a, b, ⟨a, b⟩
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K
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K
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K
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K
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K
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s

b
) : {∣a∣}s

b
, b → {∣a∣}s

b
, b, a Lc({∣a∣}

s

b
) : a, b → a, b, {∣a∣}s

b

Table 1. Intruder Rules

2.2. Intruder

In the Dolev Yao model [10] the intruder has the ability to eavesdrop, divert and memo-
rize messages, to compose and decompose, to encrypt and decrypt when he has the key,
to generate new messages and send them to other participantswith a false identity. We
assume here without loss of generality that the intruder systematically diverts messages,
possibly modifies them and forwards them to the receiver under the identity of the official
sender. In other words all communications are mediated by a hostile environment repre-
sented by the intruder. The intruder actions for modifying the messages are simulated by
rewrite rules on sets of messages.

The set of messagesS0 represents the initial knowledge of the intruder. We assume
that at least the name of the intruderCℎarlie belongs to this set.

Intruder rules are divided in several groups, for composingor decomposing mes-
sages. These rules, which are described in Table 1, are the only one we consider in this
chapter and any mentions of “rules” refer totheserules. In Table 1 and in the remain-
ing of the chapter,a, b andc represent any message andK represents any element of
Key. For instance, the rule with labelLc(⟨a, b⟩) replaces a set of messagesa, b by the
following set of messagesa, b, ⟨a, b⟩.

The rewrite relation is defined byE → E′ if there exists one rulel → r (from
Table 1) such thatl is a subset ofE andE′ is obtained by replacingl by r in E.
We write→∗ for the reflexive and transitive closure of→. We denote the applica-
tion of a ruleR to a setE of messages with resultE′ by E →R E′. We write
Lc = {Lc(a) ∣ for all messagesa}, andLd in the same way. We callderivationa se-
quence of rule applicationsE0 →R1

E1 →R2
.. →Rn

En. The rulesRi for i = 1..n
are called the rules of this derivationD. We writeR ∈ D (abusively) to denote thatR
is one of the rulesRi, for i = 1..n, that has been used in the derivationD. We omit the
subscriptsRi in the derivationD when they are not relevant to the discussion. We write
E →∗ E′ if E = E′ or if there exists a derivationE → E1 → ..→ E′.

One can remark that if the intruder was allowed to generate new data he will not
get more power. He is already able to create infinitely many data only known to him
with simple encryptions. For instance he can construct an infinite sequence of terms only
known to him, like e.g.{∣N ∣}sN ,

{∣

∣{∣N ∣}sN
∣

∣

}

s

N
, ... assuming thatN is only known by the

intruder. For the class of protocols that we will consider honest principals receiving these
terms for the first time cannot distinguish them from nonces.Alternatively, the result
in this chapter can also be easily extended to allow nonces for the intruder, simply by
processing them like any composed term only checkable by theintruder.

2.3. Protocols

We shall specify protocols by a list of actions for each principal. In order to describe the
protocol steps we introduce message terms (or terms for short). We assume that we have
a set of variablesV ar. Then the set of terms is generated by the following tree grammar:



term ::= V ar ∣ Atoms ∣ ⟨term, term⟩ ∣ {∣term∣}aKeys ∣ {∣term∣}
s

term

As for messages, a signature usually denoted as[M ]k′ with a private keyk′ ∈ Keys
is here represented as{∣M ∣}ak′ . Let V ar(t) be the set of variables that occur in a term
t. A substitutionassigns terms to variables. Aground substitutionassigns messages to
variables. The application of a substitution� to a termt is written t�. We also write
[x ← u] the substitution� defined by�(x) = u and�(y) = y for y ∕= x. The set of
subterms oft is denoted bySub(t). These notations are extended to sets of termsE in a
standard way. For instance,E� = {t� ∣ t ∈ E}.

A principal (except the initiator) reply after receiving a message matching a specified
term associated to its current state. Then from the previously received messages (and
initial knowledge) he builds the next message he will send. This concrete message is
obtained by instantiating the variables in the message pattern associated to the current
step in the protocol specification.

A protocol is given with a finite set of principal namesNames ⊆ Atoms, and a
partially ordered list of steps for each principal name. This partial order aims at ensuring
that the actions of each principal are performed in the rightorder. More formally we
associate to each principalA a partially ordered finite set(WA, <WA

). Each protocol
step is specified by a pair of terms denotedR ⇒ S and is intended to represent some
messageR expected by a principalA and his replyS to this message. Hence a protocol
specificationP is given by a set ofsteps:

{(�, R� ⇒ S�) ∣ � ∈ ℐ}

whereℐ = {(A, i) ∣ A ∈ Names andi ∈ WA} andR� andS� are terms. Given a
protocol, we will assume that for all(A, i) ∈ ℐ, for all x ∈ V ar(S(A,i)), there exists
j ≤WA

i (i.e. j <WA
i or j = i) such thatx ∈ V ar(R(A,j)), meaning that any variable

must be received before it is sent.
We write∣ℐ∣ for the size ofℐ. Init andEnd are fixed messages used to initiate and

close a protocol session. Anenvironmentfor a protocol is a set of messages. Acorrect
execution order� is a one-to-one mapping� : ℐ ′ → {1, .., ∣ℐ ′∣} such that 1)ℐ ′ ⊆ ℐ;
2) and for allA ∈ Names andi <WA

j with (A, j) ∈ ℐ ′, we have(A, i) ∈ ℐ ′ and
�(A, i) < �(A, j). In other words� defines an execution order for the protocol steps.
This order is compatible with the partial order of each principal. It is not supposed to
be complete, but it must be acceptable (i.e. runnable) for principals. We write∣ℐ ′∣ for
the size ofℐ ′ in a correct execution order. For the readability of examples, we allow
writing protocol steps asr1, .., rp ⇒ s1, .., sq instead of⟨r1, ⟨.., rp⟩⟩ ⇒ ⟨s1, ⟨.., sq⟩⟩. A
protocol executionis given by a ground substitution�, a correct execution order� and
a sequence of environmentsE0, .., E∣ℐ′∣ verifying: Init ∈ E0, End ∈ E∣ℐ′∣, and for all
1 ≤ k ≤ ∣ℐ ′∣, R�−1(k)� ∈ Ek−1 andS�−1(k)� ∈ Ek.

Each step� of the protocol extends the current environment by adding the corre-
sponding messageS�� whenR�� is present. One can remark that principals are not al-
lowed to generate any new data such as nonces. But this is not aproblem when the num-
ber of sessions is finite: in this setting from the operational point it is equivalent to as-
sume that the new data generated by a principal during a protocol execution is part of his
initial knowledge.
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Figure 1. Handshake Protocol

Example: Handshake protocol

We recall this simple protocol (from Chapter“Introduction” ) and its presentation by
a message sequence chart.k is a symmetric key,KB a public key,K−1

A a private key
associated to the public keyKA ands is a basic message.

Now we can express this protocol in our formal syntax. The orderings on steps is trivial
sinceWA = WB = {1}.

((A,1), Init ⇒
{
∣

∣

∣
{∣k∣}aK−1

A

∣

∣

∣

}

a

KB

)

((B,1),
{∣

∣

∣
{∣x∣}aK−1

A

∣

∣

∣

}

a

KB

⇒ {∣s∣}sx )

2.4. Attacks: Passive and active cases

Considering a protocol specification and a special termSecret (called secret term), we
say that there is an attack inN protocol sessions if the intruder can obtain the secret term
in its knowledge set after completing at mostN sessions.

2.4.1. Passive case

We consider first the case when the intruder has only the capability of eavesdropping
messages between honest participants. Hence the intruder cannot intercept and modify
the transmitted messages. If he can derive the secret with these limited means then we
say that the protocol is subject to apassive attack.

We introduce a predicateforge for checking whether a message can be constructed
by the intruder from some known messages.

Definition 1 (forge) Let E be a set of terms and lett be a term such that there isE′

with E →∗ E′ and t ∈ E′. Then we say thatt is forged from E and we denote it by
t ∈ forge(E).



The existence of a passive attack can be reduced to a deduction problem:

Definition 2 (passive attack)If E contains the initial intruder knowledge and the set of
messages eavesdropped from the protocol sessions, there isa passive attack ifSecret ∈
forge(E).

2.4.2. Active case

Let us consider now the general case where the intruder has full power. Note that received
messages are matched by principals with the left-hand sidesof protocol steps, meaning
that some substitution unifies the messages sent by the intruder and the ones expected by
the principals. Hence the existence of an attack can be expressed as a constraint solving
problem: is there a way for the intruder to build from its initial knowledge and already
sent messages a new message (defined by a substitution for thevariables of protocol
steps) that will be accepted by the recipient, and so on, until the end of the session, and
such that at the end the secret term is known by the intruder.

In other words an active attack is a protocol execution wherethe intruder can mod-
ify each intermediate environment and where the messageSecret belongs to the final
environment. In an active attack the intruder is able to forge any message by using its
initial knowledge and already sent messages (spied in the environments). We note byk
the cardinality ofℐ ′ in an (active) attack. Hence we can formulate the definition of an
attack using the predicateforge:

Definition 3 (active attack) Given a protocolP = {R′
� ⇒ S′

� ∣ � ∈ ℐ}, a secret
messageSecret and assuming the intruder has initial knowledgeS0, an active at-
tack (or an attack in short) is described by a ground substitution� and a correct ex-
ecution order� : ℐ ′ −→ 1, . . . , k such that for alli = 1, . . . , k, we haveRi� ∈
forge(S0, S1�, .., Si−1�) andSecret ∈ forge(S0, S1�, .., Sk�) whereRi = R′

�−1(i)

andSi = S′
�−1(i).

The definition of an active attack we give here is slightly more general than the one
in [20] and was first proposed in [9] since it does not require the protocol to be completely
executed. Before proceeding let us give some detailed examples.

Example: Attack on Handshake Protocol

Let us assume that Agent A initiates Handshake Protocol (seeChapter“Introdution” )
with Intruder Charlie (C in short). Then using the first message from A, C can imperson-
ate A and initiate a session with B. This allows C to get the messagesA,B that should
have been known only by A and B.

In order to detect the potential attack displayed in Figure 2, we set up a system built
from two handshake protocol sessions running in parallel. This system can be considered
as a single session for a protocol admitting 4 steps specifiedbelow:
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Figure 2. Attack on Simple Protocol

We assume that the initial intruder knowledge isS0 = {KB,KA,KC ,K
−1
C , Init}.

Then an attack is obtained by taking the following ground substitution and execution
order:

Substitution Protocol steps
� = [x← kA,C , x

′ ← kA,C ] �(A, 1) = 1, �(A, 1′) = 2, �(B, 1′) = 3

This represents an attack since the following relations canbe checked:

⎧





⎨





⎩

R�−1(1)� ∈ forge(S0)
R�−1(2)� ∈ forge(S0, S�−1(1)�)
R�−1(3)� ∈ forge(S0, S�−1(1)�, S�−1(2)�)

sA,B ∈ forge(S0, S�−1(1)�, S�−1(2)�, S�−1(3)�)

This can be verified easily. For instance, the last relation is valid since

KA,K
−1
C ∈ S0 S�−1(1)� =
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⟨M,A,B⟩, {∣NA, ⟨M,A,B⟩∣}sKAS

⟨M,A,B⟩, {∣NA, ⟨M,A,B⟩∣}sKAS
,

{∣NB, ⟨M,A,B⟩∣}sKAS

M, {∣NA,KAB∣}
s

KAS
,

{∣NB,KAB∣}
s

KBS
M, {∣NA,KAB∣}

s

KAS

{∣secret∣}sKAB

Figure 3. Otway-Rees Protocol

Example: Attack on Otway-Rees Protocol

The participants of the protocol areA,B and the serverS. The symmetric keys
Kas,Kbs will be respectively shared by the participants(A,S) and(B,S). The identi-
fiersM,Na,Nb represents nonces. In Step3, the serverS creates the new secret sym-
metric keyKab to be used byA andB for further safe communications. We have ex-
tended the protocol with an extra step whereA uses the keyKAB to send a secret mes-
sage toB. In the attack,A will be fooled into believing that the term⟨M,A,B⟩ (short-
hand for⟨⟨M,A⟩, B⟩) is in fact the new key. The sequence of messages defining Otway-
Rees is depicted in Figure 3. Let us write now this protocol specification with our nota-
tion, withmAB as a short-hand for⟨x7, xA, xB⟩.

((A, 1), Init ⇒ ⟨M,A,B⟩, {∣NA, ⟨M,A,B⟩∣}sKAS
)

((B, 1), ⟨x2, x3, B⟩, x4 ⇒ x2, x3, B, x4, {∣NB, x2, x3, B∣}
s

KBS
)

((S, 1), mAB, {∣x8,mAB∣}
s

KAS
, {∣x9,mAB∣}

s

KBS
⇒ x7, {∣x8,Kab∣}

s

KAS
, {∣x9,Kab∣}

s

KBS
)

mAB, {∣x8,mAB∣}
s

KAS
, {∣x9,mAB∣}

s

KBS
⇒ x7, {∣x8,Kab∣}

s

KAS
, {∣x9,Kab∣}

s

KBS
)

((B, 2), x2, x5, {∣NB, x6∣}
s

KBS
⇒ x2, x5 )

((A, 2), M, {∣NA, x1∣}
s

KAS
⇒ {∣Secret∣}sx1

)
((B, 3), {∣Secret∣}sx6

⇒ end )

A protocol execution can be obtained by taking the protocol steps in the given order and
by applying the following substitution:



x1 = Kab x2 = M x3 = A x5 = {∣x8,Kab∣}
s

KAS
x6 = Kab xA = A

x4 = {∣⟨NA, ⟨M,A,B⟩⟩∣}sKAS
x7 = M x8 = NA x9 = NB xB = B

An attack can be performed on this protocol with initial intruder knowledgeS0 =
{Cℎarlie, Init}, using:

Substitution Protocol steps
� = [x1 ← ⟨M,A,B⟩] �(A, 1) = 1, �(A, 2) = 2

since we have:
⎧

⎨

⎩

R�−1(1)� ∈ forge(S0)
R�−1(2)� ∈ forge(S0, S�−1(1)�)
Secret ∈ forge(S0, S�−1(1)�, S�−1(2)�)

3. Passive case

In this section we show how to decide efficiently the existence of a passive attack on a
protocol. We first show some basic facts on the DAG-representation of message terms.
Then we shall show how to obtain from any derivation a more compact one. We will then
be able to prove that a normal attack has a polynomial size w.r.t. the size of the protocol
and intruder knowledge, when using DAG representations.

3.1. DAG representation

TheDAG-representationof a setE of message terms is the graph(V , ℰ) with labeled
edges, where:

∙ the set of verticesV = Sub(E), the set of subterms ofE. The label of a vertice is
the root symbol of the corresponding subterm (⟨_, _⟩, {∣_∣}s_,{∣_∣}a_ or an element
fromAtoms).

∙ the set of edgesℰ = ℰ1 ∪ ℰ2 :

ℰ1 = {vs
down
−→ ve ∣ ∃b, vs = {∣ve∣}

s

b or vs = {∣ve∣}
a

b or vs = ⟨ve, b⟩}

ℰ2 = {vs
up
−→ ve ∣ ∃b, vs = {∣b∣}

s

ve
or vs = {∣b∣}

a

ve
or vs = ⟨b, ve⟩}

Let us note that the DAG representation is unique. Moreover if n is the number of
elements inSub(t), one can remark that(V , ℰ) has at mostn nodes and2.n edges. Hence
its size is linear inn, and for convenience we shall define the DAG-size ofE, denoted
by ∣E∣DAG, to be the number of distinct subterms ofE, i.e the number of elements in
Sub(E). For a termt, we simply write∣t∣DAG for ∣{t}∣DAG. We note that a standard
DAG representation oft would useO(n.log(n)) space withn = ∣t∣DAG, but this differ-
ence with our DAG-size has no impact on the polynomial-time complexity of algorithms
presented below. An example of DAG representation can be found in Figure 3.1.

Now, why do we define the DAG size for terms ? First, because it is a way to rep-
resent messages and thus protocols in a compact manner that strengthens the complexity
result; And second, because the subterm sharing works quitewell with the replacement
of subterms by others, which will be the essence of the proof of our main property. Con-
sequently, we uses DAG size also to measure the size of attacks, and we concentrate on
the properties of smallest attacks callednormal attackw.r.t the following definition :
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Figure 4. DAG Representation of the First Message of Otway-Rees Protocol

Definition 4 Let P be a protocol and(�, �) an attack onP . Then(�, �) is a normal
attack iff it is minimal among all attacks onP w.r.t the following measure :

l(�, �) = ∣{Cℎarlie} ∪ {�(x)}x∈V ar∣DAG

This is as expected except for the presence of the special atom Cℎarlie. It ensures
that a normal attack uses preferablyCℎarlie instead of any other atom or term, when it
is possible, thus allowing us to express properties on normal attacks which we prove by
replacing a subterm of� byCℎarlie.

3.2. Simple lemmas on intruder derivations

In this section, we will give some useful definitions and properties of derivations. We
shall introduce a notion of normal derivation, denoted byDerivt(E). A related notion of
normal derivation has been studied in [7]. Rather than a natural deduction presentation
in [7] we use here term rewriting.

Definition 5 Given a derivationD = E0 →R1
E1 →R2

.. →Rn
En, a termt is a goal

ofD if t ∈ En andt /∈ En−1.

For instance ift ∈ forge(E) there exists a derivation with goalt: we take a derivation
D = E →R1

. . . →Rn
E′ with t ∈ E′ and then we take the smallest prefix ofD

containingt. We will consider particular derivations minimal in length:

Definition 6 We denoteDerivt(E) a derivation of minimal length among the deriva-
tions fromE with goalt (chosen arbitrarily among the possible ones).

In order to bound the length of such derivations, we can provethe two following
lemmas: every intermediate term inDerivt(E) is a subterm ofE or t. Lemma 1 means
that if a term is decomposed in a minimal derivation fromE then this term has not been
composed before and therefore belongs toE:

Lemma 1 If there existst′ such thatLd(t
′) ∈ Derivt(E) thent′ is a subterm ofE



Proof:
Let D = Derivt(E) = E0 →R1

E1... →Rn
En andt′ be (one of) the first occuring

term not validating the lemma forD, assuming there exists one (or more). That is, there
existsp such thatRp = Ld(t

′), t′ is not a subterm ofE, D1 = E0 →R1
...Ep−1, and for

all Ld(v) ∈ D1, v is a subterm ofE. (Note:p > 1 sincet′ /∈ E) Moreover, by minimality
of D we haveLc(t

′) ∕∈ D. Therefore,t′ has necessarily be obtained by a decomposition
rule inD1, i.e. there exists a termu with t′ subterm ofu such thatLd(u) ∈ D1. However,
thanks to the minimality oft′, this means thatu is a subterm ofE, and thust′ too. So the
assumption is contradicted, and consequently and the lemmais proved. ⊓⊔

Lemma 2 means that in a minimal derivation we only need to compose subterms of
the final goal or keys occurring in the initial setE:

Lemma 2 If there existst′ such thatLc(t
′) ∈ Derivt(E) thent′ is a subterm of{t}∪E

Proof:
LetD = Derivt(E) = E0 →R1

E1...→Rn
En andt′ be (one of) the last occuring term

not validating the lemma forD, assuming there exists one (or more). That is, there exists
p such thatRp = Lc(t

′), t′ is not a subterm of{t} ∪ E, D2 = Ep →Rp+1
...En, and

for all Lc(v) ∈ D2, v is a subterm of{t} ∪ E. (Note:p < n sincet′ ∕= t) Moreover, by
minimality of D, we haveLd(t

′) ∕∈ D. Similarly, by minimality ofD and sincet′ ∕= t,
there exists a rule inD2 usingt′: otherwiseLc(t

′) would be useless andD would not
be minimal. Let us consider all possible rules usingt′ in D2. Decomposition oft′ is not
allowed as pointed above; Decomposition of{∣u∣}at′−1 is not allowed becauset′ is not an
atom (since it is composed), and thus not inKeys; Decomposition of{∣u∣}st′ means that
there existsLd(w) ∈ D2 such thatt′ is a subterm ofw, and thus thanks to Lemma 1,t′

is a subterm ofE; And finally, composition usingt′ means that there existsLc(u) ∈ D2

with t′ subterm ofu, and thus by hypothesis bothu and t′ are subterms of{t} ∪ E.
Therefore, in every case the assumption is contradicted, and consequently the lemma is
proved. ⊓⊔

We show in the next proposition that there always exist derivations of a termt from
a setE with a number of rules bounded by the DAG-size of initial and final termst, E.
This will be very useful to bound the length of the derivations involved in a normal attack.

Proposition 1 For any set of termsE and for any termt, if Derivt(E) = E →L1

E1..→Ln
En then for all1 ≤ i ≤ n, Ei ⊆ Sub(Ei) ⊆ Sub(t, E).

Proof:
Let Derivt(E) = E →L1

...→Ln
En. By definition ofDeriv, for any termt′ subterm

of ∪i=1..nEi ∖ E there existsu with t′ subterm ofu such that eitherLd(u) ∈ D or
Lc(u) ∈ D. Therefore, thanks to Lemmas 1 and 2 above,u (and thust′) is a subterm of
{t}∪E. It follows that fori = 0..n,Ei ⊆ Sub(t, E), which proves the proposition.⊓⊔

3.3. Decision Algorithm

We can now give a simple algorithm to decide whethert ∈ forge(E). It is depicted in
Algorithm 1, and assumes a representation ofSub(E, t) as a DAG: anyway the DAG can
be computed in polynomial time from inputs given in standardtree representations.



1: INPUTS:E, t represented by a DAG forSub(E, t)
2: K1 ← E
3: K0 ← Sub(E, t) ∖ E
4: repeat
5: C ← ∅
6: for all e ∈ Sub(E, t) do
7: if e ∈ K0, andl, r ∈ K1, with e = {∣l∣}sr or e = {∣l∣}ar or e = ⟨l, r⟩ then
8: K0 ← K0 ∖ {e}
9: K1 ← K1 ∪ {e}

10: C ← C ∪ {e}
11: end if
12: if e ∈ K1, l ∈ K0, r ∈ K1, with e = {∣l∣}sr or e = {∣l∣}ar then
13: K0 ← K0 ∖ {l}
14: K1 ← K1 ∪ {l}
15: C ← C ∪ {l}
16: end if
17: if e ∈ K1 with e = ⟨l, r⟩ then
18: K1 ← K1 ∪ {l, r}
19: end if
20: end for
21: until C = ∅ or t ∈ K1

22: if t ∈ K1 then
23: True
24: else
25: False
26: end if

Algorithm 1. Passive Attack Decision

The correctness of Algorithm 1 is a consequence of the previous lemmas. We only
need to compute the setK1 of subterms ofE, t that can be deduced fromE and check
whethert belongs to this set. The algorithm computes iterativelyK1 by checking for
each term whether it can be derived from the currentK1 or can be decrypted (and if so
its content is added toK1).

The REPEAT loop can be entered at most∣Sub(E, t)∣DAG times. The FORALL
loop is executed∣Sub(E, t)∣DAG times. The work done in this innermost loop is
also bounded by a constant. Hence the algorithm takesO(n2) time wheren =
∣Sub(E, t)∣DAG.

We now suggest a more efficient solution by reduction to Horn-Sat:

Proposition 2 Given a set of termsE and a termt the existence of a passive attack can
be decided in linear time.

Proof:
GivenSub(E, t), we consider each subterms ∈ Sub(E, t) as a propositional variable
and we generate the following set of Horn clauses:



∙ for s = {∣e∣}sb or s = {∣e∣}ab we generate the clauses:s, b⇒ e ande, b⇒ s;
∙ for s = ⟨l, r⟩ we generate the clausesl, r⇒ s, s⇒ l, ands⇒ r;
∙ for s ∈ E we generates;

The union of all generated clauses and¬t is a set calledℋ. Now obviously the set of
clausesℋ is satisfiable ifft cannot be derived by intruder rules fromE. There exists a
linear algorithm by Dowling and Gallier [11] to test the satisfiability of a set of Horn
clauses, hence we can conclude. ⊓⊔

4. Active Case

4.1. Polynomial bound on attacks

We shall prove that when there exists an attack then a normal attack (see Definition 4) can
always be constructed from subterms that are already occurring in the problem specifica-
tion. This will allow to give bounds on the message sizes and on the number of rewriting
rules involved in such an attack.

Let us consider a protocolP = {R′
� ⇒ S′

� ∣ � ∈ ℐ}, a secret messageSecret
and a set of messagesS0 as the initial intruder knowledge. We assume that there exists
an attack described by a ground substitution� and a correct execution order� : ℐ ′ −→
1, . . . , k (wherek is the cardinality ofℐ ′). We defineRi = R′

�−1(i) andSi = S′
�−1(i) for

i = 1, . . . , k. Note thatR′, S′ now replaceR,S for readability, unlike previous sections.
We also define:SP as the set of subterms of the terms in the setP = {Rj ∣ j =

1, . . . , k} ∪ {Sj ∣ j = 0, . . . , k}, andSP≤i the set of subterms of the terms in{Rj ∣ j =
1, . . . , i} ∪ {Sj ∣ j = 0, . . . , i}.

The following Proposition 3 is a key property of this chapter. It shows that every
substitution� in a normal attack is only built with parts of the protocol specification.
Using this, we will be able to prove that every substitution�, and every message, in a
normal attack have a DAG-size bounded by a polynomial in the protocol’s DAG-size.

However, this relies on the technical Lemma 3. Informally, it states that if a term

can be forged from a set of messageE by composing two messages
1, 
2 both derived
from E then it is always possible to avoid decomposing
 in a derivation fromE (with
any goalt). Indeed, such a decomposition would generate messages
1, 
2 that can be
derived directly fromE in another way.

Lemma 3 Let t ∈ forge(E) and 
 ∈ forge(E) such thatDeriv
(E) ends with an
application of a rule inLc. Then there is a derivationD with goalt starting fromE, and
verifyingLd(
) /∈ D.

Proof:
Let t ∈ forge(E) and
 ∈ forge(E) be given withDeriv
(E) ending with an appli-
cation of a rule inLc. Let D beDeriv
(E) without its last rule, i.e.Deriv
(E) is D
followed byLc. Let D′ be the derivation obtained fromDerivt(E) by replacing every
decompositionLd of 
 by D. ThenD′ is a correct derivation, sinceD generates� and
� which are the two direct subterms of
 (
 is obtained by a composition).D does not
contain a decompositionLd of 
 by definition ofDeriv
(E), since it already contains



a composition of
. HenceD′ build t from E, satisfiesLd(
) /∈ D′, and the lemma
follows. ⊓⊔

We now state and prove our main property:

Proposition 3 Given a normal attack(�, �), for any variablex and anys subterm of
�(x), we haves ∈ SP�.

Proof:
We prove this proposition by contradiction. That is, let(�, �) be a normal attack with
s ∈ Sub(V ar(P)�), and assume (*)s /∈ SP�.

Let N beminimalsuch thats ∈ Sub(RN�, SN�). It exists by definition ofs, since
there exists at least one protocol step containing the variable which value containss.
Consequently, there existsy ∈ V ar(RN , SN ) such thats is a (strict) subterm of�(y),
since otherwise∃t ∈ Sub(RN , SN) such thatt� = s, and (*) would be contradicted.
Moreover, by definition ofP any variable (includingy) must be received before it is sent,
which means here thats ∈ Sub(RN�) sinceN is minimal.

It follows that s /∈ Sub(S0�, .., SN−1�) but s ∈ Sub(RN�). However, we also
know thatRN� ∈ forge(S0�, .., SN−1�), meaning that necessarilyLc(s) ∈ D with
D = DerivRN�(S0, .., SN−1�): only Lc rules can create new subterms along a deriva-
tion. We note thats /∈ Atoms (by definition of composition rules). By truncatingD up
toLc(s), it follows that :

s ∈ forge(S0�, .., SN−1�)

Second, we use the fact thats can be built fromS0�, .., SN−1� to create a new and
smaller attack from�. Let D = Derivs(S0�, .., SN−1�). Thanks to the minimality of
N , s is not a subterm ofS0�, .., SN−1�, and thus, thanks to lemma 1 we know thatD
ends with a composition rule. We denote byt� the replacement of every occurrence ofs
in a termt byCℎarlie. The replacement� is extended to sets of terms, substitutions and
rules in the natural way. The new attack we are interested in will be defined by�′ = ��
and the same execution order� as for�, at the condition that every messagesRj�

′ can
still be build by the intruder fromS0�

′, .., Sj−1�
′, for anyj. This is what we prove now:

∙ Thanks to (*),∀t ∈ SP includingRj andSj for anyj, we havet�′ = t(��) =
(t�)�. Thus, this is simply denoted ast��.

∙ If j < N , thens /∈ Sub(Rj�,E0) with E0 = S0�, .., Sj−1�, and thus,Rj�
′ ∈

forge(E0�).
∙ If j ≥ N , then thanks to Lemma 3 applied onD, there exists a derivation

E0 →L1
E1 →L2

...→Lp
Ep

with goalRj�, starting fromE0 = S0�, .., Sj−1�, and such that∀i, Li ∕= Ld(s),
i.e. wheres is never decomposed. We show that for anyi = 1..p, Ei� ⊆
forge(Ei−1�):

∗ If Li = Lc(t) with t = ⟨�, �⟩ or t = {∣�∣}a� or t = {∣�∣}s� , then eithers ∕= t
i.e.Ei� ⊆ forge(Ei−1�) sincet� can be build from�� and��, or s = t i.e.
Ei� ⊆ forge(Ei−1�) sinceCℎarlie ∈ S0 ⊆ Ei−1�.



∗ If Li = Ld(t) with t = ⟨�, �⟩ or t = {∣�∣}a� or t = {∣�∣}s� , thens ∕= t by con-
struction of the derivation. Therefore,t� is non-atomic and can be decomposed
i.e.Ei−1� →Ld(t�) Ei�, meaning thatEi� ⊆ forge(Ei−1�).

By iteration oni from 1 to p, it follows thatEp� ⊆ forge(E0�), and thus :

Rj�
′ ∈ forge(S0�

′, .., Sj−1�
′)

Consequently,(�′, �) defines an attack. However, this violates the minimality of(�, �)
as a normal attack (see Definition 4), since every occurrences of the non-atomic terms
in � were replaced byCℎarlie. Please note thatCℎarlie is counted in the size of an
attack, even if it is not a subterm of�. Also, s appears in� at least once. Therefore, the
hypothesis (*) is contradicted, which proves the proposition. ⊓⊔

We can now use this property to bound the DAG-size of every�(x), and even all the
messages exchanged during a normal attack. This is shown in the following theorem:

Theorem 1 If � is the substitution in a normal attack, then for everyE ⊆ SP we have
∣E�∣DAG ≤ ∣P∣DAG. In particular, this holds forE = V ar, orE = {Ri}∪S0∪..∪Si−1

with i = 1..k, or E = {Secret} ∪ S0 ∪ .. ∪ Sk.

Proof:
Let � andE be as above. That is,∣E�∣DAG = ∣Sub(E�)∣ ≤ ∣Sub(SP�)∣ with ∣F ∣ the
number of elements inF . Let s be inSub(SP�). By construction, there existsu ∈ SP
such thats ∈ Sub(u�). Therefore, we have two cases depending on wheres occurs in
u�: eithers = u′� with u′ ∈ Sub(u), i.e.s ∈ SP�; ors ∈ Sub(�(x)) with x ∈ V ar(u),
and thus thanks to Proposition 3,s ∈ SP�. Since in both cases we haves ∈ SP�, it
follows thatSub(SP�) ⊆ SP�, and thus :

∣E�∣DAG ≤ ∣SP�∣ ≤ ∣SP∣ = ∣P∣DAG

since applying� to a set preserves or reduces its cardinality. ⊓⊔

4.2. Decision Algorithm for Active Attacks

We are now going to present a NP decision procedure for findingan attack. The proce-
dure amounts to guess a correct execution order� and a possible ground substitution�
with a polynomially bounded DAG-size, and finally to check using the algorithm pre-
sented before for passive attacks that at each protocol step, the intruder can produce the
mesasge expected by honest participants.

We assume that we are given a protocol specification{(�, R′
� ⇒ S′

�) ∣ � ∈ ℐ}. Let
P = {R′

�, S
′
� ∣ � ∈ ℐ}, a secret messageSecret and a finite set of messagesS0 for initial

intruder knowledge. IfP, S0 are not given in DAG-representation, they are first converted
to this format (in polynomial time). We assume that the DAG-size ofP, S0, Secret is n,
and the finite set of variables occuring inP is V .

The procedure for checking the existence of an active attackis written in Algo-
rithm 2. We discuss its correctness and complexity below, first for a single session then
for the several ones.



1: INPUTS: Protocol specificationP , set of termsS0, and termSecret.
2: Guess a correct execution order� : ℐ ′ −→ {1, .., k} with k = ∣ℐ ′∣
3: Guess a ground substitution� such that∣V �∣DAG ≤ ∣P ∣DAG

4: LetRi = R′
�−1(i) andSi = S′

�−1(i) for i ∈ {1..k}
5: LetRk+1 beSecret.
6: For eachi ∈ {1..k + 1}, check thatRi� ∈ forge({Sj� ∣ j < i} ∪ {S0})

using Algorithm 1
7: If each check is successful then answer YES, otherwise answer NO.

Algorithm 2. NP Decision Procedure for the Insecurity Problem

4.2.1. Single Session Case

Let us first remark that the procedure in Algorithm 2 is NP. A correct execution
order is a permutation of a subset ofℐ, and can be guessed in polynomial time. A ground
substitution� such that∣V �∣DAG ≤ n can be guessed in polynomial time : first, guess
an ordered list ofl nodes,l ≤ n, and equip each of them with a label (either a binary
operator from the term algebra, an atom inP or Cℎarlie), plus two edges pointing to
higher ordered nodes if the label was a binary operator, and none if it was an atom inP
or Cℎarlie; by construction this defines an acyclic graph of size at mostpolynomial in
n, representing a set of termsT . This representation is not minimal as a DAG, but we
reduce it to a DAG representation by eliminating duplicate nodes (i.e. with same label
and same childs) in polynomial time. Now, we guess� by choosing a term inT as the
value ofx for each variablex in V . Finally, we know from Section 3 that the passive
attack decision algorithm is polynomial, and here it is usedat mostn+ 1 times.

We can now see that this procedure is correct and complete since it answers YES if
and only if the protocol has anattack. If an attack exists, then one of the smallest attacks
on this protocol is anormal attack, defining a correct execution order and a ground
substitution which are possible guesses for the algorithm since the passive attack decision
algorithm is complete. On the other hand if the procedure answers YES, the verification
performed on the guessed substitution proves that the protocol has an attack, since the
passive attack decision algorithm is correct.

4.2.2. Multiple Sessions Case

We simulate the execution of several sessions of a protocolP by the execution of a
single session for a more complex protocolP ′ of size polynomial in∣P ∣×m wherem is
the number of sessions. Therefore this will reduce immediately the security problem for
several sessions to the security problem for one session andwill show that the insecurity
problem is in NP for multiple sessions too. Note that the principals may have some
common initial knowledge in different sessions. Hence the sessions are not necessarily
disjoint.

We assume given a protocol specificationP with its associated partial order< on
a set of stepsW . Let m be the number of sessions of this protocol we want to study,
let V ar be the set of variables inP and letNonces be the set of nonces (a subset of
Atoms) in P . The nonces are given fresh values at each new session by definition. Also
variables from different sessions should be different. This is because we consider that



in this model messages are not memorized from one session to another (except maybe
by the intruder). Therefore we shall definem renaming functions�i, for i = 1..m, as
bijections fromW ∪Nonces ∪ V ar to m new sets (mutually disjoint and disjoint from
W ∪Nonces ∪ V ar) such that:

�i(w) = wi for all w ∈W
�i(N) = Ni for all N ∈ Nonces
�i(x) = xi for all x ∈ V ar

We assume that each set of stepsWi for i = 1..m, is provided with a partial order<i

such that for allw,w′ ∈ W and for allwi, w
′
i ∈ Wi, w < w′ iff wi < w′

i. Let Pi

be the protocol obtained by applying the renaming�i to P . We have nowm copyPi,
i = 1..m, of the protocol. We combine them now into a unique protocol denotedm.P
as follows. The set of steps is by definition the union

∪m
i=1 Wi of the steps in all copies

Pi, for i = 1..m. The partial order on
∪m

i=1 Wi is defined as
∪m

i=1 <i. It is easy to see
that the execution of one session of the new protocol is equivalent to the execution ofm
interleaved sessions of the initial protocol.

Lemma 4 LetS0 be the initial intruder knowledge. The DAG-size of(m.P, S0) isO(n×
m) wheren is the DAG-size ofP, S0.

Therefore a normal attack ofm.P can be bounded polynomially:

Corollary 1 If � is the substitution in a normal attack ofm.P assuming that the initial
intruder knowledge isS0 and the DAG-size of(P, S0) is n, then� can be represented in
O((n ×m)2).

Then applying the NP procedure for one session we derive immediately:

Theorem 2 Protocol insecurity for a finite number of sessions is decidable and in NP.

5. Complexity

We show now that the existence of an attack when the input are aprotocol specification
and initial knowledge of the intruder is NP-hard by reduction from 3-SAT. The proof
is similar to the one given by [1] for their model, but does notneed any conditional
branching in the protocol specification. The propositionalvariables arex1, .., xn = −→x ,
and an instance of 3-SAT isf(−→x ) =

⋀

i∈I(x
"i,1
i,1 ∨x

"i,2
i,2 ∨x

"i,3
i,3 ) where∀i, j ∈ I×{1..3},

xi,j ∈ {x1, .., xn}, "i,j ∈ {0, 1}, andx0 (resp.x1) meansx (resp.¬x).
The idea of the reduction is to let the intruder generate a first message,x1, .., xn,

representing a possible solution for this 3-SAT problem. From this initial message a
principalA creates a term representing the instance of the formulaf by this solution.
Then the intruder will use the principalsB,C,D as oracles for verifying that this instance
can be evaluated to⊤. In order to do it the intruder will have toselect an adequate
protocol execution where each principal checks the truth ofa literal in a conjunct. For
instance when the first literal of a conjunct is a propositional variable (resp. a negated
variable), principalB checks whether this variable was assigned the value⊤ (resp.⊥).



If the execution can be achieved thenE gives theSecret term to the intruder, and the
protocol admits an attack.

Let us describe now the protocol. We introduce two atomic keysK andP , and an
atomic term⊥ for representing the boolean value False. The encryption byK will encode
negation, and thus, the boolean value True is represented by⊤ = {∣⊥∣}sK . This coding
of 3-SAT do not requires e.g. that

{∣

∣{∣⊥∣}sK
∣

∣

}

s

K
reduce to⊥, so multiple encryption with

K over⊥ do not represent any specific boolean value. The symmetric key P exists for
storing data under process. Then we define :

∙ g(0, xi,j) = xi,j andg(1, xi,j) = {∣xi,j ∣}
s

K
.

∙ fi(
−→x ) = ⟨g("i,1, xi,1), ⟨g("i,2, xi,2), g("i,3, xi,3)⟩⟩ for all i ∈ I

The protocol variablesx, y, z occurring in the description of step(U, j) should be
considered as indexed by(U, j); the index will be omitted for readability. The partial
order on the protocol steps is the empty order. Hence the protocol steps can be executed
in any order. Note also that the number of steps for each principalB,C,D is equal to the
number of conjuncts in the 3-SAT instance.

Principal A: (A, 1), x1, .., xn ⇒ {∣⟨f1(
−→x ), ⟨f2(

−→x ), ⟨.., ⟨fn(
−→x ), end⟩⟩⟩⟩∣}

s

P

Principal B: (B, i),
{
∣

∣⟨⟨{∣⊥∣}sK , ⟨x, y⟩⟩, z⟩
∣

∣

}

s

P
⇒ {∣z∣}sP for i ∈ I.

Principal C: (C, i),
{∣

∣⟨⟨x, ⟨{∣⊥∣}sK , y⟩⟩, z⟩
∣

∣

}

s

P
⇒ {∣z∣}sP for i ∈ I.

Principal D: (D, i),
{∣

∣⟨⟨x, ⟨y, {∣⊥∣}sK⟩⟩, z⟩
∣

∣

}

s

P
⇒ {∣z∣}sP for i ∈ I.

Principal E: (E, 1), {∣end∣}sP ⇒ Secret

We takeS0 = {⊤,⊥} as the initial intruder knowledge. Remember that⊤ =
{∣⊥∣}sK . By looking at this protocol, it is obvious that with such poor initial knowledge,
there is an attack iff the message sent by principal A can be reduced to{∣end∣}sP i.e. for
all i ∈ I, there existsj ∈ {1, 2, 3} such thatg("i,j, xi,j) = ⊤. But this means that
the intruder has given toA a term representing a solution of 3-SAT, sinceg("i,j , xi,j) is
xi,j

"i,j . Hence the protocol admits an attack iff the corresponding 3-SAT problem has a
solution. Moreover this reduction is obviously polynomial. Hence the problem of finding
an attack with bounded sessions is NP-hard.

The example above shows that the insecurity problem is NP-hard for protocols with
pairs, but without composed keys and without variables in key positions. But we can ob-
tain hardness for a class of protocols with different restrictions. The next protocol shows
that the insecurity problem remains NP-hard even without pairs, without composed keys
and with a unique honest principal whose steps are linearly ordered. On the other hand
we need to use variables at key positions.

Hence our next result will show that finding an attack to a single session of a se-
quential protocol is already an NP-hard problem. Thereforethe non-determinism of the
intruder is sufficient for the insecurity problem to be NP-hard.



Let f(−→x ) =
⋀m

i=1 Dj be an instance of 3-SAT following the same definition as
above (for the first protocol), and letn be the number of propositional variables of−→x .
In the following,x andy are protocol variables and we suppose that their occurrences
represent different variables in different steps of the protocols i.e. they are implicitly
indexed by the protocol steps. To each propositional variable xj we associate an atom
Vj , for j = 1, . . . , n. The initial intruder knowledge includes only these terms:

1.
{
∣

∣{∣P ∣}s⊥
∣

∣

}

s

K
,
{
∣

∣{∣P ∣}s⊤
∣

∣

}

s

K
, andP . The intruder will assign boolean values to−→x

by using{∣P ∣}s⊥ or {∣P ∣}s⊤.
2.

{
∣

∣{∣K∣}s⊥
∣

∣

}

s

Vj
and

{
∣

∣{∣K∣}s⊤
∣

∣

}

s

Vj
, for j = 1..n. These are faked values for−→x al-

lowing the intruder to “skip” some protocol steps when needed. But doing that,
he will not gain any useful knowledge.

We use only one honest principalA, and the protocol steps ofA are linearly ordered by:
(A, (i, j)) < (A, (i′, j′)) iff i < i′ or i = i′ andj < j′, for i = 0, . . . ,m + 1 and
j = 1, . . . , n:

(A, (0, j)) : {∣x∣}sK ⇒ {∣x∣}
s

Vj

In these steps, the intruder selects values for−→x . Since there is one and only one
step for each valueVj , the instantiation of−→x is complete and non redundant. Since the
intruder does not knowK, these values can only be{∣P ∣}s⊥ or {∣P ∣}s⊤.

For each conjunct indicesi , 1 ≤ i ≤ m, and for eachj , 1 ≤ j ≤ n, such thatxj is
a variable in the conjunctDi, let us define the step(A, (i, j)) as :

(A, (i, j)) :
{∣

∣{∣y∣}s⊤
∣

∣

}

s

Vj
⇒ {∣Secreti∣}

s

y if xj occurs positively inDi or

(A, (i, j)) :
{
∣

∣{∣y∣}s⊥
∣

∣

}

s

Vj
⇒ {∣Secreti∣}

s

y if xj occurs negatively inDi

The goal of the intruder is to know all termsSecreti: this would prove that every
conjunctDi is evaluated to⊤. To do this, he must use fory a value he knows in or-
der to decrypt at least one message{∣Secreti∣}

s

y for eachi. However the intruder has

only two possible actions: either he sends toA the message
{∣

∣{∣K∣}s⊤
∣

∣

}

s

Vj
or the mes-

sage
{∣

∣{∣K∣}s⊥
∣

∣

}

s

Vj
but then he will receive back{∣Secreti∣}

s

K which is useless (this step
can be considered as blank for the intruder), or he has assigned toVj the correct value
{
∣

∣{∣P ∣}s⊤
∣

∣

}

s

Vj
or

{
∣

∣{∣P ∣}s⊥
∣

∣

}

s

Vj
, and by sending it toA at the right step he will get back

{∣Secreti∣}
s

P that he can decrypt withP to getSecreti.
The last protocol step is to ensure that the intruder knows each Secreti. For this

purpose let us introduce an atomBigSecret that will be revealed to the intruder iff he
knows every atomSecreti. The last protocol step is:

(A, (m+ 1, 0)) : P ⇒
{
∣

∣..{∣BigSecret∣}sSecret1
..
∣

∣

}

s

Secretm
.

Therefore, the intruder knowsBigSecret if and only if each conjunctDj is eval-
uated to⊤, and this protocol has an attack onBigSecret if and only if the 3-SAT in-
stance admits a solution. This shows the correctness of the reduction, which is obviously
polynomial.

It is interesting to see that the class of protocols considered in the previous reduction
is very close to the simple class of ping-pong protocols [10]: the only difference is the
use of variables as keys (but these variables can take only atomic values).



Decomposition rules Composition rules

Ls(t) : t → a, t with t =
˘̨

˛{∣a∣}s
b

˛

˛

¯

s

b
Lr(t) : a → a, t with t =

˘̨

˛{∣a∣}s
b

˛

˛

¯

s

b

Ls(t) : t → a, t with t =
˘̨

˛{∣a∣}a
K

˛

˛

¯

a

K−1 Lr(t) : a → a, t with t =
˘̨

˛{∣a∣}a
K

˛

˛

¯

a

K−1

Table 3. Extension of the Intruder Model.

From the results above we finally conclude with the main result:

Theorem 3 Finding an attack for a protocol with a fixed number of sessions is an NP-
complete problem.

6. Conclusion

By representing messages as DAGs we have been able to prove that when the number of
sessions of a protocol is fixed, an intruder needs only to forge messages of linear size in
order to find an attack. This result admits obvious practicalimplications since it gives an
a priori bound on the space of messages to be explored for finding flaws in the protocol
(with a model-checker, for instance). We have then derived an NP-procedure for finding
an attack with a fixed number of sessions and composed keys. This result matches the
lower bound of the problem. Several interesting variants ofour model can be reduced to
it. These variants are also easy to implement.

First we could consider that a principal is unable to recognize that a message sup-
posed to be encrypted by some keyK has really been constructed by an encryption with
K. This can be exploited to derive new attacks: if we assume that the rules in Table 3
are added to the intruder model, then new attacks can now be performed as shown in the
following example (the messageend is omitted).

Protocol Rules Attack
((A, 0), init ⇒ {∣Secret∣}aP
((A, 1), {∣x∣}aK−1 ⇒ x) �(x) =

{∣

∣{∣Secret∣}aP
∣

∣

}

a

K

((A, 2),
{∣

∣{∣y∣}aP
∣

∣

}

a

K
⇒ y) �(y) = Secret

since {∣Secret∣}aP →Lr
{∣Secret∣}aP ,

{∣

∣

{∣

∣{∣Secret∣}aP
∣

∣

}

a

K

∣

∣

}a

K−1

and (A, 1) produces
{∣

∣{∣Secret∣}aP
∣

∣

}

a

K

and (A, 2) producesSecret

Obviously, such an attack cannot be performed if theLr rules are not included in the
intruder rewrite system. Since simple cryptographic systems verify the property that en-
cryption is idempotent, it might be interesting to add thesenewLr rules. Moreover, it is
in fact quite easy to prove that the insecurity problem remains NP-complete when these
Lr andLs rules are included: they behave exactly in the same way asLc andLd, allow-
ing us again to restrict ourselves to consider only some special derivations. See [20] for
more informations on this.

We have only considered secrecy properties so far. However,correspondence prop-
erties like authentication, integrity, some kinds of fairness, etc.. can also be expressed us-
ing an appropriate execution order and a polynomial number of forge constraints. Thus,
they can also be detected in NP time.



Without Nonces With Nonces

No bounds [13] Undecidable Undecidable

Infinite number of sessions, and bounded messages [12]DEXPTIME-complete Undecidable

Finite number of sessions, and unbounded messages NP-complete NP-complete

Table 4. Known results

Moreover, protocols with more complex control can also be decided in NP, as long
as executions can be described in polynomial space and checked on a polynomial number
of protocol steps in polynomial time. In particular, branching or synchronizations are not
a problem, thus allowing honest participants to make choices.

Finally, let us notice that our model remains valid when the intruder is allowed to
generate any number of new data: we simply replace in an attack all data that is freshly
generated by the intruder by its nameCℎarlie. Since honest agents do not test inequal-
ities, especially inequalities between data obtained fromthe intruder, all the constraints
are satisfied and the attack still works. Moreover, even allowing inequalities is possible :
since in each attack at most a polynomial number of inequalities can be performed, at
most a polynomial number of nonces are required, and thus, they can be picked up from
the (finite) set of Atoms. This implies that in the finite session case, the intruder does not
gain any power by creating nonces. We can summarize the knownresults in the Table 4.

More extensions of the presented results, especially by adding algebraic properties
to the protocol and intruder models, can be found e.g. in [5,6,16].
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