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1. Introduction

1.1. Background

Symbolic vs. Computational Models. A common criticism of symbolic approaches for
security is that they rely on models that are too abstract to offer clear security guarantees.
In such models the adversary appears to be severely restricted. The axioms that char-
acterize security of primitives allow the adversary only a limited number of operations,
and it is usually unclear how to enforce these axioms in actual implementations. Further-
more, the representation of messages as symbols does not permit reasoning about partial
information, a real concern in many applications.

This criticism is even more relevant given alternative models that offer clearly
stronger guarantees. Under these computational models, security analysis of protocols
considers a much lower level of abstraction. Typically, parties are viewed as algorithms
(written in some Turing-complete language) and the messages with which they operate
and communicate are actual bitstrings. The adversaries are required to operate efficiently
(i.e. run in time polynomial in some security parameter), but are otherwise allowed to
perform arbitrary computations. Furthermore, unlike in the case of symbolic methods
where security of primitives is axiomatized, in computational approaches security is de-
fined. This enables rigorous proofs that implementations actually meet their required
security levels starting from widely accepted assumptions.

The technique most commonly used in such proofs is known as "reduction". The idea
is to show that the security of a cryptographic construct can be reduced to solving some
problem(s) that is believed to be hard. Specifically, one argues that any adversary that
is successful against the cryptographic construct can be used to solve some underlying
hard problem. Typical hard problems include factoring, taking discrete logarithms, the
computational Diffie-Hellman problem, etc [24].

The low level of abstraction and the powerful and realistic adversarial model imply
strong security guarantees schemes with computational security proofs. Unfortunately,
reduction techniques do not scale well. While they enjoyed considerable success for
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primitives and small protocols, more complex cryptographic constructs are notoriously
difficult to analyze rigorously. Nowadays it is quite common that proofs are either high
level sketches that are missing important details, or they are detailed but in this case they
are virtually impossible to check. For symbolic methods, the situation is in some sense
reversed. As discussed above, the high level of abstraction, the axiomatic way of assum-
ing security of primitives, and the rather limited adversary imply that the symbolic secu-
rity proofs do not have clear implications for actual implementations. However, proofs
can be, and usually are, quite rigorous. More importantly, symbolic analysis may benefit
from machine support or may even be completely automated, as explained in previous
chapters.

1.2. Symbolic techniques and computational analysis

Motivated in part by the unsettling gap between the two co-existing approaches, and in
part by the realization that computational proofs could benefit from the rigourousness
specific to symbolic methods, a significant research effort attempts to investigate the
links between symbolic and computational methods for security analysis. The goal is to
tame the complexity specific to computational models via symbolic techniques. Existing
research falls along two main directions.

Symbolic reasoning with computational semantics. One research direction aims to di-
rectly apply the methods and techniques specific to symbolic approaches to computa-
tional models. For example, the work of Datta et al. [2] investigates Protocol Security
Logic that is a variant of the PCL logic of Chapter “Protocol Composition Logic”. The
crucial difference is that the semantics domain of the logic is a standard computational
model, so logical statements are statements about such models. The work of Courant et
al [25] is along similar lines: they show how to use a Hoare-like logic to reason directly
about the computational security of various encryption schemes.

A related but different approach aims to formalize directly computational proofs.
Examples include the work of Blanchet and Pointcheval [15] who develop a framework
based on the game playing technique of Shoup [35] and Bellare and Rogaway [7], and
that of Barthe et al. [5] who used Coq to develop a formal theory of the mathematics
needed for cryptographic proofs, and apply it to several important cryptographic primi-
tives.

Computational soundness. The second research direction is to determine if and under
what conditions proofs carried out in symbolic models imply security under computa-
tional models. This direction became to be known as computational soundness. The first
such result was due to Abadi and Rogaway [1] who prove a computational soundness
result for security against passive adversaries. Techniques for dealing with the active
case were later proposed by Backes, Pfitzmann, and Waidner [3] and by Micciancio and
Warinschi [28]. Numerous other results have built upon these works by considering vari-
ations in the underlying execution model, the set of cryptographic primitives, and the
range of security properties treated (see [20] for a comprehensive survey of the more
recent work.)

At a high level, each of these results relies on the idea that the symbolic abstraction
does not lose too much information regarding the actual (computational) execution. An
alternative interpretation is that these results show that certain adversarial events that are



impossible to achieve in abstract models are highly improbable to achieve in computa-
tional ones.

In turn, this relation between symbolic and computational executions entails compu-
tational soundness theorems: a protocol that is secure symbolically, is also secure com-
putationally. Since the same security property may be expressed in very different ways
in the two settings, this second step does not immediately follow from the previous kind
of results. However, when possible to establish, computational soundness theorems may
prove truly valuable as they essentially say that computational security can be proved
working entirely in symbolic models. In this chapter we give in detail a typical compu-
tational soundness result.

1.3. An extension of the Abadi-Rogaway logic with Diffie-Hellman keys

We describe an extension of the the work by Abadi and Rogaway [1]. There are several
reasons that motivate our choice. Abadi and Rogaway’s seminal result illustrates quite
well the potential of the computational soundness approach. The simpler setting of a pas-
sive adversary enables relatively simple proofs, and the particular extension that we an-
alyze raises some problems typical to computational soundness theorems. Furthermore,
the result itself is applicable to realistic protocols.

In brief, the setting considered by Abadi and Rogaway [1] concerns protocols where
parties exchange messages built from a set of basic messages (constants and keys) us-
ing concatenation and symmetric encryption. These messages are interpreted as either
symbolic terms or as computational distributions on bit-strings. The soundness result of
the paper is that symbolic terms that are equivalent (via an appropriate equivalence re-
lation) have associated distributions that are computationally indistinguishable. This re-
sult implies that one can reason symbolically about indistinguishability of computational
distributions.

The extension that we present considers an extended class of protocols where sym-
metric encryptions keys may also be derived via (general) Diffie-Hellman exchanges. In
this setting parties share some cryptographic group and the set of protocol messages is
extended with group elements. Furthermore, symmetric encryption keys can be derived
from group elements using some key-derivation function. We show how to obtain the
analogue of the Abadi-Rogaway result for this extended setting.

A generalization of the Diffie-Hellman assumption. The usefulness of computational
soundness results depends on the size of the class of protocols that they treat. Trivial
soundness theorems can be easily established. For example, one can simply limit the
symbolic analysis to the empty class of protocols or, equally unsatisfactory, one can
declare all protocols symbolically insecure. The difficulties lie in proving soundness for
(non-trivial) symbolic analysis of large class of protocols.

One typical problem that often arises is that the intuition that guides the axiomatic
security for primitives is not always warranted by the computational security definitions.
More specifically, some uses of primitives may be considered secure when analyzed
symbolically, but the same uses lead to complete breakdowns in computational models. It
is therefore crucial that the design of the symbolic model requires to classify all possible
uses of the primitives into secure and insecure.

Instantiated in the particular context of the extension that we present in this chap-
ter the problem is as follows. We consider group elements obtained by exponentiating a



group generator to various polynomials. These elements can then be used as symmetric
encryption keys. To create a symbolic model that is sound with respect to the computa-
tional model, it is crucial to understand which of the keys derived from group elements
can be recovered and which keys are secret. Simple uses are easy to deal with. For ex-
ample, a Diffie-Hellman key of the form gx1x2 is secure even if gx1 and gx2 are known,
however the key gx1+x2 can be easily computed. More generally however, for any ar-
bitrary polynomial p, one has to determine precisely determine which keys of the form
gp(x1,x2,...,xn) can be recovered and which cannot.

In the first part of the chapter we present a generalization of the DDH assumption
that accomplishes precisely this task. This result is entirely in the realm of computational
cryptography and is absolutely necessary for developing the soundness result that we
present in detail in the remainder of the chapter.

2. Notation and cryptographic preliminaries

In this section we introduce some notation and recall some of the main cryptographic
notions necessary for our results.

We write [k] for the set {1, 2, . . . , k}. We write ∣S∣ for the size of set S. IfA is a ran-
domized algorithm we write x

$←A(y) for the process of sampling from the distribution
of A’s output on input y. We write AO for an algorithm A that may query oracle O in
its computation. Access to more than one oracle is indicated in the straightforward way.

2.1. Computational indistinguishability

Computational indistinguishability of distributions is a standard notion of equivalence
between probability distributions on bitstrings. Informally, two probability distributions
are indistinguishable if no efficient algorithm can determine from which of the two dis-
tributions a given bitstring has been sampled. The formal definition that we give below
(as well as the definitions for other primitives and concepts that we utilize in this chapter)
is in the style of concrete security. Recall that this style departs from that of asymptotic
security (where security is guaranteed as a security parameter tends to infinity). Instead,
concrete bounds on the running time of the adversary are translated into concrete bounds
on the probability that the adversary is able to accomplish a specific task. One benefit
is that one can fix a security parameter and thus avoid working with families of primi-
tives. For example, in this setting one can compare probability distributions, as opposed
to distribution ensembles (families of probability distributions indexed by the security
parameter) as in the asymptotic setting.

Definition 1 (Computational indistinguishability) Let X and Y be two probability
distributions. We say that X and Y are (�, t)-indistinguishable and we write X ≈�,t Y ,
if, for any probabilistic distinguisher D that runs in time at most t, its advantage in
distinguishing between the two distributions is smaller than �:

Advind
X,Y (D) =

∣∣∣Pr[x $←X : D(x) = 1]− Pr[y ← Y : D(y) = 1]
∣∣∣ < �

The probability is over the choice of x and y and the random coins of D.



2.2. Secure symmetric encryption schemes

A symmetric encryption scheme is given by three algorithms:

KG : Parameters× Coins→ Keys

ℰ : Keys× Plaintexts× Coins→ Ciphertexts

D : Keys× Ciphertexts→ Plaintexts ∪ {⊥}

The key generation algorithm KG is probabilistic. It takes as input a security parameter
� and outputs a key k. We write k

$←KG(�) for the process of generating key k on input
security parameter �. If the security parameter is fixed, or understood from the context,
we may simply omit it and write k

$←KG for the same process. Notice that here as well
as for all other randomized algorithms we do not explicitly show the dependence on the
random coins used by the key generation algorithm. The encryption algorithm is also
randomized. It takes as input a key k and a message m ∈ Plaintexts and returns a ci-
phertext c. We write c

$←ℰ(k,m) for the process of generating ciphertext c, an encryp-
tion of plaintext m under key k. The decryption algorithm is typically deterministic. It
takes as input a key k and a ciphertext c and returns the underlying plaintext or ⊥ if the
decryption process does not succeed. We write m ← D(k, c) for the process of obtain-
ing m as a decryption of c using key k. It is mandated that for any k that can be the
output of the key generation algorithm and for any message m ∈ Plaintexts it holds that
D(k, ℰ(k,m)) = m.

The security of encryption scheme comes in many flavors. We follow the definitional
approach of Bellare et al. [8] and of Abadi and Rogaway [1]. The idea is to define security
of an encryption scheme via the requirement that an adversary is not able to tell apart
encryptions of messages that he chooses, from encryptions of some fixed string. One
way to model this intuition is to consider adversaries that interact with an oracle to which
it can submit arbitrary bitstrings. This oracle is keyed by some key k of the symmetric
encryption scheme and can behave in one of two possible ways. The first possibility is
that it returns encryptions under k of the bitstrings that the adversary submits as queries.
We write ℰ(k, ⋅) for this oracle to which we refer to as the "real" oracle. The second
possible behavior is that the oracle ignores its query and simply returns an encryption
of 0 under k. We write ℰ(k, 0) for this oracle, and refer to it as the "fake" oracle. The
task of the adversary is to figure out with which of the two possible oracles it interacts.
Without loss of generality we may assume that the output of the adversary is binary: 1
for the guess that it interacts with the real oracle and 0 for the guess that it interacts with
the fake oracle. A scheme is secure if the adversary cannot tell apart the two oracles, or
in other words, that the adversary outputs 1 when it interacts with the first oracle about
as often as when it interacts with the second oracle. Since in his attempt to distinguish
between the two oracles the adversary gets to choose which plaintexts it wants to see
encrypted, the resulting security notion is called indistinguishability against plaintext
attack. Our presentation of the notion departs from the standard notion in that it requires
that an adversary cannot tell apart encryptions of messages, even if these messages are of



different length. We write IND-CPA∗ for this notion to distinguish it from the standard
IND-CPA notion1.

Definition 2 (IND-CPA∗ security) Let Π = (KG, ℰ ,D) be a symmetric encryption
scheme and � some fixed security parameter. We define the advantage of an adversaryA
by

Advind-cpa∗
Π (A) =

=
∣∣∣Pr [k $←KG : Aℰ(k,⋅) = 1

]
− Pr

[
k

$←KG : Aℰ(k,0) = 1
] ∣∣∣ .

We say that an encryption scheme (KG, ℰ ,D) is (�, t)-IND-CPA∗-secure if for any ad-
versary A running in time t it holds that: Advind-cpa∗

Π (A) < �.

2.3. The Decisional Diffie-Hellman assumption

Fix a cyclic group G of order q and let g be a generator of G. Informally, the Decisional
Diffie-Hellman assumption states that it is difficult to distinguish a triple (gx1 , gx2 , gr)
from (gx1 , gx2 , gx1x2) when x1, x2, r are chosen uniformly at random.

Definition 3 (The Decisional Diffie-Hellman assumption) Let G be a group of order q
and g a generator of G. For an algorithm A define its advantage against the Decisional
Diffie-Hellman problem in G by

Advind-ddh
G (A) =

∣∣∣∣Pr [x1, x2
$←ℤq : A(gx1 , gx2 , gx1x2) = 1

]
−Pr

[
x1, x2, r

$←ℤq : A(gx1 , gx2 , gr) = 1
] ∣∣∣∣

The probabilities are taken over the choices of x1, x2 and r as well as the random coins
of A. We say that the (�, t)-DDH assumption holds in G, or alternatively that the DDH
problem is (�, t) hard in G if for all probabilistic adversariesA that run in time t it holds
that Advind-ddh

G (A) < �.

3. A generalization of the Decisional Diffie-Hellman assumption

In this section we present a generalization of the standard Decisional Diffie-Hellman
assumption and explain its relation with the original problem.

3.1. Motivation

We start with a motivating discussion and some intuition. Consider some cyclic group
G of order q, g a generator of G, and a tuple t1 = (gx1 , gx2 , gx3 , gx1x2x3), where the
exponents are chosen uniformly at random. Can an adversary tell the tuple above from

1To obtain the standard IND-CPA security notion one replaces in the following definition the oracle ℰ(k, 0)
with the oracle ℰ(k, 0∣⋅∣) that when queried with message m returns the encryption of the all 0 string of length
∣m∣.



the tuple t2 = (gx1 , gx2 , gx3 , gr), i.e. the tuple where the last element is replaced with a
group element chosen uniformly at random? It turns out that telling the two tuples apart
is as hard as solving the DDH problem. This can be seen as follows. Consider the tuple
t3 = (gx1 , gx2 , gx3 , grx3), with randomly chosen x1, x2, x3, r. Notice that t3 is in fact
selected from the same distribution as t2 (the exponent in the last element of the tuple is
chosen at random from ℤq in both cases and the rest of the components are the same).
Finally, observe that an adversary D that distinguishes between t1 and t3 can be easily
converted into an adversary that solves the DDH problem in G. Indeed, on input a triple
(a, b, c) adversary A selects x3

$←ℤq and passes to D as input the tuple (a, b, gx3 , cx3).
If the input of A is a true DDH tuple then the input of D follows the distribution of t1. If
the input of A is a fake DDH tuple, then the input to D follows the distribution of t3.

Consider now the tuples (gx1 , gx2 , gx1+x2) and (gx1 , gx2 , gr). Clearly, in this case
an adversary can immediately tell the two cases apart by simply checking if the product
of the first two components of the tuple equals the third component. More generally, the
adversary can tell if the exponent in the third component of the tuple is a linear com-
binations of the exponents of the first two components by raising these two appropriate
powers and then multiplying them.

The two examples show that while for an adversary it is trivial to identify linear
relations between the exponents observing any other sort of relation seems to be difficult.

In this section we confirm this intuition in the form of a powerful generalization
of the DDH assumption. Informally, we allow the adversary to see gpi(x1,x2,...,xn) for
polynomials pi in a set P , for randomly chosen x1, x2, . . . , xn. The task of the adver-
sary is then to distinguish gqj(x1,x2,...,xn) for polynomials qj in some set Q from grj for
randomly chosen rj . It turns out that as long as the polynomials in Q are linearly inde-
pendent and are not in the linear span of P then this task is tightly related to solving the
DDH problem in the underlying group.

In the remainder of the section we formalize the generalization of the DDH problem
and explain how it relates to the DDH assumption in the underlying group. The formal
proof of the result is outside the scope of this chapter (see [13] for details), but we recall
sufficiently many details to clarify the relation between the above problem and the DDH
problem.

Fix a set of variables {X1, X2, . . . , Xn} and let ℤq[X1, X2, . . . , Xn] be the
ring of multivariate polynomials with coefficients in ℤq. For a polynomial p ∈
ℤq[X1, X2, . . . , Xn] we write var(p) for the set of variables that occur in p and mon(p)
for the set of monomials (recall that a monomial is just a product of variables to posi-
tive integer powers) that occur in p. The notation extends to sets of polynomials in the
obvious way. For example, for set P = {X1X3 + X1X4, X2 + X1X4} we have that
var(P ) = {X1, X2, X3, X4} and mon(P ) = {X2, X1X3, X1X4}. XXX For a mono-
mial m we write ord(m) for the order of m (i.e., the sum of the powers of its variables).
We say p is power-free if any Xi ∈ var(p) occurs in p only raised to power 1. For
example polynomials X1 + X2X3 and X1X2X3 are power-free but X1 + X2

2 is not.
We write PF(ℤq[X1, X2, . . . , Xn]) for the set of power-free polynomials with variables
{X1, . . . , Xn} and coefficients in ℤq. The results that we present only hold for such
polynomials, so in the remainder of the chapter, otherwise specified, the polynomials
that we consider are power-free. For a set of polynomials P = {p1, p2, . . . , pn} we write
Span(P ) for the set of polynomials spanned by P , that is



Span(P ) = {
n∑

i=1

�i.pi ∣ �i ∈ ℤq, i = 1, 2, . . . , n}

3.2. The (P,Q)-DDH assumption

In what follows we fix sets P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm} of
power-free polynomials in ℤq[X1, X2, . . . , Xn]. Let R = {R1, R2, . . . , Rm} be a
set of variables that do not occur in P and Q: R ∩ (var(P ) ∪ var(Q)) = ∅. To
these sets we associate three oracles that share an internal state which is a mapping
� : {X1, X2, . . . , Xn} ∪R→ ℤq. We write P(�),Q(�) and R(�) for these oracles. The
behavior of the oracles is as follows.

∙ Oracle P accepts as input any polynomial p ∈ P and returns the value
gp(�(X1),�(X2),...,�(Xn)).

∙ Oracles Q and R accept as input any polynomial qj ∈ Q and return, respectively,
the values gqj(�(X1),�(X2),...,�(Xn)) and g�(Rj).

An adversary is given access to either the pair of oracles P,Q, or to the pair of oracles
P,R, and his goal is to determine which is the case. We call the problem associated to
polynomial sets P and Q, the (P,Q)-DDH problem, and the pair (P,Q) a challenge. For
example, if P = {X1, X2} and Q = {X1X2} then the (P,Q) − DDH assumption is
precisely the DDH assumption. With other choices for P and Q one can easily get other
variations of the DDH problem encountered throughout the literature. These include the
group Diffie-Hellman assumptions [12], the parallel Diffie-Hellman assumption [11], the
General Diffie-Hellman Exponent (GDHE) [10], the Square Exponent [26,19,36], the
Inverse Exponent [33] and many others.

The assumption is given in the next definition.

Definition 4 (The (P,Q)-Decisional Diffie-Hellman assumption) Let G be a cyclic
group of order q and g a generator of G. Let P,QPF(⊆ ℤq[X1, X2, . . . , Xn]) be finite
sets of power-free polynomials. We define the advantage of an algorithm A against the
(P,Q)-DDH problem by

Adv
(P,Q)-ddh
G (A) =

∣∣∣∣Pr [AP(�),Q(�) = 1
]
− Pr

[
AP(�),R(�) = 1

] ∣∣∣∣
where the probabilities are taken over the coins of A and over the map � selected uni-
formly at random from the maps from {X1, X2, . . . , Xn} ∪ R → ℤq. We say that the
(�, t)-(P,Q)-DDH assumption holds in G or, alternatively, that the (P,Q)-DDH as-
sumption is (�, t)-hard in G, if for any probabilistic adversary A that runs in time t, its
advantage is at most �.

For convenience of notation, we sometimes write RealP,Q and FakeP,Q for the pairs of
oracles (P,Q) and (P,R), respectively. If there is no ambiguity, we further simplify the
notation to just Real and Fake.

The next lemma captures a class of pairs (P,Q) for which the the (P,Q)-DDH
problem is easy to solve in any group.

Lemma 1 (Trivial challenges) The (P,Q)-DDH problem is trivial to solve if at least
one of the following conditions holds



1. Span(P ) ∩ Span(Q) ∕= {0}
2. The polynomial in Q are linearly dependant

If a challenge is not trivial we call it non-trivial. Next we aim to show that solving a non-
trivial challenge is related to solving the Decisional Diffie-Hellman problem. We present
a reduction that constructs an adversary against the latter problem from any adversary
against the (P,Q)-DDH for any non-trivial challenge (P,Q). To specify how the success
of the two adversaries are related we need to define several quantities. The following
definitions from [13] are somewhat technical and can be safely skipped.

Define the graph G(P,Q) whose vertexes are the elements of mon(P ∪Q), the mono-
mials that occur in the polynomials of P and Q. There is an edge between two vertexes
m1 and m2 if there exists p ∈ P such that m1,m2 ∈ mon(p). Let mon+

P (Q) be the set
of monomials reachable in this graph from mon(Q). The order of Q within P , denoted
by ord+P (Q), is defined by

ord+P (Q) =
∑

m∈mon+
P (Q)

(
ord(m)− 1

)

The set nm(P,Q) of non-maximal elements of mon+
P (Q) is the set of monomials m ∈

mon+
P (Q) such that there exists a strict super-monomial2 m′ of m that is in mon(P ) but

not in mon+
P (Q). These two quantities are involved in the following relation between

the DDH and (P,Q)-DDH problems. The following theorem says that an adversary that
solves the (P,Q)-DDH problem can be used to solve the DDH problem (with some loss
of efficiency that is quantified in the theorem).

Theorem 1 (Relating (P,Q)-DDH to DDH) Let G be a cyclic group. Let (P,Q) be a
non-trivial challenge over variables X1 to Xn. If the DDH problem is (�, t)-hard in G,
then (P,Q)-DDH is (�′, t′)-hard in G, for

�′ = 2� ⋅
(
ord+P (Q) +

(
2∣nm(P,Q)∣ − 1

)
.
(
n+ ord+P (Q)

))
and 2t′ = t.

The concrete bounds in the above theorem show that in some cases the loss of security
can be exponential (when P and Q are such that the set nm(P,Q) is very large). Never-
theless, in most cases (e.g. when P contains only monomials) the loss is very small. In
the remainder of the paper we will not be concerned with the precise bounds.

4. A Symbolic Logic for Diffie-Hellman Exponentials and Encryption

In this section we develop the soundness result of this paper. Recall that the goal is to
show that reasoning about protocol messages using abstract, symbolic representations
has meaningful implications with respect to computational models for such messages.

2This means that all the variables of m appear in m′ and m is different from m′.



4.1. Syntax

We consider protocols where messages are constructed from a set of basic atoms: group
elements, symmetric keys, and random nonces. More complex messages are obtained
from basic messages using concatenation and encryption.

Formally, we fix finite but arbitrarily large sets of nonce symbols Nonce =
{N1, N2, . . .}, keys for a symmetric encryption scheme SKeys = {K1,K2, . . .}, and
exponents Exponents = {X1, X2, . . .}. We write Poly for the set of power-free poly-
nomials over variables in Exponents with coefficients in ℤq. Notice that q is an ar-
bitrary but fixed natural number, and is a parameter of the symbolic language that we
define here. Messages are terms in the set Msg defined by the grammar:

Basic ::= SKeys ∣ gPoly ∣ Nonce

Keys ::= SKeys ∣ ℎ(gPoly)

Msg ::=Basic ∣ (Msg,Msg) ∣ {∣Msg∣}sKeys

In the above definition g and ℎ are symbols different form all other symbols. They repre-
sent a generator for some group and a key derivation function, respectively. The second
defining rule for Keys indicates that we consider encryption keys that are either gener-
ated by the key generation algorithm of an encryption scheme, or are derived from group
elements using the key derivation function.

When an element K of Keys occurs in an expression of the form {∣t∣}sK is said to
be in a key position. All other occurrences are said to be in non-key or message position.

In the remainder of the paper we assume that the pairing operation (_, _) is asso-
ciative so, for example, we simply write (gX1 , gX2 , gX3) instead of (gX1 , (gX2 , gX3)).
Furthermore, we may also omit the parenthesis. We refer to elements of Msg as terms,
expressions, or messages interchangeably.

4.2. Symbolic analysis

In this section we capture symbolically the information that an adversary can obtain
from messages. The conceptual ideas extend those of Abadi and Rogaway [1] and are
as follows. First we fix the powers granted to the adversary. For example, the adversary
should be able to decrypt ciphertexts for which it can obtain the decryption key. Next,
to each term in Msg we attach a pattern. This is an (extended) expression that contains
only the information an adversary can observe, given the powers that we grant him. The
details follow.

THE SYMBOLIC ADVERSARY. The messages that an adversary can compute from a given
set of terms are captured via a deduction relation ⊢⊆ P(Msg) ×Msg. For S ⊂Msg
and E ∈Msg, we write S ⊢ E to mean that the adversary can compute E given S. The
deduction relation is the smallest relation defined by the rules in Figure 1.

The first four rules are straightforward. The rules on the second row indicate that the
adversary knows the group generator, that it can multiply group elements that it knows,
and that it can raise group elements to arbitrary (constant) powers. The first rule of the
third row allows the adversary to decrypt a ciphertext under a key derived from a group



E ∈ S
S ⊢ E

S ⊢ (E1, E2)

S ⊢ E1

S ⊢ (E1, E2)

S ⊢ E2

S ⊢ E1, S ⊢ E2

S ⊢ (E1, E2)

S ⊢ g1
S ⊢ gp, S ⊢ gq

S ⊢ g�p+q

S ⊢ {∣E∣}sℎ(gp), S ⊢ gp

S ⊢ E

S ⊢ {∣E∣}sK , S ⊢ K

S ⊢ E

Figure 1. Rules for defining the deduction power of the adversary. Symbols p and q range over Poly, �
ranges over ℤq and K ranges over SKeys.

pattern(E′) = E′ if E′ ∈ Basic
pattern

(
(E1, E2)

)
=

(
pattern(E1), pattern(E2)

)
pattern

(
{∣E′∣}sK

)
= {∣pattern(E′)∣}sK if E ⊢ K

pattern
(
{∣E′∣}sK

)
= {∣□∣}sK if E ∕⊢ K

pattern
(
{∣E′∣}sℎ(gp)

)
= {∣pattern(E′)∣}sℎ(gp) if E ⊢ gp

pattern
(
{∣E′∣}sℎ(gp)

)
= {∣□∣}sℎ(gp) if E ∕⊢ gp

Figure 2. Rules for defining the pattern of expression E. In the above p ranges over Poly and K ranges over
SKeys.

element, provided that the adversary can compute that group element. The last rule allows
the adversary to decrypt ciphertexts provided that the adversary can also derive the key
used for encryption.

Example 1 For example we have that:

gX1 , gX2 , {∣K∣}sℎ(gX1+X2 ) ⊢ K but gX1 , gX2 , {∣K∣}sℎ(gX1X2 ) ∕⊢ K

The first deduction holds because from gX1 and gX2 the adversary can compute gX1+X2 ,
and hence the encryption key. In the second example the adversary cannot obtain K since
although it knows gX1 and gX2 , the deduction rules do not allow it to compute gX1X2

which is required for decryption.

PATTERNS FOR EXPRESSIONS. The information that an adversary obtains from a sym-
bolic term can be captured by a pattern [1,27]. Intuitively, the pattern of expression
E ∈ Msg is obtained by replacing all its unrecoverable sub-expressions (those sub-
expressions that occur encrypted under keys that the adversary cannot derive from E) by
the symbol □ (undecryptable). For an expression E ∈Msg its pattern is defined by the
inductive rules in Figure 2.

Example 2 For example, the pattern of the expression



gX1 , gX2 , {∣K1∣}sℎ(gX1X2 ), {∣K2∣}sK1
, {∣K3∣}sℎ(gX1+X2 ), {∣K4∣}sK3

is

gX1 , gX2 , {∣□∣}sℎ(gX1X2 ), {∣□∣}
s
K1

, {∣K3∣}sℎ(gX1+X2 ), {∣K4∣}sK3

EXPRESSION EQUIVALENCE. We aim to define an equivalence relation ≡ on the set of
expressions such that if two expressions convey the same amount of information to an
adversary then the expressions should be deemed equivalent. A natural candidate relation
(given the intuition that governs our definition of patterns) is therefore defined as follows:

E1 ≡ E2 if and only if pattern(E1) = pattern(E2).

This notion of equivalence is however too strict. For example expressions K1 and K2

(which both represent symmetric keys) should be considered equivalent, yet their pat-
terns are different. A similar situation also holds for nonces. The solution is to relax the
notion of equality and consider equivalent those expressions that have equal patterns,
modulo a (bijective) renaming of key and nonce symbols. The two expressions above
would have equal patterns modulo the renaming that sends K1 to K2.

A more subtle issue concerns the use of exponentials. Consider expressions E1 =
(gX1 , gX2 , gX1X2) and E2 = (gX1 , gX2 , gX3). Intuitively, if the DDH assumption is
true then the two expressions should be equivalent. Unfortunately their patterns are
clearly different. The reason is that our notion of patterns does not capture the rela-
tions that an adversary may observe between the various group elements that occur in
an expression. The fix that we adopt is to consider equality of patterns modulo injec-
tive renamings of polynomials that define group elements, as long as these renamings
do not change the set of observable relations between group elements. We therefore
want to identify expressions E1 and E2 above, but at the same time, expressions E1 and
E3 = (gX1 , gX2 , gX1+X2) should remain distinguishable. Indeed, there exists a linear
dependency in E3 that does not exist in E1. To determine which renamings are appro-
priate we rely on the results concerning the DDH assumption that we have developed
in Section 3. Recall that the intuition that governs those results says that an adversary
can only observe linear dependencies between the various exponents. Motivated by this
intuition, we introduce the concept of linear dependence preserving injective renaming
for a set P ⊆ Poly of polynomials. Such a renaming is an injective map from P to
Poly which preserves the linear dependencies already existing in P , and that does not
introduce new ones.

Definition 5 (Linear dependence preserving renamings) Let P ⊆ Poly be an arbi-
trary set of polynomials and � : P → Poly be an injective map. Then � is said to be
linear dependence preserving (ldp) if:

(∀p1, p2, . . . , pn ∈ P )(∀a1, ..., an, b ∈ ℤq)

n∑
i=1

ai ⋅ pi = b⇔
n∑

i=1

ai ⋅ �(pi) = b



For an expression E ∈Msg we write poly(E) for the set of polynomials that occurs in
E. Given a mapping � : poly(E)→ Poly we write E� (or �(E)) for the expression E
in which for all p ∈ poly(E) we replace each occurrence of gp with g�(p).

Example 3 If E = (gX1 , gX2 , gX1X2) and � : poly(E) → Poly the map defined by
�(X1) = X1, �(X2) = X2 and �(X1X2) = X3 is ldp and E� = (gX1 , gX2 , gX3). In
contrast, �′ with �′(X1) = X1, �

′(X2) = X2 and �′(X1X2) = X1 + X2 is not ldp
since: X1 +X2 + (q − 1)X1X2 ∕= �′(X1) + �′(X2) + (q − 1)�′(X1X2) = 0

The following notion of expression equivalence accounts for bijective renamings of keys
and nonces, as well as for the relations that an adversary may observe between the various
group elements that occur in an expression via ldp renamings.

Definition 6 Expressions E1 and E2 are equivalent, and we write E1
∼= E2, if there

exists injective renamings �1 : SKeys → SKeys, �2 : Nonce → Nonce, and
injective ldp-renaming �3 : poly(E2)→ Poly such that:

pattern(E1) = pattern(E2�1�2�3)

ACYCLIC EXPRESSIONS. An important concept for computational soundness in general
and for the results in this chapter in particular is the notion of acyclic expressions [1].
Informally, these are expressions where encryption cycles (situations where a key K1

encrypts key K2, which in turn encrypts K3, and so on, but one of the keys Ki is equal
to K1) do not occur. Due to technical reasons, soundness cannot be guaranteed in such
situations by standard assumptions on the encryption scheme.

For an expression E we define the relation ≺E on the set SKeys ∪ Poly (re-
stricted to the symmetric keys and polynomials that actually occur in E). For any
u, v ∈ SKeys ∪ Poly we set u ≺E v if u or gu occurs in E in a message position
encrypted with v (if v ∈ SKeys) or with ℎ(v) (if v ∈ Poly). This relation is used in
defining formally acyclic expressions.

Definition 7 (Acyclic expression) An expression E is acyclic if the two following con-
ditions are satisfied:

1. If p is a polynomial such that ℎ(gp) occurs as an encryption key in E, then p is
not a linear combination of the polynomials that occur in E (and are different
from p).

2. The relation ≺E induced by E is acyclic.

The first condition is intended to avoid encryptions in which the plaintext and the en-
cryption key are linearly dependent, as for example in

{∣∣gX1 , gX1+X2
∣∣}s

ℎ(gX2 )
. It can be

easily shown that the occurrence of such a ciphertext can reveal the encryption key with-
out contradicting the security of the encryption scheme. This condition can be further re-
laxed by requiring that p is not a linear combination of polynomials that occur encrypted
under gp. We work with the more restrictive but simpler condition of Definition 7 only
for simplicity.



Algorithm pat(E)
i← 0; K ← uKeys(E); n←∣ K ∣; Ei ← E
while K ∕= ∅ do

select an element K maximal in K with respect to ≺E

Ei+1 ← Ei[{∣ ∣}sK 7→ {∣□∣}
s
K ]

K ← K ∖ {K}
i← i+ 1

output En

Figure 3. Iterative algorithm for computing the pattern of an acyclic expression E.

For acyclic expressions we give in Figure 3 an algorithmic procedure for com-
puting their associated pattern. The algorithm uses the set uKeys(E) = {K ∣ K ∈
Keys, E ∕⊢ K}, the set of keys that cannot be recovered from E. Notice that K ranges
over both standard keys and keys derived from group elements. Informally, the algo-
rithm works as follows. It selects an arbitrary unrecoverable key that does not occur en-
crypted in E and replaces all encryptions under that key with encryptions of □. We write
E[{∣ ∣}sK 7→ {∣□∣}

s
K ] for the expression obtained from E by replacing each occurrence of

an encryption {∣t∣}sK with {∣□∣}sK . The algorithm repeats until there is no unrecoverable
key in E that occurs in a message position. This final expression is the pattern of the
original expression. The algorithm is formalized in Figure 3.

4.3. Computational Interpretation

Next we show how expressions can be interpreted, computationally, as distributions on
bitstrings.

TERMS AS DISTRIBUTIONS. Computationally, each element of Msg (and more gener-
ally, any pattern) is interpreted as a distribution. For example, elements of SKeys rep-
resent (the distributions of) cryptographic keys obtained by running the key generation
algorithm of some (fixed) encryption scheme. A term like gX represents the distribution
of gx when exponent x is chosen at random, and ℎ(gX1X2) represents the distribution of
keys obtained by applying a key derivation function to the group element gx1x2 for ran-
dom x1 and x2. A slightly more complex example is the expression: (gx, gy, {∣K∣}sℎ(gxy))
that represents the distribution of a conversation between two parties that first exchange
a Diffie-Hellman key, and then use this key to encrypt a symmetric key.

We now specify precisely how to associate to each symbolic expression in Msg a
distribution. For this, we fix an encryption scheme Π = (KG, ℰ ,D), a group G = ⟨g⟩
of order q, and a key-derivation function kd : G → {0, 1}�. Here, and throughout the
remainder of the section � is a fixed security parameter. About the key derivation function
we assume that when applied to a random group element it returns a symmetric key,
distributed identically with the output of the key generation function KG.

The algorithm in Figure 4 associates to each expression in Msg (and in fact, more
generally, to each pattern) a distribution. The association is as follows. First, the random-
ized algorithm Init is executed to obtain a map � that associates to each key, nonce, and
random exponent that occur in E a bitstring. The symbol □ is mapped to some fixed



Algorithm Init(E)

For each key K ∈ SKeys set �(K)
$←KG(�)

For each nonce N ∈ Nonce set �(N)
$←{0, 1}�

For each X ∈ Exponents set �(X)
$←{1, 2, . . . , ∣G∣}

Set �(□) = 0
Output �

Algorithm Gen(E, �)
If E ∈ SKeys ∪Nonce ∪ {□} then e← �(E)

If E = (E1, E2) then e1
$←Gen(E1, �); e2

$←Gen(E2, �); e← ⟨e1, e2⟩
If E = gp(X1,X2,...,Xn) then e← gp(�(X1),�(X2),...,�(Xn))

If E = {∣E1∣}sK then m
$←Gen(E1, �); e

$←ℰ(�(K),m)

If E = {∣E1∣}sℎ(gp) then m
$←Gen(E1, �); k ← Gen(gp, �) e

$←ℰ(kd(k),m)

Return e

Figure 4. Algorithms for associating a distribution to an expression (or a pattern) E.

string, here 0. Then, algorithm Gen(E, �) uses � to (recursively) compute a bit-string as-
sociated to each subterm of E, inductively. For example, expression (E1, E2) is mapped
to ⟨e1, e2⟩, where ⟨⋅, ⋅⟩ : {0, 1}∗ → {0, 1}∗ is some injective, invertible mapping which
we fix, but leave unspecified, and e1 and e2 are sampled according to E1 and E2, respec-
tively. Similarly, expression {∣E1∣}sK is mapped to encryption of e1 under �(K), where e1
is sampled according to E1 and �(K) is the key associated to K by � . The interpretation
of keys derived from group elements are obtained from the computational interpretation
of those elements by using the key derivation function kd.

We write [[E]]Π,G for the distribution of e obtained using the two algorithms, that is:
�

$← Init(E); e $←Gen(E, �). Since Π and G are clear from the context, we may simply
write [[E]] for the same distribution.

4.4. Soundness of symbolic analysis

In this section we show that symbolic analysis can be meaningfully used to reason about
the distributions associated to expressions. Specifically, we establish two results. The
first result states that the distribution associated to an expression and the distribution
associated to its pattern are indistinguishable. Informally, this means that patterns are a
sound abstraction of the information obtained by an adversary: no information is lost
even if parts of the expression are essentially erased. Building on this result, we show
that equivalent expressions (expressions that have the same pattern modulo appropriate
renamings) also have indistinguishable distributions. Computational indistinguishability
of distributions can therefore be established by reasoning entirely symbolically.

Before stating our soundness theorem we comment on the requirements that we put
on the primitives used in the implementation. As described in Section 2 and similarly to
the original paper of Abadi and Rogaway [1], we implement encryption using a scheme
that is IND-CPA∗. We emphasize that we use the additional requirement only for sim-



plicity – a similar result can be obtained for IND-CPA security, by refining the pattern
definition [29,27].

The implementation that we consider uses a group where the DDH problem is hard.
In particular, this implies that for any acyclic expression E if ℎ(gp) is an unrecoverable
encryption key that occurs in E, then the (�p, tp)-(poly(E)∖{p}, {p})-DDH assumption
also holds in G, for some parameters �p, tp that depend on the structure of poly(E) and on
p. Indeed, if E is acyclic then p is not a linear combination of the other polynomials that
occur in E. The results of this section require a group where each (poly(E) ∖ {p}, {p})-
DDH problem is difficult. To avoid enumerating over all polynomials in E, and to obtain
a result independent of the structure of the polynomials we simply demand that the group
used in the implementation ensures the required level of difficulty.

Definition 8 Group G is said to be (�, t)-appropriate for acyclic expression E if the
(poly(E) ∖ {p}, {p})-DDH problem is (�, t)-hard in G, for all p for which ℎ(gp) is an
unrecoverable encryption key in E.

Finally, we also require that the key derivation function kd is such thatKG(�) and kd(gr)
output equal distributions when r is selected at random.

We can now state and prove a first result that establishes a link between the symbolic
and the computational models for expressions. Informally, it says that from the point of
view of a computational adversary, no significant amount of information is lost if one
replaces an acyclic expression with its pattern.

Theorem 2 Let E be an acyclic expression. Let Π be an (�Π, tΠ)-IND-CPA∗ secure
encryption scheme and G be an (�G, tG)-appropriate group for E. Then,

[[E]]Π,G ≈�E ,tE [[pattern(E)]]Π,G

where �E and tE are parameters dependent on E that we determine in the proof.

Proof:
The proof makes use of the iterative way of computing patterns for acyclic expressions
(Figure 3). Let E0, E1, . . . , En be the sequence of expressions computed during the ex-
ecution of the algorithm. The expressions are such that E0 = E and En = pattern(E).
First, notice that it is sufficient to show that distributions Di = [[Ei]] and Di+1 = [[Ei+1]]
are close for any i to conclude that [[E0]] and [[En]] are also close. The following lemma
formalizes this intuition.

Lemma 2 Let D0, D1, . . . , Dn be distributions such that for any i ∈ {0, 1, . . . , n − 1}
it holds that Di ≈�i,ti Di+1. Then D0 ≈�,t Dn holds, where � = n ⋅ maxi �i and
t = mini ti.

To see this, consider an adversary A that runs in time t. Then, we have that:∣∣∣Pr [x $←Dn : A(x) = 1
]
− Pr

[
x

$←D0 : A(x) = 1
]∣∣∣ ≤

≤
n∑

i=1

∣∣∣Pr [x $←Di : A(x) = 1
]
− Pr

[
x

$←Di−1 : A(x) = 1
]∣∣∣

≤ n ⋅max
i

�i



where the first inequality follows by triangle inequality and the last one from the assump-
tion on the distributions.

Let E0, E1, . . . , En be the sequence of expressions computed by the algorithm. Re-
call that Ei+1 = Ei[{∣ ∣}sK 7→ {∣□∣}

s
K ] for some K ∈ Keys. We show that this trans-

formation does not significantly change the distribution associated to Ei, provided that
the primitives used in the implementation are secure. The desired relation between the
distributions associated to E = E0 and pattern(E) = En then follow from the argument
outlined above.

To argue that distributions of [[E]] and [[E[{∣ ∣}sK 7→ {∣□∣}
s
K ]]] are close we differen-

tiate between the case when K is in SKeys and when K is in ℎ(gPoly). We give two
lemmas. The first lemma directly treats the first case. The second lemma is a stepping
stone for proving the second case. We first state these lemmas and explain how to use
them to obtain our result. Their proofs are in Appendix A and Appendix B, respectively.

Lemma 3 Let E be an acyclic expression, and K ∈ SKeys a key that only occurs in E
in key positions. Then, if Π is an (�Π, tΠ)-IND-CPA∗ secure encryption scheme, then:

[[E]] ≈�,t [[E[{∣ ∣}sK 7→ {∣□∣}
s
K ]]]

for � = �Π and t = tΠ − tsimℬ for some constant tsimℬ.

The next lemma states that if in an expression E one replaces an encryption key
ℎ(gp) with a random encryption key K0 the distribution of the expression does not
change significantly. In the statement of the lemma, and throughout the paper, we write
E[{∣ ∣}sℎ(gp) 7→ {∣ ∣}

s
K ] for the expression that results by replacing each occurrence of

encryption key ℎ(gp) by K.

Lemma 4 Let E be an acyclic expression, ℎ(gp0) an encryption key that only occurs in
E in key positions. Let K0 ∈ SKeys be a key that does not occur in E. If (poly(E) ∖
{p0}, {p0})-DDH is (�G, tG)-difficult in G then:

[[E]] ≈�,t [[E[{∣ ∣}sℎ(gp0 ) 7→ {∣ ∣}
s
K0

]]]

for � = �G and t = tG − tsimC , for some constant tsimC .

We now explain how to use the previous two lemmas to conclude that the distance
between distributions Ei and Ei+1 is small. If Ei+1 = Ei[{∣ ∣}sK 7→ {∣□∣}sK ] and
K ∈ SKeys it follows by Lemma 3 that:

[[Ei]]Π,G ≈�Π,(tΠ−tsimℬ) [[Ei+1]]Π,G (1)

The case when Ei+1 = Ei[{∣ ∣}sℎ(gp) 7→ {∣□∣}sℎ(gp)] is slightly more complex, as it
is not directly covered by the above lemmas. Nevertheless, we can use the transfor-
mations in the lemmas to "emulate" the transformation above. Specifically, to simu-
late the result of the transformation {∣ ∣}sℎ(gp) 7→ {∣□∣}

s
ℎ(gp) on an expression one can

apply, sequentially, the following three transformations: {∣ ∣}sℎ(gp) 7→ {∣ ∣}sK0
where

K0 ∈ SKeys is a key that does not occur in the expression, then the transformation
{∣ ∣}sK0

7→ {∣□∣}sK0
, followed by the transformation {∣ ∣}sK0

7→ {∣ ∣}sℎ(gp). Essentially,



the first transformation replaces all occurrences of encryption key ℎ(gp) with a fresh
encryption key K0. The next transformation replaces all terms encrypted with K0 by
□. Finally, the key K0 is transformed back into ℎ(gp). This can be seen as follows.
Let E0

i = Ei, E1
i = Ei[{∣ ∣}sℎ(gp0 ) 7→ {∣ ∣}sK0

], E2
i = E1

i [{∣ ∣}
s
K0
7→ {∣□∣}sK0

], and
E3

i = E2
i [{∣ ∣}

s
K0
7→ {∣ ∣}sℎ(gp0 )]. Notice that E3

i = Ei+1. Since each of the three transfor-
mations above is covered by one of the two lemmas above we obtain a relation between
the distributions [[Ei]] and [[Ei+1]].

Since K0 only occurs in E1
i as an encryption key, by Lemma 3, we have that

[[E1
i ]] ≈�Π,(tΠ−tsimℬ) [[E

2
i ]]

By Lemma 4, we have that:

[[E0
i ]] ≈�G,(tG−tsimC) [[E

1
i ]]

and also

[[E3
i ]] ≈�G,(tG−tsimC) [[E

2
i ]]

The last result follows since Ei
2 = Ei

3[{∣ ∣}
s
K0
7→ {∣ ∣}sℎ(gp0 )]. >From the above equations,

by Lemma 2 we get that

[[Ei]] = [[E0
i ]] ≈�,t [[E

3
i ]] = [[Ei+1]]

where � = �Π + 2 ⋅ �G and t = min((tΠ − tsimℬ), (tG − tsimC)).
We have argued that for any i ∈ {0, 1, . . . , n − 1}, [[Ei]]Π,G ≈�i,ti [[Ei+1]]Π,G with

�i = �Π or �i = �Π + 2 ⋅ �G, and ti ≤ min(tΠ − tsimℬ, tG − tsimC), then by another
application of Lemma 2 we obtain:

[[E]]Π,G = [[E0]]Π,G ≈�E ,tE [[En]]Π,G = [[pattern(E)]]Π,G

for �E ≤ n ⋅ (�Π + 2 ⋅ �G) and tE = min(tΠ − tsimℬ, tG − tsimC), as desired.
The next theorem establishes the main result of this chapter: symbolically equivalent

expressions have associated computationally indistinguishable distributions. The result
holds for acyclic expressions as long as encryption is IND-CPA∗ and a more stringent
requirement holds on the group G. Namely, we require that if p1, p2, . . . , pt is a base
of poly(E) then the ({}, {p1, p2, . . . , pt})-DDH problem is hard in G. We overload the
meaning of "appropriateness", and in what follows we will assume that in addition to the
requirements of Definition 8, the above problem is also (�, t)-hard in G.

Theorem 3 (Symbolic equivalence implies computational indistinguishability) Let G
be a group that is (�G, tG)-appropriate for acyclic expressions E1 and E2 and Π an
(�Π, tΠ)-IND-CPA∗ secure encryption scheme. Then

E1
∼= E2 =⇒ [[E1]]Π,G ≈�,t [[E2]]Π,G

for some � and t (that we determine in the proof).



The proof builds on Theorem 2. Since, by definition, the two expressions are equiv-
alent if their patterns are related via bijective renamings of keys and nonces, and ldp-
renamings of polynomials, it is sufficient to show that such renamings do not signifi-
cantly change the distribution associated to a pattern. Before we give the proof we intro-
duce two useful lemmas. The first lemma simplifies dealing with arbitrary polynomials
in the exponents.

The lemma says that if p1, p2, . . . pt is a basis of poly(E), then the ldp renaming
which for each i ∈ [t] maps pi to some fresh variable Yi (that does not occur in E) does
not change the distribution associated to E.

Lemma 5 Let E be an acyclic expression, {p1, p2, . . . , pt} a base of poly(E), let
Y1, Y2, . . . , Yt be exponent variables that do not occur in E. Let � be the ldp-renaming
with �(pi) = Yi. Let Π be an arbitrary symmetric encryption scheme and G a group that
is (�G, tG)-appropriate for E. Then

[[E]]Π,G ≈�G,tG−tsimℰ [[E�]]Π,G

Proof:
We show that an algorithm D that distinguishes between the distributions of E and that
of E� breaks the assumptions that G is appropriate for E. More specifically, we show
that a successful distinguisher D can be used to construct an adversary ℰ against the the
({}, {p1, p2, . . . , pt})-DDH problem. The construction is given in Figure 5.

Adversary ℰO1,O2(E)

�
$← Init(E)

For i ∈ {1, 2, . . . , t} do
set �(gpi)

$←O2(i)

e
$←mGenO1,O2(E, �)

Return D(e)

Algorithm mGenO1,O2(E, �)
If E ∈ SKeys ∪Nonce ∪ {□} then e← �(E)

If E = (E1, E2) then e1
$←mGen(E1, �); e2

$←mGen(E2, �); e← ⟨e1, e2⟩
If E = gp(X1,X2,...,Xn) then

let �1, �2, . . . , �t such that p =
∑t

i=1 �i ⋅ pi
e←

∑n
i=1 �i ⋅ �(gpi);

If E = {E1}K then m
$←mGen(E1, �); e

$←ℰ(�(K),m);
If E = {E1}ℎ(gp) then

let �1, �2, . . . , �t such that p =
∑t

i=1 �i ⋅ pi
k ←

∑n
i=1 �i ⋅ �(gpi); m $←mGen(E1, �); e← ℰ(kd(k),m)

Return e

Figure 5. Adversary ℰ is against the ({}, {p1, p2, . . . , pt})-DDH assumption. It uses procedure mGen which
makes use of the oracle of ℰ .

⊓⊔



The adversary is against the ({}, {p1, p2, . . . , pt})-DDH problem and therefore has ac-
cess to two oracles O1 and O2 – the first oracle is trivial for this particular problem. The
adversary ℰ constructs a bitstring e much in the same way bitstrings are associated to
expressions by algorithm Gen: it generates bitstring interpretation for all of the symbols
that occur in E using the Init procedure. However from the resulting assignment it only
uses the interpretation for keys and nonces. The interpretation for group elements uses
the oracles: for each group element gp, if p = pi for some i = 1, 2, . . . , t (that is, if p
belongs to the base of poly(E)), then its interpretation is obtained by querying p to O2.
The interpretation of gp for any other polynomial p is obtained by using the coefficients
of the representation of p in base {p1, p2, . . . , pt} in the straightforward way.

Consider now the two possibilities for the oracle O2. When this is the "real" ora-
cle, the interpretations of group elements are precisely as in the Gen algorithm so e is
distributed according to [[E]]. When O2 is the "fake" oracle the interpretation of gpi is a
random group element obtained by gri where ri is a randomly chosen exponent. In this
case the sample e computed by ℰ is from [[E�]]Π,G.

We therefore have that (to simplify notation in the following equation we write P
for the empty set and Q for {p1, p2, . . . , pt}):

Adv
(P,Q)-DDH
G = Pr

[
ℰReal(P,Q)=1

]
− Pr

[
ℰFake(P,Q) = 1

]
= Pr

[
e

$← [[E]] : D(e) = 1
]
− Pr

[
e

$← [[E�]] : D(e) = 1
]

As before, since the running time of ℰ , tℰ is tsimℰ + tD, where tsimℰ is the time that ℰ
takes to construct the sample it passes toD, if the ({}, {p1, p2, . . . , pt})-DDH is (�G, tG)-
difficult, then it must be the case that [[E]]Π,G ≈�G,tG−tsimℰ [[E�]], as desired. ⊓⊔

The next lemma is the core of the proof of Theorem 3. It states that injective renam-
ings of nonces and keys, as well as injective ldp renamings do not significantly change
the distribution of an expression.

Lemma 6 Let E be an acyclic expression. Let �1 be a permutation on Keys, �2 be a
permutation on Nonces and �3 be a ldp-renaming of polynomials in poly(E). If G is
appropriate for E, then

[[E]]Π,G ≈�,t [[E�1�2�3]]Π,G

where � = 2 ⋅ �G and t = tG − tsimℰ , for some constant tsimℰ .

Proof:
First, notice that it is trivial that any injective renaming of keys and nonces leaves
the distribution of an expression unchanged. The reason is that the algorithm that as-
sociates distributions to bitstrings does not depend on the particular symbols used in
the expression. It is therefore sufficient to show that for any acyclic expression E if
�3 : poly(E) → Poly is an arbitrary ldp-renaming then E and E�3 have distributions
that are indistinguishable:

[[E]]Π,G ≈�,t [[E�3]]Π,G



Let p1, p2, . . . , pt be a base of poly(E). Since �3 is ldp, then �3(p1), �3(p2), . . . , �3(pt)
is a base for poly(E�3). Consider the ldp-renaming � : poly(E) → Poly that for each
i ∈ [t] maps pi to Yi. Then, �−1

3 ;� : poly(E�3) → Poly is also an ldp-renaming that
maps �3(pi) to Yi. (Here we write �1;�2 for the renaming obtained by first applying
�1 followed by �2.) The expression E and the substitution � satisfy the conditions of
Lemma 5, so it holds that:

[[E]]Π,G ≈�G,tG−tsimℰ [[E�]]Π,G (2)

Similarly, expression E�3 and ldp-renaming �−1
3 ;� satisfy the conditions of the same

lemma so we get that

[[E�3]]Π,G ≈�G,tG−tsimℰ [[E�−1
3 ;�3;�]]Π,G = [[E�]]Π,G (3)

By the two equations above and Lemma 2 we conclude that

[[E]]Π,G ≈2⋅�G,tG−tsimℰ [[E�3]].

Theorem 3 can be concluded from the previous results as follows.
Proof:
If E1

∼= E2 then there exists injective renamings �1 : SKeys → SKeys, �2 :
Nonce→ Nonce, and ldp-renaming �3 : poly(E2)→ Poly such that pattern(E1) =
pattern(E2�1�2�3). Therefore we have the following sequence of equivalences:

[[E2]] ≈�1,t1 [[pattern(E2)]] ≈�2,t2 [[pattern(E2�1�2�3)]] = [[pattern(E1)]] ≈�3,t3 [[E1]].

where the first and last equivalences follow from Theorem 2, the second equivalence fol-
lows by Lemma 6, and the third equality from the assumptions that E1 and E2 are sym-
bolically equivalent. Notice that all of the parameters involved depend on the underlying
group G and also on the particular expressions E1 and E2. ⊓⊔

4.5. An example

To appreciate the power that the above soundness theorem provides, consider the expres-
sion:

E(F ) =
(
gX1 , gX2 , gX3 , gX1X2 , gX1X3 , gX2X3 , {∣K∣}sℎ(gX1X2X3 ), {∣F ∣}

s
K

)
where F is some arbitrary expression. Expression E represents the transcript of the exe-
cutions of the following (toy) protocol: three parties with secret keys X1, X2 and X3 first
agree on a common secret key ℎ(gX1X2X3) (by broadcasting the first 6 messages in the
expression). Then, one of the parties generates a new key K which it broadcasts to the
other parties encrypted under ℎ(gX1X2X3). Finally, one of the parties, sends some secret
expression F encrypted under K. To argue about the security of the secret expression
(against a passive adversary) it is sufficient to show that the distributions associated to
the expressions E(F ) and E(0) are indistinguishable.

Although conceptually simple, a full cryptographic proof would require several re-
ductions (to DDH and security of encryption), and most likely would involve at least



one hybrid argument (for proving the security of encrypting K under ℎ(gX1X2X3)). The
tedious details of such a proof can be entirely avoided by using the soundness theorem:
it is straightforward to verify that E(F ) ∼= E(0), and in general, this procedure could
potentially be automated. Since E(F ) is acyclic, the desired result follows immediately
by Theorem 3.
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A. Proof of Lemma 3

Recall that here we show that if E is an expression in which K0 ∈ SKeys does not
occur encrypted in E (it only occurs as an encryption key), and if Π is an (�Π, tΠ)-
IND-CPA∗ secure encryption scheme then replacing terms encrypted under K0 with □
does not change the distribution of the expression significantly. Formally, we show that:
[[E]]Π,G ≈�,t [[E[{∣ ∣}sK0

7→ {∣□∣}sK0
]]]Π,G for some � = �Π and t = tΠ − tsimℬ for some

constant tsimℬ that we determine during the proof. The intuition is that a distinguisher
that observes the change in the distribution must observe the change of plaintext under a
key he dose not know, and hence breaks encryption.

Given a distinguisher for distributions [[E]] and [[E[{∣ ∣}sK0
7→ {∣□∣}sK0

]]] we construct
an adversary ℬ against Π. The construction is in Figure 6. The idea of the construction is
to generate a bitstring e such that if the oracle to which ℬ has access is the real oracle (i.e.
it returns true encryptions of the message that is queried) then e is sampled according to
[[E]], and if the oracle of ℬ is the fake oracle (which returns encryptions of 0) then the
e is sampled according to [[E[{∣ ∣}sK0

7→ {∣ ∣}sK0
]]]. To accomplish this task, ℬ executes

the Init(E) algorithm (given earlier in Figure 4) to obtain bitstring interpretation � for
all symbols that occur in E. Then, ℬ uses � to produce bitstring interpretations for all
of the terms that occur in E much in the same way as the algorithm Gen of Figure 4.
The only difference is that encryptions under K0 are obtained via the oracle to which
ℬ has access (line 5 of the modified generation algorithm mGen.) The sample e that is
generated satisfies the desired property. If the oracle to which ℬ has access is a real oracle
ℰk(⋅), symbolic encryptions under K0 are interpreted as encryptions under k. In other
words the result of mGen(E,K0, �) is the same as the result of Gen(E, � ′) where � ′ is
� except that the key assigned to K0 is set to be k, the key of the encryption oracle. In
the case when the oracle of ℬ is a fake oracle, the oracle that returns ℰk(0) each time



Algorithm mGenO(E,K0, �)
If E ∈ SKeys ∪Nonce ∪ {□} then e← �(E)

If E = (E1, E2) then e1
$←Gen(E1, �); e2

$←Gen(E2, �); e← ⟨e1, e2⟩
If E = gp(X1,X2,...,Xn) then e← gp(�(X1),�(X2),...,�(Xn))

If E = {∣E1∣}sK and K ∕= K0 then m
$←Gen(E1, �); e

$←ℰ(�(K),m);
If E = {∣E1∣}sK and K = K0 then m

$←Gen(E1, �); e
$←O(m);

If E = {∣E1∣}sℎ(gp) then m
$←Gen(E1, �); k ← Gen(gp); e← ℰ(kd(k),m)

Return e
Adversary ℬO(E,K0)

�
$← Init(E)

e
$←mGenO(E,K0, �)

output D(e)

Figure 6. Adversary ℬ is against encryption. It uses procedure mGen which makes use of the oracle of ℬ.

it is queried, then all encryptions under K0 are interpreted as encryptions under k of 0.
This means that e produced by mGen is sampled from E[{∣ ∣}sK0

7→ {∣□∣}sK0
]. Notice that

in both cases it is crucial that K0 occurs in E only in key positions and not as messages.
Otherwise ℬ, who has access to k (the interpretation of K0) only indirectly through its
oracle, would not be able to produce a consistent interpretation for E. We therefore have
that:

Advind-cpa∗
Π (ℬ) =

=
∣∣∣Pr [ℬℰk(⋅) = 1

]
− Pr

[
ℬℰk(0) = 1

]∣∣∣
≥

∣∣∣Pr [x $← [[E]] : D(x) = 1
]
− Pr

[
x

$← [[E[{∣ ∣}sK0
7→ {∣□∣}sK0

] : D(x) = 1]]
]∣∣∣

The right hand-side of the last inequality is exactly the advantage of D in distinguishing
distributions [[E]] and E[{∣ ∣}sK0

7→ {∣□∣}sK0
]. If tD is the running time of D then the

running time of ℬ is tℬ = tsimℬ + tD, where tsimℬ is some constant time that ℬ spends
in preparing the sample e. If Π is (�Π, tΠ)-IND-CPA∗ then we immediately obtain that
[[E]] ≈t,� [[E[{∣ ∣}sK0

7→ {∣□∣}sK0
]]], where t = tΠ − tsimℬ and � = �Π.

B. Proof of Lemma 4

Recall that here we show that if E is an acyclic expression in which ℎ(gp0) only occurs
as an encryption key then one can replace each occurrence of ℎ(gp0) in E with a new
key K0 without significantly changing the distribution of the expression. More precisely,
we show how to turn a distinguisher D between distributions [[E]] and [[E[{∣ ∣}sℎ(gp0 ) 7→
{∣ ∣}sK0

]]] into an attacker for the (poly(E) ∖ {p}, {p})-DDH assumption. To simplify
notation (and in line with the notation of Section 3) in the remainder of this section we
write P for the set poly(E) ∖ {p0} and Q for the set {p0}.

The adversary C that we construct is in Figure 7.
Recall that C has access to two oracles. The first oracle accepts as queries polyno-

mials p ∈ P , and returns gp(x1,x2,...,xn). The second oracle accepts a single query, p0



Algorithm mGenO1,O2(E, p0, �)
If E ∈ SKeys ∪Nonce ∪ {□} then e← �(E)

If E = (E1, E2) then e1
$←mGenO1,O2(E1, �); e2

$←mGenO1,O2(E2, �); e← ⟨e1, e2⟩
If E = gp(X1,X2,...,Xn) then e

$←O1(p)

If E = {E1}K then m
$←mGenO1,O2(E1, �); e

$←ℰ(�(K),m);
If E = {E1}ℎ(gp) and p ∕= p0 then k

$←O1(p); m
$←mGen(E1, �); e← ℰ(k,m)

If E = {E1}ℎ(gp) and p = p0 then k
$←O2(p); m

$←mGen(E1, �); e← ℰ(kd(k),m)
Return e

Adversary CO1,O2(E, p0)

�
$← Init(E)

e
$←mGenO1,O2(E, p0, �)

output D(e)

Figure 7. Adversary C is against the (poly(E) ∖ {p0}, {p0})-DDH assumption. It uses procedure mGen
which makes use of the oracle of ℬ.

and behaves in one of two ways: in the first case it returns gp0(x1,x2,...,xn) in the second
case it returns gr1 . The task of the adversary is to determine in which of the two possible
situations it is.

Starting from E, adversary C constructs a sample e. First it executes the Init(E) al-
gorithm to obtain an interpretation for all of the symbols that occur in E and then recur-
sively constructs e. The construction of e is similar to the way the generation algorithm
Gen works, except that the interpretation of group elements that occur in E is obtained
from the oracles of C. For all polynomials p in P with p ∕= p0, the generation procedure
obtains the interpretation of gp from oracle O1 (which returns the true value of gp under
the interpretation for variables that it maintains internally). The interpretation of gp0 is
obtained from its second oracle. We distinguish two cases. When C interacts with the
"real" oracle it obtains back the interpretation of gp0 . Therefore, in this case, e is dis-
tributed according to [[E]]. In the fake game the value returned is gr for a random expo-
nent r. Since we assumed that the distribution of KG and that of kd(gr) are identical,
then symbolic encryptions under ℎ(gp0) are interpreted as encryptions under a random
key. It follows that in this case e is distributed according to [[E[{∣ ∣}sℎ(gp) 7→ {∣ ∣}

s
K0

]]] for
some K0 that does not occur in E. We therefore have that:

Adv
(P,Q)-ddh
G (C) =

=
∣∣Pr [CReal(P,Q) = 1

]
− Pr

[
CFake(P,Q) = 1

]∣∣
=

∣∣∣Pr [e $← [[E]] : D(e) = 1
]
− Pr

[
e

$← [[E[{∣ ∣}sℎ(gp) 7→ {∣ ∣}
s
K0

]]] : D(e) = 1
]∣∣∣

Notice that the last term is the advantage that D has in distinguishing between distribu-
tions [[E]] and [[E[{∣ ∣}sℎ(gp) 7→ {∣ ∣}

s
K0

]]]. If the running time of D is tD then the running
time of C is tD + tsimC . Here tsimC is the time that C uses to compute the sample e. If G
is (�G, tG)-appropriate for E, then it follows that [[E]] ≈�,t [[E[{∣ ∣}sℎ(gp) 7→ {∣ ∣}

s
K0

]]] for
� = �G and t = tG − tsimC .

⊓⊔


