
Security Analysis using Rank Functions
in CSP

Communicating Sequential Processes (CSP) is an abstract language for describing
processes and reasoning about their interactions within concurrent systems. It is appro-
priate for investigating the overall behaviour that emerges. It has a mature theory, and
powerful tool support [For03] and can be considered as an off-the-shelf framework which
can be customised for particular domains through additional domain-specific construc-
tions and theory. This chapter introduces the application of CSP to the analysis of secu-
rity protocols. For the purposes of this chapter, we will introduce only those parts of CSP
that we use in protocol analysis. Fuller descriptions of thelanguage and theory can be
found in [Hoa85,Ros97,Sch99].

1. Review of CSP

In CSP, processes are described in terms of the patterns ofeventsthat they can perform.
Events are occurrences in the lifetime of a process, including communications with other
processes, as well as other actions that they might be performing. In our context, events
will typically have several components, such astrans.A.B.m representing communica-
tion of a messagem over channeltrans.A.B. Messages will themselves have some spe-
cific structures (to include encryption and signing), and are drawn from a defined set of
messages.

Processes are described using a language comprised of a number of process con-
structors:

Prefix If e is an event, andP is a process, thene → P is the process which initially is
prepared only to perform evente, after which it behaves asP.

Output For a channelc and valuev, the processc!v → P outputsv along channelc, and
subsequently behaves asP. Semantically it is equivalent toc.v → P, with the ‘!’
symbol used to indicate output.

Input If P(x) is a family of processes indexed byx, thenc?x → P(x) is a process which
initially reads a valuex on channelc, and subsequently behaves asP(x). We also
make frequent use ofpattern matching. We can input messages of a particular
form or with some particular values, by giving the general pattern. Only inputs
that match the pattern are accepted, and the variables in thepattern are bound
according to the value received. For example, to accept triples in which the second
value is3, we could use the inputc?(x, 3, y) → P(x, y). As another example, to
accept messages encrypted only with a particular keyK we could use the input
c?{∣m∣}

s
K → P(m).

Termination The processSTOPindicates termination (or deadlock): this process can
perform no further events.

Choice If P(i) is a finite or infinite family of processes indexed byi ∈ I , then the process

□
i
P(i) offers the choice of all of theP(i) processes, and can behave as any of

them. The choice is made on occurrence of the first event.

Interleaving The process∣∣∣
i
P(i) is the interleaving of all of theP(i) processes. All of

the P(i) processes run independently and concurrently, and can be scheduled in
any order. There is also a binary formP ∣∣∣ Q.

Parallel The parallel combinationP ∣[A]∣Q of two processes runsP andQ concurrently,
but they must synchronise on all events in the setA. A special case is the parallel
combinationP ∥ Q, which requires synchronisation on all events. This synchro-
nisation mechanism is the way in which processes interact with each other. For
example, the processes in(c!v → P) ∥ (c?x → Q(x)) share the channelc, so
the parallel combination will communicate the valuev alongc, and subsequently
behave asP ∥ Q(v). If A is a singleton set{a} then the set brackets may be elided.
Thus the combinationP ∣[a]∣STOPbehaves asP blocked on the eventa.

Recursion Processes can be defined recursively, using (parameterised) process names:
the definitionN(p) =̂ P(p) defines processN(p) with parameterp to behave as
P(p). The nameN also appears in the body ofP, corresponding to a recursive call.

The language also includes internal choice, abstraction, timeout, event renaming, and
interrupts, but these are not needed here so will not be considered further.

The semantic foundation we will use is thetraces modelfor CSP. Atrace is a (fi-
nite) sequence of events. Traces are written as sequences ofevents listed between angled
brackets:⟨e1, . . . , en⟩.

The traces model associates every CSP process with a set of traces, consisting of
all the traces that might possibly be observed in some execution of that process. For
example,

traces(in?x → out!x → STOP) = {⟨⟩}

∪ {⟨in.v ∣ v ∈ M⟩}

∪ {⟨in.v, out.v ∣ v ∈ M⟩}

whereM is the type of channelin.
The theory of CSP gives ways of reasoning directly about the set of traces of any

system described in CSP.
Specifications are concerned with allowable system behaviours. A trace specifica-

tion will describe which traces are allowable, and a CSP system can then be checked
against the specification by considering all its traces and demonstrating that they are all
acceptable. We writeP sat Sto indicate that every trace oftraces(P) meets the predicate
S. For example, consider the predicatea precedesb defined on traces as follows:

a precedesb= (last(tr) = b ⇒ a in tr)

wherelast(tr) is the last event in tracetr (undefined iftr = ⟨⟩), anda in tr means thata
appears somewhere in the tracetr. Then

(a → b → STOP) sata precedesb

2. Protocol modelling and verification

We will apply this framework to security protocol analysis.This involves developing a
CSP model of a system which expresses the protocol, and specifying the security prop-
erty to be considered. In order to judge the CSP model againstthe specification we make
use of the ‘rank function theorem’ which is at the heart of theapproach. We use the
Corrected handshake protocol of Chapter“Introduction” Figure 1 as a running example,
and begin with the standard notation:

A → B :
{∣∣∣[A.B.k]sk(A)

∣∣∣
}a

pk(B)
[k fresh]

B → A : {∣s∣}s
k

This protocol description is written in terms of the messages to be exchanged between the
protocol participants, and describes how each protocol participant is expected to behave.

In order to model this protocol in CSP, we need to define the setof possible mes-
sages that can be communicated. For this protocol we must consider that messages can
be constructed using concatenation, shared key encryption, public key encryption, and
signing. Participant identifiers, shared keys, and plain text are available as message com-
ponents. We define the space of messages as follows, and consider all messages in the
CSP model to come from this set:

M1,M2 ::= messages
I (∈ USER) agent identities
S (∈ PLAIN) plaintext
K (∈ KEY) shared keys
M1.M2 concatenation of messages
{∣M∣}

s
K symmetric encryption of messageM by keyK

{∣M∣}a
pk(I) asymmetric encryption of messageM by agentI ’s public key

[M]sk(I) signing of messageM with agentI ’s signature key

We assume setsUSERof user identifiers;PLAIN of plaintext messages (from which the
payload in message 2 is drawn), andKEY of shared keys. This approach treats messages
that are constructed differently as different, thus building into the model that any par-
ticular message can be constructed in only one way, an assumption known asperfect
encryption[PQ00].

We are now in a position to model the protocol participants. The protocol initiator,
denotedA, chooses a fresh keyk and a protocol partnerj, assembles the first message
by signing and then encrypting withj’s public key, and transmits it toj. A then awaits a
message encrypted with the keyk. A’s run of the protocol may be described in CSP as
follows:

INITA(k) =□j
trans.A!j!

{∣∣∣[A.j.k]sk(A)

∣∣∣
}a

pk(j)

→ rec.A.j?{∣s∣}s
k → STOP

We use channeltransfor outputs from a protocol participant, and channelrec for inputs.
trans.A.j.m is a transmission of messagem from A, intended forj. As we shall see in the

PAIRING

S⊢ m1 S⊢ m2

S⊢ m1 ⋅ m2

UNPAIRING

S⊢ m1 ⋅ m2

S⊢ m1 S⊢ m2

MEMBER

S⊢ m
[m∈ S]

SUBSET

S′ ⊢ m

S⊢ m
[S′ ⊆ S]

TRANSITIVE CLOSURE

∀ s′ ∈ S′.S⊢ s′ S′ ⊢ m

S⊢ m

ENCRYPTION1
S⊢ m S⊢ k

S⊢ {∣m∣}
s
k

DECRYPTION1
S⊢ {∣m∣}

s
k S⊢ k

S⊢ m

ENCRYPTION2
S⊢ m

S⊢ {∣m∣}
a
pk(i)

DECRYPTION2
S⊢ {∣m∣}

a
pk(i)

S⊢ m
[i ∕= A,B]

SIGNING

S⊢ m

S⊢ [m]sk(i)

[i ∕= A,B]

MESSAGEEXTRACTION

S⊢ [m]sk

S⊢ m

Figure 1. Attacker inference rules

model, we allow for the fact that it might not reachj. Observe the initial choice ofj, and
the use of pattern matching in the received message: the key of the input message must
bek, though any messagescan be accepted as the contents.

The protocol responder, denotedB, receives an initial message signed byi and en-
crypted with his public keypk(B). That message contains a keyk, whichB then uses to
encrypt a responses.

RESPB(s) = rec.B?i?
{∣∣∣[i.B.k]sk(i)

∣∣∣
}a

pk(B)

→ trans.B!i!{∣s∣}s
k → STOP

We must also model the hostile environment within whichA andB communicate.
We use the Dolev-Yao model [DY83], in which the attacker has complete control of the
network. Messages are transmitted to the attacker for forwarding to the intended recip-
ient; and messages received come from the attacker. The attacker can also divert, in-
vent, replay, destroy, and alter messages. We also assume that the attacker can participate
in protocol runs as a legitimate user, so some of the user identities in USERare under
the control of the attacker (i.e. the attacker can decrypt messages encrypted under their
public keys, and can sign with their signature keys).

Conversely, the attacker may not decrypt messages without possession of the de-
cryption key; nor sign messages without knowledge of the signature key. The messages
that the attacker is able to generate, and thus use in an attack, are limited by the attacker’s
knowledge. Figure 2 gives the rules that govern how the attacker can generate new mes-
sages:⊢ is defined as the smallest relation closed under all of these rules. ThusS ⊢ m
means that the attacker can construct messagem from the set of messagesS. Note that
rules DECRYPTION2 and SIGNING encapsulate the assumption that the attacker controls
any users other thanA andB.

The CSP model of the attacker will be a processENEMYparameterised by the set
S of messages that the attacker knows. This will be a combination of those messages
known initially, together with those sent out by protocol participants.ENEMY(S) can
receive any messagem from any useri sent to any other userj, in which case the setS
is augmented withm. ENEMY(S) can also supply any messagem that can be generated
from S, to any useri, as if it came from userj.

ENEMY(S) = trans?i?j?m→ ENEMY(S∪ {m})

□

□ i∈USER
j∈USER
m∣S⊢m

rec!i!j!m→ ENEMY(S)

This defines the threat model in terms of attackercapabilities. Correctness in the context
of this attacker indicates that there are no attacks from an attacker with these capabilities.
The attacker behaviour includes the possibility of passingmessages on correctly, as well
as the standard manouevres used in attacks: blocking, redirecting, spoofing, combining,
dissecting, and replaying messages. However, the key pointin this model is that the
attacker is unable to attack the cryptographic mechanisms.

The definition of the attacker in the model will need to identify the initial knowledge:
a setIK of messages that the attacker is considered to have available initially. This will
include all user names, some plaintext, and some session keys. However, any fresh keys
or text used by honest agents in protocol runs will not be inIK , to model our expectation
that the attacker should not be able to guess them. The attacker can learn them only
through protocol runs.

We then defineENEMYto beENEMY(IK).
A model of a single run of the protocol withA as initiator andB as responder, with

specific keykAB and secretsAB will be:

SYS= (INITA(kAB) ∣∣∣ RESPB(sAB)) ∣[trans, rec]∣ENEMY

A andB do not synchronise on any events directly: all of their communications are via
ENEMY. On the other handtransandrecare in the alphabets of both sides of the parallel
operator, so all occurrences oftransandrec involve one of the protocol participants, and
alsoENEMY. ThusENEMYis involved in all communications within the system.

SYSdescribes a model involving just a single pair of protocol participantsA andB
on a single run of the protocol. In order to explain the essence of the approach we will
consider this model through the majority of this chapter. However, this can be generalised
to the case of arbitrarily many concurrent runs, discussed in Section 6.

2.1. Specification

Having developed the model of the protocol, we now consider the properties that we wish
to demonstrate. We will consider authentication of each party by the other, and secrecy.

Authentication is concerned with establishing the identity of the other party. IfA
runs the protocol withB, then the intention is that by the end of the protocol runA can
be confident that the protocol was indeed run withB. FromB’s point of view,B wishes
to be confident that a protocol run apparently withA was indeed withA.

A B{∣∣∣[A.B.k]sk(A)

∣∣∣
}a

pk(B)
respgo.B.A.s.k

{∣s∣}s
k

initdone.A.B.s.k

Figure 2. Introducing specification events forA authenticatingB

This can be captured within the traces ofSYS, stating that any trace which includes
a protocol run ofA with B should also contain a corresponding protocol run ofB with A.
However, we find it cleaner to introduce particular specification events into the protocol
to state explicitly that a protocol participant has reacheda particular stage, and what
information they have used in that protocol run. By instrumenting the protocol with such
events we can give specifications directly on those events rather than implicitly in terms
of the sequence of events that have gone previously.

Thus forA to authenticateB we add an eventinitdone.A.B.s.k whichA uses to signal
completion of a protocol run withB, with key k, wheres is the plaintext that has been
received in message 2. We also add an eventrespgo.B.A.s.k into B’s run to indicate that
B is running the protocol withA, with plaintexts, and with keyk received in message 1.
For authentication,respgoneeds to appear causally prior toinitdonein the protocol run.
The placement of these additional events is illustrated in Figure 2.

The precise authentication property can be varied by varying the specification
events selected. Agreement purely on the key is captured by the pairinitdone.A.B.k and
respgo.B.A.k; agreement only on the protocol participants would be captured by using
the pairinitdone.A.B andrespgo.B.A. This would provideA with assurance that the other
participant isB, but no assurance that they agree on the keyk or texts. A hierarchy of
authentication properties is discussed in [Low97].

To consider the authentication property, the descriptionsof INITA andRESPB are
adjusted to incorporate these specification events:

INITA(kAB) = trans.A!B!
{∣∣∣[A.B.kAB]sk(A)

∣∣∣
}a

pk(B)

→ rec.A.B?{∣s∣}s
kAB

→ initdone.A.B.s.kAB → STOP

RESPB(sAB) = rec.B?j?
{∣∣∣[j.B.k]sk(j)

∣∣∣
}a

pk(B)

→ respgo.B.j.sAB.k

→ trans.B!j!{∣sAB∣}
s
k → STOP

The authentication property fromA’s point of view is that whenever the signal
eveninitdone.A.B.s.k occurs with specificsandk, thenrespgo.B.A.s.k should previously
have occurred, with the sames andk. This will indicate thatB is running the protocol,
with A, and that they agree on the content of the protocol run. This requirement as a
trace specification is that any trace ofSYSwhich containsinitdone.A.B.s.k also contains
respgo.B.A.s.k. The attacker cannot performinitdoneor respgoevents since they have
been introduced purely for the purposes of specification—they are modelling points in
the protocol rather than communications that the attacker can engage in.

A violation of the property will be a trace ofSYSin whichAperformsinitdone.A.B.s.k
without B having previously performed the correspondingrespgo.B.A.s.k. In that case
A will have been brought to a point where the protocol run apparently with B has com-
pleted, butB has not been involved in the same protocol run. This will be either because
there is a mistake in the protocol, or because an attack is possible.

We fix (arbitrary) keykAB and textsAB, and consider authentication with respect to
these. The form of specificationSYSis required to satisfy is then:

respgo.B.A.kAB.sAB precedesinitdone.A.B.kAB.sAB

which states that any trace in which theinitdoneevent appears must have the correspond-
ing respgoappear earlier in the trace.

2.2. A general theorem for proving authentication

The following theorem gives conditions for establishing that an eventa precedes another
eventb in a networkSYSconsisting of a number of usersUSERi in parallel withENEMY.
It makes use of arank function� which associates messages and signals with integers. If
every component within the system can only introduce messages of positive rank when
a is blocked, and ifb has non-positive rank, then it follows thatb cannot occur whena is
blocked. Thus in the unblocked system any occurrence ofb must follow an occurrence
of a.

In the theorem, conditions1 and2 establish thatENEMYcannot introduce messages
of non-positive rank; condition3 states thatb has non-positive rank; and condition4
states that if each useri only receives messages of positive rank, then it can communicate
messages and signals only of positive rank.

Rank Function Theorem

If � : MESSAGE∪ SIGNAL→ ℤ is such that:

1. ∀m∈ IK .�(m) > 0
2. ∀S⊆ MESSAGE.(�(S) > 0 ∧ S⊢ m) ⇒ �(m) > 0
3. �(b) ⩽ 0
4. ∀ i.(USERi ∣[a]∣Stop) sat �(tr ↾ rec) > 0 ⇒ �(tr) > 0

then(∣∣∣
i
USERi) ∣[trans, rec]∣ENEMYsat a precedesb. □

In condition4, the notationtr ↾ recdenotes the projection of tracetr onto the channel
rec: in other words, the subsequence ofrec events occurring withintr. This requirement
on USERi blocked ona is that if only positive rank messages are received, then no non-
positive rank message should be produced. The proof of the theorem is given in [Sch98b].

We have abused notation and extended� to apply not only to messages and signals,
but also to events, traces, and sets:

∙ �(c.m) = �(m)
∙ �(S) = min{�(s) ∣ s∈ S}
∙ �(tr) = min{�(s) ∣ s in tr}

For any particular protocol specification the challenge is to identify a suitable� that
meets the conditions. Identification of such a� establishes correctness of the protocol
with respect to that specification.

2.3. Application of the theorem

We require in this particular case that:

1. every message inIK has positive rank;
2. if every message in a setShas positive rank, andS⊢ m, thenmhas positive rank;
3. initdone.A.B.kAB.sAB does not have positive rank;
4. INITA(kAB) maintains positive rank: if it has only received messages ofpositive

rank then it only outputs messages of positive rank. Note that
INIT(kAB) ∣[respgo.B.A.sAB.kAB]∣STOP= INITA(kAB);

5. RESPB(sAB) ∣[respgo.B.A.sAB.kAB]∣STOPmaintains positive rank: if it has only
received messages of positive rank then it only outputs messages of positive rank.
Observe we are consideringRESPB with therespgoevent blocked.

If we can find a rank function that meets all these conditions,then we will have estab-
lished thatSYSsatisfiesrespgo.B.A.kAB.sAB precedesinitdone.A.B.kAB.sAB, and hence
that the protocol provides the authentication guarantee required.

Figure 3 gives a rank function that meets all of the required properties.

1. We assume thatkAB ∕∈ IK since it is fresh for userA. Thus all the messages inIK
will have positive rank.

2. This condition is established inductively over the inference rules. In particular,
we can check for each rule in turn that if it is true for the premisses, then it is also
true for the conclusion.

3. initdone.A.B.kAB.sAB does not have positive rank, by definition of�.
4. INITA(kAB) maintains positive rank. It outputs a single protocol message, which

has positive rank; and it can only perform the finalinitdone.A.B.sAB.kAB event if
it has previously received a message of rank0: a message encrypted withkAB.
Thus if it only receives messages of positive rank it will only perform events of
positive rank.

5. It is useful first to expand the restrictedRESPB:

RESPB(sAB) ∣[respgo.B.A.sAB.kAB]∣STOP

= rec.B?j?
{∣∣∣[j.B.k]sk(j)

∣∣∣
}a

pk(B)
→ if (j = A ∧ k = kAB)

thenSTOP
elserespgo.B.j.sAB.k

→ trans.B!j!{∣sAB∣}
s
k → STOP

The only timeB can send a message of rank0 is when the received keyk is in fact
kAB. In this case we must havej ∕= A to reach that point in the restricted protocol.

�(i) = 1

�(s) = 1

�(k) =

{
0 if k = kAB

1 otherwise

�(m1.m2) = min{�(m1).�(m2)}

�({∣m∣}
s
k) =

{
0 if k = kAB

�(m) otherwise

�({∣m∣}
a
pk(i)) =

{
1 if i = B ∧ m= [A.B.k′]sk(A)

�(m) otherwise

�([m]sk(i)) =

{
0 if m= i.B.kAB

�(m) otherwise

�(sig) =

{
0 if sig= initdone.A.B.sAB.kAB

1 otherwise

Figure 3. A rank function for authentication

But then the rank of the received message is0: �(
{∣∣∣[j.B.k]sk(j)

∣∣∣
}a

pk(B)
) = 0. Hence

transmission of a message of rank0 follows receipt of a message of rank0. Thus
RESPB(sAB) ∣[respgo.B.A.sAB.kAB]∣STOPmaintains positive rank.

We can conclude thatA’s run of the protocol authenticatesB.

2.4. Protocol simplification

If the participants are removed from message 1 of the protocol, then we obtain the sim-
plified (flawed) version:

A → B :
{∣∣∣[k]sk(A)

∣∣∣
}a

pk(B)

B → A : {∣s∣}s
k

We will consider how this simplification affects the correctness proof.
The natural change to make to the rank function is to change the message in the

definition of� to follow the change in the protocol, resulting in the following alternative
clauses (the other clauses are unaffected):

�({∣m∣}a
pk(i)) =

{
1 if i = B ∧ m= [k′]sk(A)

�(m) otherwise

�([m]sk(i)) =

{
0 if m= kAB

�(m) otherwise

The models for analysis also change to reflect the simpler first message:

INITA(kAB)

= trans.A!B!
{∣∣∣[kAB]sk(A)

∣∣∣
}a

pk(B)
→ rec.A.B?{∣s∣}s

kAB
→ initdone.A.B.s.kAB

→ STOP

RESPB(sAB) ∣[respgo.B.A.sAB.kAB]∣STOP

= rec.B?j?
{∣∣∣[k]sk(j)

∣∣∣
}a

pk(B)
→ if (j = A ∧ k = kAB)

thenSTOP
elserespgo.B.j.sAB.k

→ trans.B!j!{∣sAB∣}
s
k → STOP

We find that the revised rank function with the revised CSP models still meets all
the rank function properties. Thus the simplified (flawed!) protocol still establishes the
authentication property thatA authenticatesB, and they agree on the session keykAB and
the secret messagesAB. Although flawed in other ways, it still provides this authentication
property.

3. Responder authenticating initiator

The previous section verified that the initiator authenticates the responder. We are also
concerned with authentication in the other direction. The same approach is taken: a pair
of events to specify authentication are introduced into themodel of the protocol; a suit-
able model of a protocol run is defined in CSP, this time from the responder’s point of
view; a rank function is identified which meets the properties of the rank function theo-
rem, establishing the authentication property.

The authenticating events in this instance arerespdoneand initgo. The event
respdoneoccurs after the message received fromA. The eventinitgo should be causally
prior to that message, so must occur beforeA’s first communication. At that pointA
has the keyk but nots, so the event will beinitgo.A.B.k. This should be followed by
respgo.B.A.k. This is pictured in Figure 4.

In the CSP model to analyse for this property, we are concerned with B’s use of the
first protocol message in authenticating the initiator. We therefore fix the userA thatB is
responding to, and the keykAB thatB receives in that message.

Since this authentication property is relative toB, we modelA as being able to initiate
with any partyj, and with any keyk. The rank function theorem requires restriction
on initgo.A.B.kAB. We therefore obtain the following processes for the initiator and the
responder, which should maintain positive� for any proposed rank function�:

INITA ∣[initgo.A.B.kAB]∣STOP=

□
j,k

if j = B ∧ k = kAB

thenSTOP

elseinitgo.A.j.k → trans.A!j!
{∣∣∣[A.j.k]sk(A)

∣∣∣
}a

pk(j)
→ rec.A.j?{∣s∣}s

k → STOP

initgo.A.B.k
A B

{∣∣∣[A.B.k]sk(A)

∣∣∣
}a

pk(B)
respdone.B.A.k

{∣s∣}s
k

Figure 4. Introducing specification events forB authenticatingA

RESPB(sAB, kAB) =

rec.B.A?
{∣∣∣[A.B.kAB]sk(A)

∣∣∣
}a

pk(B)
→ respdone.B.A.kAB → trans.B!A!{∣sAB∣}

s
kAB

→ STOP

The following rank function meets all the conditions of the rank function theorem:

�(i) = 1

�(s) = 1

�(k) = 1

�(m1.m2) = min{�(m1).�(m2)}

�({∣m∣}s
k) = �(m)

�({∣m∣}a
pk(i)) = �(m)

�([m]sk(i)) =

{
0 if i = A ∧ m= A.B.kAB

�(m) otherwise

�(sig) =

{
0 if sig= respdone.B.A.kAB

1 otherwise

This rank function captures the requirement that the enemy cannot generate or obtain
the message[A.B.kAB]sk(A), even if it knowskAB (note that�(kAB) = 1, allowing for the
enemy to be able to generate it). This fact is sufficient to guarantee toB thatA must have
initiated the protocol run withB, with keykAB, establishing authentication.

3.1. Protocol simplification

As previously, if the participants are removed from message1 of the protocol, then we
obtain the simplified version:

A → B :
{∣∣∣[k]sk(A)

∣∣∣
}a

pk(B)

B → A : {∣s∣}s
k

The revised CSP protocol descriptions are:

INITA ∣[initgo.A.B.kAB]∣STOP=

□
j,k

if j = B ∧ k = kAB

thenSTOP

elseinitgo.A.j.k → trans.A!j!
{∣∣∣[k]sk(A)

∣∣∣
}a

pk(j)
→ rec.A.j?{∣s∣}s

k → STOP

RESPB(sAB, kAB) =

rec.B.A?
{∣∣∣[kAB]sk(A)

∣∣∣
}a

pk(B)
→ respdone.B.A.kAB → trans.B!A!{∣sAB∣}

s
kAB

→ STOP

The natural change to the rank function is in the clause for signed messages, which
becomes:

�({∣m∣}
a
sk(i)) =

{
0 if i = A ∧ m= kAB

�(m) otherwise

However, we now find thatINITA ∣[initgo.A.B.kAB]∣STOPno longer meets condition
4 of the rank function theorem, since ifk = kAB and j ∕= B then it can communicate

trans.A.j.
{∣∣∣[kAB]sk(A)

∣∣∣
}a

pk(j)
and thus transmit a communication of rank0 without having

first received one.
Two responses to this observation are possible: either seekanother rank function

which does work; or explore if the reason the rank function fails is because there is an
attack. In this case there is the man in the middle attack seenearlier in Chapter“Intro-
duction” Figure 1:B accepts the first message as evidence thatA has initiated the proto-
col with B, but in factA might have initiated it with a different party. We write the attack
as follows:

� : A → E :
{∣∣∣[kAB]sk(A)

∣∣∣
}a

pk(E)

� : E(A) → B :
{∣∣∣[kAB]sk(A)

∣∣∣
}a

pk(B)

� : B → E(A) : {∣s0∣}
s
kAB

whereE(A) representsE masquerading asA.
The predicateinitgo.A.B.kAB precedesrespdone.B.A.kAB is not met by the trace cor-

responding to this attack. The ‘confirmation’ signalrespdone.B.A.kAB is in fact preceded
by initgo.A.E.kAB. Hence the authentication property is not satisfied by the simplified
protocol.

4. Secrecy

There are also secrecy requirements on this protocol.

SECRECY INIT The secrecy requirement for the initiator is that ifs is accepted as
secret after the protocol run, thens should not be known to the intruder (provided
the responder is honest).

SECRECY RESP Similarly, the secrecy requirement for the responder is that if s is
sent in the protocol run, then it should not be known to the intruder (provided the
initiator is honest).

The assumption of honesty in the other party is natural, since the secret is being shared
with them—if the other party is dishonest then there can be noguarantees about secrecy.

For reasons of space we will carry out the analysis forSECRECYRESP. The anal-
ysis forSECRECYINIT is very similar.

4.1. Modeling for secrecy analysis

The intruder’s acquisition of messages can be modelled by its capability to perform
trans.E.E.s or some other communication demonstrating possession ofs. To establish
that such communications cannot occur it is sufficient to provide a rank function such
that s has rank0. Secrecy is concerned with the impossibility of a particular commu-
nication, rather than establishing a precedence relationship between two events. Use-
fully, this can be expressed in the form required by the rank function theorem. The rank
function theorem can be applied by introducing an impossible eventimp which no par-
ticipant performs: the statementimp precedes trans.E.E.s is equivalent to requiring
that trans.E.E.s can never occur (sinceimp can never occur). Expressing it in the form
imp precedestrans.E.E.s allows direct application of the rank function theorem. Ob-
serve that in this case no additional specification events need to be introduced, and since
imp is not in the alphabet of any process, restricting the system’s behaviour onimpmakes
no difference to the behaviour of any of the participants.

4.1.1. SECRECYRESP

The model for analysis of secrecy with respect to the responder B fixes onA as the
initiator.RESPB therefore describes a run withA. The initiatorA is modelled as following
the protocol faithfully (sinceB assumesA is honest), though possibly with a different
participant. ThusA chooses an arbitrary partyj with whom to run the protocol.

INITA(k0) =

□
j
trans.A!j!

{∣∣∣[A.j.k0]sk(A)

∣∣∣
}a

pk(j)
→ rec.A.j?{∣s∣}s

k0
→ STOP

RESPB(s0) =

rec.B.A?
{∣∣∣[A.B.k]sk(A)

∣∣∣
}a

pk(B)
→ trans.B!A!{∣s0∣}

s
k → STOP

The secret sent byB is s0, so any suitable rank function will necessarily assigns0 a
rank of 0. Observe that here we must assume thats0 ∕∈ IK , though interestingly this
assumption was not necessary for the authentication properties.

The following rank function meets all the conditions of the rank function theorem:

�(i) = 1

�(s) =

{
0 if s= s0
1 otherwise

�(k) =

{
0 if k = k0
1 otherwise

�(m1.m2) = min{�(m1).�(m2)}

�({∣m∣}
s
k) =

{
1 if k = k0 ∧ s= s0
�(m) otherwise

�({∣m∣}
a
pk(i)) =

{
1 if i = B ∧ m= [A.B.k0]sk(A)

�(m) otherwise

�([m]sk(i)) =

{
0 if i = A ∧ m= A.B.k
�(m) otherwise

The clause for�([m]sk(i)) captures the fact that the enemy cannot obtain any message
of the form[A.B.k]sk(A). This is the key to how the protocol provides the secrecy property:
thatB can be assured that any such signed message must indeed have been generated by
A, and hence that the keyk is not known to the attacker.

4.2. The simplified version

For the simplified version of the protocol, the natural change to make to the rank function
is to simplify the messages in the definition of�, resulting in the following alternative
clauses (the other clauses are unaffected):

�({∣m∣}
a
pk(i)) =

{
1 if i = B ∧ m= [k0]sk(A)

�(m) otherwise

�([m]sk(i)) =

{
0 if i = A ∧ m= k(∈ KEY)
�(m) otherwise

However, we now find that condition 4 for a rank function no longer holds:INITA can

immediately transmit a message of rank0: the message
{∣∣∣[k0]sk(A)

∣∣∣
}a

pk(E)
. In this case this

leads us to the following attack:

� : A → E :
{∣∣∣[k0]sk(A)

∣∣∣
}a

pk(E)

� : E(A) → B :
{∣∣∣[k0]sk(A)

∣∣∣
}a

pk(B)

� : B → E(A) : {∣s0∣}
s
k0

The responder relies on the contents of the first message (i.e. the session key) being se-
cret. However, in the simplified case it might have gone to another party before reaching
the responder, hence the protocol is flawed with respect to responder secrecy. In the orig-
inal version, the inclusion of the identifiersA andB are sufficient forB to know thatA
encrypted the first message withB’s public key, ensuring secrecy of the session key and
hence the payload.

5. Multiple runs

In general, several concurrent overlapping runs of the protocol might take place, and pro-
tocol participants might be involved in more than one protocol run, possibly in different
roles.

The general behaviour of such a protocol participant can be described within CSP,
as an interleaving of initiator and responder runs, each with an arbitrary protocol partner.
A general initiator run and a general responder run are first defined, and then a user is
constructed from collections of these. Fresh messages required for the runs are modelled
by requiring that each run uses a different such message, anddifferent agents all use
different messages.

A general initiator run for userC with a fresh keyk chooses a partnerj and runs the
protocol:

INITC(k) =

□
j
trans.C.j.

{∣∣∣[C.j.k]sk(C)

∣∣∣
}a

pk(j)
→ rec.C.j?{∣s∣}s

k → initdone.C.j.s.k → STOP

A general responder run for userC with a fresh secrets is ready to engage in the
protocol: it awaits contact from an initiatori and then follows the protocol withi:

RESPC(s) =

rec.C?i?
{∣∣∣[i.C.k]sk(i)

∣∣∣
}a

pk(C
→ respgo.C.i.s.k → trans.C!i!{∣s∣}s

k → STOP

A general participantC can then engage in arbitrarily many protocol runs concur-
rently as sender and receiver. This is captured as the interleaving of initiator and respon-
der runs:

USERC = (∣∣∣
k∈KEYC

INITC(k)) ∣∣∣ (∣∣∣s∈MSGC
RESP(s))

Observe that in this description each initiator run has a different keyk, and each respon-
der run has a different messages. Each agentC has its own set of fresh keysKEYC and
messagesMSGC, and in the model these will be pairwise disjoint so any freshkey or mes-
sage is associated with at most one agent, modelling the expectation that the probability
of key or message overlap is negligible.

As an example of how the general case can be established, we will consider the
propertyrespgo.B.A.sAB.kAB precedesinitdone.A.B.sAB.kAB: that A authenticatesB. In
fact we can use the same rank function, given in Figure 3 as we used in the case of a
single protocol run. The composition rules of Figure 5 allowthe proof obligations on
USERC to be reduced to individual runs. These rules follow from thetrace semantics of
general choice and general interleaving [Ros97,Sch99].

Checking thatUSERC ∣[respgo.B.A.sAB.kAB]∣STOP sat maintains� then reduces
(by rule INTERLEAVING of Figure 5) to checking the following:

∙ that eachINITC(k) ∣[respgo.B.A.sAB.kAB]∣STOPsat maintains�;
∙ that eachRESPC(s) ∣[respgo.B.A.sAB.kAB]∣STOPsat maintains�.

INTERLEAVING
∀ i.(Pi sat maintains�)

∣∣∣
i
Pi sat maintains�

CHOICE
∀ i.(Pi sat maintains�)

□
i
Pi sat maintains�

Figure 5. Composition rules for maintains�

These each reduce to consideration of the possible cases. Wewill work throughINITC(k)
as an example.

INITC(k) sat maintains� as long as the initiating message has positive rank. Thus

by rule CHOICE we must show that
{∣∣∣[C.j.k]sk(C)

∣∣∣
}a

pk(j)
has positive rank, for anyC, j,

andk ∈ KEYC.

∙ Case 1: If j = B andC = A andk = kAB then�(
{∣∣∣[C.j.k]sk(C)

∣∣∣
}a

pk(j)
) = 1 from

the definition of�.

∙ Case 2: Otherwise�(
{∣∣∣[C.j.k]sk(C)

∣∣∣
}a

pk(j)
) = �([C.j.k]sk(C))

∙ Subcase 2.1: If j = B andk = kAB, thenC = A. This follows from the fact
thatkAB ∈ KEYC for some uniqueC, but for the particular keykAB we know that
kAB ∈ KEYA. Hencej = B, k = kAB, andC = A. But this is case 1, so Subcase 2.1
is impossible.

∙ Subcase 2.2: j ∕= B or k ∕= kAB. Then�([C.j.k]sk(C)) = �(C.j.k). If k = kAB then
C = A, and we also have from the model thatkAB is the key used in a session
A initiates withB, thus we havej = B, contradicting the condition for the case.

Otherwisek ∕= kAB, so�(k) = 1. Then�(C.j.k) = 1, so�(
{∣∣∣[C.j.k]sk(C)

∣∣∣
}a

pk(j)
) =

1 as required.

In all cases therefore we have that�(
{∣∣∣[C.j.k]sk(C)

∣∣∣
}a

pk(j)
) = 1, establishing that

INITC(k) sat maintains�.
A similar consideration of the cases in the responder definition establishes that each

RESPC(s) ∣[respgo.B.A.kAB.sAB]∣STOPsat maintains�.
Combining all these results yields thatUSERC ∣[respgo.B.A.kAB.sAB]∣STOP sat

maintains� for all usersC, establishing condition 4 of the rank function theorem.
In this way we can prove that the protocol does allow the initiator to authenticate

the responder in the fully general case allowing any number of concurrent protocol runs
between any participants.

6. Extensions

This chapter has introduced the approach of using rank functions to the analysis and
verification of security protocols. We have shown how protocols can be instrumented
with signals to allow various flavours of authentication properties to be expressed (more
detailed discussion of the flavours of authentication can befound in [Low97,Sch98b,

SBS09]), and also shown how secrecy can be specified. The rankfunction approach was
first presented in [Sch97,Sch98b], and expounded at greaterlength in [RSG+00]. An
introduction to the approach also appeared in [SD04] as an application area of CSP. The
basic approach has been extended in a number of ways, both in terms of extending the
theory and in terms of developing tool support.

6.1. Timestamps

An approach to handlingtimestampswas presented in [ES00,Eva03]. Timestamps are an-
other common mechanism used within security protocols to provide assurances of fresh-
ness and prevent replay attacks. Their handling requires the modelling of the passage of
time, the protocol parties’ awareness of the correct time and ability to make decisions,
and the fact that some delays between message creation and message receipt must be al-
lowed for. An authentication protocol will aim to establishthat if a timestamped message
is received at a particular time then it must have been generated within some previous
time window.

6.2. Other properties

A rank function approach was developed to handlenon-repudiationprotocols [Sch98a]
in which parties each seek evidence from the other that the protocol has taken place, to
prevent the other party from repudiating the transaction ata later date. In such cases, each
party in the protocol is untrusted by the other, and is effectively modelled as the enemy.
The aim is to collect sufficient evidence to convince a third party that the other protocol
party must have participated—essentially that the evidence produced can only follow
some activity by the other protocol party, in much the same way as an authentication
property.

The approach has also been extended to handle various forms of forward secrecy.
Forward secrecy can be taken to mean that the payload of the protocol is secret even if
some secret elements of the protocol, such as a session key, become known to the attacker
at a later stage. In this case, the classical rank function considers either that the enemy
will never obtain the message, or that the enemy might as wellhave it from the beginning.
However, this approach is not appropriate for temporary secrets such as session keys.
Instead, in [Del06,DS07] the notion of a rank function is generalised to atemporal rank
functionso that ranks range across positive integers (together withinfinity), which may
be thought of as corresponding to the time at which a message might be available to the
enemy. This allows analysis of protocols which rely on the secrecy of some information
at a particular point in time. A generalised version of the rank function theorem is able
to establish long-term secrecy of messages in these cases.

In the context of group protocols, concern can also focus on whether secrets es-
tablished by honest members of a group can be exposed at some other stage if an
enemy joins the group. The rank function approach has been applied in this context
[GT07,Gaw08] for both forward secrecy (secret keys cannot be obtained from later runs)
and backward secrecy (secret keys cannot be obtained from earlier runs).

6.3. Algebraic properties of cryptographic primitives

Some cryptographic schemes have particular properties (for example, commutativity of
encryption) useful for constructing protocol schemes, butwhich might allow other pos-
sibilities of attack. The rank function approach extends tohandle these cases, where the
properties can be captured as equations on messages, or as further message derivation
clauses (in the ‘generates’ relation). In one example, an analysis of Gong’s protocol built
around exclusive-or [Gon89] was presented in [Sch02]. Exclusive-or has several proper-
ties, such as commutativity, self-inverse of encryption keys, and cancellation properties.
The analysis modelled these as equations on the algebra of messages, and the additional
requirement on a rank function is that it must be well-definedin the context of the equa-
tions: if two (differently constructed) messages are equal, then they should have the same
rank. Since rank functions tend to be defined by induction over the BNF for constructing
messages, establishing well-definedness is an additional requirement. This approach was
also used in [DS07] for a class of group Diffie-Hellman authenticated key-agreement
protocols: keys can be constructed using exponentiation ina number of different ways,
and it is important that all constructions of the same key have the same rank.

6.4. Tool support

Various forms of tool support have been developed for the rank function approach, in
some cases with underlying theory to underpin the approach.A theory of rank functions
on top of CSP was developed in the theorem-prover PVS [DS97].This theory allowed
definitions of rank functions, CSP descriptions of protocolparticipants, and verification
of the conditions of the rank function theorem. Since much ofthe work in carrying out
such a proof is mechanical house-keeping the provision of tool support is natural. The
PVS theories for CSP and for rank functions were refactored and extended (to handle
time) in [Eva03,ES05]. PVS has also been used to implement inference systems based on
rank functions to check whether attacks are possible [GBT09]. In this approach, various
properties of a rank function are given, and the inference system is used to establish
whether an attack is possible from the protocol rules.

As an alternative to theorem-proving, an approach for automatically generating a
rank function for a given protocol was developed in [Hea00,HS00]. This approach con-
structs a minimal function whose positive messages includethose of the enemy’s initial
knowledge, are closed under the message generation rules, and are closed under the pro-
tocol agents’ behaviour for outputting. If the resulting function also gives a rank of0 to
the authenticating message, then it meets all the conditions of the rank function theorem,
and the protocol is verified. Conversely if the resulting function gives a positive rank,
then there can be no rank function that will meet all the conditions of the rank function
theorem.

Acknowledgements

I am grateful to Roberto Delicata for comments on this chapter.

References

[Del06] R. Delicata.Reasoning about Secrecy in the Rank Function framework. PhD thesis, University
of Surrey, 2006.

[DS97] B. Dutertre and S.A. Schneider. Embedding CSP in PVS:an application to authentication proto-
cols. IntpHOL, 1997.

[DS07] Rob Delicata and Steve Schneider. An algebraic approach to the verification of a class of diffie-
hellman protocols.Int. J. Inf. Sec., 6(2-3):183–196, 2007.

[DY83] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on Informa-
tion Theory, 29(2), 1983.

[ES00] N. Evans and S.A. Schneider. Analysing time dependent security properties in CSP using PVS.
In ESORICS, volume 1895 ofLNCS, 2000.

[ES05] N. Evans and S.A. Schneider. Verifying security protocols with PVS: Widening the rank function
approach.Journal of Logic and Algebraic Programming, 2005.

[Eva03] N. Evans. Investigating Security Through proof. PhD thesis, Royal Holloway, University of
London, 2003.

[For03] Formal Systems (Europe) Ltd. FDR2 user manual, 2003.
[Gaw08] A. Gawanmeh.On the formal verification of group key security protocols. PhD thesis, Concordia

University, Canada, 2008.
[GBT09] A. Gawanmeh, A. Bouhoula, and S. Tahar. Rank functions based inference system for group key

management protocols verification.International Journal of Network Security, 8(2), 2009.
[Gon89] L. Gong. Using one-way functions for authentication. Computer Communications Review, 19(5),

1989.
[GT07] A. Gawanmeh and S. Tahar. Rank theorems for forward secrecy in group key management proto-

cols. In IEEE International Conference on Advanced Information Networking and Applications
Workshops (AINAW’07), 2007.

[Hea00] J.A. Heather.“Oh! Is it really you?”—Using rank functions to verify authentication protocols.
PhD thesis, Royal Holloway, University of London, 2000.

[Hoa85] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.
[HS00] James Heather and Steve Schneider. Towards automatic verification of authentication protocols

on an unbounded network. InCSFW, pages 132–143, 2000.
[Low97] Gavin Lowe. A hierarchy of authentication specifications. InCSFW, 1997.
[PQ00] O. Pereira and J-J. Quisquater. On the perfect encryption assumption. InWITS ’00: Workshop on

Issues in the Theory of Security, 2000.
[Ros97] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice-Hall, 1997.
[RSG+00] P.Y.A. Ryan, S.A. Schneider, M.H. Goldsmith, G. Lowe, and A.W. Roscoe.Modelling and Anal-

ysis of Security Protocols. Addison-Wesley, 2000.
[SBS09] S. Shaikh, V. Bush, and S. Schneider. Specifying authentication using signal events in CSP.

Computers & Security, 28(5), 2009.
[Sch97] Steve Schneider. Verifying authentication protocols with CSP. InCSFW, pages 3–17, 1997.
[Sch98a] S.A. Schneider. Formal analysis of a non-repudiation protocol. In11th IEEE Computer Security

Foundations Workshop, 1998.
[Sch98b] Steve Schneider. Verifying authentication protocols in CSP. IEEE Trans. Software Eng.,

24(9):741–758, 1998.
[Sch99] S.A. Schneider.Concurrent and Real-time Systems: the CSP Approach. Addison-Wesley, 1999.
[Sch02] S.A. Schneider. Verifying security protocol implementations. InFMOODS’02: Formal Methods

for Open Object-based Distributed Systems, 2002.
[SD04] S. Schneider and R. Delicata. Verifying security protocols: An application of CSP. InCommuni-

cating Sequential Processes: the First 25 Years, pages 243–263, 2004.

