Security Analysis using Rank Functions
in CSP

Communicating Sequential Processes (CSP) is an abstragtdge for describing
processes and reasoning about their interactions witmouwoent systems. It is appro-
priate for investigating the overall behaviour that emerdehas a mature theory, and
powerful tool support [For03] and can be considered as atheffshelf framework which
can be customised for particular domains through additidamain-specific construc-
tions and theory. This chapter introduces the applicatfiddSP to the analysis of secu-
rity protocols. For the purposes of this chapter, we wiltdaluce only those parts of CSP
that we use in protocol analysis. Fuller descriptions ofl#mguage and theory can be
found in [Hoa85,R0s97,Sch99].

1. Review of CSP

In CSP, processes are described in terms of the pattemgatshat they can perform.
Events are occurrences in the lifetime of a process, ineudommunications with other
processes, as well as other actions that they might be parfgrIn our context, events
will typically have several components, suchteensA.B.m representing communica-
tion of a messagm over channetransA.B. Messages will themselves have some spe-
cific structures (to include encryption and signing), arel@drawn from a defined set of
messages.

Processes are described using a language comprised of a&nofrnfirocess con-
structors:

Prefix If eis an event, anéP is a process, thea — P is the process which initially is
prepared only to perform eveetafter which it behaves d&

Output For a channet and valuey, the process!v — P outputsv along channet, and
subsequently behaves BsSemantically it is equivalent tav — P, with the 1’
symbol used to indicate output.

Input If P(x) is a family of processes indexed kythenc?x — P(x) is a process which
initially reads a valuex on channet, and subsequently behavesRig). We also
make frequent use gdattern matchingWe can input messages of a particular
form or with some particular values, by giving the generatgra. Only inputs
that match the pattern are accepted, and the variables ipattern are bound
according to the value received. For example, to accepesrip which the second
value is3, we could use the input?(x, 3,y) — P(x,y). As another example, to
accept messages encrypted only with a particularkeye could use the input
c?{m}y — P(m).

Termination The procesSTOPiIndicates termination (or deadlock): this process can
perform no further events.

Choice If P(i) is a finite or infinite family of processes indexediby |, then the process
EIi P(i) offers the choice of all of th®(i) processes, and can behave as any of
them. The choice is made on occurrence of the first event.

Interleaving The proces$| ’i P(i) is the interleaving of all of th@(i) processes. All of
the P(i) processes run independently and concurrently, and canheelgied in
any order. There is also a binary fofr|| Q.

Parallel The parallel combinatioR |[A]| Q of two processes ruBandQ concurrently,
but they must synchronise on all events in theAeA special case is the parallel
combinationP || Q, which requires synchronisation on all events. This syachr
nisation mechanism is the way in which processes interatt @dch other. For
example, the processes (dlv — P) || (c?x — Q(x)) share the channel so
the parallel combination will communicate the valualongc, and subsequently
behave a® || Q(v). If Ais a singleton sefa} then the set brackets may be elided.
Thus the combinatioR |[a]| STOPbehaves aP blocked on the everst

Recursion Processes can be defined recursively, using (paramefepissmbss names:
the definitionN(p) = P(p) defines proceshl(p) with parametep to behave as
P(p). The nameN also appears in the body Bf corresponding to a recursive call.

The language also includes internal choice, abstractiorgaut, event renaming, and
interrupts, but these are not needed here so will not be deresd further.

The semantic foundation we will use is tlraces modefor CSP. Atraceis a (fi-
nite) sequence of events. Traces are written as sequeneesras listed between angled
bracketsiey, ..., en).

The traces model associates every CSP process with a sece§trconsisting of
all the traces that might possibly be observed in some exgcof that process. For
example,

tracegin?x — out’x — STOP = {()}
U{(inv]veM)}
U {(in.v,outv|ve M)}

whereM is the type of channeh.

The theory of CSP gives ways of reasoning directly about étefttraces of any
system described in CSP.

Specifications are concerned with allowable system behasid\ trace specifica-
tion will describe which traces are allowable, and a CSPesystan then be checked
against the specification by considering all its traces ardahstrating that they are all
acceptable. We writP sat Sto indicate that every trace ticegP) meets the predicate
S. For example, consider the predicatprecedesb defined on traces as follows:

aprecedesb = (last(tr) = b = ain tr)

wherelast(tr) is the last event in trade (undefined iftr = ()), andain tr means thaa
appears somewhere in the traceThen

(a — b — STOB sata precedesb

2. Protocol modelling and verification

We will apply this framework to security protocol analysiis involves developing a
CSP model of a system which expresses the protocol, andigpgdhe security prop-
erty to be considered. In order to judge the CSP model aghieaspecification we make
use of the ‘rank function theorem’ which is at the heart of #pproach. We use the
Corrected handshake protocol of Chagtetroduction” Figure 1 as a running example,
and begin with the standard notation:

a
A~ B: {|[ABK ‘}MB) [k fresh]
B— A:{sl

This protocol description is written in terms of the messagée exchanged between the
protocol participants, and describes how each protocdigizaint is expected to behave.

In order to model this protocol in CSP, we need to define th@fkpbssible mes-
sages that can be communicated. For this protocol we mustdmrthat messages can
be constructed using concatenation, shared key encrymtidatic key encryption, and
signing. Participant identifiers, shared keys, and plaihdee available as message com-
ponents. We define the space of messages as follows, andiepalimessages in the
CSP model to come from this set:

My, My = messages
I (¢ USER agentidentities
S (e PLAIN) plaintext
K (e KEY) shared keys

M;.Mg concatenation of messages

{M |}5K symmetric encryption of messalyeby keyK

{|M|}Sk(|) asymmetric encryption of messalgeby agent’s public key
M]sk(l) signing of messagk! with agentl’s signature key

We assume setdSERof user identifiersPLAIN of plaintext messages (from which the
payload in message 2 is drawn), af8Y of shared keys. This approach treats messages
that are constructed differently as different, thus buaiddinto the model that any par-
ticular message can be constructed in only one way, an assumikmown asperfect
encryption[PQO00].

We are now in a position to model the protocol participantse Pprotocol initiator,
denotedA, chooses a fresh kdyand a protocol partngr assembles the first message
by signing and then encrypting wijts public key, and transmits it tp A then awaits a
message encrypted with the kieyA's run of the protocol may be described in CSP as

follows:
a
}pk(i)

— recAj?{sl}; — STOP

INITA(K) = O, transA!j!{‘ AjK

sk(A)

We use channdtansfor outputs from a protocol participant, and chanmeelfor inputs.
transA.j.mis a transmission of messagerom A, intended folj. As we shall see in the

PAIRING UNPAIRING

SFm SFm SFm -my
SFm -mp SkFmy SFmy
MEMBER SUBSET TRANSITIVE CLOSURE
SFm vs € S.Sk¢ SkFm
= [me§ < [ScS
SFm SFm SFm
ENCRYPTION1 DECRYPTION1
SFm Skk SH{m}, Skk
St {Im[} SFm
ENCRYPTION2 DECRYPTAON2
Sk m S A{IM[} i
! Il iy i£AB
SEAIME o) SkEm
SIGNING MESSAGEEXTRACTION
SFm St [mlg,
———[i#AB D
St Mg, SEm

Figure 1. Attacker inference rules

model, we allow for the fact that it might not reajctDbserve the initial choice ¢f and
the use of pattern matching in the received message: thefkg input message must
bek, though any messagean be accepted as the contents.

The protocol responder, denotBdreceives an initial message signediland en-
crypted with his public kepk(B). That message contains a Keywhich B then uses to
encrypt a response

a
}pk(B)

— transBli!{s}; — STOP

RESR(S) = rec.B?i?{‘ [i.B.K]

sk(i)

We must also model the hostile environment within whichnd B communicate.
We use the Dolev-Yao model [DY83], in which the attacker hasplete control of the
network. Messages are transmitted to the attacker for faliwg to the intended recip-
ient; and messages received come from the attacker. Thekattean also divert, in-
vent, replay, destroy, and alter messages. We also assatribetattacker can participate
in protocol runs as a legitimate user, so some of the usetiigsnin USERare under
the control of the attacker (i.e. the attacker can decrymsages encrypted under their
public keys, and can sign with their signature keys).

Conversely, the attacker may not decrypt messages withasgegsion of the de-
cryption key; nor sign messages without knowledge of theatigre key. The messages
that the attacker is able to generate, and thus use in ak gtadimited by the attacker’s
knowledge. Figure 2 gives the rules that govern how the ladtazan generate new mes-
sagestis defined as the smallest relation closed under all of théles.rThusS+ m
means that the attacker can construct mesgaffem the set of messagé&s Note that
rules DECRYPTIONZ2 and SGNING encapsulate the assumption that the attacker controls
any users other thafandB.

The CSP model of the attacker will be a procEfEMY parameterised by the set
S of messages that the attacker knows. This will be a comloinaif those messages
known initially, together with those sent out by protocoltmapants.ENEMY(S) can
receive any message from any useii sent to any other usgyin which case the s&
is augmented witim. ENEMY(S) can also supply any messagehat can be generated
from S, to any user, as if it came from usqr

ENEMY(S) = trans?i?j?’m — ENEMY(SU {m})
O
U icuser recliljlm — ENEMY(S)

jEUSER
m|S-m
This defines the threat model in terms of attadagabilities Correctness in the context
of this attacker indicates that there are no attacks fronttanker with these capabilities.
The attacker behaviour includes the possibility of paseiegsages on correctly, as well
as the standard manouevres used in attacks: blockingeotidig, spoofing, combining,
dissecting, and replaying messages. However, the key poititis model is that the
attacker is unable to attack the cryptographic mechanisms.
The definition of the attacker in the model will need to idBnttne initial knowledge:
a setlK of messages that the attacker is considered to have aweaifatilly. This will
include all user names, some plaintext, and some sessian Ikeyever, any fresh keys
or text used by honest agents in protocol runs will not bi&into model our expectation
that the attacker should not be able to guess them. The attaek learn them only
through protocol runs.
We then definENEMYto beENEMY(IK).
A model of a single run of the protocol with as initiator and as responder, with
specific keykag and secresag will be:

SYS= (INITa(kag) ||| RESR(sag)) |[trans rec]| ENEMY

A andB do not synchronise on any events directly: all of their comications are via
ENEMY. On the other hanttansandrecare in the alphabets of both sides of the parallel
operator, so all occurrencesteiinsandrecinvolve one of the protocol participants, and
alsoENEMY. ThusENEMY is involved in all communications within the system.
SYSdescribes a model involving just a single pair of protocatipgpantsA andB
on a single run of the protocol. In order to explain the esseriche approach we will
consider this model through the majority of this chaptemideer, this can be generalised
to the case of arbitrarily many concurrent runs, discusse&dkction 6.

2.1. Specification

Having developed the model of the protocol, we now constueptoperties that we wish
to demonstrate. We will consider authentication of eaclygdar the other, and secrecy.

Authentication is concerned with establishing the idgntit the other party. IfA
runs the protocol withB, then the intention is that by the end of the protocol Aucan
be confident that the protocol was indeed run vlBthiFrom B’s point of view, B wishes
to be confident that a protocol run apparently witlvas indeed withA.

{‘ ABKgn

}a B
ok(B) respgoB.A.s.k
{islhe >

initdoneA.B.s.k

Figure 2. Introducing specification events férauthenticatind®

This can be captured within the traces3)$ stating that any trace which includes
a protocol run oA with B should also contain a corresponding protocol ruB afith A.
However, we find it cleaner to introduce particular speciftzaevents into the protocol
to state explicitly that a protocol participant has reacheghrticular stage, and what
information they have used in that protocol run. By instratireg the protocol with such
events we can give specifications directly on those evettteréhan implicitly in terms
of the sequence of events that have gone previously.

Thus forA to authenticat® we add an evenhitdone A.B.s.k which A uses to signal
completion of a protocol run witB, with key k, wheres is the plaintext that has been
received in message 2. We also add an exespgoB.A.s.k into B's run to indicate that
B is running the protocol witl&, with plaintexts, and with keyk received in message 1.
For authenticatiormespgoneeds to appear causally prioritgtdonein the protocol run.
The placement of these additional events is illustratedduife 2.

The precise authentication property can be varied by vgryite specification
events selected. Agreement purely on the key is captureldebpdirinitdoneA.B.k and
respgoB.A.k; agreement only on the protocol participants would be gapitby using
the pairinitdone A.B andrespgoB.A. This would provideA with assurance that the other
participant isB, but no assurance that they agree on thekkey texts. A hierarchy of
authentication properties is discussed in [Low97].

To consider the authentication property, the descriptahidNIT, andRESR are
adjusted to incorporate these specification events:

a
= B!
INITA(Kag) transA.B.{’ [ABKaglya) ’}pk(B)
— recAB?{sl}y

— initdoneA.B.s.kag — STOP
a
RESR(sa8) = rec.B?j?{‘ i-BKyq ‘}MB)
— respgoB.j.sag.k
— transBlj!{sag}; — STOP

The authentication property froM's point of view is that whenever the signal
eveninitdoneA.B.s .k occurs with specifis andk, thenrespgoB.A.s.k should previously
have occurred, with the sanseandk. This will indicate thatB is running the protocaol,
with A, and that they agree on the content of the protocol run. Tégsirement as a
trace specification is that any trace®Y Swhich containgnitdoneA.B.s.k also contains
respgoB.A.s.k. The attacker cannot perforimitdone or respgoevents since they have
been introduced purely for the purposes of specificatiorey-tire modelling points in
the protocol rather than communications that the attackerengage in.

Aviolation of the property will be a trace &Y 3n which A performsnitdoneA.B.s.k
without B having previously performed the correspondiagpgoB.A.sk. In that case
A will have been brought to a point where the protocol run appidy with B has com-
pleted, buB has not been involved in the same protocol run. This will beezibecause
there is a mistake in the protocol, or because an attack slges

We fix (arbitrary) keykag and textsag, and consider authentication with respect to
these. The form of specificatid®lY Ss required to satisfy is then:

respgoB.A.Kag.Sag precedesinitdoneA.B.Kag.Sas

which states that any trace in which thédoneevent appears must have the correspond-
ing respgoappear earlier in the trace.

2.2. A general theorem for proving authentication

The following theorem gives conditions for establishingtthn evena precedes another
eventbin a networkSY Sonsisting of a number of usdtdSSER in parallel withENEMY.

It makes use of aank functionp which associates messages and signals with integers. If
every component within the system can only introduce messafpositive rank when
ais blocked, and ib has non-positive rank, then it follows thatannot occur wheais
blocked. Thus in the unblocked system any occurrenderofist follow an occurrence

of a.

In the theorem, conditionisand2 establish thaENEMY cannot introduce messages
of non-positive rank; conditioB states thab has non-positive rank; and conditidn
states that if each useonly receives messages of positive rank, then it can conratei
messages and signals only of positive rank.

Rank Function Theorem

If p: MESSAGHEJ SIGNAL— Z is such that:

1. VmelK.p(m) >0
2. VSC MESSAGHp(S) > 0 A Sk m) = p(m) >0

3. p(b) <0
4. Vi.(USER|[a]| Stop satp(tr | rec) > 0= p(tr) >0
then(| ||, USER) |[trans rec]| ENEMY sata precedesb. O

In condition4, the notationr | recdenotes the projection of tratreonto the channel
rec: in other words, the subsequencea®é events occurring withitr. This requirement
on USER blocked ona is that if only positive rank messages are received, therome n
positive rank message should be produced. The proof of dueeim is given in [Sch98b].

We have abused notation and extendéd apply not only to messages and signals,
but also to events, traces, and sets:

e p(c.m) = p(m)
o p(S) =min{p(s) | s€ S}
e p(tr) = min{p(s) | sin tr}

For any particular protocol specification the challenge iglentify a suitable that
meets the conditions. Identification of suclp &stablishes correctness of the protocol
with respect to that specification.

2.3. Application of the theorem

We require in this particular case that:

1. every message iK has positive rank;

2. if every message in a sBhas positive rank, an8+ m, thenm has positive rank;

3. initdoneA.B.kag.Sag does not have positive rank;

4. INITa(kag) maintains positive rank: if it has only received messaggsosftive
rank then it only outputs messages of positive rank. Note tha
INIT (kag) |[respgoB.A.sag.kag || STOP= INITa(Kag);

5. RESR(sag) |[respgoB.A.sag.kag]| STOPmaintains positive rank: if it has only
received messages of positive rank then it only outputs agessof positive rank.
Observe we are consideriREESR with therespgoevent blocked.

If we can find a rank function that meets all these condititmsn we will have estab-
lished thatSY SsatisfiesrespgoB.A.kag.Sag precedesinitdoneA.B.kag.Sag, and hence
that the protocol provides the authentication guarantgeired.

Figure 3 gives a rank function that meets all of the requinegerties.

1. We assume th#hg ¢ IK since it is fresh for useh. Thus all the messages|ik
will have positive rank.

2. This condition is established inductively over the iefaze rules. In particular,
we can check for each rule in turn that if it is true for the pigges, then it is also
true for the conclusion.

3. initdoneA.B.kag.Sag does not have positive rank, by definitionmof

4. INITa(kag) maintains positive rank. It outputs a single protocol mgssahich
has positive rank; and it can only perform the firdatdoneA.B.sag.kag event if
it has previously received a message of réink message encrypted wikiag.
Thus if it only receives messages of positive rank it willyoperform events of
positive rank.

5. Itis useful first to expand the restrictRESR:

RESR(sag) |[respgoB.A.sag.kag || STOP

a
— 217231 . if (j = =
rec.B?j? {‘U.B.k]sk(J)‘}pk(B) — ![fhéjns%/l\ak Kag)
elserespgoB.j.sag.k

— transBlj!{sagl}; — STOP

The only timeB can send a message of rahis when the received keyis in fact
kag. In this case we must hayeZ Ato reach that point in the restricted protocol.

p(i)

S

1
{Oifk:kAB

1 otherwise

p(y.m) = min{p(my).o(my))
p(m)) {0 f k= kag

p(m) otherwise

ifi=BAmM=[ABK]
r({ m|} pk(l) {) otherwise

if m=i.B. kAB
Msii)) m) otherwise
0 if sig= initdoneA.B.sag.kag
1 otherwise

sk(A)

p(sig)

Figure 3. A rank function for authentication

a
But then the rank of the received message i«s({’[j.B.k]Sm) ‘} k(B)) = 0. Hence
p

transmission of a message of rahfollows receipt of a message of rabkThus
RESR(sap) |[respgoB.A.sag.-kag || STOPmaintains positive rank.

We can conclude th&'s run of the protocol authenticat8s
2.4. Protocol simplification

If the participants are removed from message 1 of the préttdwn we obtain the sim-
plified (flawed) version:

A= B: {|Kaqn ‘};«B)
B A: {|5|}i

We will consider how this simplification affects the cormess proof.

The natural change to make to the rank function is to changenbssage in the
definition of p to follow the change in the protocol, resulting in the foliag alternative
clauses (the other clauses are unaffected):

1 ifi=BAmM=[K]gp
p(m) otherwise

p({m}2) = {

o if m= Kkag
p([m]sk(i)) - {p(m) otherwise

The models for analysis also change to reflect the simplémfiessage:
INITA(Kag)

a
= transAB! {‘ [Kag]sia) ‘}

— recA.B?{s]}> — initdoneA.B.s.
" E e

— STOP

RESR(sag) |[respgoB.A.sag.kag]| STOP
a
= rec.B?j 79| Ky — if =AANKk=Kap)
{‘ > ‘}pk“‘) thenSTOP
elserespgoB.j.sag.-k
— transBlj!{sagl}; — STOP

We find that the revised rank function with the revised CSP elwdtill meets all
the rank function properties. Thus the simplified (flawedbtpcol still establishes the
authentication property thatauthenticateB, and they agree on the session kgy and
the secret messagss. Although flawed in other ways, it still provides this auttieation
property.

3. Responder authenticating initiator

The previous section verified that the initiator authenésahe responder. We are also
concerned with authentication in the other direction. Témaes approach is taken: a pair
of events to specify authentication are introduced intontleelel of the protocol; a suit-
able model of a protocol run is defined in CSP, this time fromrsponder’s point of
view; a rank function is identified which meets the propertéthe rank function theo-
rem, establishing the authentication property.

The authenticating events in this instance aspdoneand initgo. The event
respdoneoccurs after the message received frAnThe eventnitgo should be causally
prior to that message, so must occur befai® first communication. At that poind
has the keyk but nots, so the event will benitgo.A.B.k. This should be followed by
respgoB.A.k. This is pictured in Figure 4.

In the CSP model to analyse for this property, we are condewiiy B's use of the
first protocol message in authenticating the initiator. Weréfore fix the useh thatB is
responding to, and the kéyg thatB receives in that message.

Since this authentication property is relativiave modelA as being able to initiate
with any partyj, and with any keyk. The rank function theorem requires restriction
oninitgo.A.B.kag. We therefore obtain the following processes for the itotiand the
responder, which should maintain positpwéor any proposed rank functign

INIT, |[initgo.A.B.kag]| STOP=

O, ifj=BAk=kes
" thensTOP

a
elseinitgo.Aj.k — transA!j!{‘ [Aj-Ksia) ’} @ — recAj?{sl}; — STOP
pk(i

initgo.A.B.k A
< A.B.K
{‘ [Jska }pk(B)
respdoneB.A.k

{Islt >

Figure 4. Introducing specification events f@rauthenticatingA
RESR(sag, ka) =

rec.B.A? {‘ [A B.kAB]Sk(A ‘} — respdoneB.A.kag — trans B!/-\!{ISABI}EAB

a
k(B
PL®) —, STOP

The following rank function meets all the conditions of tla@k function theorem:

p(i) =1
p(s) =1
p(k) =1
p(my.my) = min{p(m).p(Me)}
p({Img) = p(m)
p({Imlgiiy) = p(m)

B 0 ifi=AAM=ABKkag
PlMlgq) = {p(m) otherwise

.+ [0if sig=respdoneB.A kag
psig) = { 1 otherwise

This rank function captures the requirement that the enesmypat generate or obtain
the messagbA.B.kAB]sk(A), even if it knowskag (note thato(kag) = 1, allowing for the
enemy to be able to generate it). This fact is sufficient tagotge td thatA must have
initiated the protocol run wittB, with key kag, establishing authentication.

3.1. Protocol simplification

As previously, if the participants are removed from messhgéthe protocol, then we
obtain the simplified version:

A= B: {] Kla ‘}

a
s pk(B)
B— A: {s},

The revised CSP protocol descriptions are:
INITA |[initgo.A.B.kag]| STOP=

O, ifj=BAk=ke
" thensTOP

elseinitgo.Aj.k — transA!j!{‘ [Klsa) ’} — recAj?{sl}; — STOP

a
pk(j)
RESR(sag, kag) =

a
rec.B.A?{’ (KaB] gk a) ‘}pk(B) — respdoneB.A kag — transBlA!{|sagl},, — STOP

The natural change to the rank function is in the clause fpredd messages, which
becomes:

a 0 ifi=AAmMm=kas
Pmbsi) = {p(m) otherwise

However, we now find thdNIT, |[initgo.A.B.kag]| STOPno longer meets condition
4 of the rank function theorem, sincekf= kag andj # B then it can communicate

a
transA.j.{‘ [kAB]Sk(A) ‘}pk(j) and thus transmit a communication of rahlithout having

first received one.

Two responses to this observation are possible: either aeether rank function
which does work; or explore if the reason the rank functidls fia because there is an
attack. In this case there is the man in the middle attack sagier in Chaptefintro-
duction” Figure 1:B accepts the first message as evidenceAHlws initiated the proto-
col with B, but in factA might have initiated it with a different party. We write theteack
as follows:

o A—E: {’ [Kag]sia) }Zk(E)
8 E(A) —» B: {‘ [Kagsia) ’}pk(B)
B: B—=ERA):{sl,

whereE(A) represent& masquerading a&.

The predicaténitgo.A.B.kag precedesrespdoneB.A kag is not met by the trace cor-
responding to this attack. The ‘confirmation’ signespdoneB.A.kag is in fact preceded
by initgo.A.E.kag. Hence the authentication property is not satisfied by theplied
protocol.

4. Secrecy

There are also secrecy requirements on this protocol.

SECRECY_INIT The secrecy requirement for the initiator is thatifs accepted as
secret after the protocol run, theshould not be known to the intruder (provided
the responder is honest).

SECRECY_RESP Similarly, the secrecy requirement for the responder is itha is
sent in the protocol run, then it should not be known to theuihér (provided the
initiator is honest).

The assumption of honesty in the other party is naturalesihe secret is being shared
with them—if the other party is dishonest then there can bgusoantees about secrecy.

For reasons of space we will carry out the analysisSBCRECYRESP The anal-
ysis for SECRECYINIT is very similar.

4.1. Modeling for secrecy analysis

The intruder’s acquisition of messagecan be modelled by its capability to perform
transE.E.s or some other communication demonstrating possessien T establish
that such communications cannot occur it is sufficient tosjgi® a rank function such
thats has rank0. Secrecy is concerned with the impossibility of a partic@ammu-
nication, rather than establishing a precedence reldtiprtsetween two events. Use-
fully, this can be expressed in the form required by the ramicfion theorem. The rank
function theorem can be applied by introducing an impossgventimp which no par-
ticipant performs: the statemeimhp precedestransE.E.s is equivalent to requiring
thattransE.E.s can never occur (sindenp can never occur). Expressing it in the form
imp precedestransE.E.s allows direct application of the rank function theorem. Ob-
serve that in this case no additional specification everdd tebe introduced, and since
impis not in the alphabet of any process, restricting the systhahaviour onmp makes
no difference to the behaviour of any of the participants.

4.1.1. SECRECYRESP

The model for analysis of secrecy with respect to the respoBdixes onA as the
initiator. RESR therefore describes a run wigh The initiatorA is modelled as following
the protocol faithfully (sinceB assumed\ is honest), though possibly with a different
participant. Thu#\ chooses an arbitrary partyith whom to run the protocol.

INITA (ko) =

a
. . H S
EIJ_ transA!J!{’ [A-Ko]sia) ‘}pk(j) — recAj?{|s},, — STOP

RESR(s) =

a
rec.B.A?{‘ [ABKgn ‘}pk(B) — transBIAl{s [} — STOP

The secret sent bB is 59, so any suitable rank function will necessarily assigra
rank of 0. Observe that here we must assume tgatz 1K, though interestingly this
assumption was not necessary for the authentication greper

The following rank function meets all the conditions of tla@k function theorem:

p(i)=1
_JOifs=g
ps) = { 1 otherwise

p(k):{Oifk:kO

1 otherwise

p(Mi.my) = min{p(M).p(M) }

s 1 ifk=kAs=s
p({Iml) = {p(m) otherwise

p(m) otherwise

(g)= [0 Hi=Anm=ABK
PAUTski)) =\ p(m) otherwise

The clause fop([m]sm)) captures the fact that the enemy cannot obtain any message
ofthe form[A.B.k]Sk(A). This is the key to how the protocol provides the secrecy @riyp
thatB can be assured that any such signed message must indeecekavgeimerated by
A, and hence that the kéyis not known to the attacker.

4.2. The simplified version

For the simplified version of the protocol, the natural cteattggmake to the rank function
is to simplify the messages in the definition mfresulting in the following alternative
clauses (the other clauses are unaffected):

p(m) otherwise

p({miYa) = {

0 ifi=AAm=k(€KEY)
p([Mlsii)) = {p(m) otherwise

However, we now find that condition 4 for a rank function nogenholds:INITa can

a

immediately transmit a message of rankhe messag%‘ [ko]sk(A) ‘} «©) In this case this
p

leads us to the following attack:

o A—E: {’ [koJska) }Zk(E)
8- E(A) —» B: {‘ [koJska) }}pk(B)
8 B— E(A): {sof}y,

The responder relies on the contents of the first messagéh@ session key) being se-
cret. However, in the simplified case it might have gone talaroparty before reaching
the responder, hence the protocol is flawed with respecsfmreler secrecy. In the orig-
inal version, the inclusion of the identifieAsandB are sufficient foB to know thatA
encrypted the first message whfs public key, ensuring secrecy of the session key and
hence the payload.

5. Multiple runs

In general, several concurrent overlapping runs of thegpatmight take place, and pro-
tocol participants might be involved in more than one protoan, possibly in different
roles.

The general behaviour of such a protocol participant candserthed within CSP,
as an interleaving of initiator and responder runs, each antarbitrary protocol partner.
A general initiator run and a general responder run are fehedd, and then a user is
constructed from collections of these. Fresh messageseddar the runs are modelled
by requiring that each run uses a different such messagediéfacent agents all use
different messages.

A general initiator run for use€ with a fresh keyk chooses a partn¢and runs the
protocol:

INITc(K) =

a
) transC.j.{’ [C.i Kl ’} _ —rec.C.j?{s]}; — initdoneC.j.sk — STOP
) pk()

A general responder run for us€rwith a fresh secres is ready to engage in the
protocol: it awaits contact from an initiatdand then follows the protocol with

RESR(s) =

a
rec.C?i?{‘ [i.C.k]Sk(i)‘} ' respgoC.i.sk — transCli!{s}; — STOP
p
A general participan€ can then engage in arbitrarily many protocol runs concur-
rently as sender and receiver. This is captured as thedatarlg of initiator and respon-
der runs:

USER = (l | ’keKEYc INITe (k) |l] (l | ’seMSQ RESRs))

Observe that in this description each initiator run has fediht keyk, and each respon-
der run has a different messagdeach agen€ has its own set of fresh key&EY: and
messageM S, and in the model these will be pairwise disjoint so any fieshor mes-
sage is associated with at most one agent, modelling thetatfmn that the probability
of key or message overlap is negligible.

As an example of how the general case can be established, iveonsider the
propertyrespgoB.A.sag.kag precedesinitdoneA.B.sag.kag: that A authenticate®. In
fact we can use the same rank function, given in Figure 3 assed in the case of a
single protocol run. The composition rules of Figure 5 allitv@ proof obligations on
USER: to be reduced to individual runs. These rules follow fromttiaee semantics of
general choice and general interleaving [Ros97,Sch99].

Checking thatUSER: |[respgoB.A.sag.kag || STOP sat maintainsp then reduces
(by rule INTERLEAVING of Figure 5) to checking the following:

e that eachHNIT¢(K) |[respgoB.A.sag.kag || STOPsat maintainsp;
e that eaclRESR(s) |[respgoB.A.sag.kag || STOPsat maintainsp.

Vi.(P; sat maintain
INTERLEAVING (P %)

|]i P; satmaintainsp

Vi.(P; sat maintain
CHOICE (P %)

|:|i P; satmaintainsp

Figure 5. Composition rules for maintains

These each reduce to consideration of the possible casesil\i@rk throughINIT¢ (k)
as an example.
INITc(k) sat maintainsp as long as the initiating message has positive rank. Thus

a

by rule CHoICE we must show tha{’ [C.j.k]sk(c) ’} @ has positive rank, for ang, j,
PK(j

andk € KEYc.

a
e Casellf j = BandC = Aandk = kag thenp({’ [C.j.k]sk(c) ’}) = 1from
N pk(j)
the definition ofp.
a

e Case?2 Otherwisep({‘ [C.i-Kgc) ‘}pk(j)) = p([C.j-Ksc))

e Subcase 2.1If] = B andk = kag, thenC = A. This follows from the fact
thatkag € KEYc for some uniquéE, but for the particular keiag we know that
kag € KEYa. Henceg = B, k = kag, andC = A. But this is case 1, so Subcase 2.1
is impossible.

e Subcase 2.2j # B ork # kag. Thenp([C.j.Kgc)) = p(C.j.K). If k = kag then
C = A, and we also have from the model thag is the key used in a session
A initiates with B, thus we havé = B, contradicting the condition for the case.

a
Otherwisek # kag, S0p(k) = 1. Thenp(C.j.k) = 1, so,o(ﬂ [Ci Koy }}) =

. pk(j)
1 as required.

a
In all cases therefore we have tha(t{‘ [C.i Kl ‘} k(_)) = 1, establishing that
pk(j

INIT¢ (k) sat maintainsp.

A similar consideration of the cases in the responder digfindstablishes that each
RESR(s) |[respgoB.A kag.Sag]| STOPsat maintainsp.

Combining all these results yields theifSER: |[respgoB.A.kag.Sag]| STOP sat
maintainsp for all usersC, establishing condition 4 of the rank function theorem.

In this way we can prove that the protocol does allow theatuti to authenticate
the responder in the fully general case allowing any numbeowncurrent protocol runs
between any participants.

6. Extensions

This chapter has introduced the approach of using rank ifumeto the analysis and
verification of security protocols. We have shown how protecan be instrumented
with signals to allow various flavours of authenticationgedies to be expressed (more
detailed discussion of the flavours of authentication cafob@d in [Low97,Sch98b,

SBS09]), and also shown how secrecy can be specified. Théuaaton approach was
first presented in [Sch97,Sch98b], and expounded at grieatgth in [RSG 00]. An
introduction to the approach also appeared in [SD04] as plication area of CSP. The
basic approach has been extended in a number of ways, bais bf extending the
theory and in terms of developing tool support.

6.1. Timestamps

An approach to handlingmestampsvas presented in [ES00,Eva03]. Timestamps are an-
other common mechanism used within security protocolsawige assurances of fresh-
ness and prevent replay attacks. Their handling requieesddelling of the passage of
time, the protocol parties’ awareness of the correct tinge alility to make decisions,
and the fact that some delays between message creation asdgeaeceipt must be al-
lowed for. An authentication protocol will aim to establigiat if a timestamped message
is received at a particular time then it must have been gestbmithin some previous
time window.

6.2. Other properties

A rank function approach was developed to handia-repudiatiorprotocols [Sch98a]
in which parties each seek evidence from the other that thgol has taken place, to
prevent the other party from repudiating the transacti@later date. In such cases, each
party in the protocol is untrusted by the other, and is efffebt modelled as the enemy.
The aim is to collect sufficient evidence to convince a thiagtythat the other protocol
party must have participated—essentially that the evidgroduced can only follow
some activity by the other protocol party, in much the samg asan authentication
property.

The approach has also been extended to handle various férfosvard secrecy
Forward secrecy can be taken to mean that the payload of tlecpt is secret even if
some secret elements of the protocol, such as a sessiorekeynke known to the attacker
at a later stage. In this case, the classical rank functiosiders either that the enemy
will never obtain the message, or that the enemy might ashae# it from the beginning.
However, this approach is not appropriate for temporaryetesuch as session keys.
Instead, in [Del06,DS07] the notion of a rank function is getised to demporal rank
functionso that ranks range across positive integers (togetherimfittity), which may
be thought of as corresponding to the time at which a messag# be available to the
enemy. This allows analysis of protocols which rely on thersey of some information
at a particular point in time. A generalised version of thekréunction theorem is able
to establish long-term secrecy of messages in these cases.

In the context of group protocols, concern can also focus batker secrets es-
tablished by honest members of a group can be exposed at sierestage if an
enemy joins the group. The rank function approach has bepliedpn this context
[GTO7,Gaw08] for both forward secrecy (secret keys canadattiained from later runs)
and backward secrecy (secret keys cannot be obtained fndier eans).

6.3. Algebraic properties of cryptographic primitives

Some cryptographic schemes have particular propertiegmple, commutativity of
encryption) useful for constructing protocol schemes vidoich might allow other pos-
sibilities of attack. The rank function approach extendsdndle these cases, where the
properties can be captured as equations on messages, othes fuessage derivation
clauses (in the ‘generates’ relation). In one example, atyais of Gong’s protocol built
around exclusive-or [Gon89] was presented in [Sch02]. iEstee-or has several proper-
ties, such as commutativity, self-inverse of encryptiopske@nd cancellation properties.
The analysis modelled these as equations on the algebrasstiges, and the additional
requirement on a rank function is that it must be well-defimeithe context of the equa-
tions: if two (differently constructed) messages are egheah they should have the same
rank. Since rank functions tend to be defined by inductiom theeBNF for constructing
messages, establishing well-definedness is an additiegairement. This approach was
also used in [DS07] for a class of group Diffie-Hellman autieated key-agreement
protocols: keys can be constructed using exponentiatiannamber of different ways,
and it is important that all constructions of the same keyettae same rank.

6.4. Tool support

Various forms of tool support have been developed for th& fanction approach, in
some cases with underlying theory to underpin the apprdatieory of rank functions
on top of CSP was developed in the theorem-prover PVS [DS9i} theory allowed
definitions of rank functions, CSP descriptions of protquatticipants, and verification
of the conditions of the rank function theorem. Since mucthefwork in carrying out
such a proof is mechanical house-keeping the provisionaifsgopport is natural. The
PVS theories for CSP and for rank functions were refactoreextended (to handle
time) in [Eva03,ES05]. PVS has also been used to impleméareince systems based on
rank functions to check whether attacks are possible [GBTO%his approach, various
properties of a rank function are given, and the inferenctesy is used to establish
whether an attack is possible from the protocol rules.

As an alternative to theorem-proving, an approach for aatmally generating a
rank function for a given protocol was developed in [Hea®DH]. This approach con-
structs a minimal function whose positive messages indlnoge of the enemy’s initial
knowledge, are closed under the message generation ratear@closed under the pro-
tocol agents’ behaviour for outputting. If the resultingnétion also gives a rank d@fto
the authenticating message, then it meets all the conditibthe rank function theorem,
and the protocol is verified. Conversely if the resultingdtion gives a positive rank,
then there can be no rank function that will meet all the ctiowd$ of the rank function
theorem.

Acknowledgements

I am grateful to Roberto Delicata for comments on this chapte

References

[Del06]
[DS97]
[DS07]
[DY83]
[ES00]
[ES05]
[Eva03]

[For03]
[Gaw08]

[GBTO9]
[Gon89]

[GTO7]

[Hea00]

[Hoa85]
[HS00]

[Low97]
[PQOOQ]

[Ros97]
[RSGt00]

[SBS09]

[Sch9a7]
[Sch98a]

[Schosb]

[Schog]
[Scho2]

[SD04]

R. Delicata. Reasoning about Secrecy in the Rank Function frameweHD thesis, University
of Surrey, 2006.

B. Dutertre and S.A. Schneider. Embedding CSP in RiiSapplication to authentication proto-
cols. IntpHOL, 1997.

Rob Delicata and Steve Schneider. An algebraic ambrdo the verification of a class of diffie-
hellman protocolsint. J. Inf. Sec.6(2-3):183-196, 2007.
D. Dolev and A.C. Yao. On the security of public key fyools. IEEE Transactions on Informa-
tion Theory 29(2), 1983.

N. Evans and S.A. Schneider. Analysing time depensiecurity properties in CSP using PVS.
In ESORICSvolume 1895 of:NCS 2000.

N. Evans and S.A. Schneider. Verifying security peots with PVS: Widening the rank function
approach.Journal of Logic and Algebraic Programming005.

N. Evans. Investigating Security Through proofPhD thesis, Royal Holloway, University of
London, 2003.

Formal Systems (Europe) Ltd. FDR2 user manual, 2003

A. GawanmehOn the formal verification of group key security protocd®D thesis, Concordia
University, Canada, 2008.

A. Gawanmeh, A. Bouhoula, and S. Tahar. Rank fumetibased inference system for group key
management protocols verificatiomternational Journal of Network Securijtg(2), 2009.

L. Gong. Using one-way functions for authenticati@omputer Communications Reviel®(5),
1989.

A. Gawanmeh and S. Tahar. Rank theorems for forwastesg in group key management proto-
cols. InIEEE International Conference on Advanced Informationvideking and Applications
Workshops (AINAW'07R007.

J.A. Heather*Oh! Is it really you?"—Using rank functions to verify authentication protts
PhD thesis, Royal Holloway, University of London, 2000.

C.A.R. HoareCommunicating Sequential ProcessEsentice-Hall, 1985.

James Heather and Steve Schneider. Towards autovestiiication of authentication protocols
on an unbounded network. SFW pages 132-143, 2000.

Gavin Lowe. A hierarchy of authentication specifioas. INCSFW 1997.

O. Pereira and J-J. Quisquater. On the perfect eticnypssumption. IWITS '00: Workshop on
Issues in the Theory of Securi000.

A.W. RoscoeThe Theory and Practice of Concurrendyrentice-Hall, 1997.

P.Y.A. Ryan, S.A. Schneider, M.H. Goldsmith, G. Lowed @W. RoscoeModelling and Anal-
ysis of Security ProtocalsAddison-Wesley, 2000.

S. Shaikh, V. Bush, and S. Schneider. Specifyineniication using signal events in CSP.
Computers & Security28(5), 2009.

Steve Schneider. Verifying authentication proteavith CSP. INCSFW pages 3-17, 1997.
S.A. Schneider. Formal analysis of a non-repiadigirotocol. In11th IEEE Computer Security
Foundations Worksho@.998.

Steve Schneider. Verifying authentication prots in CSP. IEEE Trans. Software Eng.
24(9):741-758, 1998.

S.A. SchneideConcurrent and Real-time Systems: the CSP ApproAddison-Wesley, 1999.
S.A. Schneider. Verifying security protocol implentations. IFMOODS’02: Formal Methods
for Open Object-based Distributed Syste2302.

S. Schneider and R. Delicata. Verifying securitytpeols: An application of CSP. IBommuni-
cating Sequential Processes: the First 25 Yepegjes 243-263, 2004.

