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Formal methods have shown their interest when developing critical systems, where
safety or security is important. This is particularly true in the field of security protocols.
Such protocols aim at securing communications over a publicnetwork. Small flaws in
the development of such systems may cause important economical damages. Examples
of security protocols include the Transport Layer Security(TLS) protocol and its prede-
cessor, the Secure Sockets Layer (SSL). These protocols aretypically used for guaran-
teeing a secure connection to a web site in particular for secure payment over the Inter-
net. Most web browsers display a small lock to indicate that you are executing a secure
session using one of these protocols. Another emergent application of security protocol
is electronic voting. For instance, in the 2007 national elections in Estonia the govern-
ment offered the possibility to vote via the Internet. The development of such proto-
cols is error-prone and flaws are regularly discovered. For example, the SAML 2.0 Web
Browser Single Sign-On authentication system developed byGoogle has recently been
attacked. The Single Sign-On protocol allows a user to identify himself only once and
then access to various applications (such as Gmail or Googlecalendar). While designing
a formal model of this protocol, Armandoet al [ACC+08] discovered that a dishonest
service provider could actually impersonate any of its users at another service provider.
This flaw has been corrected since. Those examples show the need of precise security
guarantees when designing protocols. Moreover, the relatively small size of security pro-
tocols makes the use of formal verification reasonable.

The use of symbolic methods for formally analyzing securityprotocols goes back
to the seminal paper of Dolev and Yao [DY81]. While there is not a unique symbolic
model, the so-calledDolev-Yao modelsgenerally share the following ingredients: the ad-
versary is computationally unbounded and has complete control of the network while
cryptography is assumed to be perfect. For example, the adversary is not allowed to per-
form cryptanalysis or to decrypt a ciphertext without knowing the decryption key. Find-
ing collisions or guessing fresh nonces is also supposed to be impossible,etc. Most early
tools [Mil84,Low96b] and techniques [BAN89] were aiming above all at finding bugs in
protocols. Many errors have indeed been identified using formal methods, demonstrat-
ing their usefulness. At the end of the ’90s more foundational questions were investi-
gated: the general undecidability results for automated verification of security protocols
have been refined and decidable classes of protocols and restrictions yielding decidabil-
ity were identified together with their complexity [DLM04,CC01,RT01]. At about the
same time, models [THG99,AF01] and tool support [Pau98,Bla01] were also developed
for proving protocols correct rather than only finding flaws.When the focus shifted from
finding flaws to proving security protocols correct, a natural question was raised about
the guarantees provided in these models relying on the so-called perfect cryptography



assumption. A lot of efforts were performed to relax this assumption by introducing al-
gebraic properties of cryptographic primitives (see [CDL06] for a survey) or proving
that symbolic proofs can be transferred to more realistic, computational models starting
with [AR00]. Investigating these foundational questions not only sharpened our under-
standing of the underlying difficulties of security protocol verification but also enabled
the development of efficient tools such as among others the AVISPA platform [ABB+05],
the ProVerif [Bla01] and the Scyther [Cre08] tools. In recent years there have also been
works on widening the scope of the class of security protocols and properties that can
be analyzed, going beyond the classical protocols for guaranteeing authentication and
confidentiality. For instance the ProVerif tool allows to check the resistance against dic-
tionary attacks [Bla04], as well as indistinguishability properties [BAF05]. Moreover,
complex properties of contract signing [KR02,CKS01,KK05]and electronic voting pro-
tocols [DKR09,KT09,BHM08a] have been formalized.

The theory as well as the tools for formal analysis have now reached a state of ma-
turity where they can be used on practical protocols. However, there is not one technique
or tool which combines all benefits. There exist today many formalisms and approaches
which have each their own benefits. The aim of this book is to give an overview of the
state of the art of the field by showing some of the most influential developments in this
field.

1. Some examples of security protocols

Security protocols aim at different goals such as key distribution, message integrity, au-
thentication, non repudiation or voting. They all make use of cryptographic primitives as
a key ingredient to achieve security. Popular cryptographic primitives are symmetric and
asymmetric encryption, signatures, hash function and MACsfor example. For the most
common primitives, we introduce hereafter notations that will be used throughout all the
chapters of this book. In particular, the symmetric encryption of a messagem with key
k is denoted by{|m|}s

k. Similarly, we write{|m|}a
pk for the asymmetric encryption ofm

with the public keypk and [m]sk for the digital signature ofm with the secret keysk.
〈m1, m2〉 denotes the pairing of the two messagesm1 andm2.

To illustrate the different results described in this book,we will use similar exam-
ples of protocols. This should allow the reader to compare the differences between each
approach.

1.1. Handshake protocol

A first example of protocol is a naive handshake protocol between A and B, illus-
trated in Figure 1(a). This protocol has been proposed for illustration purposes by
Blanchet [Bla08]. The aim of the protocol is thatA andB share a secrets at the end. Par-
ticipant A generates a fresh session keyk, signs it with his secret keysk(A) and encrypts
it using B’s public key pk(B). WhenB receives this message he decrypts it using his
secret key, verifies the digital signature and extracts the session keyk. B uses this key to
symmetrically encrypt the secrets. The rationale is that whenB receives this message he
should be the only one able to know its content (because of theasymmetric encryption).
Moreover, the digital signature should ensure thatA is the originator of the message.
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Figure 1. Handshake protocol

However, this protocol is vulnerable to aman in the middleattack described in Fig-
ure 1(b). IfA starts a session with a dishonest participantC thenC is able to impersonate
A in a session he starts withB. At the endB believes that he shares the secrets with A
while he actually sharess with C.

The protocol can be easily corrected by adding the identities of the intended partici-
pants as depicted in Figure 1(c).

1.2. Needham-Schroeder public key protocol

A famous example of a protocol is the Needham-Schroeder public key (NSPK) protocol.
It was one of the first protocols that was discovered to be flawed using formal meth-
ods [Low96a]. The protocol is depicted in Figure 2(a). The protocol aims at achieving
mutual authentication while only using asymmetric encryption. NA and NB represent
nonces, i.e. random numbers freshly generated byA, respectivelyB. The rationale of
the protocol is that whenA receives the second message it must originate fromB as it
contains the fresh nonceNA which could only be extracted byB from the first message
(due to the encryption of the first message withB’s public key). Similarly, freshness of
the nonceNB should convinceB that the third message originates fromA.
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Figure 2. Needham Schroeder Public Key protocol

However, similarly to the handshake protocol it is possibleto mount a man in the
middle attack ifA initiates a session with a dishonest participantC. In that caseC can
successfully authenticate toB masquerading asA. MoreoverC learns thea priori secret
noncesNA and NB. The attack is described in Figure 2(b). Simply adding the sender
identity in the second message, i.e. resulting in the message{|〈NA, 〈NB, B〉〉|}a

pk(A), fixes
the protocol.

2. Formal models

One of the main advantages of formal methods is to provide a clear, well-defined math-
ematical model that allows to reason about the capacity of anattacker and to precisely
state the security guarantees achieved by a protocol in the given model. A large variety
of models have been proposed so far, proposing different trade-offs between expressivity
and the possibility to automate proofs.

While there exist a great variety of formal models, all of them have in common the
use of a term algebra for describing the messages exchanged during protocol execution.
Intuitively, a term algebra allows to model the structure ofthe messages, abstracting
away from the underlying cryptographic details of each primitive.

2.1. Term algebra

A term algebra is built over a set of variables and asignature, that is, a set of function
symbols given with their arity. A typical signature isℱ = {{|_|}s

_, 〈_, _〉} where the func-
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Figure 3. Dolev-Yao deduction system.

tion symbols are of arity 2 and model symmetric encryption and concatenation respec-
tively.

The intruder capacities are then often represented using adeduction system. The
classical deduction system (often referred to as the Dolev-Yao system) for concatenation
and (symmetric) encryption is given by the five rules of Figure 3.

The exact term algebra varies from one model to the other.

1. Some primitives may be added such as asymmetric encryption (denoted by{|_|}a
_)

signatures (denoted by [_]_) or hash functions (denoted byh(_)).
2. To reflect theprobabilisticnature of encryption, a third argument may be added

when modelling encryption: the same messagem encrypted at two distinct time
with the same keyk does not yield the same cipher-text. The encryption ofm by
k is then modeled by the term{|m|}s

k,r wherer represents the randomness used by
the encryption algorithm.

3. A last important difference that is introduced in some models is the use ofexplicit
destructors. Most often, the ability to encrypt and decrypt messages is modeled
by a deduction system like the one presented in Figure 3. An alternative approach
consists in explicitly introducing a functional symboldec for decryption together
with the equation

dec({|x|}s
y, y) = x.

These two ways of modeling encryption are similar but not equivalent. For ex-
ample, Millen [Mil03] has shown that some attacks can be detected only when
destructors are explicitly represented. One of the advantages of using equa-
tional theories is to reflect in a natural way the properties of the underlying
primitives. Indeed destructors correspond to functions that are actually avail-
able to an attacker. Many complex cryptographic primitivessuch as blind signa-
tures, re-encryption [DKR09], Exclusive Or, Diffie-Hellman exponentiation and
non-interactive zero-knowledge proofs [BHM08b] have beenmodeled by these
means.

Different term algebra will be discussed throughout the chapters of this book.

2.2. A variety of formal models

Several symbolic models have been proposed for cryptographic protocols. A unified
model would enable better comparisons between each result but such a unified model
does not exist currently. The reason for having several popular symbolic models prob-
ably comes from the fact that symbolic models have to achievetwo antagonistic goals.
On the one hand, models have to be as fine grained and expressive as possible in order
to better reflect protocol behaviors. One the other hand, models have to remain relatively
simple in order to allow the design of (automatic) decision procedures.



Without aiming at an exhaustive list we mention below several symbolic models in
order to illustrate the kind of techniques and frameworks that have been used for security
protocol verification. In this book most of these models willbe described in more details.

Early models. One of the first symbolic models dedicated to security protocols has
been developed by Dolevet al. [DY81,DEK83]. Protocols are described by rewrite rules
on words (describing a sequence of encryptions and decryptions). A words is secret if
it is not reachable by rewriting. Merrittet al. [DLM82,Mer83] have developed during
the same period of time a model where messages are also represented by words. These
models are however not expressive enough to reflect primitives such as concatenation
or key generation. More complex and detailed models have then been proposed. For
example, Paulson [Pau98] has developed a transition-basedmodel where each emission
of a message corresponds to an event. Protocol rules then specify possible transitions
between sets of events. Similarly, Meadowset al [Mea96] have proposed a language
(NPATRL) for specifying protocols, also based on events.

Rewrite rules. Several models represent the protocol itself as well as the intruder ca-
pabilities by rewrite rules. The main models are the multiset rewriting (MSR) model by
Mitchell et al. [CDL+99,BCJS02], the model based on rewrite rules by Rusinowitchand
Turuani used in the Casrul tool [RT01] and Compton and Dexter’s model [CD99] based
on linear logic.

Horn clauses. A variation of the modeling using rewrite rules is the modeling of
protocols and attacker actions using Horn clauses [Wei99,Bla01,Bla04,VSS05,CLC03,
Gou08]. The modeling in terms of Horn clauses allows to reuseexisting results such
as different resolution strategies. One of the most successful tools for verifying an un-
bounded number of sessions is the ProVerif tool developed byBlanchet [Bla01,Bla05,
BAF08] which implements a specialised resolution strategy. A detailed description of
this approach and Blanchet’s algorithm will be given in chapter “Using Horn Clauses
for Analyzing Security Protocols”.

Strand spaces. The strand space model [THG99,GT01] is a special purpose model for
reasoning about the traces generated by security protocols. One appealing feature of
the model is that it has an intuitive graphical representation of the protocol executions.
Moreover, Guttman obtained several composition results inthis model [GT00,Gut04,
Gut09].

Constraint systems.Constraint systems as a symbolic representation of the execution
of a bounded number of sessions were first introduced by Millen and Shmatikov [MS01,
MS03] and later also developed by Comon-Lundh [CL04]. It is in particular the under-
lying model in which NP-completeness of secrecy has been proved by Rusinowitch and
Turuani [RT01], for a bounded number of sessions. This result will be presented in the
chapter“Verifying a bounded number of sessions and its complexity”. A more general
presentation of constraint systems and a decision procedure will be given in the chapter
“Constraint solving techniques and enriching the model with equational theories”.

Process algebras. A natural modelling of protocols which is closer to an actualim-
plementation is in terms of process algebras. Each role of a protocol corresponds to an
independent process. Process algebras (such as CSP [Sch97], the CCS variant Cryp-
toSPA [FM99], the spi-calculus [AG97] or the applied pi calculus [AF01]) provide com-



munication primitives for sending and receiving messages,restriction, parallel composi-
tion and replication of processes. This yields an accurate (symbolic) modelling of proto-
cols, with in particular generation of fresh nonces (using restriction) and the possibility
for an unbounded number of sessions by using replication.

The main difference between the different models based on process algebra lies in
the definition of security properties. Many models [AL00,ALV02,Sch96,Sch97,Bor01]

use reachability properties of the form:P
∗

→ err. Other models [AG98,BDNP99,AG97,
AF01] base their property definition on an observational equivalence allowing to model
a wider range of properties including for instance anonymity and coercion-resistance in
voting protocols [KR05,DKR09].

Logics for security protocols. Another kind of reasoning about security protocols is to
use a Floyd-Hoare style logic. As for program analysis, assertions about the protocol
are propagated according to a set of rules. This type of logics goes back to the famous
BAN logic [BAN89] and has known many extensions and variations in the early nineties.
Recently, a new effort in this direction has been made by Mitchell’s group at Stanford
with a particular emphasis on compositionality resulting in the Protocol Composition
logic which will be described in the corresponding chapter of this volume.

2.3. Security properties

Cryptographic protocols aim at ensuring various security goals, depending on the appli-
cation. The two most classical security properties are secrecy and authentication. Most
of the verification techniques have been developed for thesetwo properties.

Secrecy Secrecy is one of the most standard properties: a protocol ensures the confi-
dentiality of some datas if this data is only known to participants which are entitled
to access the data. It is usually specified using a reachablity-based property: a protocol
is said to preserve the confidentiality of some datas if no execution yields a state such
that an attacker is able to learns. In the context of process algebras like the applied pi-
calculus [AF01], it is possible to specify a stronger property: a datas is said secret if
an attacker cannot distinguish a session of the protocol where s has been used from a
session wheres has been replaced by an arbitrary datas′. This property is often referred
to asstrong secrecy.

Authentication An authentication protocol should typically enable an agent to prove
her identity. Authentication properties are typically specified by requiring that for any
execution of a protocol where an agentB believes that he has received a messagem from
A, thenm has been indeed sent byA. Many variants have been proposed for authentica-
tion, e.g. by Schneider [Sch97] and by Lowe [Low97].

Equivalence-based propertiesWhile secrecy and authentication goals are usually spec-
ified as reachability properties, more complex properties such as privacy-like proper-
ties usually require the use of equivalence-based definitions. Strong secrecy, described
above, is a first example of an equivalence-based definition.Equivalence-based prop-
erties are even more crucial when specifying anonymity-like properties. For example,
a protocol ensures anonymous communication if an agent cannot linked the received
messages to their respective senders. Several formal definitions of anonymity have been
proposed [Aba02,SH02,Low02]. In particular, the definition proposed by Shmatikov



and Hughes relies on observational equivalence. Other examples of security proper-
ties stated as equivalence-based properties are privacy ine-voting protocols, receipt-
freeness or coercion-resistance [DKR09]. Equivalence-based properties can also be used
for analysing security properties specified in cryptographic models [CLC08].

3. Outline of the book

Formal methods for analyzing security protocols have reached a good level of maturity.
Many algorithms and tools have been proposed and have been successfully applied to
a wide range of protocols. The goal of this book is twofolds. First, it presents several
foundational techniques for security protocol verification that have given raise to many
extensions or which are the key part of successful analysis tools. Second, it presents
several well known symbolic models for security protocols,showing the advantages of
each of them.

Even relatively simple properties such as secrecy and authentication are undecidable
for security protocols [DLMS99]. Hence, algorithms for automated analysis of security
protocols either consider restrictions on the protocols orthe proposed techniques are
incomplete. Both kind of approaches will be covered in this book.

A first mean to recover decidability is to consider a bounded number of sessions,
that is, to consider a limited (fixed in advance) number of executions of the protocol.
The chapter“Verifying a bounded number of sessions and its complexity”presents one
of the first decidability and complexity result for analysing a protocol for a bounded
number of sessions. It is based on constraint systems which have then been intensively
reused in the field of security protocol verification. It has also given birth to an auto-
mated tool [ABB+02,ABB+05]. While many early models considered free term algebras
it is now widely recognized that this is not sufficient for several important cryptographic
primitives. For example, exclusive or is a frequently used operator in security protocols.
It admits several algebraic properties, in particular associativity and commutativity. The
chapter“Constraint solving techniques and enriching the model with equational theo-
ries” extends the previous chapter in order to consider equational theories, in particular
for associative and commutative operators. The chapter“Analysing Security Protocols
using CSP”presents a technique for analysing protocols specified using a process alge-
bra. In particular this technique allowed the discovery of the famous man-in-the-middle
attack of the Needham-Schroeder public key protocol [Low96a].

To analyze protocols without bounding the number of sessions, several incomplete
techniques have been developed which have been shown very successful in practice.
The chapter“Using Horn clauses for analyzing protocols”presents an algorithm for
analysing protocols modeled in Horn clauses. This algorithm is in the heart of the very
successful tool ProVerif [Bla05]. The chapter“Applied pi calculus” presents the ap-
plied pi-calculus, a process algebra which allows to specify complex protocols such as
e-voting protocols. The chapter“Types for security protocols”then proposes a verifica-
tion technique for a cryptographic pi-calculus, based on a type systems. Mitchellet al
have developed a logic (PCL) that allows to analyse protocols in a modular way. This
logic is presented in the chapter“Protocol Composition Logic”. Guttmanet al.have de-
veloped thestrand spacesmodel. This model allows to directly reason on the graphical
representation of protocol executions. The model and some of its associated verification



techniques are presented in the chapter“Shapes: surveying crypto protocols runs”. An-
other possibility for analysing protocols is to compute on over-approximation of the at-
tacker behavior, still showing the security of the protocol. This is the intuitive goal of
therank functionsdefined by Schneider and presented in the chapter“Security analysis
using rank functions in CSP”.

Formal models differ significantly from computational ones. In modern cryptogra-
phy, security definitions are based on complexity theory. Messages are modeled by bit-
strings and encryption functions are algorithms on bit-strings. The issue is then to de-
tect whether an adversary (a Turing machine) is able to learna confidential information
in reasonable (polynomial) time with non negligible probability. This notion of security
seems to better reflect the class of attacks that can be mounted in practice. However, se-
curity proof are error-prone and difficult to automate. Computational and symbolic mod-
els have been developed separately since the 80s. They seema priori very distinct and
difficult to conciliate. However, a recent line of research has developed a bridge between
the two approaches. In particular, Abadi and Rogaway [AR00]have shown that the cryp-
tographic indistinguishability of sequences of messages can be abstracted by the sym-
bolic equivalence of the corresponding sequences of terms.This result has then been fol-
lowed by many extensions. To conclude this book, the chapter“Computational sound-
ness: the case of Diffie-Helman keys”illustrates this new line of research by presenting
a soundness result between symbolic and cryptographic equivalences for Diffie-Hellman
encryption.
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