How to Break a Protocol

Joshua D Guttman F. Javier Thayer

Worcester Polytechnic Institute The MITRE Corporation

http://web.cs.wpi.edu/~guttman

Thanks to support from: National Security Agency

+ 2011.1.20 Darmstadt, Jun 2010

What is a cryptographic protocol?

For instance, the Secure Socket Layer protocol (SSL)

- Short, conventional sequence of messages
- Uses cryptography
- Goals: authentication, key distribution

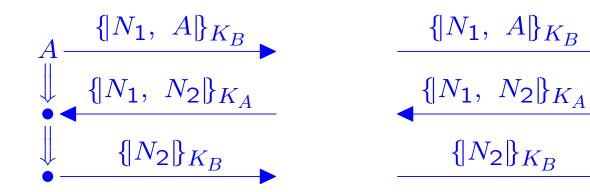
Establish trust

- E-commerce
- Remote access
- Secure networking

Cryptographic protocols are often wrong

- Active attacker can subvert goals
- May fail even if cryptography ideal
- Hard to predict which protocols achieve which goals

How to Break a Protocol


Try to prove it correct

 Where you get stuck that's where the flaw is

Focus on services provided by protocol

- Actions the protocol requires regular principals to p
- Produce values useful to penetrator

Needham-Schroeder

 K_A, K_B N_1, N_2 $\{|t|\}_K$ $N_1 \oplus N_2$

Public (asymmetric) keys of A, BNonces, one-time random bitstrings Encryption of t with KNew shared secret (whitespace)

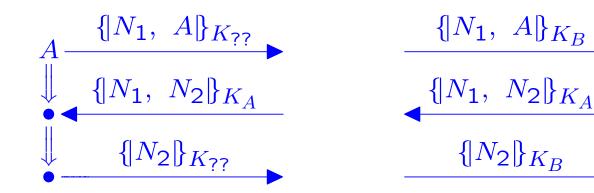
Essence of Cryptography (for today's lecture)

Symmetric key cryptography: algorithm using a single value, shared as a secret between sender, receive

- Same key makes ciphertext, extracts plaintext

Public key cryptography: algorithm using two related values, one private, the other public

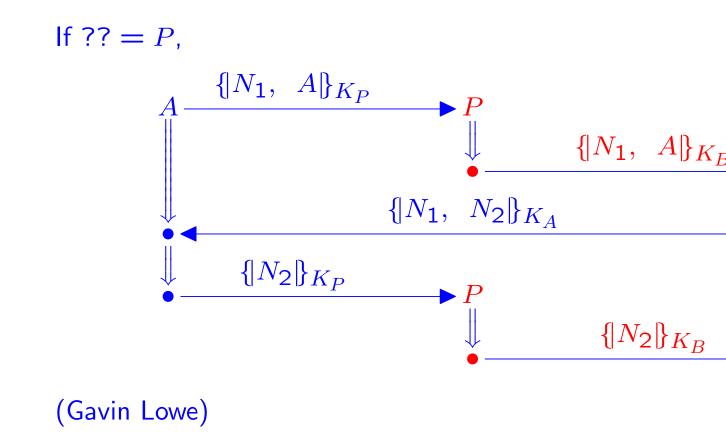
- Encryption: Public key makes ciphertext, only private key owner can decrypt
- Signature: Private key makes ciphertext, anyone can verify signature with public key


Terminology: A's public key: K_A A's private key

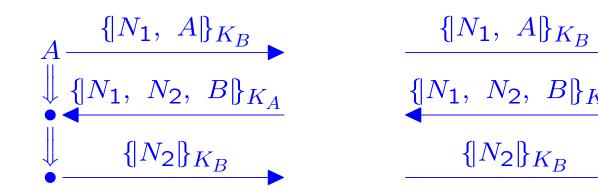
In symmetric crypto, $K = K^{-1}$

Uncompromised key:

- Key used only in accordance with protocol


Needham-Schroeder: How does it work?

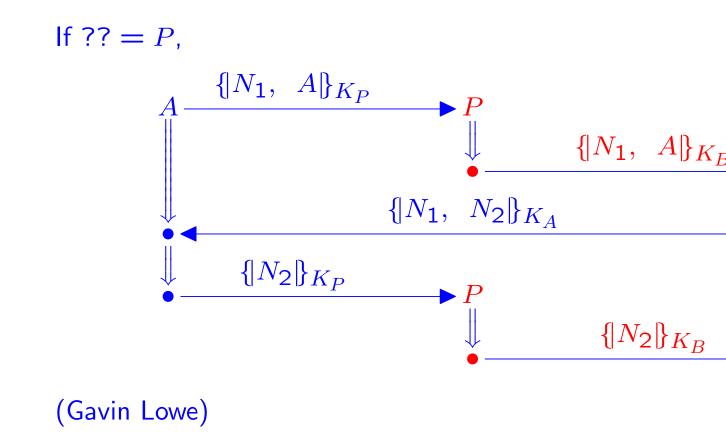
	Assume A's private key K_A^{-1} uncomprom
K_A, K_B	Public (asymmetric) keys of A, B
N_1, N_2	Nonces, one-time random bitstrings
$\{ t \}_K$	Encryption of t with K
$N_1 \oplus N_2$	New shared secret


Whoops

Needham-Schroeder Failure

+ 2011.1.20 Darmstadt, Jun 2010

Needham-Schroeder-Lowe



K_A, K_B	Public (asymmetric) keys of A, B
N_1, N_2	Nonces, one-time random bitstrings
$\{ t \}_K$	Encryption of t with K
$N_1 \oplus N_2$	New shared secret

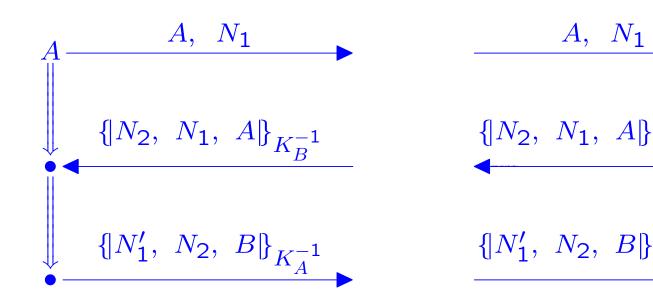
How to Break Protocols: Unintended Services and Junk Terms

+ 2011.1.20 Darmstadt, Jun 2010

Needham-Schroeder Failure

+ 2011.1.20 Darmstadt, Jun 2010

Diagnosis of a Failure


Who was duped?

- Not A: Meant to share N_1 , N_2 with P
- B: Thinks he shares N_1 , N_2 only with A
 - Secrecy failed: P knows values
 - Authentication failed:
 - A had no run with B

How? A offered P a service:

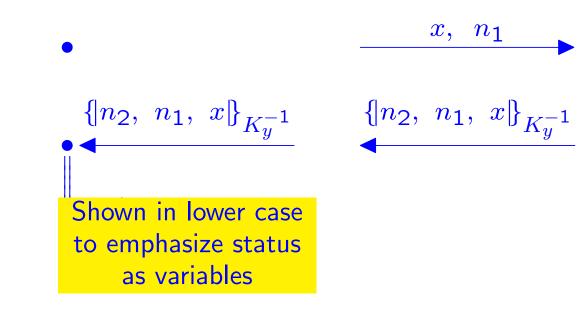
- Gave P nonce N_1
- Promised to translate $\{|N_1, N|\}_{K_A}$ to $\{|N|\}_{K_P}$
- An "unintended service"
 - Attacker needs to compute some value $\circ N_2$ in this case
 - But legitimate party creates such a value

Another Example: ISO Reject

Signatures only Mere authentication

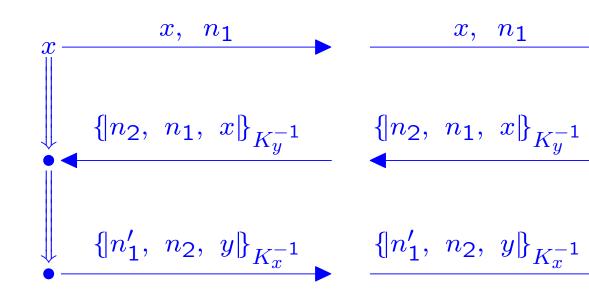
Diagnosis of ISO

Respondent B gets only two messages


- Clearly A, N_1 is "junk"
 - It has no authenticating force
- Other term received is the only challenge

Attacker needs to create

$$\{|N'_1, N_2, B|\}_{K_A^{-1}}$$


Only $\{|N'_1, N_2, B|\}_{K_A^{-1}}$ requires work What services are useful?

The Available Services

May rename in-bound variables Want to produce $\{N'_1, N_2, B\}_{K_A^{-1}}$ for some N'_1 Can use A as respondent, B, N_2 in-bound i.e. use substitution $[A/y, B/x, N_2/n_1]$

Behaviors are Parametric

 x, y, n_1, n_2, n'_1 are variables Possible behaviors are all substitution instances

Counterexample to One Security Goal

P — A, N_p $\{ [N_{2}, N_{p}, A] \}_{K_{B}^{-1}}$ $P \xrightarrow{B, N_{2}} A$ $\{ [N_{1}, N_{2}, B] \}_{K_{A}^{-1}} \xrightarrow{P}$ $\{ [N_{1}, N_{2}, B] \}_{K_{A}^{-1}}$

+ 2011.1.20 Darmstadt, Jun 2010

What Goal is Refuted?

 \boldsymbol{A} executed a signature

 "Entity authentication" for A may hold depending what that means

But A was not initiator in any run with B

Dolev-Yao Attacks: A Recipe

Identify and discard "junk" messages

- They don't contribute to authentication
- Remaining incoming messages: "Challenge"
- Adversary needs to synthesize them

Look for unintended services

Criterion: Can they build challenge messages?
Combine unintended services

What Unintended Services Occur?

Examples:

- Signature service: ISO reject protocol
- Encryption service: Woo-Lam
- Decryption service: None (too obvious?)
- Key-translation service: NS PK

The Dolev-Yao Problem

Given a protocol, and assuming all cryptography perfect

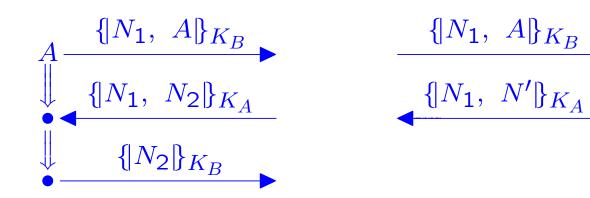
- What secrecy properties
- What authentication properties

the protocol achieves

Find counterexamples to other properties

- Unintended services useful

What does perfect cryptography mean?


- No collisions
- Need key to make encrypted value
- Need key to decrypt and recover plaintext

How to Prove a Protocol Correct

Try to break it

 When you get stuck you'll see why it's right

Needham-Schroeder: Initiator's View

	Assume A, B 's private keys K_A^{-1}, K_B^{-1}
K_A, K_B	Public (asymmetric) keys of A, B
N_{1}, N_{2}	Nonces, one-time random bitstrings
$\{ t \}_K$	Encryption of t with K
$N_1 \oplus N_2$	New shared secret
Does $N' = N_2$?	Yes, there are no available services!

Breaking and Proving

How to break a protocol

- Try to prove it correct
- Where you get stuck, look for trouble
- Specifically, look for unintended services to produce non-junk terms expected by regular principals

How to prove a protocol correct

- Try to break it
- See what unintended services must be used
- "Read off" authentication properties

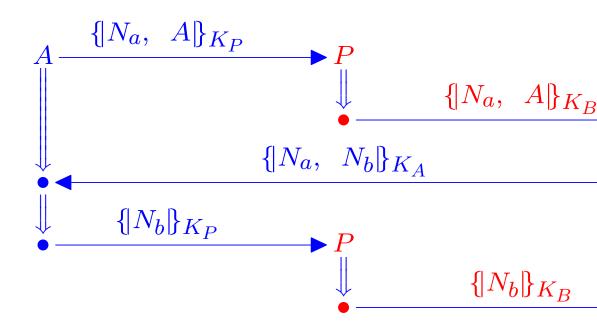
Strand spaces: make these ideas precise, justify method

Strand Spaces

work done jointly with Javier Thayer and Jonathan Herzog

+ 2011.1.20 Darmstadt, Jun 2010

Protocol Executions are Bundles


Send, receive events on strands called "nodes"

- Positive for send
- Negative for receive

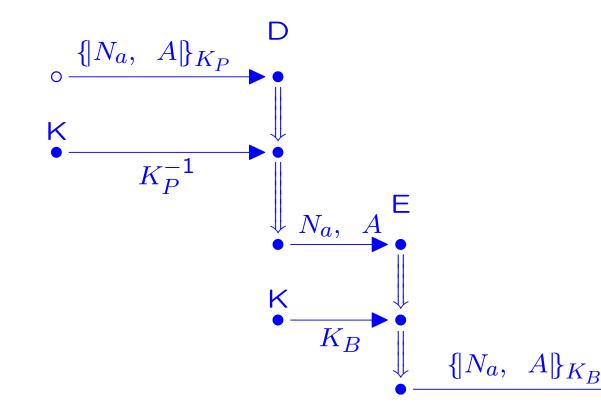
Bundle \mathcal{B} : Finite directed graph of nodes and edges representing causally well-founded execution; Edges are arrows \rightarrow , \Rightarrow

- For every reception -t in \mathcal{B} , there's a unique transmission +t where $+t \rightarrow -t$
- When nodes $n_i \Rightarrow n_{i+1}$ on same strand, if n_{i+1} in \mathcal{B} , then n_i in \mathcal{B}
- \mathcal{B} is acyclic

A Bundle

Precedence within a Bundle

Bundle precedence ordering $\preceq_{\mathcal{B}}$


- $n \preceq_{\mathcal{B}} n'$ means sequence of 0 or more arrows \rightarrow , \Rightarrow lead from n to n'
 - $\preceq_{\mathcal{B}}$ is a partial order by acyclicity
 - $\preceq_{\mathcal{B}}$ is well-founded by finiteness

Bundle induction: Every non-empty subset of \mathcal{B} has $\preceq_{\mathcal{B}}$ -minimal members

Reasoning about protocols combines

- Bundle induction
- Induction on message structure

NS Attack: Adversary Activity

+ 2011.1.20 Darmstadt, Jun 2010

Messages

Terms freely generated from

- Names, texts
- Nonces
- Keys

using the operators:

- Concatenation t_0, t_1

- Encryption with a key $\{|t_0|\}_K$

Other algebras also interesting but today we'll use the free one

Subterms and Origination

Subterm relation □ least transitive, reflexive relation with

N.B. $K \sqsubset \{|h|\}_K \text{ implies } K \sqsubset h$

Represents contents of message, not how it's construct

t originates at n_1 means

 n_1 is a transmission (+)

 $t \sqsubset \operatorname{term}(n_1)$

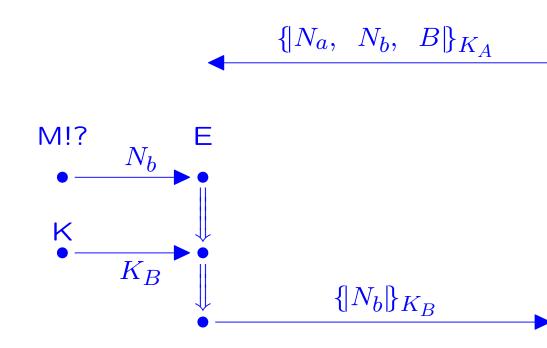
if $n_0 \Rightarrow \cdots \Rightarrow n_1$, then $t \not\subseteq \operatorname{term}(n_0)$

Unique origination, non-origination formalize a probabilistic assumption

An Authentication Goal

Suppose:

- Bundle \mathcal{B} contains a strand Resp $[A, B, N_a, N_b]$
- K_A^{-1} non-originating
- N_b originates uniquely in \mathcal{B}


$$- N_b \neq N_a$$

Then:

- There is a strand $Init[A, B, N_a, N_b]$ in \mathcal{B}

Authentication: correspondence assertions (of form $\forall \exists$) (This is false for NS)

Guessing a Nonce

Guessing a private key (e.g. K_A^{-1}) similarly improbable

A Secrecy Goal

Suppose:

- Bundle \mathcal{B} contains a strand Resp $[A, B, N_a, N_b]$
- K_A^{-1}, K_B^{-1} non-originating
- N_b originates uniquely in \mathcal{B}

Then:

- There is no node $n \in \mathcal{B}$ with term $(n) = N_b$

Form: \forall This also is false for NS

Summary: Breaking Protocols, Strand Space

To break a protocol, you

- Discard junk terms
- Identify unintended services
- Match services against non-junk goals

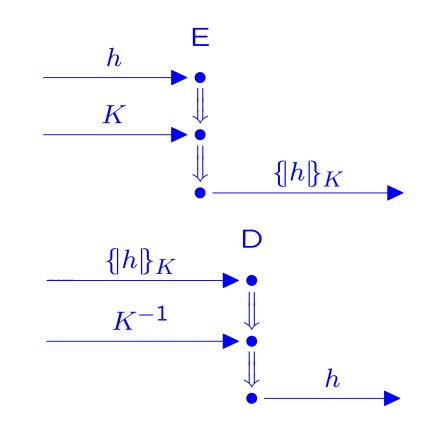
Core strand space ideas:

- Behaviors (regular or adversary) are strands
- Executions are bundles
- Unique origination and non-origination

Security goals:

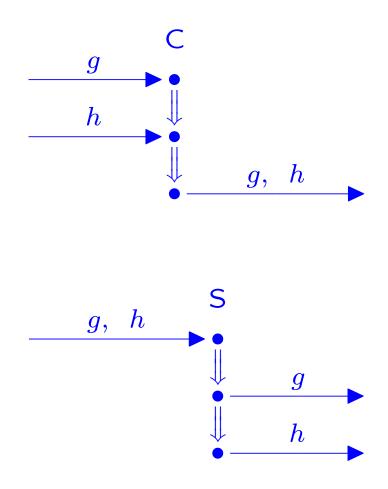
- Authentication asserts existence of matching strand
- Secrecy asserts non-existence of "disclosing" nodes
- Premises concern n.o., u.o., existence of strands, ine

A further question:


- How would you prove these goals?

Adversary Strands, I: Initiating Values

+ 2011.1.20 Darmstadt, Jun 2010


Adversary Strands, II: Encrypt, Decrypt

Formalizes notion of ideal cryptography

+ 2011.1.20 Darmstadt, Jun 2010

Adversary Strands, III: Concatenate, Separa

+ 2011.1.20 Darmstadt, Jun 2010