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ABSTRACT 
For years the PC community has struggled to provide secure 
solutions on open platforms. Intel has developed innovative new 
technology to enable SW developers to develop and deploy secure 
applications on open platforms. The technology enables 
applications to execute with confidentiality and integrity in the 
native OS environment. It does this by providing ISA extensions 
for generating hardware enforceable containers at a granularity 
determined by the developer. These containers while opaque to the 
operating system are managed by the OS. This paper analyzes the 
threats and attacks to applications. It then describes the ISA 
extension for generating a HW based container. Finally it describes 
the programming model of this container. 

1 INTRODUCTION 
 

Today’s computer systems handle increasing amounts of 
important, sensitive, and valuable information. This information 
must be protected from tampering and theft. An entire industry is 
devoted to stealing information such as banking data or corporate 
intellectual property from systems [1]. There are many 
applications which must keep a secret on a platform. Some 
example applications are financial programs, ebanking, and 
medical records programs. Each secret holder may be mutually 
distrustful of other secret holders. Each secret must be protected 
independently of the other secrets. This paper describes Intel® 
Software Guard Extensions, (Intel® SGX), a set of new 
instructions and memory access changes added to the Intel® 
Architecture. These extensions allow an application to instantiate 
a protected container, referred to as an enclave. An enclave is a 
protected area in the application’s address space, Figure 1, which 
provides confidentiality and integrity even in the presence of 
privileged malware. Attempted accesses to the enclave memory 
area from software not resident in the enclave are prevented even 
from privileged software such as virtual machine monitors, BIOS, 
or operating systems. 

 SGX allows the protected portion of an application to be 
distributed in the clear. Before the enclave is built the enclave code 
and data is free for inspection and analysis. The protected portion 
is loaded into an enclave where its code and data is measured. Once 
the application’s code and data is loaded into an enclave, it is 
protected against all external software access. An application can 
prove its identity to a remote party and be securely provisioned 
with keys and credentials. The application can also request an 
enclave & platform specific key that it can use to protect keys and 
data that it wishes to store outside the enclave. 

In addition to the security properties, the enclave 
environment offers scalability and performance associated with 

execution on the main CPU of an open platform.  
Supporting SGX involves two major additions to the Intel 

Architecture. First is the change in enclave memory access 
semantics. The second is protection of the address mappings. 

This paper is divided into several sections. In Section 2, we 
provide an overview of the SGX protection model. Section 3 
describes the SGX instruction set and software model. Section 4 
describes the hardware components used to support an enclave for 
an application. Section 5 describes the enclave creation process. 
Section 6 describes how an application transitions in and out of an 
enclave. Section 7 describes how enclaves can be paged out of the 
protected memory to allow for multiple or very large enclaves. 
Finally, in section 8, we summarize the benefits and show where 
this technology contains novel enhancements to advance security 
in open systems.  

The SGX architecture also includes instructions and 
architecture for remote attestation and sealing. This is described in 
[2]. In addition some important usages developed at Intel Labs are 
described in [3]. 

 

 
Figure 1: Enclave within Application's Virtual Address Space 

 

2 Protection Overview  
SGX prevents all other software from accessing the code and data 
located inside an enclave including system software and access 
from other enclaves. Attempts to modify an enclave’s contents are 
detected and either prevented or execution is aborted. A summary 
of security properties are:  
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enclave instance from software attacks and prevents 
access to tampered code/data upon detection. 

 SGX provides confidentiality of code/data of an enclave 
instance from software attacks. 

 SGX provides isolation between all enclave instances. 
 SGX prevents replay of an enclave instance from 

software attacks. 
In addition the hardware ensures execution starts only at 

enclave authorized locations and that unplanned exits from the 
enclave do not leak enclave information. 

Finally data inside an enclave must be protected from 
tampering from all software outside the enclave’s trust boundary, 
even when the enclave is sent to disk or unprotected memory by 
the OS or VMM managing the system resources. 

To achieve these protections, several new capabilities are 
needed by hardware. First, code executing inside an enclave must 
be able to access code and data internal to the enclave while access 
from outside the enclave  is prohibited. Secondly the translation 
from the application’s virtual address to the correct physical 
address must be kept the same as when the application developer 
built the application1. More details and description of the 
properties needed to achieve a secure container are described in 
[4]. While enclave data is resident within registers, caches, or other 
logic blocks within the processor package, unauthorized access via 
software is prevented using access control mechanisms built into 
the processor. However, when enclave data leaves the -package 
caches to be written to platform memory, the data is automatically 
encrypted and integrity protected preventing memory probes or 
other techniques to view, modify, or replay data or code contained 
within an enclave. 

3 Programming Model 
SGX architecture includes 17 new instructions, new processor 
structures and a new mode of execution. These include loading an 
enclave into protected memory, access to resources via page table 
mappings, and scheduling the execution of enclave enabled 
application. Thus, system software still maintains control as to 
what resources an enclave can access. 

An application can be encapsulated by a single enclave or 
can be decomposed into smaller components, such that only 
security critical components are placed into an enclave.  

 SGX Instruction Set 
SGX operations can be categorized into the following functions: 
enclave build/teardown, enclave entry/exit, enclave security 
operations, paging instructions, and debug instructions. These 
instructions are summarized in sections below. 

Enclave Build and Teardown 
Table 3-1 includes the instructions which are used to allocate 

protected memory for the enclave, load values into the protected 
memory, measure the values loaded into the enclave’s protected 
memory, and teardown the enclave after the application has 
completed. 

 
Table 3-1 Enclave Build Instructions 

Instruction Description 
ECREATE Declare base and range, start build 
EADD Add 4k page 
EEXTEND Measure 256 bytes 
EINIT Declare enclave built 
EREMOVE Remove Page 

 
                                                                 
1 In the IA, software executes using virtual addresses but the 

underlying hardware uses physical addresses. The translation 

Enclave Entry and Exit  
Table 3-2 includes the instructions which are used to enter 

and exit the enclave. An enclave can be entered, EENTER, and 
exited, EEXIT, explicitly. It may also be exited asynchronously 
AEX, due to interrupts or exceptions. In the case of AEX the 
hardware will save all secrets inside the enclave, scrub secrets 
from registers, and return to external program flow.It then resumes 
where it left off execution.  
 
Table 3-2 Enclave Entry and Exit Operations 

Instruction Description 
EENTER Enter enclave 
ERESUME Resume enclave 
EEXIT Leave enclave 
AEX Asynchronous enclave exit 

Enclave Paging 
The SGX paging instructions in Table 3-3 allow system software 
to securely move enclave pages to and from unprotected memory. 
  
Table 3-3 Enclave Paging Instructions 

Instruction  Description 
EPA Create version array page 
ELDB/U Load an evicted page into protected 

memory 
EWB Evict a protected page 
EBLOCK Prepare for eviction 
ETRACK Prepare for eviction 

Enclave Debug 
The enclave debug instructions in Table 3-4 allow developers to 
use familiar debugging techniques inside special debug enclaves. 
A debug enclave can be single stepped and examined. A debug 
enclave cannot share data with a production enclave. This protects 
enclave developers if a debug enclave should escape the 
development environment. No further details are presented on 
debug in this paper. 
 
Table 3-4 Enclave Debug Instructions 

Instruction Description 
EDBGRD Read inside debug enclave 
EDBGWR Write inside debug enclave 

Enclave Security Operations 
The enclave security instructions in Table 3-5 allow an enclave to 
prove to an external party that the enclave was built on hardware 
which supports the SGX instruction set. Details of this process and 
use of key generation instruction are detailed in [1] 
 
Table 3-5 Enclave Security Instructions 

Instruction Description 
EREPORT Enclave report 
EGETKEY Generate unique key 

 

 Address Range 
The enclave executes within an application’s virtual address space. 
An enclave is a subset of that address space. All protections are 
done based on the enclave’s virtual address. This address is 

between the two is typically managed by privileged software 
which is an untrusted agent in the SGX attack model 
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declared by software in the ECREATE instruction 

 Data Structures and Components 
SGX defines new data structures to maintain the information 

needed enforcing SGX security properties. The major structures 
are shown in Table 3-6. 
 

Table 3-6 Enclave Data Structures and Components 

Structure Description 
Enclave Page Cache (EPC) Contains protected code and 

data in 4K pages 
Enclave Page Cache Map 
(EPCM) 

Contains meta-data of 
enclave page 

SGX Enclave Control Store 
(SECS) 

Meta data for each enclave 

Thread Control Structure 
(TCS) 

Meta data for each thread 

VA Page Version Array of evicted 
pages 

SIGSTRUCT enclave's signature structure, 
the sealing identity 

 
The EPC provides the protected memory region for enclaves 

in the machine. The EPCM is the security meta-data attached to 
each EPC page. The EPCM contains the information needed by 
the hardware to protect the enclave memory accesses. There is a 
1:1 mapping between an EPC page and an EPCM entry. 

The SECS consumes 1 page of the EPC and contains meta-
data needed for that particular enclave. 

The TCS consumes 1 page of the EPC and contains meta-
data used by hardware to control per logical processor entry into 
the enclave.  

In additions to enclave pages, there are SGX structures that 
do not belong to any enclave. These structures are used for internal 
booking of the version counters of the evicted enclave pages. See 
section 7.2 for details about enclave page eviction mechanism. 

Finally a SIGSTRUCT structure is passed into EINIT to 
provide a more flexible sealing identity and attestation [2]. 

 Enclave Mode 
When a processor enters into an enclave it begins to run in enclave 
mode. This mode changes the memory access semantics to 
perform additional checks on memory accesses. It allows the code 
inside an enclave to access that particular enclave. Otherwise 
memory accesses to the EPC result in return of abort page value.  

 Resource Management  
The EPC is a shared system wide resource meant to be managed 
by privileged SW. The EPC contains the pages which are needed 
for execution of an enclave. An enclave does not require all of its 
pages to be present in the EPC to execute. This is similar to virtual 
memory in Intel Architecture where pages not currently executing 
can be moved out of memory.  

4 Hardware components 
To implement SGX memory protections, new hardware and 
structures are required. The Enclave Page Cache (EPC) is 
protected memory where enclave pages and SGX structures are 
stored. This memory is protected from hardware and software 
access.  

Inside the EPC, code and data from many different enclaves 
reside. When an enclave performs a memory access to the EPC, 
the processor decides whether or not to allow the access. The 
processor maintains security and access control information for 
every page in the EPC in a hardware structure called the Enclave 

Page Cache Map (EPCM). This structure is consulted by the 
processor’s Page Miss Handler (PMH) hardware module. The 
PMH mediates access to memory by consulting page tables 
maintained by system software, range registers, and the EPCM  

 Enclave Page Cache 
The Enclave Page Cache (EPC) is protected memory used to store 
enclave pages and SGX structures. The EPC is divided into 4KB 
chunks called an EPC page. EPC pages can either be valid or 
invalid. A valid EPC page contains either an enclave page or an 
SGX structure. The security attributes for each EPC page are held 
in an internal micro-architecture structure called EPCM, which is 
described below. 

Each enclave instance has an enclave control structure, 
SECS. Every valid enclave page in the EPC belongs to exactly one 
enclave instance. System software is required to map enclave 
virtual addresses to a valid EPC page.  

 Enclave Page Cache Map  
The Enclave Page Cache Map (EPCM) is a protected structure 
used by the processor to track the contents of the EPC. The EPCM 
is comprised of a series of entries with exactly one entry for each 
page in the EPC. The EPCM is managed by the processor as part 
of various SGX instructions and is never directly accessible to 
software or to devices. The format of the EPCM is micro-
architectural and is implementation dependent. However, 
logically, each EPCM entry holds the following information: 

 Whether the EPC page is valid or invalid 
 The enclave instance that owns the page.  
 The type of page (REG, TCS, VA, SECS) 
 The virtual address through which the enclave is allowed 

to access the page  
 The enclave specified read/write/execute permissions on 

that page  
 Whether the page is accessible or not (BLOCKED or 

UNBLOCKED). See section 7.1. 
The EPCM structure is used by the CPU in the address-

translation flow to enforce access-control on the enclave pages 
loaded into the EPC.  Logically it provides an additional secure 
layer of access control in addition to “legacy” segmentation, 
paging tables and extended paging tables mechanisms. 

 EPC Layout  
EPC layout is specific to a particular implementation, and is 
enumerated through the CPUID instruction [5]. 

At a high level, a CPU that supports SGX and implements 
EPC in cryptographically protected platform DRAM supports the 
ability for the BIOS to reserve a range(s) of memory called 
Processor Reserved Memory (PRM).  The BIOS allocates the 
PRM by configuring a set of range registers, collectively known as 
the PRMRR. 
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Figure 3 PRM Layout 

An example layout is shown in Figure 3The exact layout of the 
PRM and EPC is model-specific, and depends on BIOS settings. 
 

 EPC Memory Protection 
This section describes mechanisms employed by the CPU in order 
to protect EPC memory. 

Memory Encryption Engine 
Use of main memory as storage for the EPC is very desirable for 
many implementations. The challenge is there are many known 
software and hardware attacks that can be waged on DRAM 
memory. Cryptographically protecting the EPC contents in 
DRAM is one way to defend against these attacks. 

To that end, the Memory Encryption Engine (MEE) is a 
hardware unit that encrypts  and integrity protects selected traffic 
between the processor package and the main memory (DRAM). 
The overall memory region that an MEE operates on is called an 
MEE Region.  Depending on implementation, the PRM is covered 
by one or more MEE regions. 

Memory Access Semantics 
CPU memory protection mechanisms physically block 

access to PRM from all external agents (DMA, graphic engine, 
etc.), by treating such accesses as references to non-existent 
memory. To access a page inside an enclave using MOV and other 
memory related instructions, the hardware checks as described in 
Figure 2, the following: 
 Logical processor is executing in “enclave mode”  
 Page belongs to enclave that the logical processor is 

executing 
 Page accessed using the correct virtual address  

If the accessed page is not part of the enclave’s virtual 
address space but is part of the EPC then the access is treated as a 
reference to nonexistent memory. If the page is outside of the 
enclave virtual address space, then hardware allows the enclave 
code to access the memory outside of PRM. If the page is outside 
of the enclave’s virtual address space and resolves into a PRM 
page, hardware prevents such access by signaling a fault. Accesses 
by a processor not in enclave mode to an enclave page are treated 
as a reference to nonexistent memory. 

5 Enclave creation process 
The enclave creation process loads enclave binary into the EPC 
and establishes the enclave identity.  

The enclave creation process is divided into multiple stages: 
initialization of enclave control structure, allocation of EPC pages 
and loading of enclave content into the pages, measurement of the 
enclave contents and finally establishing the enclave identity. 

These steps are supported by the following instructions: 
ECREATE EADD, EEXTEND, and EINIT.  

ECREATE starts the enclave creation process and initializes 
the SGX Enclave Control Structure (SECS) which contains global 
information about the enclave. EADD commits EPC pages to an 
enclave and records the commitment but not the contents in the 
SECS. The memory contents of an enclave are explicitly measured 
by EEXTEND. EINIT completes the creation process which 
finalizes the enclave measurement and establishes the enclave 
identity. Until an EINIT is executed, enclave entry is not 
permitted. 

 Starting Enclave Creation 
The enclave creation process begins with ECREATE which 
converts a free EPC page into an SECS page and initializes the 
structure. As part of ECREATE, system software selects which 
EPC page to be made an SECS and specifies several attributes of 
the enclave including the range of protected addresses the enclave 
can access, the mode of operation (32bit vs 64 bit), processor 
features supported by the enclave, and finally whether debug 
access is allowed.  

 Adding Pages and Measuring the 
Enclave 

Once the SECS has been created, enclave pages can be added to 
the enclave via EADD. This involves converting a free EPC page 
into either a REG or a TCS.  

EADD when invoked will initialize the EPCM entry to 
indicate the type of page (REG or TCS), the linear address that the 
enclave will access the page, the enclave RWX permissions for the 
page, and associates the page to the SECS provided as input. The 
EPCM entry information is used by hardware to provide SGX 
access control to the page as discussed in section 4. EADD will 
then record EPCM information in a cryptographic log stored in the 
SECS and copy 4 K bytes of data from unprotected memory to the 
allocated EPC page. 

System software is responsible for selecting a free EPC 
page, the type of page to be added, the attributes the page, the 
contents of the page, and the SECS (enclave) to which the page is 
to be added. 

After a page has been added to an enclave, software can 
measure a 256 byte region as determined by the developer by 
invoking EEXTEND. Thus to measure an entire page, system 
software must execute EEXTEND 16 times. Each invocation of 
EEXTEND adds to the cryptographic log, a header indicating 
which region is being measured followed by the 256 bytes of 
information.  

Entries in the cryptographic log define the measurement of 
the enclave and are critical in gaining assurance that the enclave 
was correctly constructed by the untrusted system software. 
Examples of incorrect construction includes adding multiple pages 
with the same enclave linear address resulting in an alias, loading 
modified contents into an enclave page, or not measuring all of the 
enclave. Due to the potential size of the log, only a cryptographic 
hash of the log is actually stored in the SECS. Correct construction 
results in the cryptographic log matching the one built by the 
enclave owner in SIGSTRUCT. It can be verified by the remote 
party. [2] 

 Initializing an Enclave 
Once system software has completed the process of adding and 
measuring pages, the enclave needs to be initialized. Initializing an 
enclave prevents the addition and measurement of enclave pages 
and enables enclave entry. The initialization process finalizes the 
cryptographic log and establishes the enclave identity and sealing 
identity used by EGETKEY and EREPORT. 

The sealing identity is managed by a sealing authority 

Reserved for HW use 

EPC 

Reserved for HW use 

PRM



 

6 
 

represented by the hash of a public key used to sign a structure 
processed by EINIT. The sealing authority assigns a product ID 
and security version number to a particular enclave identity 
comprising the attributes of the enclave and the measurement of 
the enclave.  

EINIT establishes the sealing identity using the following 
steps: 

1. Verifies that SIGSTRUCT is signed using the public key 
enclosed in the SIGSTRUCT 

2. Checks that measurement of the enclave matches the 
measurement of the enclave specified in SIGSTRUCT 

3. Checks that the enclave’s attributes are compatible with those 
specified in SIGSTRUCT 

4. Finalizes the measurement of the enclave and records the 
sealing identity and enclave identity (the sealing authority, 
product id and security version number) in the SECS 

 
If EINIT was successful it enables the enclave to be entered. 

6 Enclave entry and exiting 
Critical to preserving the integrity of an enclave is to control 
transfer of execution into and out of an enclave. The entry process 
needs to clear any cached translations that overlap with the 
enclave’s protected address region. This ensures that all protected 
enclave memory accesses are properly checked. The entry process 
must identify where inside the enclave the processor should 
transfer control and enable enclave mode of execution. Exiting an 
enclave must again clear any cached translations referring to the 
enclave’s protected address region so that no other software can 
use the cached translations to access the enclave’s protected 
memory. 

While operating in enclave mode, an interrupt, fault or 
exception may occur. Traditionally, the processor would vector to 
a fault handler specified by system software. The fault handler 
saves the register state and services the event.  Once the event has 
been serviced, system software restores the register state and 
returns control to where software was interrupted. Allowing 
system software to read and/or modify the register state of an 
enclave places system software within the trust boundary of the 
enclave. Consequently, SGX introduces a new routine to protect 
the integrity and confidentiality of the enclave.  

SGX offers the EENTER and EEXIT instructions to enter 
and exit an enclave programmatically (e.g. as part of call/return 
sequence). When enclave exit occurs due to an event, the processor 
invokes a special internal routine called Asynchronous Exit (AEX) 
which saves the enclave register state, clears the registers, sets the 
faulting instruction address to a value specified by EENTER. The 
ERESUME instruction restores the state back to allow the enclave 
to resume execution. 

 Synchronous Entry and Exit 
The EENTER instruction is the method to enter the enclave under 
program control. To execute EENTER, software must supply an 
address of a TCS that is part of the enclave to be entered. The TCS 
indicates the location inside the enclave to transfer control and 
where inside the enclave AEX should store the register state. When 
a logical processor enters an enclave, the TCS is considered busy 
until the logical processors exits the enclave. SGX allows an 
enclave builder to define multiple TCS structures, thereby 
providing support for multithreaded enclaves 

EENTER also defines the Asynchronous Exit Pointer(AEP) 
parameter. AEP is an address external to the enclave which is used 
to transition back into the enclave after an AEX. The AEP is the 

address an exception handler will return to using IRET. Typically 
the location would contain the ERESUME instruction. ERESUME 
transfers control to the enclave address retrieved from the enclave 
saved state. 
 
 EENTER performs the following operations: 

1. Check that TCS is not busy and flush TLB entries for enclave 
addresses 

2. Change the mode of operation to be in enclave mode 

3. Save the stack pointer, RSP, and frame pointer,RBP, for later 
restore on enclave asynchronous exit 

4. Save the thread’s OS supported state (XCR0) and replace it 
with the subset supported by the enclave (XFRM) 

5. Save the AEP away for possible AEX 

6. Transfer control from outside enclave to location inside the 
enclavedefined by the TCS 
The EEXIT instruction is the method of leaving the enclave 

under program control, it performs the following operations: 

1. Clear enclave mode and TLB entries for enclave addresses 

2. Mark TCS as not busy 

3. Transfer control from inside the enclave to a location on the 
outside specified by register, RBX 

  Asynchronous Exit (AEX) 
Asynchronous events, such as exceptions and interrupts may occur 
during execution inside an enclave.  These events are referred to 
as Enclave Exiting Events (EEE). Upon an EEE, the processor 
state is securely saved inside the enclave and then replaced by a 
synthetic state to prevent leakage of secrets.  The process of 
securely saving state and establishing the synthetic state is called 
an Asynchronous Enclave Exit (AEX).  

As part of the EEE the AEP is pushed onto the stack as the 
location of the faulting address. This is the location where control 
will return after executing the IRET. The ERESUME can be 
executed from that point to reenter the enclave. 

After AEX has completed, the logical processor is no longer 
in enclave mode and the exiting event is processed normally.  Any 
new events that occur after the AEX has completed are treated as 
having occurred outside the enclave (e.g. a #PF in dispatching to 
an interrupt handler). 

 Resuming Execution after AEX 
After system software has serviced the event that caused the 

logical process to exit an enclave, the logical processor can re-start 
execution using ERESUME. Unlike EENTER, ERESUME 
restores registers and returns control to where execution was 
interrupted. If the cause of the exit was an exception or a fault and 
was not resolved, then the event will be triggered again. For 
example, if an enclave performs a divide by 0 operation, executing 
ERESUME will cause the enclave to attempt to re-execute the 
faulting instruction. In order to handle an exception that occurred 
inside the enclave, software should enter the enclave at a different 
location and invoke an exception handler, the EENTER instruction 
should be used. The exception handler can attempt to resolve the 
faulting condition or simply return and indicate to software that the 
enclave should be terminated. 

7 EPC paging 
Allowing system software to oversubscribe the EPC increases the 
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number of protected applications that can be supported 
concurrently. The SGX architecture offers instructions to allow 
system software to oversubscribe the EPC by securely evicting and 
loading enclave pages and SGX structures. 

The contents of an enclave page evicted from the EPC to 
main memory must have the same level of integrity, confidentiality 
and replay protection as when the contents resided within the EPC.  

To achieve this objective, the paging instructions enforce the 
following rules: 
1. An enclave page must be evicted only after all cached 

translations to that page have been evicted from all logical 
processors 

2. The contents of the evicted enclave page must be encrypted 
before being written out to main memory 

3. When evicted enclave page is reloaded into EPC it must have 
identical page type, permissions, virtual address, content, and 
be associated to the same enclave as at the time of eviction 

4. Only the last evicted version of an enclave page can be 
allowed to be reloaded 

 Preparing an enclave page for eviction 
To prepare the enclave page for eviction, system software marks 
the page to be evicted as BLOCKED using the EBLOCK 
instruction. Once an EPC page has been marked as BLOCKED, 
the processor prevents any new Translation Lookaside Buffer, 
TLB, entries that map that EPC page from being created. However, 
TLB entries that reference this page may exist in one or more 
logical processors. These TLB entries must be removed before the 
page can be removed from the EPC. In SGX this must be 
guaranteed by hardware. While only the TLB entries for the page 
must be removed, we chose a simpler implementation option. In 
this implementation all TLB entries for that particular enclave are 
removed. 

TLB entries created during enclave execution are evicted 
when exiting the enclave. Thus an enclave page that is BLOCKED 
can be safely evicted after all logical processors that were 
executing inside the enclave to which the page belongs have exited 
the enclave at least once since the EBLOCK.  

The ETRACK instruction is used to configure micro 
architectural trackers to detect when all logical processors 
executing in an enclave at the time of executing the ETRACK 
instruction have exited the enclave. 

 Evicting the enclave page 
System software uses EWB to evict an enclave page that has been 
prepared for eviction (blocked and no TLB entries referring to the 
page). The system software must also allocate a VA page entry to 
hold the version counter to be associated with this page. The EWB 
evicts a page from EPC by: 
 
1. Assigning a unique version value for the page and recording 

it in the VA page entry allocated by the system software 
 

2. Encrypting the EPC page using the paging encryption key 
 

3. Computing a cryptographic MAC over the encrypted page 
contents, version counter and the additional metadata for the 
EPC page 
 

4. Writing out the encrypted page contents and the metadata 
along with the computed MAC to the main memory buffers 
passed to the EWB instruction as parameters  
 
The system software must retain the encrypted page 

contents, the metadata and the VA entry with this EPC page in 
order to reload it back into EPC. 

 Reloading an evicted page 
System software uses ELDU or ELDB to reload an evicted enclave 
page into the EPC. The system software allocates a free page in 
the EPC and passes the encrypted page contents, the metadata 
generated at eviction and the VA entry used to evict the page as 
parameters to the ELDU/ELDB instructions. The ELDU & ELDB 
instructions are identical except that on successful execution of the 
ELDB instruction the EPC page used to reload the enclave page is 
marked as BLOCKED in the EPCM. 

The ELDU/ELDB instructions reload the enclave page using 
below steps: 

 
1. Copy the encrypted enclave page contents to the allocated 

EPC page 
 

2. Verify the MAC on the metadata, version counter from the 
specified VA entry and encrypted enclave page contents 

 
3. If verification succeeds, decrypt the enclave page contents 

into the EPC page allocated by system software and clear the 
VA entry to prevent any future replay attempts 

 
4. Update the EPCM associated with the EPC page with the 

attributes from the metadata 

 Evicting the VA Page 
In order to allow scaling of the EPC and software to build 
extremely large enclaves, the pages containing versions must also 
be pageable. VA pages can be evicted. In the limit, one anchor 
page is required to allow VA pages to be loaded back into the 
enclave.  

The system software may evict VA pages from the EPC 
using EWB. The VA page to be evicted is assigned a version 
number and the version number is recorded in a VA entry in a 
second VA page. Prior to reloading any evicted enclave pages the 
system software is required to reload the VA page containing the 
VA entry. 

8 Summary and related work 
Protecting software and secrets on commercially available 
processors has been elusive goal for many years. Approaches to 
solve the problem by adding a new layer of system software have 
had limited deployment. Alternatively, closed systems often have 
restricted user choice with regard to the system software and 
applications that may be loaded onto a platform.  

A number of research projects have developed secure 
processor architectures to protect software. These include XOM 
[6], AEGIS [7], SP [8], Bastion [9], and HyperWall [10]. XOM, 
AEGIS, and Bastion are architecture additions to protect trusted 
software modules from the operating system. AEGIS like SGX 
requires no trusted system software but differs in the memory 
protection scheme. XOM and Bastion both include a trusted 
hypervisor with the trusted computing base of the trusted software 
modules. Bastion, for example, depends on a trusted hypervisor to 
check that the OS has properly mapped trusted modules to 
protected memory. HyperWall provides protection at the virtual 
machine granularity which mean that trusted applications have an 
operating system within their trust boundary. 

Finally [11] is recent work which provides very similar 
concepts to early work on SGX [12]. SGX now uses a different 
integrity mechanism which provides more flexibility for OS and 
VMMs. 

In an era where software and services are deployed over the 
internet, SGX enables service providers to provision applications 
remotely and to know with confidence that their secrets are 
protected. This paper describes the SGX instructions and hardware 
extensions to load an enclave into protected memory, establish the 
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enclave’s identity, enter and exit an enclave, and oversubscribe 
SGX protected memory while requiring trust in only in the enclave 
application. 
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