
May 5, 2005

Noninterference, Transitivity, and Channel-Control Security
Policies1

John Rushby

Computer Science Laboratory

SRI International

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

We consider noninterference formulations of security policies [7] in
which the “interferes” relation is intransitive. Such policies provide a
formal basis for several real security concerns, such as channel control [17,
18], and assured pipelines [4]. We show that the appropriate formulation
of noninterference for the intransitive case is that developed by Haigh
and Young for “multidomain security” (MDS) [9, 10]. We construct an
“unwinding theorem” [8] for intransitive polices and show that it differs
significantly from that of Haigh and Young. We argue that their theorem
is incorrect. A companion report [22] presents a mechanically-checked
formal specification and verification of our unwinding theorem.

We consider the relationship between transitive and intransitive for-
mulations of security. We show that the standard formulations of non-
interference and unwinding [7, 8] correspond exactly to our intransitive
formulations, specialized to the transitive case. We show that transi-
tive polices are precisely the “multilevel security” (MLS) polices, and
that any MLS secure system satisfies the conditions of the unwinding
theorem.

We also consider the relationship between noninterference formula-
tions of security and access control formulations, and we identify the
“reference monitor assumptions” that play a crucial role in establishing
the soundness of access control implementations.

Contents

1 Introduction 1

2 Basic Noninterference 6

2.1 Access Control Interpretations . 12

3 Noninterference and Transitivity 17

3.1 Properties of Transitive Policies . 19

4 Intransitive Noninterference 25

5 Comparisons among the Formulations 33

5.1 Intransitive vs. Standard Noninterference 33
5.2 Comparison with Haigh and Young’s Formulation 35

6 Summary and Conclusions 40

Bibliography 41

References 41

2

Chapter 1

Introduction

The concept of noninterference was introduced by Goguen and Meseguer [7] in or-
der to provide a formal foundation for the specification and analysis of security
policies and the mechanisms that enforce them. Apart from the work of Feiertag,
Levitt, and Robinson [6]—which can be seen as a precursor to that of Goguen and
Meseguer—previous efforts, among which those of Bell and La Padula [3] were the
most influential, formulated security in terms of access control. Access control for-
mulations suffer from a number of difficulties. First, because they are described in
terms of a mechanism for enforcing security, they provide no guidance in circum-
stances where those mechanisms prove inadequate. Second, it is easy to construct
perverse interpretations of access control policies that satisfy the letter, but not the
intent of the policy, to the point of being obviously unsecure [13,14]. The proponents
of access control formulations counter that interpretations or implementations must
be “faithful representations” of the model, but they provide no formal definition of
that term.

In contrast, noninterference formulations are pure statements of policy, with no
commitment to a specific mechanism for enforcing them—although techniques have
been developed for demonstrating that specific mechanisms enforce given noninter-
ference policies. Secondly, noninterference policies have the form of a logical theory;
any implementation that is a model for the theory (i.e., validates its axioms) will
be secure.

The idea of noninterference is really rather simple: a security domain u is nonin-
terfering with domain v if no action performed by u can influence subsequent outputs
seen by v. Noninterference has been quite successful in providing formal underpin-
nings for military multilevel security policies and for the methods of verifying their
implementations [8, 20].

1

2 Chapter 1. Introduction

There are, however, a number of practical security problems that seem beyond
the scope of noninterference formulations. One of these is “channel-control,” first
formulated by Rushby [17, 18]. Channel control security policies can be repre-
sented by directed graphs, where nodes represent security domains and edges in-
dicate the direct information flows that are allowed. The paradigmatic example of
a channel-control problem is a controller for end-to-end encryption, as portrayed in
Figure 1.1 [1, 17].

Bypass

Crypto

Red Black

6

-

?

-

- -

Figure 1.1: End-to-end encryption controller

Plaintext messages arrive at the Red side of the controller; their bodies are
sent through the encryption device (Crypto); their headers, which must remain in
plaintext so that network switches can interpret them, are sent through the Bypass.
Headers and encrypted bodies are reassembled in the Black side and sent out onto
the network. The security policy we would like to specify here is the requirement that
the only channels for information flow from Red to Black must be those through the
Crypto and the Bypass.1 Thus, an important characteristic of many channel control
policies is that the edges indicating allowed information flows are not transitive:
information is allowed to flow from Red to Black via the Crypto and Bypass, but
cannot do so directly.

Another example is shown in Figure 1.2, where transitive and intransitive ele-
ments are combined. The edges to the left represent the conventional transitive flow

1It is a separate problem to specify what those components must do.

3

Unclassified

Downgrader

Confidential

Secret

Top Secret

Figure 1.2: Controlled downgrading

relations between the classification levels used in the USA. On the right are edges to
and from a special Downgrader domain that are intransitive. The flows represented
by these edges are intransitive because, although information can flow, for example,
from the Top Secret to the Confidential domain via the Downgrader, it cannot flow
directly from Top Secret to Confidential. Thus, information can flow “upward” in
security level without restriction, but only flow “downward” through the mediation
of the presumably trusted Downgrader domain.

Channel control policies such as those just described seem able to specify a
number of security concerns that are beyond the reach of standard security modeling
techniques. Boebert and Kain have argued persuasively [4] that a variation on
channel-control called “type enforcement” can be used to solve many vexing security
problems. A worthwhile challenge, then, is to find an adequate formal foundation
for channel-control policies and their ilk.

An early attempt to provide a formal method for verifying, though not specify-
ing, channel-control policies was based on a technique for verifying complete sepa-
ration [17,19]. The idea was to remove the mechanisms that provided the intended

4 Chapter 1. Introduction

channels, and then prove that the components of the resulting system were isolated.
This approach has recently been shown to be subtly flawed [11], although the method
for establishing complete separation has survived fairly intensive scrutiny [12, 24]
with only minor emendations.

The success of noninterference formulations in explicating multilevel security
policies naturally invites consideration of a noninterference foundation for channel-
control. This presents quite a challenge, however. For example, it is clear the Red
side of the encryption controller of Figure 1.1 necessarily interferes with the Black;
we need to find a way of saying that this interference must only occur through the
mediation of the Crypto or the Bypass. Goguen and Meseguer proposed a way of
doing this in their original paper on noninterference [7], but the method was incor-
rect. Goguen and Meseguer recognized this in their second paper on the subject [8]
and they introduced several extensions to the basic formulation of noninterference.
However, the first really satisfactory treatment of intransitive noninterference poli-
cies was given by Haigh and Young [9], with a more polished version the following
year [10]. They showed that it was necessary to consider the complete sequence
of actions performed subsequent to a given action in order to determine whether
that action is allowed to interfere with another domain. For example, an action by
the Red domain is allowed to interfere with the Black domain only if there is some
intervening action from either the Crypto or the Bypass.

The main purpose of this reportpart of the report is to show that channel-control
security policies can be modeled by noninterference policies in which the “interferes”
relation is intransitive and in which the definition used for “interference” is that of
Haigh and Young. We also show that conventional multilevel policies are a special
case of channel-control policies, corresponding to those whose “interferes” relation
is transitive. We show that our results collapse to the familiar ones in this special
case, thereby providing some additional evidence for their veracity.

An important component of noninterference formulations of security are the
“unwinding” theorems [8,10] that establish conditions on the behavior of individual
actions sufficient to ensure security of the system. These unwinding theorems pro-
vide the basis of practical methods for formally verifying that an implementation
satisfies a noninterference security policy. The main result of this reportpart is the
derivation of an unwinding theorem for the channel-control case. We show that this
theorem differs significantly from that of Haigh and Young and we argue that their
result is incorrect.

The development of noninterference and unwinding for the channel-control case
is surprisingly intricate, and in view of the previous history of failed attempts,
we present our development rather formally and describe the proofs in detail. An

5

appendixPart III of this report describes the formal verification of our main theorem
using the Ehdm formal specification and verification system [23].

This reportpart of the report is organized as follows. In the next chapter we
present a development of the standard noninterference formulation of security, and
then consider the relationship between noninterference security policies and access
control policies. This development is structured to provide a model and a basis
for comparison with the generalization given later. Chapter 3 examines the case
of intransitive noninterference policies and argues that these have no useful inter-
pretation within the standard formulation of noninterference. The second part of
Chapter 3 examines the special properties of transitive policies and shows that they
are identical to classical multilevel security. Chapter 4 presents a modified formula-
tion of noninterference that does provide a meaningful interpretation to intransitive
policies and derives an unwinding theorem for that interpretation. Chapter 5 com-
pares the transitive and intransitive noninterference formulations, and compares
our unwinding theorem with that of Haigh and Young. Chapter 6 presents our
conclusions. The appendix presents a formal specification and verification of our In-
transitive Unwinding Theorem that has been mechanically checked using the Ehdm

Verification System [23].

Chapter 2

Basic Noninterference

In this chapter we present the core of Goguen and Meseguer’s formulation of secu-
rity in terms of noninterference assertions [7], and the unwinding theorem [8] that
underlies the associated verification techniques. Our notation differs considerably
from that of Goguen and Meseguer and is more similar to that of later authors, such
as Haigh and Young [10].

We model a computer system by a conventional finite-state automaton.

Definition 1 A system (or machine) M is composed of

• a set S of states, with an initial state s0 ∈ S,

• a set A of actions, and

• a set O of outputs,

together with the functions step and output :

• step: S × A → S,

• output : S × A → O.

We generally use the letters . . . s, t, . . . to denote states, letters a, b, . . . from the front
of the alphabet to denote actions, and Greek letters α, β, . . . to denote sequences of
actions.

Actions can be thought of as “inputs,” or “commands,” or “instructions” to be
performed by the machine; step(s, a) denotes the next state of the system when
action a is applied in state s, while output(s, a) denotes the result returned by the
action.

6

7

We derive a function run

• run: S × A∗ → S,

the natural extension of step to sequences of actions, by the equations

run(s, Λ) = s, and

run(s, a ◦ α) = run(step(s, a), α),

where Λ denotes the empty sequence and ◦ denotes concatenation.1

In order to discuss security, we must assume some set of security “domains”
and a policy that restricts the allowable flow of information among those domains.
The agents or subjects of a particular security domain interact with the system by
presenting it with actions, and observing the results obtained. Thus we assume

• a set D of security domains, and

• a function dom: A → D that associates a security domain with each action.

We use letters . . . u, v, w, . . . to denote domains.
A security policy is specified by a reflexive relation ; on D. We use 6; to denote

the complement relation, that is

6;= (D × D)\ ;

where \ denotes set difference. We speak of ; and 6; as the interference and nonin-
terference relations, respectively. A policy is said to be transitive if its interference
relation has that property. 2

We wish to define security in terms of information flow, so the next step is to
capture the idea of the “flow of information” formally. The key observation is that
information can be said to flow from a domain u to a domain v exactly when actions
submitted by domain u cause the behavior of the system perceived by domain v to
be different from that perceived when those actions are not present. We therefore
define a function that removes, or “purges,” from an action sequence all those actions
submitted by domains that are required to be noninterfering with a given domain.
The machine is secure if a given domain v is unable to distinguish between the state

1Observe that we define run using right recursion: that is, we specify run(s, a ◦ α) =
run(step(s, a), α), rather than the more common left recursive form run(s, α◦a) = step(run(s, α), a).
The choice of right recursion slightly complicates the proof of the basic unwinding theorem (The-
orem 1); we employ it here for consistency with the later, more complex development in which its
use is essential.

8 Chapter 2. Basic Noninterference

of the machine after it has processed a given action sequence, and the state after
processing the same sequence purged of actions required to be noninterfering with
v.

Definition 2 For v ∈ D and α an action sequence in A∗, we define purge(α, v) to
be the subsequence of α formed by deleting all actions associated with domains u

such that u 6; v, that is:

purge(Λ, v) = Λ

purge(a ◦ α, v) =

{

a ◦ purge(α, v) if dom(a) ; v

purge(α, v) otherwise.

We identify security with the requirement that

output(run(s0, α), a) = output(run(s0, purge(α, dom(a))), a).

Because we frequently use expressions of the form output(run(s0, α), a), it is conve-
nient to first introduce the functions do and test to abbreviate these forms:

• do: A∗ → S

• test : A∗ × A → O

where

do(α) = run(s0, α), and

test(α, a) = output(do(α), a).

Then we say a system is secure for the policy ; if

test(α, a) = test(purge(α, dom(a)), a).2

2

The intuition here is that the machine starts off in the initial state s0 and is
presented with a sequence α ∈ A∗ of actions. This causes the machine to produce
a series of outputs and to progress through a series of states, eventually reaching
the state do(α). At that point the action a is performed, and the corresponding
output test(α, a) is observed. We can think of presentation of the action a and

2Formulas such as these are to be read as universally quantified over their free variables (here a

and α).

9

observation of its output as an experiment performed by dom(a) in order to learn
something about the action sequence α. If dom(a) can distinguish between the
action sequences α and purge(α, dom(a)) by such experiments, then an action by
some domain u 6; dom(a) has “interfered” with dom(a) and the system is not secure
with respect to policies that specify u 6; dom(a).

There are several plausible variations on this notion of security. For example,
rather than restricting dom(a) to observe only the individual outputs test(α, a), and
test(purge(α, dom(a)), a) in its attempt to distinguish α from purge(α, dom(a)), we
could allow the whole sequence of outputs produced by actions b in α satisfying
dom(b) ; dom(a) (i.e., the outputs of the actions in α which dom(a) can legit-
imately observe) to be considered. It is fairly straightforward to prove that such
variations are equivalent to the definition used here.

The noninterference definition of security is expressed in terms of sequences
of actions and state transitions; in order to obtain straightforward techniques for
verifying the security of systems, we would like to derive conditions on individual
state transitions. The first step in this development is to partition the states of the
system into equivalence classes that all “appear identical” to a given domain. The
verification technique will then be to prove that each domain’s view of the system
is unaffected by the actions of domains that are required to be noninterfering with
it.

Definition 3 A system M is view-partitioned if, for each domain u ∈ D, there is
an equivalence relation

u
∼ on S. These equivalence relations are said to be output

consistent if

s
dom(a)
∼ t ⊃ output(s, a) = output(t, a).3

2

Output consistency is required in order to ensure that two states s and t that
appear identical to domain u really are indistinguishable in terms of the outputs
they produce in response to actions from u.

The definition of security requires that the outputs seen by one domain are
unaffected by the actions of other domains that are required to be noninterfering
with the first. The next result shows that, for an output consistent system, security
is achieved if “views” are similarly unaffected.

Lemma 1 Let ; be a policy and M a view-partitioned, output consistent system
such that,

do(α)
u
∼ do(purge(α, u)).

3We use ⊃ to denote implication.

10 Chapter 2. Basic Noninterference

Then M is secure for ;.

Proof: Setting u = dom(a) in the statement of the lemma gives

do(α)
dom(a)
∼ do(purge(α, dom(a))),

and output consistency then provides

output(do(α), a) = output(do(purge(α, dom(a))), a).

But this is simply

test(α, a) = test(purge(α, dom(a)), a),

which is the definition of security for ; given by Definition 2. 2

Next, we define constraints on individual state transitions.

Definition 4 Let M be a view-partitioned system and ; a policy. We say that M

locally respects ; if

dom(a) 6; u ⊃ s
u
∼ step(s, a)

and that M is step consistent if

s
u
∼ t ⊃ step(s, a)

u
∼ step(t, a).

2

We now have the local conditions on individual state transitions that are suf-
ficient to guarantee security. This result is a version of the unwinding theorem of
Goguen and Meseguer [8].

Theorem 1 (Unwinding Theorem) Let ; be a policy and M a view-partitioned
system that is

1. output consistent,

2. step consistent, and

3. locally respects ;.

Then M is secure for ;.

11

Proof: We use proof by induction on the length of α to establish

s
u
∼ t ⊃ run(s, α)

u
∼ run(t, purge(α, u)). (2.1)

The basis is the case α = Λ and is elementary. For the inductive step, we assume
the inductive hypothesis for α of length n and consider a ◦ α. By definition,

run(s, a ◦ α) = run(step(s, a), α). (2.2)

For run(t, purge(a ◦ α, u)), there are two cases to consider.

Case 1: dom(a) ; u. In this case, the definition of purge provides

run(t, purge(a ◦ α, u)) = run(t, a ◦ purge(α, u)),

and the right hand side expands to give

run(t, purge(a ◦ α, u)) = run(step(t, a), purge(α, u)). (2.3)

Since s
u
∼ t and the system is step consistent, it follows that

step(s, a)
u
∼ step(t, a)

and the inductive hypothesis then gives

run(step(s, a), α)
u
∼ run(step(t, a), purge(α, u))

which, by virtue of (2.2) and (2.3), completes the inductive step in this case.

Case 2: dom(a) 6; u. In this case, the definition of purge provides

run(t, purge(a ◦ α, u)) = run(t, purge(α, u)) (2.4)

and the facts that dom(a) 6; u and that M locally respects ; ensure

s
u
∼ step(s, a).

Since s
u
∼ t and

u
∼ is an equivalence relation, the latter provides

step(s, a)
u
∼ t

and the inductive hypothesis then gives

run(step(s, a), α)
v
∼ run(t, purge(α, u)),

which, by virtue of (2.2) and (2.4), completes the inductive step.

12 Chapter 2. Basic Noninterference

In order to complete the proof, we take s = t = s0 in 2.1 to obtain

do(α)
u
∼ do(purge(α, u))

and then, since M is output consistent, invoke Lemma 1 to complete the proof. 2

The unwinding theorem is important because it provides a basis for practical
methods for verifying systems that enforce noninterference policies, and also serves
to relate noninterference policies to access control mechanisms. We illustrate the
latter point by using the unwinding theorem to establish the security of a simple
access control mechanism.

2.1 Access Control Interpretations

In order to consider access control mechanisms formally, we need a more elaborate
system model. First of all, we need to impose some internal structure on the system
state, supposing it to be composed of individual storage locations, or “objects,”
each of which has a name and a value. The name of each location is fixed, but
its value may change from one state to another. Access control functions determine
whether a given security domain may “observe” or “alter” the values in given storage
locations. We collect these ideas together and introduce convenient notation in the
following definition.

Definition 5 A machine has a structured state if there exist

• a set N of names,

• a set V of values, and a function

• contents: S × N → V

with the interpretation that contents(s, n) is the value of the object named n in
state s. In addition, we require functions

• observe: D → P(N), where P denotes powerset, and

• alter: D → P(N)

with the interpretation that observe(u) is the set of locations whose values can be
observed by domain u, while alter(u) is the set of locations whose values can be
changed by u. These functions encode the “access control matrix” that represents
the access control policy of the system. An access control policy is enforced when
the behavior of the system matches the intended interpretation of the observe and
alter functions. This requires the following three conditions to be satisfied:

2.1. Access Control Interpretations 13

Reference Monitor Assumptions

1. First, for u ∈ D define the relation
u
∼ on states by

s
u
∼ t iff (∀n ∈ observe(u): contents(s, n) = contents(t, n)).

Then, in order for the output of an action a to depend only on the values of
objects to which dom(a) has observe access, we require:

s
dom(a)
∼ t ⊃ output(s, a) = output(t, a).

2. Next, when an action a transforms the system from one state to another, the
new values of all changed objects must depend only on the values of objects
to which dom(a) has observe access. That is:

s
dom(a)
∼ t ∧ (contents(step(s, a), n) 6= contents(s, n) (2.5)

∨contents(step(t, a), n) 6= contents(t, n))

⊃ contents(step(s, a), n) = contents(step(t, a), n).

This condition is rather difficult; we discuss it following the complete defini-
tion.

3. Finally, if an action a changes the value of object n, then dom(a) must have
alter access to n:

contents(step(s, a), n) 6= contents(s, n) ⊃ n ∈ alter(dom(a)).

These three conditions are called the “Reference Monitor Assumptions” since
they capture the assumptions on the “reference monitor” that performs the access
control function in any concrete instantiation of the theory. 2

The second of the Reference Monitor Assumptions is somewhat tricky, so we
will now explain it in more detail. The goal is to specify that if action a changes
the value of location n, then the only information that may be used in creating the
new value should be that provided in variables to which dom(a) has observe access.
Thus, if two states s and t have the same values in all the locations to which dom(a)

has observe access (i.e., if s
dom(a)
∼ t), then it seems we should specify

contents(step(s, a), n) = contents(step(t, a), n) (2.6)

14 Chapter 2. Basic Noninterference

for all locations n. The flaw in this specification is that if dom(a) does not have

observe access to n, then s
dom(a)
∼ t does not prevent contents(s, n) 6= contents(t, n).

If a does not change the value of location n we will then legitimately have

contents(step(s, a), n) 6= contents(step(t, a), n).

The repair to the definition is to require (2.6) to hold only if a does change the value
of location n. This is accomplished in (2.5), the second of the Reference Monitor
Assumptions specified in Definition 5 above.

This problem of specifying what it means for an operation to “reference” a
location has been studied before; Popek and Farber [16], for example, construct the

dual notion “NoRef ” as follows. First, for n ∈ N , define the equivalence relation
n
∼=

by

s
n
∼= t

def
= (∀m ∈ N : contents(s, m) = contents(t, m) ∨ m = n).

That is, s
n
∼= t if the values of all locations, except possibly that of n, are the same

in both of states s and t. Then the predicate NoRef (a, n), which is to be true when
action a does not reference location n, is defined by

NoRef (a, n)
def
= s

n
∼= t ⊃ step(s, a)

n
∼= step(t, a).

The motivation for this definition is the idea that if a does not reference the value
of location n, then changing the value of that location should have no effect on
the values assigned to other locations by action a. It is easy to prove that our
notion of reference, as embodied in (2.5), implies the notion embodied in Popek
and Farber’s definition. The converse is not true. This is due to a weakness in
Popek and Farber’s definition which they discuss in [16, page 742 (footnote 5)];
they suggest a stronger definition whose motivation is identical to that given in
our discussion of the formulation of (2.5). Unfortunately, the formal statement of
Popek and Farber’s stronger definition contains serious typographical errors and it
is impossible to tell what was intended. Nonetheless, we consider the relationship
between the description of their definition and ours to be sufficiently close that they
provide additional confidence in the correctness of our formulation of the second
Reference Monitor Assumption.

Given these definitions, we can now state a theorem that relates noninterference
to access control mechanisms.

Theorem 2 Let M be a system with structured state that satisfies the Reference
Monitor Assumptions and the following two conditions.

2.1. Access Control Interpretations 15

1. u ; v ⊃ observe(u) ⊆ observe(v), and

2. n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u ; v.

Then M is secure for ;.

Proof: We show that the conditions of the theorem satisfy those of the unwinding
theorem. We identify the view-partitioning relations

u
∼ of the Unwinding Theorem

with the corresponding relations defined in the statement of the Reference Monitor
Assumptions. Output consistency is then satisfied immediately by the first of the
Reference Monitor Assumptions.

To establish step consistency, we must prove

s
u
∼ t ⊃ step(s, a)

u
∼ step(t, a).

This can be rewritten as

s
u
∼ t ⊃ contents(step(s, a), n) = contents(step(t, a), n)

where n ∈ observe(u). There are three cases to consider

Case 1: contents(step(s, a), n) 6= contents(s, n). The third of the Reference Moni-
tor Assumptions gives n ∈ alter(dom(a)); since n ∈ observe(u), the second of
the conditions in the statement of the theorem then gives dom(a) ; u. The
first of the conditions in the statement of the theorem then gives

observe(dom(a)) ⊆ observe(u),

and s
u
∼ t then implies s

dom(a)
∼ t. The second of the Reference Monitor

Assumptions then provides the conclusion we require.

Case 2: contents(step(t, a), n) 6= contents(t, n). This case is symmetrical with the
first.

Case 3: contents(step(t, a), n) = contents(t, n) ∧ contents(step(t, a), n) = contents(t, n).
Since s

u
∼ t and n ∈ observe(u), we have contents(s, n) = contents(t, n) and

the conclusion follows immediately.

It remains to show that the construction locally respects ;. That is, we need
to show

dom(a) 6; u ⊃ s
u
∼ step(s, a).

16 Chapter 2. Basic Noninterference

Taking the contrapositive and expanding the definition of
u
∼, this becomes

(∃n ∈ observe(u): contents(s, n) 6= contents(step(s, a), n)) ⊃ dom(a) ; u.

Now if contents(s, n) 6= contents(step(s, a), n), the third condition of the Reference
Monitor Assumptions gives n ∈ alter(dom(a)). Hence, we have

n ∈ alter(dom(a)) ∧ n ∈ observe(u)

and so the second condition to the theorem requires dom(a) ; u and the proof is
complete. 2

In the following chapter, we will show that transitive noninterference policies
satisfy the conditions of Theorem 2 and thereby relate noninterference to the familiar
Bell and La Padula [3] formulation of security.

Chapter 3

Noninterference and

Transitivity

The only restriction we placed on the relation ; defining a security policy was that
it should be reflexive. However, we will show that, within the formulation presented
so far, only relations that are also transitive have a useful interpretation.

In their original paper on the subject, Goguen and Meseguer [7] suggested that
intransitive policies could be used to specify channel control policies. For example,
the policy of the encryption controller shown in Figure 1.1 could be specified by the
four assertions

Red ; Bypass

Red ; Crypto

Bypass ; Black

Crypto ; Black

with the understanding that all other combinations, except the reflexive ones, should
be noninterfering. In particular, Red 6; Black, even though Red ; Bypass and
Bypass ; Black, so that the policy ; is intransitive. This is certainly an intuitively
attractive specification of the desired policy; unfortunately, it does not accurately
capture the desired properties. The problem is that noninterference is a very strong
property: the assertion Red 6; Black means that there must be no way for Black
to observe activity by Red. This is not what is required here; Black must certainly
be able to observe activity by Red (after all, it is the source of all incoming data),
but we want all such observations to be mediated by the Bypass or the Crypto.

17

18 Chapter 3. Noninterference and Transitivity

If the requirement Red 6; Black is too strong, it is obvious that the complemen-
tary requirement Red ; Black is too weak: it would allow unrestricted communi-
cation from Red to Black.

We conclude that noninterference, as formulated so far, cannot specify channel-
control policies exemplified by Figure 1.1. The question, then, is what interpretation
is to be placed on intransitive policies within the current formulation? In its simplest
form, we ask how we are to interpret assertions such as

A 6; C

A ; B

B ; C.

The hope is that this policy describes the “assured pipeline” [4] suggested by

A B C- -

Figure 3.1: Desired interpretation of an intransitive policy

Figure 3.1. But as we have already seen, this hope is not fulfilled: the requirement
A 6; C precludes all interference by domain A on domain C, including that which
would use domain B as an intermediary. The only satisfactory interpretation seems
to be one in which the intermediate domain B is internally composed of two isolated
parts, B1 and B2 as suggested in Figure 3.2. A can interfere with the B1 part of

A C- -B1 B2

Figure 3.2: Plausible interpretation of an intransitive policy

B (hence A ; B) and the B2 part of B can interfere with C (hence B ; C), but
the internal dichotomy of B allows A 6; C. Under this interpretation, however, it
is surely more natural to recognize B as two domains and to formulate the policy
accordingly:

A 6; C

A ; B1

3.1. Properties of Transitive Policies 19

B1 6; B2

B2 ; C

But this is (trivially) a transitive policy. We conclude that intransitive policies seem
to have no useful interpretation under the present formulation of noninterference.

In the following section, we will develop a formulation of noninterference that
does provide a useful interpretation to intransitive policies, and in fact it is an
interpretation satisfying the original goal of using noninterference to provide a formal
foundation for the specification and verification of channel-control policies. Before
we proceed to an examination of intransitive policies, however, we pause to examine
the properties of transitive policies.

3.1 Properties of Transitive Policies

To begin, we define the class of multilevel security policies that model the systems
of clearances and classifications used in the pen-and-paper world.

Definition 6 Let L be a set of security labels (comprising “levels,” possibly aug-
mented by “compartments”) with a partial ordering � (usually read as “is dominated
by”). The interpretation of l1 � l2 is that l2 is more highly classified (in the case of
data), or more highly trusted (in the case of individuals), and that information is
permitted to flow from l1 to l2, but not vice-versa (unless l1 = l2).

Let clearance : D → L be a function that assigns a fixed security label to each
domain in D. Then the multilevel security (MLS) policy is:

u ; v iff clearance(u) � clearance(v). (3.1)

That is, u may interfere with v if the clearance of v dominates that of u.
An arbitrary security policy given by a relation ; on D is said to be an MLS-type

policy if a label set L with a partial ordering � and a function clearance : D → L

can be found such that (3.1) holds. 2

Clearly we have:

Theorem 3 All MLS-type policies are transitive.

Proof: This follows directly from the transitivity of the partial order �. 2

The converse is also true. An essentially similar result (using a slightly different
construction) was discovered by Dorothy Denning in 1976 [5].

20 Chapter 3. Noninterference and Transitivity

Theorem 4 All transitive policies are MLS-type policies.

Proof: Let ; be a transitive security policy. Define a further relation ↔ on D by:

u ↔ v
def
= u ; v ∧ v ; u.

The construction ensures that ↔ is symmetric. Reflexivity and transitivity of ↔
follow from that of ; (recall that all policies are reflexive). Thus ↔ is an equivalence
relation. We identify a label set L with the equivalence classes of ↔ and use [u] to
denote the equivalence class of domain u under ↔. We define a relation � on L as
follows:

[u] � [v]
def
= ∃ domains x ∈ [u] and y ∈ [v] such that x ; y.

It is easy to see that � is a partial order on L (i.e., it is reflexive, transitive, and
antisymmetric). Finally, we define the function clearance : U → L by

clearance(u)
def
= [u].

It is then easy to verify that

u ; v iff clearance(u) � clearance(v),

and so it follows that ; is an MLS-type policy. 2

The access control conditions of Theorem 2 reveal a familiar appearance when
they are recast into the notation natural for MLS-type policies. To show this, we
must first assign a classification label to each storage object by means of a function

• classification: N → D.

Then we have:

Corollary 1 (Bell and La Padula Interpretation) Let ; be an MLS-type policy, and
M a system with structured state that satisfies the Reference Monitor Assumptions
and the following two properties.

ss-property: n ∈ observe(u) ⊃ classification(n) � clearance(u),

∗-property: n ∈ alter(u) ⊃ clearance(u) � classification(n).

Then M is secure for ;.

3.1. Properties of Transitive Policies 21

Proof: Using Theorem 2, we need to prove

u ; v ⊃ observe(u) ⊆ observe(v),

and

n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u ; v.

The first of these can be restated as

u ; v ∧ n ∈ observe(u) ⊃ n ∈ observe(v).

Using the notation of MLS-type policies and the ss-property, this becomes

clearance(u) � clearance(v) ∧ classification(n) � clearance(u)

⊃ classification(n) � clearance(v)

and is satisfied immediately by the transitivity of the partial order �.

Using the notation of MLS-type policies, the second of the conditions in Theo-
rem 2 becomes

n ∈ alter(u) ∧ n ∈ observe(v) ⊃ clearance(u) � clearance(v).

Using the ss- and ∗-properties, the antecedent to this implication becomes

clearance(u) � classification(n) ∧ classification(n) � clearance(v)

and the conclusion then follows from the transitivity of the partial order �. 2

The ss- and ∗-properties named in this result correspond to the “simple-security”
and “star” properties of the Bell and La Padula security model [2, 3]. The simple-
security condition asserts that a subject must only be able to observe objects whose
classification is dominated by its own clearance, while the star-property asserts
the dual condition that it must only be able to alter objects whose classification
dominates its own clearance. Since the corollary establishes that these conditions
are adequate to ensure the security of a system that enforces an MLS-type policy, it
may seem puzzling that the Bell and La Padula formulation is known to have severe
weaknesses [13, 14]. In fact, there are two sources for these weaknesses and it may
be useful to briefly indicate what they are, and why Corollary 1 is not vulnerable
to them.

22 Chapter 3. Noninterference and Transitivity

• One source of weaknesses derives from the lack of a semantic characterization
of what is meant by “observe” and “alter” in the Bell and La Padula model.
It is possible to subvert the model by inverting the intended interpretations of
these terms. (So that the simple-security property says the subjects may alter
only objects of lower classification.) Corollary 1 does not share this weakness
because the Reference Monitor Assumptions provide an adequate semantic
characterization of the intended interpretation of observe and alter access.

• The other source of weakness concerns the behavior of actions that modify the
access control functions. Our notion of a system with structured state is very
limited; more realistic models include more implementation detail and also
extend the set of access control functions and provide actions for manipulating
them. Such actions are called “rules” by Bell and La Padula, who gave a
representative set in their Multics interpretation [3]. Two of these rules are
known to permit unsecure information flow [15,25]. The reason for this is that
the access control “table” and other implementation-level state data of the
reference monitor are not treated as objects in the Bell and La Padula model;
although the model prevents unsecure information flow through the objects
that it explicitly recognizes, it places no constraints on the flow of information
through the mechanisms of its own realization.

Corollary 1 does not share this weakness because its system model is very
limited and does permit the access control tables to change; thus, it admits no
“rules.” In more complex models, that do permit modification to the access
control and other internal tables, the “rules” should be individually verified
by direct reference to the appropriate unwinding theorem.

The verification of individual “rules” using the unwinding theorem requires iden-
tification of the “views” of the machine state held by different security domains. The
next result provides some guidance in the identification of such views, by showing
that, for a transitive ; relation, they are “nested” within each other. This is ob-
vious in the Bell and La Padula model (i.e., everything observable by a subject at
level l1 is also observable to a subject of level l2 where l1 � l2). What is interesting
here is that Theorem 5 shows that this nesting property is inherent, not accidental.

Definition 7 A view-partitioned machine is said to have the nesting property if

u ; v ∧ s
v
∼ t ⊃ s

u
∼ t.

That is, if states s and t appear identical to domain v, then they also appear identical
to those domains u that may interfere with v. 2

3.1. Properties of Transitive Policies 23

Theorem 5 Let ; be a transitive policy and M a view-partitioned machine which
satisfies the conditions of the unwinding theorem. Then there is a nested view-
partitioning of M that also satisfies the conditions of the unwinding theorem.

Proof: Define a new view-partitioning relation
u
' on D by

s
u
' t

def
= (∀v: v ; u ⊃ s

v
∼ t).

That
u
' is an equivalence relation follows straightforwardly from the fact that

u
∼ is.

Output consistency and step consistency of
u
' likewise follow from those properties

of the
u
∼ relation. For

u
' to locally respect ;, we require

∀v ; u : dom(a) 6; u ⊃ s
v
∼ step(s, a). (3.2)

The transitivity of ; ensures dom(a) 6; v (since otherwise we could combine
dom(a) ; v with v ; u and contradict dom(a) 6; u), and (3.2) then follows
from the fact that

v
∼ locally respects ;.

For the nesting property, we need to demonstrate x ; u ⊃ s
x
∼ t given u ; v

and s
v
' t. Transitivity provides x ; v, and the result then follows from the defini-

tion of s
v
' t. 2

Finally, we prove that unwinding is, in a certain sense, complete: for any secure
system, we can find a view-partitioning that satisfies the conditions of the unwinding
theorem. Note that this result does not depend on the transitivity of ;, but it does
depend on the present interpretation of noninterference which, as we have seen,
makes sense only for transitive policies.

Theorem 6 If M is a secure system, then for each domain u ∈ D an equivalence
relation

u
∼ on the set of states can be found that satisfies the conditions of the

unwinding theorem.

Proof: We use the following construction: for u ∈ D and reachable states s and t,
define

s
u
∼ t

def
= (∀α ∈ A∗, b ∈ A : dom(b) = u

⊃ output(run(s, α), b) = output(run(t, α), b)). (3.3)

Clearly,
u
∼ is an equivalence relation. Output consistency follows by taking α = Λ

in (3.3). For step consistency, we need

s
u
∼ t ⊃ step(s, a)

u
∼ step(t, a).

24 Chapter 3. Noninterference and Transitivity

The conclusion to this implication expands to

output(run(step(s, a), α), b) = output(run(step(t, a), α), b)

and this is equivalent to

output(run(s, a ◦ α), b) = output(run(t, a ◦ α), b),

which follows directly from the definition of s
u
∼ t.

To show that the construction locally respects ;, we need to demonstrate

dom(a) 6; u ⊃ s
u
∼ step(s, a).

The conclusion expands to

output(run(s, α), b) = output(run(step(s, a), α), b) (3.4)

where dom(b) = u. If s is a reachable state, there exists γ such that s = do(γ) and
so (3.4) can be written as

test(γ ◦ α, b) = test(γ ◦ a ◦ α, b).

Since the machine is secure, the definition of noninterference gives

test(γ ◦ α, b) = test(purge(γ ◦ α, dom(b)), b)

and
test(γ ◦ a ◦ α, b) = test(purge(γ ◦ a ◦ α, dom(b)), b).

But, clearly, since dom(a) 6; u and u = dom(b),

purge(γ ◦ α, dom(b)) = purge(γ ◦ a ◦ α, dom(b))

and the result follows. 2

Chapter 4

Intransitive Noninterference

Goguen and Meseguer recognized the inability of standard noninterference to model
channel-control policies and they introduced several extensions to the basic formu-
lation in their second paper on the subject [8]. However, the first really satisfactory
treatment of intransitive noninterference policies was given by Haigh and Young [10],
with an earlier version the previous year [9].

Both Goguen and Meseguer, and Haigh and Young, recognized that the standard
definition of noninterference is too draconian. If u 6; v, the requirement is that
deleting all actions performed by u should produce no change in the behavior of
the system as perceived by v. This is too strong if we also have the assertions
u ; w and w ; v. Surely we should only delete those actions of u that are not
followed by actions of w: this is the essence of Haigh and Young’s reformulation
of noninterference. In order to give a formal definition, we need to identify those
actions in an action sequence that should not be deleted. This is the purpose of the
function sources.

Definition 8 We define the function

• sources: A∗ × D → P(D)

by the equations

sources(Λ, u) = {u}

sources(a ◦ α, u)1 =

sources(α, u) ∪ {dom(a)} if ∃v : v ∈ sources(α, u)
∧ dom(a) ; v

sources(α, u) otherwise.

1This is the definition in which right-recursion is essential.

25

26 Chapter 4. Intransitive Noninterference

Our function sources corresponds to the function purgeable of Haigh and
Young [10], although Haigh and Young gave only an informal characterization of
their function. In essence v ∈ sources(α, u) means either that v = u or that there is
a subsequence of α consisting of actions performed by domains w1, w2, . . . , wn such
that w1 ; w2 ; · · · ; wn, v = w1, and u = wn. In considering whether an action
a performed prior to the action sequence α should be allowed to influence u, we ask
whether there is any v ∈ sources(α, u) such that dom(a) ; v. Notice that always

sources(α, u) ⊆ sources(a ◦ α, u), and

u ∈ sources(α, u).

We can now define the function ipurge (for intransitive-purge):

• ipurge: A∗ × D → A∗

by the equations

ipurge(Λ, u) = Λ

ipurge(a ◦ α, u) =

{

a ◦ ipurge(α, u) if dom(a) ∈ sources(a ◦ α, u)
ipurge(α, u) otherwise.

Informally, ipurge(α, u) consists of the subsequence of α with all those actions
that should not be able to interfere with u removed. Thus, security is now defined
in terms of the ipurge function:

A machine is secure for the policy ; if

test(α, a) = test(ipurge(α, dom(a)), a).

2

From this point on, our treatment diverges from that of Haigh and Young. We
will argue later that their treatment is incorrect. The first step is to establish the
revised form of Lemma 1.

Lemma 2 Let ; be a policy and M a view-partitioned, output consistent system
such that,

do(α)
u
∼ do(ipurge(α, u)).

Then M is secure for ;.

27

Proof: The proof is essentially identical to that of Lemma 1.

Setting u = dom(a) in the statement of the lemma gives

do(α)
dom(a)
∼ do(ipurge(α, dom(a))),

and output consistency then provides

output(do(α), a) = output(do(ipurge(α, dom(a))), a).

But this is simply

test(α, a) = test(ipurge(α, dom(a)), a),

which is the definition of security for ; given by Definition 8. 2

Next, we present a series of definitions and lemmas that culminate in the revised
form of the unwinding theorem.

Definition 9 Let M be a view-partitioned system and C ⊆ D a set of domains.

We define the equivalence relation
C
≈ on the states of M as follows:

s
C
≈ t

def
= (∀u ∈ C : s

u
∼ t).

Thus s
C
≈ t exactly when the states s and t appear identical to all the members of

C. 2

Definition 10 Let M be a view-partitioned system and ; a policy. We say that
M is weakly step consistent if

s
u
∼ t ∧ s

dom(a)
∼ t ⊃ step(s, a)

u
∼ step(t, a).

2

Lemma 3 Let ; be a policy and M a view-partitioned system which is weakly step
consistent, and locally respects ;. Then

s
sources(a◦α,u)

≈ t ⊃ step(s, a)
sources(α,u)

≈ step(t, a).

28 Chapter 4. Intransitive Noninterference

Proof: Suppose v ∈ sources(α, u). We need to show that

step(s, a)
v
∼ step(t, a). (4.1)

Note that v ∈ sources(α, u) implies v ∈ sources(a ◦ α, u), and so the hypothesis to
the lemma provides

s
v
∼ t. (4.2)

We now consider two cases.

Case 1: dom(a) ; v. Then, by the definition of the sources function, we have
dom(a) ∈ sources(a ◦ α, u) and the hypothesis to the lemma provides

s
dom(a)
∼ t. (4.3)

(4.1) then follows from (4.2) and (4.3) by weak step consistency.

Case 2: dom(a) 6; v. Then by local respect for 6;,

step(s, a)
v
∼ s,

step(t, a)
v
∼ t

and (4.1) follows from (4.2).

2

Lemma 4 Let ; be a policy and M a view-partitioned system that locally respects
;. Then

dom(a) 6∈ sources(a ◦ α, u) ⊃ s
sources(α,u)

≈ step(s, a).

Proof: We assume the hypothesis and let v ∈ sources(α, u). It must be that
dom(a) 6; v, since otherwise dom(a) ∈ sources(a◦α, u). Hence, by local respect for
6;,

s
v
∼ step(s, a)

and the conclusion follows. 2

Lemma 5 Let ; be a policy and M a view-partitioned system which is weakly step
consistent, and locally respects ;. Then

s
sources(α,u)

≈ t ⊃ run(s, α)
u
∼ run(t, ipurge(α, u)).

29

Proof: The proof proceeds by induction on the length of α. The basis is the case
α = Λ and follows straightforwardly by application of definitions. For the inductive
step, we assume the result for α of length n, and consider a ◦ α. We then need to
show

s
sources(a◦α,u)

≈ t ⊃ run(s, a ◦ α)
u
∼ run(t, ipurge(a ◦ α, u)).

We now consider two cases.

Case 1: dom(a) ∈ sources(a ◦ α, u). Then ipurge(a ◦ α, u) = a ◦ ipurge(α, u) and
we need to show

s
sources(a◦α,u)

≈ t ⊃ run(step(s, a), α)
u
∼ run(step(t, a), ipurge(α, u)).

Lemma 3 gives

s
sources(a◦α,u)

≈ t ⊃ step(s, a)
sources(α,u)

≈ step(t, a)

and the result then follows from the inductive hypothesis.

Case 2: dom(a) 6∈ sources(a ◦ α, u). Then ipurge(a ◦ α, u) = ipurge(α, u) and we
need to show

s
sources(a◦α,u)

≈ t ⊃ run(step(s, a), α)
u
∼ run(t, ipurge(α, u)).

Now Lemma 4 gives

dom(a) 6∈ sources(a ◦ α, u) ⊃ s
sources(α,u)

≈ step(s, a)

and, since sources(α, u) ⊆ sources(a ◦ α, u), s
sources(a◦α,u)

≈ t implies

s
sources(α,u)

≈ t.

Because
sources(α,u)

≈ is an equivalence relation, it follows that

step(s, a)
sources(α,u)

≈ t

and the result then follows from the inductive hypothesis.

2

Finally, we can present the unwinding theorem for intransitive noninterference
policies.

30 Chapter 4. Intransitive Noninterference

Theorem 7 (Unwinding Theorem for Intransitive Policies) Let ; be a policy and
M a view-partitioned system that is

1. is output consistent,

2. weakly step consistent, and

3. locally respects ;.

Then M is secure for ;.

Proof: Taking s = t = s0 in Lemma 5 gives

run(s0, α)
u
∼ run(s0, ipurge(α, u)),

which can be rewritten in the form

do(α)
u
∼ do(ipurge(α, u)),

so that the conclusion follows from Lemma 2. 2

A formal verification of this theorem has been performed using the Ehdm specifi-
cation and verification system and is described in in the Appendix toin Part III of
this report. The mechanically checked proof follows the argument of Lemmas 3 to
5 very closely.

In the following chapter, we consider the differences and similarities between this
unwinding theorem and both the ordinary unwinding theorem and that of Haigh
and Young. Before doing so, however, we note that the access control mechanism de-
scribed in Definition 5 on page 12 of Chapter 2 works for intransitive noninterference
policies as well as for transitive ones.

Theorem 8 Let M be a system with structured state that satisfies the Reference
Monitor Assumptions and the condition

n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u ; v.

Then M is secure for ;.

Proof: The proof is similar to that of Theorem 2. We show that the conditions
of the theorem satisfy those of the intransitive unwinding theorem. We identify
the view-partitioning relations

u
∼ of the Intransitive Unwinding Theorem with the

corresponding relations defined in the statement of the Reference Monitor Assump-
tions. Output consistency is then satisfied immediately by the first of the Reference
Monitor Assumptions.

31

To establish weak step consistency, we must prove

s
u
∼ t ∧ s

dom(a)
∼ t ⊃ step(s, a)

u
∼ step(t, a).

This can be rewritten as

s
u
∼ t ∧ s

dom(a)
∼ t ⊃ contents(step(s, a), n) = contents(step(t, a), n)

where n ∈ observe(u). There are three cases to consider

Case 1: contents(step(s, a), n) 6= contents(s, n). The second of the Reference Mon-
itor Assumptions provides the desired conclusion directly (from the hypothesis

s
dom(a)
∼ t).

Case 2: contents(step(t, a), n) 6= contents(t, n). This case is symmetrical with the
first.

Case 3: contents(step(t, a), n) = contents(t, n) ∧ contents(step(t, a), n) = contents(t, n).
Since s

u
∼ t, we have contents(s, n) = contents(t, n) and the conclusion is im-

mediate.

It remains to show that the construction locally respects ;. This follows by
exactly the same argument as that used in the proof of Theorem 2. 2

It is illuminating to examine the similarity between this access control theorem
and the ordinary one (Theorem 2). The only difference between the two theorems
is that the ordinary one requires the additional condition

u ; v ⊃ observe(u) ⊆ observe(v).

Theorem 8 is able to dispense with this condition because the intransitive unwinding
theorem, from which it is derived, requires only weak step consistency.

To see how this apparently small difference in formulation allows Theorem 8,
but not Theorem 2, to provide an access control interpretation for an intransitive
policy, consider the system sketched in Figure 3.1. Theorem 8, allows domain A to
have alter access to locations to which domain B has observe access. Similarly, it
permits domain B to have alter access to locations to which domain C has observe
access. In this way, information can flow from A to B and from B to C. However,
A may not have alter access to any locations to which C has observe access; in this
way, direct flow of information from A to C is prevented.

The conditions of Theorem 2 also allow domain A to have alter access to lo-
cations to which domain B has observe access, but they also require that B have

32 Chapter 4. Intransitive Noninterference

observe access to every location to which A has observe access. Similarly, consid-
ering domains B and C, the conditions of Theorem 2 require that C have observe
access to every location to which B has observe access. Transitively, therefore, C

has observe access to every location to which A has observe access and so A can
have “no secrets” from C. Thus, the additional condition of Theorem 2 forces the
transitive completion of the policy, and so allows the direct flow of information from
A to C.

Chapter 5

Comparisons among the

Formulations

In this chapter we compare our treatment of intransitive noninterference policies
with the standard treatment of noninterference and with that of Haigh and Young.

5.1 Intransitive vs. Standard Noninterference

We first compare our treatment of intransitive noninterference policies (Chapter 4)
with the standard treatment of noninterference policies (Chapter 2) and the special
properties of transitive policies (Chapter 3). We will show that, when restricted to
transitive policies, our formulation of noninterference corresponds exactly with the
standard treatment. This provides some assurance that our treatment is a natural
extension of the standard one. To begin, we establish that the definitions of security
coincide in the case of transitive polices.

Lemma 6 If ; is transitive, then

v ∈ sources(α, u) ⊃ v ; u.

Proof: The proof is by induction on the length of α. The basis is the case α = Λ,
and reference to Definition 8 shows that

sources(Λ, u) = {u}

and the lemma is satisfied in this case by the reflexivity of ;.

33

34 Chapter 5. Comparisons among the Formulations

For the inductive step, Definition 8 gives v ∈ sources(a ◦ α, u) if either v ∈
sources(α, u) or

v = dom(a) ∧ (∃w ∈ sources(α, u) ∧ dom(a) ; w).

In the first case, the inductive hypothesis provides v ; u directly; in the second, the
inductive hypothesis provides w ; u, we also have v = dom(a) and dom(a) ; w,
and so transitivity provides v ; u as required. 2

Lemma 7 If ; is transitive, then ipurge(α, u) = purge(α, u).

Proof: Comparison of Definitions 2 and 8 reveals that we only need to demonstrate

dom(a) ; u iff dom(a) ∈ sources(a ◦ α, u).

The “if” direction was established by the previous lemma. For the “only if”
direction, note that u ∈ sources(α, u), so that dom(a) ∈ sources(a ◦ α, u) follows
immediately from Definition 8 and dom(a) ; u. 2

Theorem 9 Definitions 2 and 8 of security agree when the relation ; is transitive.

Proof: Since the two definitions differ only in their “purge” functions, this result
is an immediate consequence of the previous lemma. 2

We now know that the two definitions of security coincide in the case of transitive
policies; next, we show that the unwinding theorems do so as well.

Theorem 10 The Unwinding Theorems 1 and 7 agree when the relation ; is tran-
sitive.

Proof: The unwinding theorems differ only in that the intransitive version uses
weak step consistency where the regular one uses (ordinary) step consistency. Weak
step consistency is the condition

s
u
∼ t ∧ s

dom(a)
∼ t ⊃ step(s, a)

u
∼ step(t, a),

while ordinary step consistency is the condition

s
u
∼ t ⊃ step(s, a)

u
∼ step(t, a).

5.2. Comparison with Haigh and Young’s Formulation 35

Ordinary step consistency obviously implies weak step consistency; thus, we only
need to show that weak step consistency implies ordinary step consistency when ;

is transitive. However, it is not necessarily the case that a given view partitioning
that satisfies weak step consistency also satisfies ordinary step consistency; thus
we must prove that a view partitioning satisfying the intransitive unwinding the-
orem implies the existence of (another) view partitioning satisfying the ordinary
unwinding theorem.

The construction we use is the same as that for the nesting theorem (Theorem 5):

we define a new view-partitioning relation
u
' on D by

s
u
' t

def
= (∀v: v ; u ⊃ s

v
∼ t).

The output consistency and local respect for ; of
u
' follow by the same arguments

used in Theorem 5, as does the fact that
u
' is an equivalence relation. For (ordinary)

step consistency, we must show that

s
u
' t ⊃ step(s, a)

u
' step(t, a),

or, equivalently,

s
u
' t ∧ v ; u ⊃ step(s, a)

v
∼ step(t, a).

Note that s
u
' t ∧ v ; u ⊃ s

v
∼ t. There are now two cases to consider.

Case 1: dom(a) ; u. In this case, s
u
' t implies s

dom(a)
∼ t, and since we already

have s
v
∼ t, weak step consistency then supplies step(s, a)

v
∼ step(t, a) as

required.

Case 2: dom(a) 6; u. In this case, since we have v ; u, transitivity of ; requires
dom(a) 6; v. But then, local respect of ; by

v
∼ requires step(s, a)

v
∼ s and

step(t, a)
v
∼ t, and so step(s, a)

v
∼ step(t, a) follows directly from s

v
∼ t.

2

5.2 Comparison with Haigh and Young’s Formulation

The system model used by Haigh and Young [10] differs slightly from that used here.
Their output function has signature

• output : S × D → O

36 Chapter 5. Comparisons among the Formulations

whereas we use

• output : S × A → O.

Thus, their output function allows a domain u to inspect the system state s directly
as output(s, u), whereas ours requires the mediation of an action a with dom(a) = u

to form output(s, a). Converting our formulation to theirs requires a corresponding
change in the definition of the function test to signature

• test : A∗ × D → O

with definition

test(α, u) = output(do(α), u).

The definition of security becomes

test(α, u) = test(ipurge(α, u), u),

and that of output consistency changes to

s
u
∼ t ⊃ output(s, u) = output(t, u).

Some small changes are then needed in the proof of Lemma 2 in order to take
account of the modified function signatures. No other changes are needed in the
development. We have checked this by modifying the formal verification of the
AppendixPart III in the manner described above and then re-running all the proofs.
The ability to readily check the effect of changed assumptions in this way is one
of the great benefits of formal verification: assumptions are recorded with great
precision and the “ripple” effect of perturbations can be evaluated mechanically.

Since the slight differences between the system model used here and that used
by Haigh and Young have only a trivial impact on the definition of intransitive non-
interference, and none at all on our intransitive unwinding theorem, it is reasonable
to compare our definitions and theorems with those of Haigh and Young.

Under the proviso that our function sources is the same as their informally
defined function purgeable, our definition for intransitive noninterference is the same
as that given by Haigh and Young for “MDS Security.” However, the corresponding
unwinding theorems differ and in this section we compare our unwinding theorem
for intransitive policies with the “SAT MDS Unwinding Theorem” of Haigh and
Young.

In our terminology and notation, the SAT MDS Unwinding Theorem of Haigh
and Young is the following.

5.2. Comparison with Haigh and Young’s Formulation 37

Proposition 1 (SAT MDS Unwinding Theorem) Let ; be a policy and M a view-
partitioned system that is

1. is output consistent,

2. step consistent, and

3. MDS-respects ;.

Then M is secure for ;.

That is, Haigh and Young require step consistency where we require weak step
consistency, and they require a condition we call “MDS-respect” for ; where we
require local respect. The condition MDS-respect is defined as follows by Haigh and
Young [10, p. 147, formula (10)].

Definition 11 Let M be a view-partitioned system and ; a policy. We say that
M MDS-respects ; if, for any choice of action a and state s, if a is purgeable with
respect to domain u, then

s
u
∼ step(s, a).

2

This definition presents a considerable challenge to interpretation. The function
purgeable is not defined formally by Haigh and Young, but in its informal definition,
and in all previous uses within their paper, it is used in contexts such as “a is purge-
able with respect to u in α.” That is, the purgeability of an action is defined relative
to a domain and an action sequence. In the definition of MDS-respects, however,
there is no reference to an action sequence. Examination of Haigh and Young’s
proof of their SAT MDS Unwinding Theorem sheds no light on the interpretation
of the crucial notion MDS-respects: the proof is only a sketch and does not employ
formal use of definitions.

Any interpretation of MDS-respects that differs from locally respects must be
either weaker or stronger than that alternative notion. A stronger notion would
require s

u
∼ step(s, a) even in some circumstances where dom(a) ; u. This does

not seem very plausible, since the other conditions of the SAT MDS Unwinding
Theorem are the same as for the ordinary unwinding theorem, and strengthening
one of them must restrict, rather than enlarge, the class of policies admitted. We
conclude that MDS-respects must allow s 6

u
∼ step(s, a) in some circumstances where

dom(a) 6; u. The constraint on the possible values of step(s, a) in this case must be
provided by the other conditions of the theorem, namely output consistency, and step

38 Chapter 5. Comparisons among the Formulations

consistency. However, as these are both the same as in the ordinary noninterference
case, it is difficult to see how adequate constraints on the effect of a state transition
step(s, a) with dom(a) 6; u and s 6

u
∼ step(s, a) can be achieved by these constraints.

In contrast, our formulation of the unwinding theorem for intransitive policies
leaves the locally respects constraint unchanged from the ordinary case, but changes
the step consistency constraint to weak step consistency. That is, the condition:

s
u
∼ t ⊃ step(s, a)

u
∼ step(t, a)

of the ordinary case is changed to

s
u
∼ t ∧ s

dom(a)
∼ t ⊃ step(s, a)

u
∼ step(t, a)

for the intransitive case.
The second of these conditions is very natural: its intuitive interpretation is

that when an action a is performed, those elements of the system state visible to u

change in a way that depends only on those same elements, plus those visible to the
domain that performed the action.

The ordinary step consistency condition requires that when an action a is per-
formed, those elements of the system state visible to u change in a way that depends
on those elements alone. This seems more, not less, restrictive than the previous
case, until we recall that for transitive policies there is always a view-partitioning
that satisfies

u ; v ∧ s
v
∼ t ⊃ s

u
∼ t.

In other words, those elements of the state space visible to u include all the elements
of the state space visible to domains that may interfere with u.

We should now ask whether a similar explanation can provide a sound inter-
pretation to Haigh and Young’s SAT MDS Unwinding Theorem. We believe not,
and we use the following example to make our case. Consider a system with four
domains U, V, W , and X; U and V may interfere with W , and W may interfere with
X, but U and V must not directly interfere with X. The system state is composed
of three internal registers, u, v, and x, all initially zero. Each domain has a single
action associated with it: U ’s action sets the register u to 1, V ’s action sets the
register v to 2, W ’s action sets the register x to the sum of the contents of u and
v, and X’s action outputs the contents of the register x. It should be clear that
this system satisfies the stated policy. We need to be able to distinguish it from
the insecure variant in which X’s action outputs the sum of the registers u and
v directly. In our formulation of intransitive noninterference, U , V and X’s view
of the system state is restricted to the registers u, v and x respectively, while W

5.2. Comparison with Haigh and Young’s Formulation 39

can view both registers u and v. It is easy to see that our unwinding theorem for
intransitive policies is satisfied by this assignment.

Haigh and Young’s unwinding theorem is not satisfied, however, since the effect
of W ’s action on the register x cannot be explained in terms of the objects visible
to X. It seems that the set of objects visible to X must be enlarged to include the
registers u and v. But how, then, are we to distinguish the system from its unsecure
variant?

We conclude that all possible interpretations of Haigh and Young’s SAT MDS
Unwinding Theorem are unsatisfactory. Because there is no precise definition of
the crucial requirement that we call “MDS-respects,” it is impossible to assign a
definitive status to the theorem, and its utility becomes questionable.

We have, we believe, presented adequate evidence that our unwinding theorem
for intransitive policies is both true and useful; indeed, we believe it is the strongest
theorem possible. We have also presented evidence that Haigh and Young’s theorem
is essentially different than ours—differing in the crucial step consistency condition,
not just the uncertain MDS-respects condition. We therefore believe it unlikely that
their theorem, if true, is as generally applicable as ours. Consequently, we consider
it likely that their theorem is either false, or true but applicable to a very small class
of systems and/or policies.

Chapter 6

Summary and Conclusions

We have examined the issue of transitivity in noninterference security policies. In-
transitive noninterference policies would seem, intuitively, to be exactly what is
required for the formal specification of channel control and type enforcement poli-
cies. We have shown, however, that the standard interpretation of noninterference
does not fulfill this expectation. Fortunately, the interpretation of noninterference
introduced by Haigh and Young for multidomain security (MDS) does have the
properties we require. Our contribution has been the identification of intransitivity
of the ; relation as the key distinction between channel control, type enforcement,
and MDS policies on the one hand, and MLS policies on the other.

It can be considered a historical accident that the theory for the transitive case
was invented and developed before the intransitive one, and has therefore become
regarded as the standard case. We submit that it is now more helpful to regard the
intransitive case as the basis for noninterference formulations of security, with the
formerly standard treatment regarded as a specialization for the case of transitive
policies. The advantage of regarding the development in this light is that one does
not have to trouble with the rather difficult and informal argument that the standard
treatment makes little sense for intransitive policies; one can simply present the
general theory and then show that there is a simpler treatment available in the
special case of transitive policies. The attempt to use the standard treatment in the
case of intransitive policies simply does not arise with this approach.

Our main technical contributions have been the formulation, rigorous proof, and
mechanically-checked formal verification of an unwinding theorem for intransitive
polices, a demonstration that the definitions and theorems of the intransitive theory
collapse to the standard ones in the case of transitive policies, and an exploration of
the properties of transitive policies. Our demonstrations of the equivalence of MLS

40

41

and transitive noninterference policies, of the nesting property, and of the result
that all MLS secure systems satisfy the conditions of the unwinding theorem, shed
some new light on the properties of transitive noninterference security policies.

However, the novel and more interesting case, and the one that prompted this
investigation in the first place, is that of intransitive noninterference policies. In
future work we hope to explore the practical application of intransitive noninterfer-
ence formulations to problems of channel control, and to develop effective methods
for verifying mechanisms that enforce such policies. We also plan to explore the
connection between intransitive noninterference policies and the class of properties,
discussed in [21], that can be enforced by kernelization.

Bibliography

[1] D.H. Barnes. The provision of security for user data on packet switched net-
works. In Proc. 1983 IEEE Symposium on Security and Privacy, pages 121–126,
Oakland, CA, April 1983. IEEE Computer Society.

[2] D.E. Bell and L.J. La Padula. Secure computer systems : Vol. I—mathematical
foundations, Vol. II—a mathematical model, Vol III—a refinement of the math-
ematical model. Technical Report MTR-2547 (three volumes), Mitre Corpora-
tion, Bedford, MA, March–December 1973.

[3] D.E. Bell and L.J. La Padula. Secure computer system: Unified exposition and
Multics interpretation. Technical Report ESD-TR-75-306, Mitre Corporation,
Bedford, MA, March 1976.

[4] W.E. Boebert and R.Y. Kain. A practical alternative to hierarchical integrity
policies. In Proceedings 8th DoD/NBS Computer Security Initiative Conference,
pages 18–27, Gaithersburg, MD, September 1985.

[5] D.E. Denning. On the derivation of lattice structured information flow policies.
Technical Report CSD TR 180, Purdue University, March 1976.

[6] R.J. Feiertag, K.N. Levitt, and L. Robinson. Proving multilevel security of a
system design. In Proc. 6th ACM Symposium on Operating System Principles,
pages 57–65, November 1977.

[7] J.A. Goguen and J. Meseguer. Security policies and security models. In Proc.
1982 Symposium on Security and Privacy, pages 11–20, Oakland, CA, April
1982. IEEE Computer Society.

[8] J.A. Goguen and J. Meseguer. Inference control and unwinding. In Proc. 1984
Symposium on Security and Privacy, pages 75–86, Oakland, CA, April 1984.
IEEE Computer Society.

42

Bibliography 43

[9] J. Haigh and W. Young. Extending the non-interference model of MLS for SAT.
In Proc. 1986 Symposium on Security and Privacy, pages 232–239, Oakland,
CA, April 1986. IEEE Computer Society.

[10] J. Thomas Haigh and William D. Young. Extending the noninterference version
of MLS for SAT. IEEE Transactions on Software Engineering, SE-13(2):141–
150, February 1987.

[11] Jeremy Jacob. A note on the use of separability for the detection of covert
channels. Cipher—The Newsletter of the IEEE Technical Committee on Secu-
rity and Privacy, pages 25–33, Summer 1989.

[12] Nancy L. Kelem and Richard J. Feiertag. A separation model for virtual ma-
chine monitors. In Proc. 1991 Symposium on Security and Privacy, Oakland,
CA, May 1991. IEEE Computer Society. To appear.

[13] John McLean. A comment on the “basic security theorem” of Bell and La
Padula. Information Processing Letters, 20:67–70, 1985.

[14] John McLean. Reasoning about security models. In Proc. 1987 Symposium on
Security and Privacy, pages 123–131, Oakland, CA, April 1987. IEEE Com-
puter Society.

[15] J.K. Millen and C.M. Cerniglia. Computer security models. Working Paper
WP25068, Mitre Corporation, Bedford, MA, September 1983.

[16] Gerald J. Popek and David R. Farber. A model for verification of data security
in operating systems. Communications of the ACM, 21(9):737–749, September
1978.

[17] John Rushby. The design and verification of secure systems. In Proc. 8th
ACM Symposium on Operating System Principles, pages 12–21, Asilomar, CA,
December 1981. (ACM Operating Systems Review , Vol. 15, No. 5).

[18] John Rushby. Verification of secure systems. Technical Report 166, Computing
Laboratory, University of Newcastle upon Tyne, Newcastle upon Tyne, UK,
August 1981.

[19] John Rushby. Proof of Separability—a verification technique for a class of
security kernels. In Proc. 5th International Symposium on Programming, pages
352–367, Turin, Italy, April 1982. Springer-Verlag Lecture Notes in Computer
Science, Vol. 137.

44 Bibliography

[20] John Rushby. The security model of Enhanced HDM. In Proceedings 7th
DoD/NBS Computer Security Initiative Conference, pages 120–136, Gaithers-
burg, MD, September 1984.

[21] John Rushby. Kernels for safety? In T. Anderson, editor, Safe and Secure Com-
puting Systems, chapter 13, pages 210–220. Blackwell Scientific Publications,
1989. (Proceedings of a Symposium held in Glasgow, October 1986).

[22] John Rushby. Formal verification of the unwinding theorem for intransitive
noninterference security policies. Project report, Computer Science Laboratory,
SRI International, Menlo Park, CA, March 1991. For Official Use Only.

[23] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal
specification and verification using Ehdm. Technical Report SRI-CSL-91-2,
Computer Science Laboratory, SRI International, Menlo Park, CA, January
1991.

[24] C.T. Sennett and R. Macdonald. Separability and security models. Technical
Report 87020, Royal Signals and Radar Establishment, Malvern, UK, Novem-
ber 1987.

[25] T. Taylor. Comparison paper between the Bell and La Padula model and the
SRI model. In Proc. 1984 Symposium on Security and Privacy, pages 195–202,
Oakland, CA, April 1984. IEEE Computer Society.

Bibliography

[1] D.H. Barnes. The provision of security for user data on packet switched net-
works. In Proc. 1983 IEEE Symposium on Security and Privacy, pages 121–126,
Oakland, CA, April 1983. IEEE Computer Society.

[2] D.E. Bell and L.J. La Padula. Secure computer systems : Vol. I—mathematical
foundations, Vol. II—a mathematical model, Vol III—a refinement of the math-
ematical model. Technical Report MTR-2547 (three volumes), Mitre Corpora-
tion, Bedford, MA, March–December 1973.

[3] D.E. Bell and L.J. La Padula. Secure computer system: Unified exposition and
Multics interpretation. Technical Report ESD-TR-75-306, Mitre Corporation,
Bedford, MA, March 1976.

[4] W.E. Boebert and R.Y. Kain. A practical alternative to hierarchical integrity
policies. In Proceedings 8th DoD/NBS Computer Security Initiative Conference,
pages 18–27, Gaithersburg, MD, September 1985.

[5] D.E. Denning. On the derivation of lattice structured information flow policies.
Technical Report CSD TR 180, Purdue University, March 1976.

[6] R.J. Feiertag, K.N. Levitt, and L. Robinson. Proving multilevel security of a
system design. In Proc. 6th ACM Symposium on Operating System Principles,
pages 57–65, November 1977.

[7] J.A. Goguen and J. Meseguer. Security policies and security models. In Proc.
1982 Symposium on Security and Privacy, pages 11–20, Oakland, CA, April
1982. IEEE Computer Society.

[8] J.A. Goguen and J. Meseguer. Inference control and unwinding. In Proc. 1984
Symposium on Security and Privacy, pages 75–86, Oakland, CA, April 1984.
IEEE Computer Society.

45

46 Bibliography

[9] J. Haigh and W. Young. Extending the non-interference model of MLS for SAT.
In Proc. 1986 Symposium on Security and Privacy, pages 232–239, Oakland,
CA, April 1986. IEEE Computer Society.

[10] J. Thomas Haigh and William D. Young. Extending the noninterference version
of MLS for SAT. IEEE Transactions on Software Engineering, SE-13(2):141–
150, February 1987.

[11] Jeremy Jacob. A note on the use of separability for the detection of covert
channels. Cipher—The Newsletter of the IEEE Technical Committee on Secu-
rity and Privacy, pages 25–33, Summer 1989.

[12] Nancy L. Kelem and Richard J. Feiertag. A separation model for virtual ma-
chine monitors. In Proc. 1991 Symposium on Security and Privacy, Oakland,
CA, May 1991. IEEE Computer Society. To appear.

[13] John McLean. A comment on the “basic security theorem” of Bell and La
Padula. Information Processing Letters, 20:67–70, 1985.

[14] John McLean. Reasoning about security models. In Proc. 1987 Symposium on
Security and Privacy, pages 123–131, Oakland, CA, April 1987. IEEE Com-
puter Society.

[15] J.K. Millen and C.M. Cerniglia. Computer security models. Working Paper
WP25068, Mitre Corporation, Bedford, MA, September 1983.

[16] Gerald J. Popek and David R. Farber. A model for verification of data security
in operating systems. Communications of the ACM, 21(9):737–749, September
1978.

[17] John Rushby. The design and verification of secure systems. In Proc. 8th
ACM Symposium on Operating System Principles, pages 12–21, Asilomar, CA,
December 1981. (ACM Operating Systems Review , Vol. 15, No. 5).

[18] John Rushby. Verification of secure systems. Technical Report 166, Computing
Laboratory, University of Newcastle upon Tyne, Newcastle upon Tyne, UK,
August 1981.

[19] John Rushby. Proof of Separability—a verification technique for a class of
security kernels. In Proc. 5th International Symposium on Programming, pages
352–367, Turin, Italy, April 1982. Springer-Verlag Lecture Notes in Computer
Science, Vol. 137.

Bibliography 47

[20] John Rushby. The security model of Enhanced HDM. In Proceedings 7th
DoD/NBS Computer Security Initiative Conference, pages 120–136, Gaithers-
burg, MD, September 1984.

[21] John Rushby. Kernels for safety? In T. Anderson, editor, Safe and Secure Com-
puting Systems, chapter 13, pages 210–220. Blackwell Scientific Publications,
1989. (Proceedings of a Symposium held in Glasgow, October 1986).

[22] John Rushby. Formal verification of the unwinding theorem for intransitive
noninterference security policies. Project report, Computer Science Laboratory,
SRI International, Menlo Park, CA, March 1991. For Official Use Only.

[23] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal
specification and verification using Ehdm. Technical Report SRI-CSL-91-2,
Computer Science Laboratory, SRI International, Menlo Park, CA, January
1991.

[24] C.T. Sennett and R. Macdonald. Separability and security models. Technical
Report 87020, Royal Signals and Radar Establishment, Malvern, UK, Novem-
ber 1987.

[25] T. Taylor. Comparison paper between the Bell and La Padula model and the
SRI model. In Proc. 1984 Symposium on Security and Privacy, pages 195–202,
Oakland, CA, April 1984. IEEE Computer Society.

