Linear Temporal Logic
and What It’s Good For

Joshua D. Guttman

Worcester Polytechnic Institute

18 February 2010
One View of Computation

A computational system:

- At each time, some state s
- Certain states may transition to certain other states

$$s \rightarrow s'$$
One View of Computation

- A computational system:
 - At each time, some state s
 - Certain states may transition to certain other states

 $s
ightarrow s'$

- A computational system is a directed graph G
 - Nodes are states
 - Arrows are transitions
 - Computations are paths through the graph starting from a start state s_0
A computational system:
- At each time, some state s
- Certain states may transition to certain other states

$$s \rightarrow s'$$

A computational system is a directed graph G
- Nodes are states
- Arrows are transitions
- Computations are paths through the graph starting from a start state s_0

A specification is a set of paths S
- The ones we consider acceptable
- A system G meets a specification S iff

$$\text{paths}(G) \subseteq S$$
For Instance

- **State:**
 - Account balance integer
 - Issuing-coupon (true/false)

 (and maybe other info)

- **Specification:**
 - Always: Issuing-coupon implies account balance $= 0$
 - Always: (Not issuing-coupon) until account balance $= 10$
A Real Example

Using shared memory for message passing

receive ()

val : int
if start < end then
{ val := read(buff[start];
start := start+1;
return(some, val) }
else return(none, 0)

send (val : int)
if end < 3 then
{ write(buff[end], val);
end := end+1;
return(success) }
else return(failure)

reset ()
if start = 3 and end = 3 then
{ end := 0; start := 0 }
return (ok)
A Real Example
Using shared memory for message passing

receive ()
val : int
if start < end
then {
 val := read(buff[start]);
 start := start+1;
 return(some, val)
} else return(none, 0)
A Real Example
Using shared memory for message passing

receive ()
val : int
if start < end
then {
 val := read(buff[start]);
 start := start+1;
 return(some, val)
} else return(none, 0)

send (val : int)
if end < 3
then {
 write(buff[end], val);
 end := end+1;
 return(success)
} else return(failure)
A Real Example

Using shared memory for message passing

receive ()
val : int
if start < end
then {
 val := read(buff[start]);
 start := start+1;
 return(some, val)
}
else return(none, 0)

send (val : int)
if end < 3
then {
 write(buff[end], val);
 end := end+1;
 return(success)
}
else return(failure)

reset ()
if start = 3 and end = 3
then { end := 0; start := 0 }
return (ok)
What is the Specification?

When execution starts, each buffer location is not read until it's been written. Always, when a buffer location is read it will not be read again until it's been written. Always, when a buffer location is written it will not be written again until it's been read.
When execution starts, each buffer location is not read until it’s been written always.
What is the Specification?

- When execution starts,
 - each buffer location is not read until it’s been written

- Always,
 - when a buffer location is read it will not be read again until it’s been written
What is the Specification?

- When execution starts,
 each buffer location is not read
 until it’s been written

- Always,
 when a buffer location is read
 it will not be read again
 until it’s been written

- Always,
 when a buffer location is written
 it will not be written again
 until it’s been read
Suppose given \mathcal{L}, a set of propositional atoms (finite or infinite). The formulas $\mathcal{F}(\mathcal{L})$ of LTL over \mathcal{L} are inductively defined:

- $A \in \mathcal{L}$ implies $A \in \mathcal{F}(\mathcal{L})$
- Suppose $\alpha, \beta \in \mathcal{F}(\mathcal{L})$. Then
 - $\neg \alpha \in \mathcal{F}(\mathcal{L})$
 - $\alpha \lor \beta \in \mathcal{F}(\mathcal{L})$
 - $\alpha U \beta \in \mathcal{F}(\mathcal{L})$
 - $\alpha G \beta \in \mathcal{F}(\mathcal{L})$
 - $\alpha X \beta \in \mathcal{F}(\mathcal{L})$