Homework 7:
LTL and Büchi Automata

CS521, Professor Guttman

Due: 2 Mar 2010

receive () =
val : int
if bgn < end
 then {
 val := read(buff[bgn]);
 bgn := bgn+1;
 return(some, val)
 }
else return(none, 0)

send (val : int) =
if end < 1
 then {
 write(buff[end], val);
 end := end+1;
 return(success)
 }
else return(failure)

reset () =
if bgn = 1 and end = 1
 then { bgn := 0; end := 0 }
return (ok)

Figure 1: Reader-writer example with one location

Fig. 1 is an example from class with two changes. One is that I have replaced 3 everywhere by 1, and renamed start to bgn. The other is that I have changed the order of a pair of actions.

Use the atomic formula \(b_0 \) to mean that the variable bgn has the value 0, so \(\neg b_0 \) means that bgn has the value 1. Likewise for \(e_0 \) and the variable end. Use the atomic formula \(w \) to be true in a state if a write is occurring when the system is in that state. Use \(r \) to be true in a state if a read is occurring when the system is in that state.

Think of every assignment as a separate action.
1. Construct a directed graph representing the Kripke system of this system. Assume that there’s one start state, and that b_0 and e_0 are true then, and that r, w are false.

2. Construct a Büchi automaton by hand (don’t use the general algorithm I described in class) that accepts a sequence π of states iff π satisfies

$$(-r) \mathcal{W} w.$$ \hspace{1cm} (1)

3. Construct a Büchi automaton by hand that accepts a sequence π of states iff π satisfies

$$G(r \rightarrow X((-r) \mathcal{W} w))$$ \hspace{1cm} (2)

and one for

$$G(w \rightarrow X((-w) \mathcal{W} r))$$ \hspace{1cm} (3)

4. Find counterexamples to Eqns (1), (2), (3) if there are any.

5. Write a corrected version of the “wrong” procedure in Fig. 1, and construct its Kripke system.

Extra credit: Use NuSMV to verify your solution in Part 5. Hand in a printout of the your inputs to NuSMV and its outputs. Five points of homework extra credit.