Horn Clauses and Models for Them
(and a bit about the quiz)

Joshua D. Guttman
Worcester Polytechnic Institute
28 January 2010

The Key Point in Quiz
To prove Prop(γ) for all γ

Base case Suppose γ is an atom A ∈ L; then . . .
Ind. step Suppose Prop(α) and Prop(β)
Consider formulas
¬α: . . .
α ∨ β: . . .
α ∧ β: . . .

Question 1
When M ≤ M′ and γ purely positive,
M |= γ implies M′ |= γ
Let M ≤ M′.
Prop(γ) says:
If γ is purely positive and M |= γ, then M′ |= γ

Base case Suppose γ is an atom A ∈ L.
Ind. step Suppose Prop(α) and Prop(β)
Consider formulas
¬α: ¬α is not purely positive
α ∨ β: . . .
α ∧ β: . . .
Question 1
When $M \leq M'$ and γ purely positive, $M \models \gamma$ implies $M' \models \gamma$

Let $M \leq M'$.

Base case
Suppose γ is an atom $A \in \mathcal{L}$.

Ind. step
Suppose $\alpha \lor \beta$ and $\alpha \land \beta$.

Consider formulas

\[\neg \alpha: \quad \ldots \]
\[\alpha \lor \beta: \quad \ldots \]
\[\alpha \land \beta: \quad \ldots \]

Base case
Suppose γ is an atom $A \in \mathcal{L}$.

Ind. step
Suppose $\alpha \lor \beta$ and $\alpha \land \beta$.

Consider formulas

\[\neg \alpha: \quad \ldots \]
\[\alpha \lor \beta: \quad \ldots \]
\[\alpha \land \beta: \quad \ldots \]

Question 2
Every formula has an equivalent negation normal form

Trick: choose Prop(γ) to be:

\[\text{both } \gamma \text{ and } \neg \gamma \text{ have nnfs} \]

Base case
Suppose γ is an atom $A \in \mathcal{L}$; then ...

Ind. step
Suppose $\alpha \lor \beta$ and $\alpha \land \beta$.

Consider formulas

\[\neg \alpha: \quad \ldots \]
\[\alpha \lor \beta: \quad \ldots \]
\[\alpha \land \beta: \quad \ldots \]

Horn Clauses
The What

- Literal: Atomic or negated atomic formula A or $\neg A$
- Clause: A disjunction of literals $L_1 \lor \ldots \lor L_k$ or equiv.
 (letting P_i, Q_i be atoms)

\[(P_1 \land \ldots \land P_m) \rightarrow (Q_1 \lor \ldots \lor Q_n) \]

- Horn clause: Clause with 0 or 1 positive literal $n = 0$ or $n = 1$
Horn Clauses

The What

- Literal: Atomic or negated atomic formula \(A \) or \(\neg A \)
- Clause: A disjunction of literals \(L_1 \lor \ldots \lor L_k \) or eqv. (letting \(P_i, Q_j \) be atoms)

\[
(\neg P_1 \lor \ldots \lor \neg P_m) \lor (Q_1 \lor \ldots \lor Q_n)
\]

- Horn clause: Clause with 0 or 1 positive literal \(n = 0 \) or \(n = 1 \)

Horn Clauses

The Why

- Literal: Atomic or negated atomic formula \(A \) or \(\neg A \)
- Clause: A disjunction of literals \(L_1 \lor \ldots \lor L_k \) or eqv. (letting \(P_i, Q_j \) be atoms)

\[
(P_1 \land \ldots \land P_m) \rightarrow (Q_1 \lor \ldots \lor Q_n)
\]

- Horn clause: Clause with 0 or 1 positive literal \(n = 0 \) or \(n = 1 \)

Some special cases:
- \(m = 1, n = 0 \): \(\neg P_1 \)
- \(n = 0 \): \(\neg (P_1 \land \ldots \land P_m) \)
- \(m = 0, n = 1 \): \(Q_1 \)
- \(n = 1 \): \((P_1 \land \ldots \land P_m) \rightarrow Q_1 \)

Models form a lattice, 1

Four models for \(\mathcal{L} = \{P, Q\} \):

\[
\begin{align*}
\langle 1, 1 \rangle & \rightarrow \langle 1, 0 \rangle \\
\langle 0, 1 \rangle & \rightarrow \langle 0, 0 \rangle
\end{align*}
\]

\(M \leq M' \) means:

for all \(A \in \mathcal{L} \), \(M(A) \leq M'(A) \)
Models form a lattice, 2
Eight models for $L = \{P, Q, R\}$

\[
\begin{array}{ccc}
(1,1,1) & (0,1,1) & (1,1,0) \\
(0,1,0) & (1,0,0) & (0,0,0) \\
\end{array}
\]

Complete lattice: Every set of points has a least upper bound and a greatest lower bound

Generic Models
Let Σ be a set of sentences and $M \models \Sigma$.

- M is a generic model for Σ iff:
 - For every atom $A \in L$, $M \models A$ iff $\Sigma \models A$
 - That is, $M \models A$ iff every model of Σ agrees that A
 - Let M_0 be $\inf \{ M : M \models \Sigma \}$
 - If $M_0 \models \Sigma$, then M_0 is generic for Σ

Similar, but harder to draw, if L infinite
Generic Models

Let \(\Sigma \) be a set of sentences and \(\mathcal{M} \models \Sigma \)

- \(\mathcal{M} \) is a generic model for \(\Sigma \) iff:
 - For every atom \(A \in \mathcal{L} \), \(\mathcal{M} \models A \) iff \(\Sigma \vdash A \)

That is,
- \(\mathcal{M} \models A \) iff every model of \(\Sigma \) agrees that \(A \) is true.

Let \(\mathcal{M}_0 \) be inf\(\{ \mathcal{M} : \mathcal{M} \models \Sigma \} \)

- If \(\mathcal{M}_0 \models \Sigma \), then
 - \(\mathcal{M}_0 \) is generic for \(\Sigma \)
- Otherwise,
 - \(\Sigma \) has no generic model

If \(\Sigma \) has a generic model

\[\Sigma \models P \lor Q \implies \Sigma \models P \lor Q \]

Likewise if \(\Sigma \models Q_1 \lor \ldots \lor Q_n \)

Horn Theories have Generic Models

- \(\Sigma \) is Horn,
- \(\Sigma \) is satisfiable, and
- \(\mathcal{M}_0 = \inf\{ \mathcal{M} : \mathcal{M} \models \Sigma \} \)

implies \(\mathcal{M}_0 \models \Sigma \)

Cases:
- \(n = 0 \):
 - \(\neg (P_1 \land \ldots \land P_m) \)
- \(m = 0 \), \(n = 1 \):
 - \(Q_1 \)
- \(n = 1 \):
 - \((P_1 \land \ldots \land P_m) \rightarrow Q_1 \)
Horn Clauses

Horn Theories have Generic Models

- Σ is Horn,
- Σ is satisfiable, and
- $M_0 = \inf \{ M : M \models \Sigma \}$
 implies $M_0 \models \Sigma$

Cases:

$n = 0$: $(P_1 \land \ldots \land P_m)$

$m = 0, n = 1$: Q_1

$n = 1$: $(P_1 \land \ldots \land P_m) \rightarrow Q_1$

But non-Horn theories can have generic models too, e.g.

$A \rightarrow (B \lor C)$

Models form a lattice, 2

Eight models for $L = \{ P, Q, R \}$

```
(1, 1, 1)
(0, 1, 1)   (1, 0, 1)   (1, 1, 0)
(0, 0, 1)   (0, 1, 0)   (1, 0, 0)
(0, 0, 0)
```

"Stably Generic"

Σ has stably generic models iff:

- for every set of atoms $T \subseteq L$,
 if $\Sigma \cup T$ is satisfiable,
 then $\Sigma \cup T$ has a generic model

T determines lattice point M_T; if $\Sigma \cup T$ satisfiable,

$\inf \{ M : M \leq M_T \text{ and } M \models \Sigma \}$

is also a model of $\Sigma \cup T$

Horn Theories Σ

Σ is equivalent to a set Σ' of Horn formulas iff

Σ has stably generic models

\begin{itemize}
 \item right \Rightarrow left:
 $\Sigma' \cup T$ is a set of Horn clauses, so has a generic model
\end{itemize}
Horn Theories \(\Sigma \)

\(\Sigma \) is equivalent to a set \(\Sigma' \) of Horn formulas iff

- right \(\Rightarrow \) left:
 \(\Sigma' \cup T \) is a set of Horn clauses, so has a generic model

- left \(\Rightarrow \) right: Let \(\Sigma' = \{ \alpha : \alpha \text{ is Horn and } \Sigma \vdash \alpha \} \)

Let \(\Sigma \Vdash \beta \), where \(\beta \) is

\[(P_1 \land \ldots \land P_m) \rightarrow (Q_1 \lor \ldots \lor Q_n)\]

So \(\Sigma \cup \{P_1 \land \ldots \land P_m\} \Vdash Q_1 \lor \ldots \lor Q_n \)

and \(\Sigma \cup \{P_1 \land \ldots \land P_m\} \) has a generic model

So \(\Sigma \cup \{P_1 \land \ldots \land P_m\} \Vdash Q_i \) for some \(i \) s.t. \(1 \leq i \leq n \)

If \(\Sigma \) has a generic model

\(\Sigma \Vdash P \lor Q \) implies \(\Sigma \Vdash P \) or \(\Sigma \Vdash Q \)

Likewise if \(\Sigma \Vdash Q_1 \lor \ldots \lor Q_n \)

Summary

Horn theories defined in terms of syntax

- at most one positive literal per clause
- but characterize property of models
- stably generic models,
 i.e. even after adding atoms,
 generic if satisfiable