Büchi Automata and Linear Temporal Logic

Joshua D. Guttman

Worcester Polytechnic Institute

18 February 2010
Büchi Automata

Definition

A Büchi automaton is a (non-deterministic) finite automaton.
Büchi Automata

Definition

A Büchi automaton is a (non-deterministic) finite automaton.

\[\mathcal{A} = \langle Q, \Sigma, \delta, Q_s, F \rangle \]

where:

- \(Q \) is a finite set called the states
- \(\Sigma \) is a finite set called the alphabet
- \(\delta \subseteq Q \times \Sigma \times Q \), is called the transition relation
- \(Q_s \subseteq Q \) is called the set of initial states
- \(F \subseteq Q \) is called the set of accepting states
Büchi Automata: Runs, acceptance, language

Let W be an infinite sequence $\langle w_0, w_1, \ldots \rangle$ with $w_i \in \Sigma$

- A *run R of A for W* is an infinite sequence $\langle r_0, r_1, \ldots \rangle$ with $r_i \in Q$ where
 1. $r_0 \in Q_s$
 2. $(r_i, w_i, r_{i+1}) \in \delta$

The language accepted by A, written $\text{lang}(A)$, is

$\{ W : A \text{ accepts } W \}$
Büchi Automata: Runs, acceptance, language

Let W be an infinite sequence $\langle w_0, w_1, \ldots \rangle$ with $w_i \in \Sigma$

- A run R of A for W: an infinite sequence $\langle r_0, r_1, \ldots \rangle$ with $r_i \in Q$ where
 1. $r_0 \in Q_s$
 2. $(r_i, w_i, r_{i+1}) \in \delta$

- A accepts W iff there is some run R for W where:

$$\{ i : r_i \in F \} \text{ is infinite}$$
Büchi Automata: Runs, acceptance, language

Let W be an infinite sequence $\langle w_0, w_1, \ldots \rangle$ with $w_i \in \Sigma$

- **A run R of A for W:** an infinite sequence $\langle r_0, r_1, \ldots \rangle$ with $r_i \in Q$
 - 1. $r_0 \in Q_s$
 - 2. $(r_i, w_i, r_{i+1}) \in \delta$

- **A accepts W** iff there is some run R for W where:
 \[
 \{ i : r_i \in F \} \text{ is infinite}
 \]

- The **language accepted by A, written $\text{lang}(A)$**, is
 \[
 \{ W : A \text{ accepts } W \}\]
Some Büchi Automata, 1

$\Sigma = \{a, b\}$

$F = \{2\}$

Accepts W iff W has infinitely many a's
Some Büchi Automata, 1

\[\Sigma = \{a, b\} \]

\[F = \{2\} \]

Accepts \(W \) iff \(W \) has infinitely many \(a \)s
Some Büchi Automata, 2

$\Sigma = \{a, b\}$

$F = \{2\}$

Accepts W iff W has finitely many a's Can transition to state 2 after last a received
Some Büchi Automata, 2

$\Sigma = \{a, b\}$

$F = \{2\}$

Accepts W iff W has finitely many as

Can transition to state 2 after last a received
There exists a $W \in \text{lang}(A)$ if there is a q with a path from a start state to q and a cycle $q \to + q$. $F = \{2\}$
Testing Non-Emptiness

There exists a $W \in \text{lang}(\mathcal{A})$ if there is a q with

1. a path from a start state to q
2. a cycle $q \rightarrow^+ q$
Closure Conditions on Languages

Suppose given Büchi automata A_1, A_2

there exist Büchi automata with languages:

$$\text{lang}(A_1) \cup \text{lang}(A_2)$$

$$\text{lang}(A_1) \cap \text{lang}(A_2)$$

$$\Sigma^\omega \setminus \text{lang}(A_1)$$
Büchi Automata Representing LTL formula \(\varphi \nabla \)
\(\varphi \) contains atomic formulas \(\mathcal{L} \)

\[\Sigma: \text{ Input letters are prop. logic models } \mathbb{M} \subseteq \mathcal{L} \]

\[Q: \text{ Each subformula of } \varphi \text{ is a state, plus } \bot, \top, \ldots \]

\[\delta(\psi, \mathbb{M}): \text{ depends on form of } \psi: \]

\[\top, \text{ if } \psi \text{ in prop. logic and } \mathbb{M} \models \psi \]

\[\bot, \text{ if } \psi \text{ in prop. logic and } \mathbb{M} \not\models \psi \]
Büchi Automata Representing LTL formula \(\varphi \)

\(\varphi \) contains atomic formulas \(\mathcal{L} \)

\[\Sigma: \text{Input letters are prop. logic models } \mathcal{M} \subseteq \mathcal{L} \]

\[Q: \text{Each subformula of } \varphi \text{ is a state, plus } \perp, \top, \ldots \]

\[\delta(\psi, \mathcal{M}): \text{depends on form of } \psi: \]

- \(\top \), if \(\psi \) in prop. logic and \(\mathcal{M} \models \psi \)
- \(\perp \), if \(\psi \) in prop. logic and \(\mathcal{M} \not\models \psi \)
- \(\chi \), if \(\psi \) is \(X(\chi) \) and,
Büchi Automata Representing LTL formula φ

φ contains atomic formulas \mathcal{L}

Σ: Input letters are prop. logic models $\mathbb{M} \subseteq \mathcal{L}$

Q: Each subformula of φ is a state, plus \bot, \top, \ldots

$\delta(\varphi, \mathbb{M})$: depends on form of φ:

\top, if φ in prop. logic and $\mathbb{M} \models \varphi$

\bot, if φ in prop. logic and $\mathbb{M} \not\models \varphi$

χ, if φ is $X(\chi)$ and,

if φ is $\alpha U \beta$,

$$\delta(\beta, \mathbb{M}) \lor (\delta(\alpha, \mathbb{M}) \land (\alpha U \beta))$$
Büchi Automata Representing LTL formula φ

φ contains atomic formulas L

Σ: Input letters are prop. logic models $M \subseteq L$

Q: Each subformula of φ is a state, plus \bot, \top, \ldots

$\delta(\psi, M)$: depends on form of ψ:

- \top, if ψ in prop. logic and $M \models \psi$
- \bot, if ψ in prop. logic and $M \not\models \psi$
- χ, if ψ is $X(\chi)$ and,

if ψ is $\alpha U \beta$,

$$\delta(\beta, M) \lor (\delta(\alpha, M) \land (\alpha U \beta))$$

F: $\{\psi \in Q : \psi = \neg(\alpha U \beta)\}$
Suppose we are given:

- A Kripke structure \mathcal{K}
 - Represents a system
- An LTL formula φ
 - Represents a specification
 - “correctness condition”
Model Checking, 1: What?

Suppose we are given:

- A Kripke structure \mathcal{K}
 - Represents a system
- An LTL formula φ
 - Represents a specification
 - “correctness condition”

Does every execution of \mathcal{K} satisfy φ?
Model Checking, 1: What?

Suppose we are given:

- A Kripke structure \mathcal{K}
 - Represents a system
- An LTL formula φ
 - Represents a specification
 - “correctness condition”

Does every execution of \mathcal{K} satisfy φ?

For every π over graph \mathcal{K}, does $\pi \models \varphi$ hold?
Model Checking, 2: How?

Let α be an LTL formula over atoms \mathcal{L}
Let $\mathcal{K} = (S, I, T, L)$ be a finite Kripke structure with $L(s) \subseteq \mathcal{L}$

- $\neg \alpha$ determines an automaton A

$\emptyset = \text{lang}(A) \cap \text{lang}(B)$
Let α be an LTL formula over atoms \mathcal{L}
Let $\mathcal{K} = (S, I, T, L)$ be a finite Kripke structure with $L(s) \subseteq \mathcal{L}$
- $\neg \alpha$ determines an automaton A
- \mathcal{K} determines a Büchi automaton

$$B = S', \Sigma, \delta, I, S$$

where $S' = S \cup \{\text{fail}\}$ $\Sigma = 2^{\mathcal{L}}$, and

$$\delta(s, M) = \{s' \in T(s): L(s) = M\}$$

$$\cup \{\text{fail}: s = \text{fail or } L(s) \neq M\}$$
Let α be an LTL formula over atoms \mathcal{L}.

Let $\mathcal{K} = (S, I, T, L)$ be a finite Kripke structure with $L(s) \subseteq \mathcal{L}$.

- $\neg \alpha$ determines an automaton A.
- \mathcal{K} determines a Büchi automaton B.

$$B = S', \Sigma, \delta, I, S$$

where $S' = S \cup \{\text{fail}\}$, $\Sigma = 2^\mathcal{L}$, and

$$\delta(s, M) = \{s' \in T(s): L(s) = M\}$$

$$\cup \{\text{fail}: s = \text{fail} \text{ or } L(s) \neq M\}$$

- $\emptyset \supseteq \text{lang}(A) \cap \text{lang}(B)$