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Today's Goal

Theorem

Every normal derivation has the subformula property

where some v: x € [

Subformula is transitive, and:
L is a subformula of every ¢
@ is a subformula of ¢

©, 1 are subformulas of:

AP, eV, o=y
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Subformula Property Today's Goal
A derivation d proving ' I s: ¢ has the subformula property iff,
for every A + t: ) appearing in d,
either 1 is a subformula of ¢,
or 1 is a subformula of y, Theorem

Every normal derivation has the subformula property

Corollary

The derivation rules are consistent:
there is no derivation + s: L
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Proving Consistency
From the Subformula Property

Corollary

The derivation rules are consistent:
there is no derivation - s: L.

Proof.

= s: L is not an instance of an axiom.

It may be derived by the L rule, if s = emp(t), but then there is no
progress, as the premise is again of the form F t: L.

Every other rule requires using a formula that is not a subformula of L. 0O
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Two Computational Theorems

Type Preservation and Normalization

Theorem (Type Preservation)

Ifs—*tandl F s: ¢, then
alsol = t: .

Theorem (Normal Form)

IfT F s: ¢, then
there is a normal form t such that s —* t.
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Local reduction rules Reducing Intro/Elim Pair: A
fst((s,s’)) — S s t
scd((s, s')) — s .
cases((Ift,s), t,r) —, ts : : — )
cases((rgt,s),t,r) —, rs Nes:o re t: 9y :
(Av.s)t —, s[t/v] (8) e (s,t): oA\ M s:o
I E fst((s,t)): ¢
BEpD 7/ HEDD _B/H
Reducing Intro/Elim Pair: — Compile-time reduction rules
s : : fst(cases(s, t, r)) —,  cases(s,fstot,fstor)
: t . s[t/x] scd(cases(s, t, r)) —,  cases(s,scdo t,scdor)
MxipF s 9 : . cases(cases(s, t, r), u, w) —,  cases(s, \v . cases(t(v), u, w),
X : : :
TE > < 0= . : Av . cases(r(v), u, w))
N Ax.s:p— et . T
rF i)\x ws) t: . Frslthdv (u (cases(s, t,r))) —  cases(s,uot,uor)
BEpB 9/ 1O __DjER
Reducing a cases/elim pair: A Reducing a cases/elim pair: V
Omitted: Analogous deriv. of I,y: 1) F go:p
Mx:io F tix1Vxe
FEs:pVvy Ny ¢y Frixivxe Mzixi1 b uip
MesipVvey Mx:io b tixiAxe Ny:v b rixanxe I F cases(s,Ax . t,\y . r): x1V x2 Mvixa b wip
I b cases(s,Ax . t,A\y . r): x1 A x2 FTE fip
I+ fst(cases(s,Ax . t,\y . r)): x1 .
- Ix:p,zix1 - uip
MLxtp F tixiAxe Ly:v FrixanAxe Lxtp Ft:xaVxe Mxipvixa b wip
FEs:pVvey Mx:p B fst(t): xa My:@ b fst(r): x1 Fes:pvy Mx:p bk giip
I b cases(s, Ax . fst(t), \y . fst(r)): xa ref:p
f = cases(cases(s, A\x . t,\y . r),\z . u,A\v . w)
g1 = cases(t,\z . u,Av . w) go =cases(r, \z.u,Av.w)
f' = cases(u, g1, 82)
Bopl _H/H Bopl _B/H




The Reduction Relation Contexts C[x]
Replace any s, t, u with an x to make a context C[x]:
s —, t s—t
St Cls] — Cli € o= x | )
(€', 1) | (s.C'lx]) |
fst(C'[x]) | scd@R) |
s—*t  t-——u (v . C'x]) | (C'd 1) | (sC'Ix])
s—*s s—*u (Ift, C'[x]) | (ret,C'[x]) ‘
cases(C'[x], t,r) | cases(s,C’'[x],r) | cases(s,t,C'[x])
1oph B3 Lopl /3
Two Computational Theorems A Corollary: Normal Derivations
Type Preservation and Normalization
Corollary
@ If p is derivable from T, then
. there is a normal derivation t such that I F t:
Theorem (Type Preservation) e et ! 4
@ If additionally T = (), then
Ifs—*tandl F s: ¢, then t is closed (i.e. no free variables)
alsol = t: . ‘
Proof.
Theorem (Normal Form) 1. If ¢ is derivable from T, then for some s, [ - s: .
IFT + s: ¢, then By normal form, s — t for some normal t.
there is a normal form t such that s —* t. ) By type preservation, I' = t: ¢.
2. Via the Context Lemma, which says:
If I F s: ¢, then fv(s) C dom(I). O
Lopl _H)HA Bopl _1/H
A Normal Proof Another Normal Proof
R — 1)Aq F — 1L)A
P(P( —>)L)q/\ (FP _))Lq oo na b p.(pVa)—r - p
2R L4 arp P \P 9rr p.(pVa)—>rt (pVg)—r p(pVa)—rF pVg
p,(p>L)Ag - L
p.(pvqg)—=rkr
(p, (pl?i)/l\_qkq (pVq)—>r k- p—r
—1)A —
P a_P—4 Flpva—=r—(—r)
Fp=L)rg) = (p—a)
Ay . Ax . fst, x
Ax . Ay . emp(fst(x) y) Y o )
Bepl )3 Bopl _B/H




Normal Derivations, 1 Major and Minor Premises: Conjunction
Regarding s as a tree with the conclusion at the root
If d is a normal derivation, then
working upward fn?m any pomt.through major premises, e s o Mt
every application of an introduction rule T (58 p A0
is reached before Hee
any application of an elimination rule M FsipAd M s oA
I+ fst(s): ¢ I+ scd(s): ¢
All premises in an introduction rule are major
The major premise of an elimination rule is
the premise containing the connective to be eliminated
Major and Minor Premises: Implication Major and Minor Premises: Disjunction
Mxip bk s
e Ax.s:p—1 FEs:p re s
I E (ft,s): oV IF (rgt,s): oV
FFs:ipVvy Mxip B tix My:v Forix
Fresio—v MEtip I cases(s,Ax . t,\y . r): x
N (st): ¢
e a/w use  2/%
Major and Minor Premises: Axiom and Falsehood Normal Derivations, 1
Regarding s as a tree with the conclusion at the root
If d is a normal derivation, then
working upward from any point through major premises,
every application of an introduction rule
- I'Fwixj_ is reached before
Fxip b xip emp(x): ¢ any application of an elimination rule
All premises in an introduction rule are major
The major premise of an elimination rule is
the premise containing the connective to be eliminated
e 2/ e 2/




Normal Derivations, 2

If d is a normal derivation, and p is any upwards path in d
if p traverses only elimination rules
and p traverses a disjunction elimination inference
then it is below any other elimination rule
By the compile-time rules

Reducing a cases/elim pair: A

FEs:ipVvy Mxip F tixiAxe Ly Y FrixiAxe
I F cases(s,Ax. t,A\y . r): x1A X2

I b fst(cases(s, Ax . t,A\y . r)): xa

—
Mox:p F tix1AXxe My FrixiAxe
FrE s:oVvay Mx:p B fst(t): xa My:@ b fst(r): x1
I+ cases(s, Ax . fst(t), Ay . fst(r)): xa

Normal Derivations, 3 Reducing a cases/elim pair: V
Omitted: Analogous deriv. of [,y: 1 F g p
Mx:p F t:x1Vxe
FEs:pVvy Ny ¢y FrixiVvx Mz:xi b uip
. L . . [ cases(s,Ax . t,A\y . r): x1V Mv: Fow:
If d is a normal derivation, and p is any upwards path in d (s \x Y rr) |_X1f_ X2 vViX2 wepe
if p traverses only elimination rules P
. . —
then p traverses at most one major premise
of a disjunction elimination inference Mx:@,zix1 b uip
By the case/elim rule for v Mx:oF tix1Vxe Mxip,vixa b wip
and the previous claim M- s:ipvy Mxio b gip
re=f:p
f = cases(cases(s, A\x . t,\y . r),A\z. u,Av . w)
g1 = cases(t,\z . u,Av . w) go =cases(r,\z.u,Av.w)
f' = cases(u, g1, 82)
sww 213 s )3
Normal Derivations, 4 Today's Goal
If d is a normal derivation, and p is any upwards path in d Theorem
if p traverses only introduction rules Every normal derivation has the subformula property

then each successive right hand side is a subformula of the one
below it

By the form of the introduction rules
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Why it's true

Theorem
Every normal derivation d of I & s: ¢ has the subformula property

Proof.
© Conclusion of an introduction rule: subformula of ¢
@ Major premise of an elimination rule: subformula of some ) in I’
© Minor premise of —-elimination: subformula of the major premise

@ Minor premise of V-elimination: subformula of ¢
O
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Today's Goal

Theorem

Every normal derivation has the subformula property

Corollary

The derivation rules are consistent:
there is no derivation + s: L
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