Seven Rules for Big-O and Θ^*

Here are seven rules that you can use to solve problems involving big-O and Θ. They will solve the big majority of the big-O and Θ comparisons you’ll need in this course (and for a long way beyond). Two assumptions are noted in the Fine Print on the back.

\[\Theta(c \cdot f(x)) = \Theta(f(x)) \] (1)

\[\Theta(f(x) + g(x)) = \Theta(\max(f(x), g(x))) \] (2)

\[\Theta(f(x) \cdot h(x)) \leq \Theta(g(x) \cdot h(x)) \quad \text{if and only if} \quad \Theta(f(x)) \leq \Theta(g(x)) \] (3)

\[\Theta(x^c) \leq \Theta(x^d) \quad \text{if and only if} \quad c \leq d \] (4)

\[\Theta(\log x) < \Theta(x^c) \quad \text{if and only if} \quad 0 < c \] (5)

Assuming that $c > 0$,

\[\Theta(x^c) < \Theta(d^c) \quad \text{if and only if} \quad 1 < d \] (6)

Assuming that $1 \leq c$ and $1 \leq d$,

\[\Theta(c^c) < \Theta(d^c) \quad \text{if and only if} \quad c < d \] (7)

*Joshua Guttman, FL 137, \texttt{mailto:guttman@wpi.edu} with [cs2223] in Subject: field.
Fine Print. \(\Theta(f) \) means the set of all functions \(g \) that grow essentially as fast as \(f \). Officially, \(\Theta(f) = \{ g : \text{there exist } N_0, c_1, c_2 \text{ such that, for all } x > N_0, \quad g(x) \leq c_1 \cdot f(x) \text{ and } f(x) \leq c_2 \cdot g(x) \} \).

So \(\Theta(f) = \Theta(g) \), \(g \in \Theta(f) \), and \(f \in \Theta(g) \) all mean the same thing.

Big-\(O \) makes an ordering on the \(\Theta \)-classes. By \(\Theta(f) \leq \Theta(g) \), we mean that \(f \in O(g) \). In fact, when \(f \in O(g) \), either \(f \in \Theta(g) \), or else every function \(g' \in \Theta(g) \) asymptotically dominates every function \(f' \in \Theta(f) \). So this ordering works in a compatible way across whole \(\Theta \)-classes.

\(\Theta(f) < \Theta(g) \) means \(f \in O(g) \) but \(f \not\in \Theta(g) \).

A function \(f \) is non-decreasing if \(x \leq y \) implies \(f(x) \leq f(y) \). It’s eventually non-decreasing if \(N_0 < x \leq y \) implies \(f(x) \leq f(y) \), for some \(N_0 \). A function is eventually positive if, for some \(N_0 \), for all \(x > N_0 \), \(f(x) > 0 \).

In the rules above, assume all the functions \(f, g \) are:

- eventually non-decreasing, and
- eventually positive.