
Project 2

Applications of Graph Search∗

Due: Midnight, Monday, 12 Nov

In this homework, you will adapt the breadth- and depth-first search to deter-
mine properties of graphs, implementing two or three applications of them. Start
from the Lua files in http://web.cs.wpi.edu/~cs2223/b12/proj/proj2.zip.
Run your first two procedures on the undirected graphs in the file undirected.lua
and run the third procedure on the directed graphs in directed.lua. Include
the results in a block comment in your turnin submission.

For full points (100 pts.), do either of the BFS problems (Connected Com-
ponents or Bipartite Graphs) and also the DFS one (Finding a Cycle). For 20
points extra credit, do all three. Doing a second BFS problem will be easier
once you have the first one working.

The files bfs.lua and dfs.lua contain the breadth-first search and depth-
first search code shown in class. Files util.lua, stacks.lua, and queues.lua

contain utility functions and the implementations of the stacks and queues
datatype. The file graphs.lua defines the graph datatype. Reference their
contents using the module.function notation, after doing require "module".

There are a few directed and undirected graphs in directed_graphs.lua

and undirected_graphs.lua. Use them to test all your code thoroughly. You
can also build randomly generated graphs using the functions at the end of
graphs.lua.

Write your code in a file named my_proj2.lua, and do not change the files
in the starter package. Use comments to say which of your functions is the
answer to which problem below, and to explain how all your code works. I
expect that you will copy and modify the code from bfs.lua and dfs.lua. Try
to modify the key search procedures cleanly, so that it’s very easy to see what
you’re adding for each of the tasks. Test all your code.

Connected Components. An undirected graph G = (V,E) with vertices
V and edges E divides naturally into connected components. A set of vertices
C ⊆ V is a connected component if:

1. for all x, y ∈ C, there is a path using edges in E between x and y; and

∗Joshua Guttman, FL 137, mailto:guttman@wpi.edu. Include [cs2223] in the Subject:
header of email messages. Due midnight at the end of Monday, 12 Nov.

1

http://web.cs.wpi.edu/~cs2223/b12/proj/proj2.zip
mailto:guttman@wpi.edu


2. for all x ∈ C and y 6∈ C, there is no path using edges in E from x to y,
and no path from y to x.

Breadth-first search, starting from a vertex s, will discover the vertices in the
same connected component as s. Program a routine that will use BFS repeatedly
to identify all of the connected components of a graph. Return an array a with
one entry for each component C. The entry for each component C should be
an array containing the vertices in C. Thus, if the graph has three components,
one containing nodes 1, 3, 5, a second containing nodes 2, 4, 6, and the third
containing 7, 8, you want to return an array such as:

{ { 1, 3, 5 },
{ 2, 4, 6 },
{ 7, 8 } }

The order of the components doesn’t matter, and the order of the members
within any component doesn’t matter. Print out the members of each compo-
nent separately.

Bipartite Graphs. An undirected graph G is bipartite if we can split its
vertices into two disjoint sets A,B (“partition” the vertices) such that every
edge crosses between the two parts. No edge should connect two vertices in
A to each other, or connect two vertices in B to each other. Each one should
connect a vertex in A to one in B.

For instance, consider an undirected graph where the vertices are either
people or corporations, and there’s an edge between v1 and v2 if one is a person
and the other is a corporation, and the corporation employs the person. This
graph is bipartite, because persons and corporations are disjoint. The graph
may be quite complex, though. The same person can work for more than one
corporation, and the same corporation will employ many persons. So paths in
this graph may traverse many different corporations.

The obvious approach would be to generate all the partitions and check
each one to see if it satisfies the bipartite condition. But, since the number of
partitions of a set of k vertices is 2k, that’s not feasible: It would take time
exponential in the number of vertices.

But BFS helps. We will visit the vertices, dividing the vertices into even
layers and odd layers. If an edge in the BFS leads to a vertex we have already
seen, and the original path placed it in an even layer, then the new edge should
also place it in an even layer. If the original path placed it in an odd layer, then
the new edge should also place it in an odd layer.

You will adapt the BFS code so that every time it finds an edge to a vertex
v1 to a vertex v2, if v2 was already discovered, then the new path agrees with
the old path about whether v2 belongs in the odd layers or the even layers.

Actually, we can make the test simpler. A property of BFS is that every
edge connects two vertices that are either (i) both in the same layer, or else (ii)
in adjacent layers. The reason is that if there’s an edge between v1 and v2, and

2



the first of them is discovered in layer `, then the other must be discovered no
later than the next layer ` + 1. It could also be discovered in layer `.

If v1 and v2 are both discovered in layer `, and there’s an edge between them,
then this edge will cause an even-odd conflict.

So your code only needs to check that every edge crosses layers.
Since the graph may not be connected, you will have to run BFS repeatedly

to make sure that the whole graph has the bipartite property.
If the test succeeds, emit a partition of the vertices. If it fails, emit your

starting point for the current BFS run, and also an edge between vertices in the
same layer.

Finding a Cycle. Suppose that G is a directed graph. We would like to
find a cycle if there is one, or else report that G has no cycles. The recursive
depth-first search is a good starting point.

Suppose that every time you make a recursive call to explore from a new
vertex v, you also record that v is active. When you return out of the recursive
call, record that it is no longer active. For instance, you could use a new
field dfs_results[v].active, setting it to true on the call, and to false

on the return. If, when exploring u, you ever encounter an edge leading to
an active vertex v, then you have discovered a cycle. Use the predecessors
dfs_results[u].pi to follow the path from u back to v and output the cycle.

A single cycle is enough to show; your code can stop if it finds one. Or you
may show more than one.

There’s pseudocode in the book (CLRS, p. 601) to print a path.

3


