(52223, Project 1
Intro to Lua:
Measuring and Counting Sorting Behaviors*

Due midnight, Monday, 5 Nov 2012

Download and install Lua version 5.1 or 5.2 on some convenient machine.
Pre-compiled binaries for various systems are available at http://lua-users.
org/wiki/LuaBinaries. The most recent build of Lua 5.1 is build 4, called
5.1.4, and 5.2 is at build 1.

For documentation, see http://www.lua.org/docs.html. There is an on-
line manual at http://www.lua.org/manual/5.1/, and I've bought three copies
of the published book version to put on reserve in the library.

The book Programming in Lua is good, and not expensive in printed form.
The free online version at http://www.lua.org/pil/ describes Lua 5.0 rather
than 5.1, but the differences are small. I think you will find it very usable.

In fact, for our purposes, the only really important addition in Lua 5.2 or
5.1 versus 5.0 is the operator #, which gives the length of an array without gaps.
If a is an array with entries for all the numbers 1,..., %, and no entry for k + 1,
then #a returns the number k. 5.1 vs. 5.2 makes no difference for us.

Windows users may want to use the Lua for Windows install from http:
//code.google.com/p/luaforwindows/, which includes an editor (Scite) and a
way to run files. Macintosh users may want to use the text editor TextWrangler,
freely available at http://www.barebones.com/products/TextWrangler/. Un-
der the menu item #!, it has a dialog box to start Lua applied to a file. It runs
the commands in the file, and prints any output. If there’s no output, it looks
like nothing happened, so be sure to put some output-producing commands at
the end of the file.

You can give Lua interactive commands by starting the program lua. A
command function_name (args) will apply the function to its arguments. The
command

print (function_name (args))

will apply it and then also print the result. The command

*Joshua Guttman, FL 137, mailto:guttmanQupi.edu. Include [cs2223] in the Subject:
header of email messages.


http://lua-users.org/wiki/LuaBinaries
http://lua-users.org/wiki/LuaBinaries
http://www.lua.org/docs.html
http://www.lua.org/manual/5.1/
http://www.lua.org/pil/
http://code.google.com/p/luaforwindows/
http://code.google.com/p/luaforwindows/
http://www.barebones.com/products/TextWrangler/
mailto:guttman@wpi.edu

dofile("filename.lua")

executes the declarations and commands contained within the file with that
name in the current directory, adding the results inside the current Lua session.

You can also execute a file as a unit (at least on Unix-family systems) by
inserting text such as

#!/usr/local/bin/lua -i

as the first line (substituting the path that leads to the Lua interpreter on your
system if it is different). The -i flag at the end causes it to start an interactive
session after executing the file contents.

Project goals. The goals of this homework are for you to familiarize yourself
with Lua, and with three sorting methods—insertion sort, bubble sort, and
merge sort—and to evaluate the amount of work they need to do to successfully
sort arrays of numbers.

Work with the Lua code at URL http://web.cs.wpi.edu/~cs2223/b12/
projl/projl.zip. Your job is to modify this code to evaluate what it does when
it runs on different inputs, to do the experiments, and to graph and interpret
the results.

The Lua constructs you will use include local variables; array access and
array modification; if-then-else and for-loops; and very little else. It is designed
to let you focus on numbers and arrays and the core of Lua that manipulates
them.

Bug reports. Please email cs2223-staff@cs.wpi.edu with any bug reports
on this code. A bug report requires a brief explanation of what part of the code
caused the problem, and why it’s doing the wrong thing. Be sure to report the
test case that exercised the bug.

Bounty for bug-finders: The first student to report each bug that makes any
part of this code compute a wrong result wins 10 points extra credit (on the
100 point per-homework score).

Utility File. In the zip archive there is a file named utilities.lua contain-
ing a lot of useful functions. Read through it. Some examples are:

copy_table is useful to make a copy of an array so that the original will not be
lost when procedures modify the copy.

print_array prints out arrays, at least when the system knows how to print
the individual array entries.

random_int_array selects numbers randomly and inserts them into an array.
Its first argument is the length of the array to generate, and its second
argument is the largest number to permit into the array. You can always
use 1,000,000 if you would like.


http://web.cs.wpi.edu/~cs2223/b12/proj1/proj1.zip
http://web.cs.wpi.edu/~cs2223/b12/proj1/proj1.zip

run_with time takes two arguments, a function and an argument for that func-
tion. It checks the time, then applies the function to its argument, checks
the time when it terminates, and returns both the return value of the
function and the elapsed time.

run with time and collector is similar, but it also takes a collector (see next
item) as an argument. It also returns the count in the collector when it
completes.

make_collector is an object with a field that keeps an integer counter. It
reveals the value in this counter when its reveal method is called. It
re-initializes its counter to 0 when its reset method is called. And every
time its inc method is called, it increments the counter. The collector can
be used to count events that are occurring in the code, by putting a call
to collector.inc() next to every event to count in the code.

collector.inc() returns true, so you can use it to count evaluations of
a boolean expression e, by writing collector.inc() and e.

Project activities. There are three main activities for this project (after
getting Lua to a workable state in your system). The activities will be graded
on the basis of 100 points. The activities are:

1. Write two small utility functions on arrays. One will check that array is
sorted. The other will check that two arrays have the same entries.

You can use the first to check that a sorting routine has in fact delivered
sorted result. You can use the second to check that two sorting routines
have given the same result when applied to the same argument.

The sortedness checker should use a for loop to inspect each pair of ad-
jacent entries. If any is in the wrong order, it should return false.

The array entry equality checker will first check that its two arguments
have the same length. If they do not, it returns false. Otherwise, it uses
a for loop to inspect the array values of each array for each index. If
the arrays differ for any index, it should return false. It does not have to
report the index.

Add your commented code to the file projl.lua, together with the example
arrays that you used to test that your functions gave the right answer. (20
points.)

2. You will count the number of operations that the different sort algorithms
require, when applied to various arguments. In particular, we will count
comparisons between array elements, to determine whether they are out
of order.

Insert code into proj1.1lua to count how many times comparison operators
are applied to array elements. Do not count other uses of <, <, etc., just
the ones that are applied to values in the arrays being sorted. You may



use a collector as defined in util.lua, or else you may use global variables
and assignment statements.

Write a test procedure that will generate 100 test arrays, of sizes increasing
from 50 entries to 5,000 entries. This will take a few minutes to run of
most computers. For each array, make a copy of it to sort using insertion
sort; another copy to sort using bubble sort, and a copy to sort using
merge sort. For each array and sorting algorithm, maintain two arrays.
One array should have the elapsed times as entries. The i*? entry in the
insertion sort timing array should be the time it took to run insertion sort
on the i*" array. The " entry in the merge sort count array should be
the number of comparisons that merge sort required to sort the " array.

Etc.

You will use this information to answer four questions:

(a) For each algorithm, how stable is the relation between time used
and number of comparisons? Do you have a fairly constant ratio of
comparisons per unit time?

(b) For each of the three algorithms (bubble sort, insertion sort, and
merge sort), how does the number of comparisons increase as the
array size increases?

(c) For a particular (large) array size, what are the ratios of the numbers
of comparisons that the different algorithms perform, as we look at
the different pairs of the three algorithms?

(d) Are there specific kinds of inputs for which an algorithm will perform
particularly efficiently? For instance, inputs that are already in the
right order, or nearly? Inputs that are almost completely wrong,
namely the opposite of the right order? Randomly chosen input?
For this question, you should also generate some specially designed
arrays, and record the statistics for those.

Real world sorting applications often have special kinds of inputs.

Insert into the file your re-definitions of the sort routines with extra code
to do the comparison counting. Make sure that your test procedures call
the procedures being tested repeatedly with different arrays as the test
arguments. The test procedures should maintain arrays that record the
numbers of comparisons for these different test arguments.

Include these output results, and also your conclusions, as comments in
the code.

It’s convenient for this that Lua has “block comments” that look like this:

--[

This is a block comment. You can include your
output from the test in this form.



--11]

. Now compare the timings for the three versions, namely the three different
algorithms. You can get good, accurate timings in Lua using os.clock().
That gives a floating point number that says how many seconds of CPU
time Lua has used since being started. You can find how much work some
activity requires using the code:

local start_time = os.clock()
execute activity here ...

local end_time = os.clock()
return end_time-start_time

Report the same kinds of information as for the comparison counting.



