Notes on Project 5

December 8, 2012

About “recursively memoize oper,” and its type. In the problem about maximum nonadjacent subsequences, you will first construct a “knowledge extension operator” called \texttt{mnas_oper}.

This operator depends on the sequence \(s\) that it is supposed to work on, and it builds an operator \(f\) (meaning, a \textit{function} \(f\)) that will extend knowledge about the sums of maximum nonadjacent subsequences of \(s\). The result \(f\) is a function that takes an index \(i\) and a “current knowledge” operator \(g\). Then \(f(i,g)\) will return the maximum sum for a nonadjacent subsequence of \(s\) that uses at most the first \(i\) positions of \(s\). It should give the right answers up to some maximum \(j\) \textit{assuming} that \(g\) gives the right answers up to maximum \(j - 1\).

So \(f(i,g)\) \textit{extends} the knowledge contained in \(g\).

Notice that the “type” of \(g\) is \(\texttt{Int} \rightarrow \texttt{Int}\). That means, given an integer argument \(i\), \(g(i)\) is an integer, namely the sum of the maximum nonadjacent subsequence of \(s\) that uses at most the first \(i\) entries from \(s\). (Assume that \(s\) is a sequence of integers, so that the sum is an integer too.) We can write this:

\[g: \text{Int} \rightarrow \text{Int} \]

That means that the type of \(f\) will be:

\[f: \text{Int} \times (\text{Int} \rightarrow \text{Int}) \rightarrow \text{Int}. \]

This says that if \(f\) is given an integer \(i\) and an argument \(g\) with type \(g: \text{Int} \rightarrow \text{Int}\), then \(f(i,g)\) should be an integer.

So what is the type of \texttt{mnas_oper}? Well, it is a function that takes as argument an integer array, and it returns \(f\). Let us write the type of an integer array as \texttt{Int array}. Since we already know the type of \(f\), we can write the type of \texttt{mnas_oper} as:

\[\texttt{mnas_oper}: \text{Int array} \rightarrow (\text{Int} \times (\text{Int} \rightarrow \text{Int}) \rightarrow \text{Int}). \]
We are now ready to figure out the type of `recursively_memoize_oper`. It can take as argument a function like \(f \), which is called \(o \) in the `max_nonadj.lua` file. We know that \(f \) has type \(f : \text{Int} \times (\text{Int} \rightarrow \text{Int}) \rightarrow \text{Int} \). It returns a function \(\text{fn} \) which takes an argument that it gives as first argument to \(f \), and \(\text{fn} \) returns the same answer that \(f \) returned. That means that the argument and return value of \(\text{fn} \) are the same as the first argument and the return value of \(f \). So \(\text{fn}: \text{Int} \rightarrow \text{Int} \).

Since `recursively_memoize_oper` takes an argument of type \(f : \text{Int} \times (\text{Int} \rightarrow \text{Int}) \rightarrow \text{Int} \) and returns a function of type \(\text{Int} \rightarrow \text{Int} \), we have:

\[
\text{recursively_memoize_oper}: (\text{Int} \times (\text{Int} \rightarrow \text{Int}) \rightarrow \text{Int}) \rightarrow (\text{Int} \rightarrow \text{Int}).
\]

We can use this to explain how `mnas_max` works. Its definition says:

```latex
\begin{align*}
\text{function mnas_max(s)} & \quad \text{return recursively_memoize_oper(mnas_oper(s))(#s)} \\
\text{end}
\end{align*}
```

It takes an argument \(s \) which is an integer array, i.e., \(s: \text{Int array} \). Thus,

\[
\text{mnas_oper(s)}: \text{Int} \times (\text{Int} \rightarrow \text{Int}) \rightarrow \text{Int}
\]

since this is the type of value that \(\text{mnas_oper} \) returns. Thus:

\[
\text{recursively_memoize_oper(mnas_oper(s))}: \text{Int} \rightarrow \text{Int}.
\]

Now \(\#s \) is an integer, namely the length of \(s \). So:

\[
\text{recursively_memoize_oper(mnas_oper(s))(#s)}: \text{Int}.
\]

This is exactly what we want: It means that `mnas_max` returns an integer, given any sequence (array) of integers.

Curiously, `recursively_memoize_oper` can also be applied to arguments of other types. This is the relevant story for our problem, however.

Knowledge extension operators and recurrences. The project write-up and the starter code file both use the word “recurrence.” In both of these, they mean what we have been calling a knowledge extension operator. “Recurrence” is not a crazy thing to call a knowledge extension operator, since it does some work but does “recur” to its function argument \(g \) as needed.

However, I should emphasize that this has nothing to do with recurrences like the ones that the Master Theorem talks about, such as \(T(n) = aT(n/b) + f(n) \).
Bellman-Ford and Finding the Shortest Paths. Suppose that you write your Bellman-Ford implementation, and call it on a graph g and starting node s. The code is supposed to give you back two tables. One is the table d whose entry for node t is the length of the shortest path $s \rightarrow^* t$. If the entry in d is nil, that means that there was no path from s to t.

The other is the table π, i.e. $\pi[n]$ is the parent, i.e. predecessor, of n along some shortest path from s. So some shortest path is of the form $s \rightarrow^* \pi[t] \rightarrow t$; its last arc takes us from $\pi[t]$ to t. We can use π again to find out the earlier part of this path, as in:

$$s \rightarrow^* \pi[\pi[t]] \rightarrow \pi[t] \rightarrow t.$$

You can keep using this idea backward to get the whole path between s and t worked out.

1I’m using $s \rightarrow^* t$ to mean that we’re allowed to use \rightarrow zero or more times repeatedly to get to t.

3